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A nonparametric regression model with uniform random design and heteroscedastic errors (with a deterministic structure) is considered. The distributions of the errors are unknown; we only know that they admit finite moments of order 2. Based on this general framework, we want to estimate the unknown regression function. To reach this goal, an adaptive nonlinear wavelet estimator is developed. Taking the minimax approach under the MISE over Besov balls, we prove that it attains a sharp rate of convergence, closed to the one attains by the optimal non-realistic linear wavelet estimator.

rates over a wide range of function classes (Besov balls, . . . ) and enjoy excellent mean integrated squared error (MISE) properties when used to estimate spatially inhomogeneous function.

If we consider (1.1) when ξ 1 , . . . , ξ n are i.i.d. and ξ 1 is Gaussian or with tail of exponentially decreasing, various wavelet methods have been developed. See, e.g., [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF], [START_REF] Donoho | Wavelet shrinkage: asymptopia (with discussion)[END_REF], [START_REF] Hall | Interpolation methods for nonlinear wavelet regression with irregularly spaced design[END_REF], [START_REF] Cai | Wavelet shrinkage for nonequispaced samples[END_REF][START_REF] Cai | Wavelet estimation for samples with random uniform design[END_REF], [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: adaptivity, block size and threshold level[END_REF], [START_REF] Chicken | Block thresholding and wavelet estimation for nonequispaced samples[END_REF], [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] and [START_REF] Chesneau | Wavelet block thresholding for samples with random design: a minimax approach under the L p risk[END_REF]. When ξ 1 has other kinds of distributions (Cauchy, . . . ), see, e.g., [START_REF] Antoniadis | Wavelet estimators in nonparametric regression: a comparative simulation study[END_REF][START_REF] Antoniadis | Wavelet thresholding for some classes of non-Gaussian noise[END_REF] and [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: functionality[END_REF]. When the distribution of ξ 1 is unknown but admits known finite moment of order δ with δ > 2, see, e. g., [START_REF] Neumann | On the efficiency of wavelet estimators under arbitrary error distributions[END_REF], [START_REF] Delyon | On minimax wavelet estimators[END_REF], [START_REF] Zhang | Nonlinear wavelet estimation of regression function with random design[END_REF] and [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: functionality[END_REF]. When δ > 0 (including δ ∈ (0, 2]) and some conditions on the distribution of ξ 1 are known, see [START_REF] Brown | Robust nonparametric estimation via wavelet median regression[END_REF]. For the nonindependent case and δ > 2, we refer to [START_REF] Li | On wavelet regression with long memory infinite moving average errors[END_REF]. However, to the best of our knowledge, there is no adaptive wavelet estimator of f in (1.1) when the errors are heteroscedastic and only finite moments of order 2 are known.

Adopting the methodology of [START_REF] Delyon | On minimax wavelet estimators[END_REF], we develop two wavelet estimators: a linear nonadaptive and a nonlinear adaptive based on the hard thresholding rule. We evaluate their performances by taking the minimax approach under the MISE over Besov balls B s p,r (M ) (to be defined in Section 3). We prove that the considered hard thresholding wavelet estimator attains the rate of convergence

r n = ln w n w n 2s/(2s+1)
,

where

w n = n i=1 1 σ 2 i
. This rate is sharp in the sense that it is the one attained by the (non-realistic) linear wavelet estimator up to a logarithmic term. Moreover, if we restrict our study to the Gaussian case, we prove that it is near optimal in the minimax sense.

The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis on [0, 1] and the Besov balls. The estimators are presented in Section 4. The results are set in Section 5. Section 6 is devoted to the proofs.

Assumptions and notations

Assumption on f We suppose that there exists a known constant C * > 0 such that

f ∞ = sup x∈[0,1] |f (x)| ≤ C * .
(2.1)

Assumptions on ξ 1 , . . . , ξ n We recall that ξ 1 , . . . , ξ n are non (necessarily) identically distributed: there exist two known sequences of real numbers, (µ i ) i∈{1,...,n} and (σ 2 i ) i∈{1,...,n} , such that, for any i ∈ {1, . . . , n},

These sequences can depend on n. The distributions of ξ 1 , . . . , ξ n are unknown. We suppose that there exists a (known) constant c * > 0 such that inf i∈{1,...,n}

σ 2 i ≥ c * . (2.2)
We set

w n = n i=1 1 σ 2 i
and we suppose that w n ≥ e (i.e. ln w n ≥ 1).

Wavelet bases and Besov balls

Wavelet basis Let φ be a father wavelet of a multiresolution analysis on R and ψ be the associated mother wavelet. Assume that Supp(φ

) = Supp(ψ) = [1 -N, N ], N 1-N φ(x)dx = 1 and, for any ∈ {0, . . . , N -1}, N 1-N x ψ(x)dx = 0.
For instance, the Daubechies wavelets dbN satisfy these assumptions.

Set φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer τ satisfying 2 τ ≥ 2N such that the collection

B = {φ τ,k (.), k ∈ {0, . . . , 2 τ -1}; ψ j,k (.); j ∈ N-{0, . . . , τ -1}, k ∈ {0, . . . , 2 j -1}},
(with an appropriate treatments at the boundaries) is an orthonormal basis of

L 2 ([0, 1]) = {h : [0, 1] → R; 1 0 h 2 (x)dx < ∞}.
See [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. For any integer ≥ τ , any f ∈ L 2 ([0, 1]) can be expanded on B as

f (x) = 2 -1 k=0 α ,k φ ,k (x) + ∞ j= 2 j -1 k=0 β j,k ψ j,k (x),
where α j,k and β j,k are the wavelet coefficients of f defined by

α j,k = 1 0 f (x)φ j,k (x)dx, β j,k = 1 0 f (x)ψ j,k (x)dx. (3.1) Besov balls Let M > 0, s > 0, p ≥ 1 and r ≥ 1. Set β τ -1,k = α τ,k . A function f belongs to B s p,r ( 
M ) if, and only if, there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (3.1) satisfy

   ∞ j=τ -1   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
In this expression, s is a smoothness parameter and p and r are norm parameters. For a particular choice of s, p and r, the Besov balls contain the Hölder and Sobolev balls. See [START_REF] Meyer | Ondelettes et Opérateurs[END_REF].

Estimators

Wavelet coefficient estimators The first step to estimate f consists in expanding f on B and estimating the unknown wavelet coefficients. For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1},

• we estimate α j,k by

α j,k = 1 w n n i=1 1 σ 2 i (Y i -µ i )φ j,k (X i ), (4.1) 
• we estimate β j,k by

β j,k = 1 w n n i=1 1 σ 2 i (Y i -µ i )ψ j,k (X i )1 1 σ 2 i |(Yi-µi)ψ j,k (Xi)|≤γn , (4.2) 
where, for any random event A, 1 A is the indicator function on A,

γ n = θ w n ln w n and θ = C 2 * /c * + 1.
Notice that β j,k is the thresholded version of the empirical estimator of β j,k (see, e.g., [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF]). The idea of this thresholding is to operate a selection on the observations: when, for i ∈ {1, . . . , n}, f is "too noisy" by ξ i , the observation Y i is neglected. Such a β j,k has been introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] when ξ 1 , . . . ξ n are i.i.d. (nonheteroscedastic case) and ξ 1 admits finite moments of order 3.

Linear estimator Assuming that f ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f L by

f L (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x), (4.3) 
where α j,k is defined by (4.1) and j 0 is the integer satisfying

2 -1 w 1/(2s+1) n < 2 j0 ≤ w 1/(2s+1) n .
The definition of j 0 is chosen to minimize the MISE of f L . It is not adaptive since it depends on s, the smoothness parameter of f .

Hard thresholding estimator We define the hard thresholding estimator f H by

f H (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| β j,k |≥κλn} ψ j,k (x), (4.4) 
where α j,k is defined by (4.1), β j,k by (4.2), j 1 is the integer satisfying

2 -1 w n < 2 j1 ≤ w n ,
κ ≥ 8/3 + 2 + 2 16/9 + 4, λ n is the threshold

λ n = θ ln w n w n (4.5)
and θ = C 2 * /c * + 1. The definitions of γ n and λ n are chosen to minimize the MISE of f H and to make it adaptive. Notice than f H is a modified version of the one of [START_REF] Delyon | On minimax wavelet estimators[END_REF].

Results

Upper bounds

Theorem 5.1. Consider (1.1) under the assumptions of Section 2. Suppose that f ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f L be (4.3). Then there exists a constant C > 0 such that

E 1 0 f L (x) -f (x) 2 dx ≤ Cw -2s/(2s+1) n .
The proof of Theorem 5.1 uses a moment inequality on (4.1) and a suitable decomposition of the MISE. Due to our weak assumptions on ξ 1 , . . . , ξ n , the optimal lower bound of the model seems difficult to determine (see, e.g., [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Tsybakov | Introduction a l'estimation non-paramtrique[END_REF]). However, since f L is constructed to be the linear estimator which optimizes the MISE and w -2s/(2s+1) n is the optimal rate of convergence in the Gaussian case (see Theorem 5.3 below), our benchmark will be r n = w -2s/(2s+1) n .

Theorem 5.2. Consider (1.1) under the assumptions of Section 2. Let f H be (4.4). Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}. Then there exists a constant C > 0 such that

E 1 0 f H (x) -f (x) 2 dx ≤ C ln w n w n 2s/(2s+1)
.

The proof of Theorem 5.2 is based on several probability results (moment inequalities, concentration inequality,. . . ) and a suitable decomposition of the MISE. Note that our proof differs from the one of [START_REF] Delyon | On minimax wavelet estimators[END_REF]Theorem 4]. This difference enables us to improve the moment assumption (only 2 finite moments is required against 3 in [START_REF] Delyon | On minimax wavelet estimators[END_REF]) and to take into account the heteroscedasticity of the errors. Theorem 5.2 proves that f H attains r n up to a logarithmic term. Notice that when ξ 1 , . . . , ξ n are i.i.d. and only admits finite moments of order 2, f H achieves the same rates of convergence than the standard hard thresholding estimator defined when ξ 1 is Gaussian (see [START_REF] Delyon | On minimax wavelet estimators[END_REF] and [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF]). And this one is optimal up to a logarithmic term.

Lower bound

Theorem 5.3 below investigates the lower bound of (1.1) in the Gaussian case.

Theorem 5.3. Consider (1.1) when ξ 1 , . . . , ξ n are Gaussian. Then there exists a constant c > 0 such that, for any s > 0, p ≥ 1 and r ≥ 1,

inf f sup f ∈B s p,r (M ) E 1 0 f (x) -f (x) 2 dx ≥ cw -2s/(2s+1) n ,
where the infimum is taken over all the possible estimators f of f . Theorems 5.1 and 5.3 prove that, in the Gaussian case,

r n = w -2s/(2s+1) n
is the optimal rate of convergence.

Perspectives

A possible perspective of this work will be to investigate the estimation of f in (1.1) when X 1 has a more complex distribution than the random uniform one. In this case, the warped wavelet basis introduced in the nonparametric regression estimation by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] seems to be a powerful tool. To improve the estimation of f (and remove the extra logarithmic term in r n ), maybe other thresholding rules can be developed. The thresholding rule named BlockJS introduced in wavelet methodology by [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: adaptivity, block size and threshold level[END_REF] seems to be a good alternative. All these aspects need further investigations that we leave for a future work.

Proofs

In this section, we consider (1.1) under the assumptions of Section 2. Moreover, C represents a positive constant which may differ from one term to another.

Auxiliary results

Proposition 6.1. For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let α j,k be the wavelet coefficient (3.1) of f in (1.1) and α j,k be (4.1). Then there exists a constant C > 0 such that

E ( α j,k -α j,k ) 2 ≤ Cw -1 n .
Proof of Proposition 6.1. For any i ∈ {1, . . . , n}, let us set

W i = (Y i -µ i )φ j,k (X i ).
Since X i and ξ i are independent, we have

E(W i ) = E(f (X i )φ j,k (X i )) + E(ξ i -µ i )E(φ j,k (X i )) = E (f (X 1 )φ j,k (X 1 )) = 1 0 f (x)φ j,k (x)dx = α j,k .
Hence

E ( α j,k ) = E 1 w n n i=1 1 σ 2 i W i = 1 w n n i=1 1 σ 2 i E (W i ) = 1 w n w n α j,k = α j,k . (6.1) 
This implies

E ( α j,k -α j,k ) 2 = V ( α j,k ) = V 1 w n n i=1 1 σ 2 i W i = 1 w 2 n n i=1 1 σ 4 i V(W i ) ≤ 1 w 2 n n i=1 1 σ 4 i E W 2 i . (6.2) 
For any i ∈ {1, . . . , n}, since X i and

ξ i are independent, E φ 2 j,k (X i ) = 1 0 φ 2 j,k (x)dx = 1 and, by (2.1), f ∞ ≤ C * , we have E W 2 i = E (f (X i ) + (ξ i -µ i )) 2 φ 2 j,k (X i ) = E f 2 (X i )φ 2 j,k (X i ) + 2E(ξ i -µ i )E(f (X i )φ 2 j,k (X i )) + E (ξ i -µ i ) 2 E φ 2 j,k (X i ) = E f 2 (X i )φ 2 j,k (X i ) + σ 2 i ≤ C 2 * + σ 2 i .
So, by (2.2),

1 σ 4 i E W 2 i ≤ 1 σ 4 i (C 2 * + σ 2 i ) ≤ θ 2 σ 2 i . (6.3) 
It follows from (6.2) and (6.3) that

E ( α j,k -α j,k ) 2 ≤ θ 2 w 2 n n i=1 1 σ 2 i = Cw -1 n .
Proposition 6.2. For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (3.1) of f in (1.1) and β j,k be (4.2). Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C (ln w n ) 2 w 2 n .
Proof of Proposition 6.2. For any i ∈ {1, . . . , n}, let us set

Z i = 1 σ 2 i (Y i -µ i )ψ j,k (X i ).
Proceeding as in (6.1), we have

β j,k = 1 0 f (x)ψ j,k (x)dx = E (f (X 1 )ψ j,k (X 1 )) = 1 w n n i=1 E (Z i ) = 1 w n n i=1 E(Z i 1 {|Zi|≤γn} ) + 1 w n n i=1 E(Z i 1 {|Zi|>γn} ). (6.4) 
This with the elementary inequality (x + y) 4 ≤ 8(x 4 + y 4 ), (x, y) ∈ R 2 , imply that

E β j,k -β j,k 4 = E   1 w n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} - 1 w n n i=1 E Z i 1 {|Zi|>γn} 4   ≤ 8(A + B), (6.5) 
where

A = E   1 w n n i=1 Z i 1 {|Zi|≤γn} -E(Z i 1 {|Zi|≤γn} ) 4   and B = 1 w n n i=1 E(|Z i |1 {|Zi|>γn} ) 4 .
Let us bound A and B, in turn.

Upper bound for A. We need the Rosenthal inequality presented in lemma below.

Lemma 6.1 (Rosenthal's inequality [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]). Let p ≥ 2, n ∈ N * and (U i ) i∈{1,...,n} be n zero mean independent random variables satisfying sup i∈{1,...,n} E(|U i | p ) < ∞. Then there exists a constant C > 0 such that

E n i=1 U i p ≤ C max   n i=1 E (|U i | p ) , n i=1 E U 2 i p/2   .
Applying the Rosenthal inequality with p = 4 and, for any i ∈ {1, . . . , n},

U i = Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} , we obtain A = 1 w 4 n E   n i=1 U i 4   ≤ C 1 w 4 n max   n i=1 E U 4 i , n i=1 E U 2 i 2   .
Using (6.3) (with ψ instead of φ), we have, for any a ∈ {2, 4} and any i ∈ {1, . . . , n},

E (U a i ) ≤ 2 a E Z a i 1 {|Zi|≤γn} ≤ 2 a γ a-2 n E Z 2 i ≤ 2 a γ a-2 n θ 2 σ 2 i .
Hence, using

w n ≥ e, A ≤ C 1 n 4 max   γ 2 n n i=1 1 σ 2 i , n i=1 1 σ 2 i 2   = C 1 w 4 n max w 2 n ln w n , w 2 n = C 1 w 2 n . (6.6) 
Upper bound for B. Using again (6.3) (with ψ instead of φ), for any i ∈ {1, . . . , n}, we obtain

E |Z i |1 {|Zi|>γn} ≤ E Z 2 i γ n ≤ θ σ 2 i ln w n w n . Therefore B ≤ C (ln w n ) 2 w 2 n 1 w n n i=1 1 σ 2 i 4 = C (ln w n ) 2 w 2 n . (6.7) 
Combining (6.5), (6.6) and (6.7), we have

E β j,k -β j,k 4 ≤ C 1 w 2 n + (ln w n ) 2 w 2 n ≤ C (ln w n ) 2 w 2 n .
Proposition 6.3. For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (3.1) of f in (1.1) and β j,k be (4.2). Then, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

P | β j,k -β j,k | ≥ κλ n /2 ≤ 2w -2 n .
Proof of Proposition 6.3. For any i ∈ {1, . . . , n}, let us set

Z i = 1 σ 2 i (Y i -µ i )ψ j,k (X i ).
Using (6.4), we have

| β j,k -β j,k | = 1 w n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} - 1 w n n i=1 E Z i 1 {|Zi|>γn} ≤ 1 w n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} + 1 w n n i=1 E |Z i |1 {|Zi|>γn} .
Using (6.3) (with ψ instead of φ), we obtain

1 w n n i=1 E |Z i |1 {|Zi|>γn} ≤ 1 γ n 1 w n n i=1 E Z 2 i ≤ θ 2 γ n 1 w n n i=1 1 σ 2 i = θ 2 γ n = θ ln w n w n = λ n .
Hence

S = P | β j,k -β j,k | ≥ κλ n /2 ≤ P 1 w n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} ≥ (κ/2 -1)λ n .
Now we need the Bernstein inequality presented in the lemma below.

Lemma 6.2 (Bernstein's inequality [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]). Let n ∈ N * and (U i ) i∈{1,...,n} be n zero mean independent random variables such that there exists a constant M > 0 satisfying sup i∈{1,...,n} |U i | ≤ M < ∞. Then, for any λ > 0, we have

P n i=1 U i ≥ λ ≤ 2 exp - λ 2 2 n i=1 E (U 2 i ) + λM 3 .
Let us set, for any i ∈ {1, . . . , n},

U i = Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} .
For any i ∈ {1, . . . , n}, we have E(U i ) = 0,

|U i | ≤ Z i 1 {|Zi|≤γn} + E |Z i |1 {|Zi|≤γn} ≤ 2γ n
and, using again (6.3) (with ψ instead of φ),

E U 2 i = V Z i 1 {|Zi|≤γn} ≤ E Z 2 i ≤ θ 2 σ 2 i . So n i=1 E U 2 i ≤ θ 2 n i=1 1 σ 2 i = θ 2 w n .
It follows from the Bernstein inequality that

S ≤ 2 exp   - w 2 n (κ/2 -1) 2 λ 2 n 2 θ 2 w n + 2wn(κ/2-1)λnγn 3   .
Since

λ n γ n = θ ln w n w n θ w n ln w n = θ 2 , λ 2 n = θ 2 ln w n w n ,
we have, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

S ≤ 2 exp   - (κ/2 -1) 2 ln w n 2 1 + 2(κ/2-1) 3   = 2w - (κ/2-1) 2 2 ( 1+ 2(κ/2-1)
3

) n ≤ 2w -2 n .

Proofs of the main results

Proof of Theorem 5.1. We expand the function f as

f (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x) + ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x).
We have

f L (x) -f (x) = 2 j 0 -1 k=0 ( α j0,k -α j0,k ) φ j0,k (x) - ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x).
Hence

E 1 0 f L (x) -f (x) 2 dx = A + B,
where

A = 2 j 0 -1 k=0 E ( α j0,k -α j0,k ) 2 , B = ∞ j=j0 2 j -1 k=0 β 2 j,k .
Using Proposition 6.1, we obtain

A ≤ 2 j0 w -1 n ≤ Cw -2s/(2s+1) n . Since p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Hence B ≤ C2 -2j0s ≤ Cw -2s/(2s+1) n . So E 1 0 f L (x) -f (x) 2 dx ≤ Cw -2s/(2s+1) n .
The proof of Theorem 5.1 is complete.

Proof of Theorem 5.2. Following the methodology of [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF], we expand the function f as

f (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + ∞ j=τ 2 j -1 k=0 β j,k ψ j,k (x).
We have

f H (x) -f (x) = 2 τ -1 k=0 ( α τ,k -α τ,k )φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| β j,k |≥κλn} -β j,k ψ j,k (x) - ∞ j=j1+1 2 j -1 k=0 β j,k ψ j,k (x).
Hence

E 1 0 f H (x) -f (x) 2 dx = R + S + T, (6.8) 
where

R = 2 τ -1 k=0 E ( α τ,k -α τ,k ) 2 , S = j1 j=τ 2 j -1 k=0 E β j,k 1 {| β j,k |≥κλn} -β j,k 2 and T = ∞ j=j1+1 2 j -1 k=0 β 2 j,k .
Let us bound R, T and S, in turn.

Using Proposition 6.1, w n ≥ e, ln w n < w n and 2s/(2s + 1) < 1, we have

R ≤ C2 τ w -1 n ≤ C ln w n w n 2s/(2s+1)
. (6.9)

For r ≥ 1 and p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). So, using w n ≥ e, ln w n < w n and 2s/(2s + 1) < 2s,

T ≤ C ∞ j=j1+1 2 -2js ≤ C2 -2j1s ≤ Cw -2s n ≤ C ln w n w n 2s/(2s+1) . For r ≥ 1 and p ∈ [1, 2), we have B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ) 
. Since s > 1/p, we have s + 1/2 -1/p > s/(2s + 1). So, using again w n ≥ e and ln w n < w n ,

T ≤ C ∞ j=j1+1 2 -2j(s+1/2-1/p) ≤ C2 -2j1(s+1/2-1/p) ≤ Cw -2(s+1/2-1/p) n ≤ C ln w n w n 2s/(2s+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C ln w n w n 2s/(2s+1) . (6.10) 
The term S can be decomposed as

S = S 1 + S 2 + S 3 + S 4 , (6.11) 
where

S 1 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλn} 1 {|β j,k |<κλn/2} , S 2 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλn} 1 {|β j,k |≥κλn/2} , S 3 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλn} 1 {|β j,k |≥2κλn}
and

S 4 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλn} 1 {|β j,k |<2κλn} .
Let us analyze each term S 1 , S 2 , S 3 and S 4 in turn.

Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ | β j,k -β j,k | > κλ n /2 , | β j,k | ≥ κλ n , |β j,k | < κλ n /2 ⊆ | β j,k -β j,k | > κλ n /2 and | β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλn/2} .
It follows from the Cauchy-Schwarz inequality and Propositions 6.2 and 6.3 that

E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλn/2} ≤ E β j,k -β j,k 4 1/2 P | β j,k -β j,k | > κλ n /2 1/2 ≤ C ln w n w 2 n .
Hence, since ln w n < w n ,

max(S 1 , S 3 ) ≤ C ln w n w 2 n j1 j=τ 2 j ≤ C ln w n w 2 n 2 j1 ≤ C ln w n w n ≤ C ln w n w n 2s/(2s+1)
.(6.12)

Upper bound for S 2 . Using Proposition 6.2 and the Cauchy-Schwarz inequality, we obtain

E β j,k -β j,k 2 ≤ E β j,k -β j,k 4 1/2 
≤ C ln w n w n .

Hence

S 2 ≤ C ln w n w n j1 j=τ 2 j -1 k=0 1 {|β j,k |>κλn/2} .
Let j 2 be the integer defined by

2 -1 w n ln w n 1/(2s+1) < 2 j2 ≤ w n ln w n 1/(2s+1) . (6.13) 
We have

S 2 ≤ S 2,1 + S 2,2 ,
where

S 2,1 = C ln w n w n j2 j=τ 2 j -1 k=0 1 {|β j,k |>κλn/2}
and

S 2,2 = C ln w n w n j1 j=j2+1 2 j -1 k=0 1 {|β j,k |>κλn/2} .
We have Upper bound for S 4 . We have

S 2,1 ≤ C ln w n w n j2 j=τ 2 j ≤ C ln w n w n 2 j2 ≤ C ln w n w n 2s/(2s+1) . For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), S 2,2 ≤ C ln w n w n λ 2 n j1 j=j2+1 2 j -1 k=0 β 2 j,k ≤ C ∞ j=j2+1 2 j -1 k=0 β 2 j,k ≤ C2 -2j2s
S 4 ≤ j1 j=τ 2 j -1 k=0 β 2 j,k 1 {|β j,k |<2κλn} .
Let j 2 be the integer (6.13). We have

S 4 ≤ S 4,1 + S 4,2 ,
where

S 4,1 = j2 j=τ 2 j -1 k=0 β 2 j,k 1 {|β j,k |<2κλn} , S 4,2 = j1 j=j2+1 2 j -1 k=0 β 2 j,k 1 {|β j,k |<2κλn} .
We have

S 4,1 ≤ Cλ 2 n j2 j=τ 2 j ≤ C ln w n w n 2 j2 ≤ C ln w n w n 2s/(2s+1)
.

For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we have

S 4,2 ≤ ∞ j=j2+1 2 j -1 k=0 β 2 j,k ≤ C ∞ j=j2+1 2 -2js ≤ C2 -2j2s ≤ C ln w n w n 2s/(2s+1)
.

For 

Combining (6.8), (6.9), (6.10) and (6.16), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

E 1 0 f H (x) -f (x) 2 dx ≤ C ln w n w n 2s/(2s+1)
.

The proof of Theorem 5.2 is complete.

Proof of Theorem 5.3. We need the following result.

Theorem 6.1 (Tsybakov [START_REF] Tsybakov | Introduction a l'estimation non-paramtrique[END_REF]). Let m ∈ N -{0, 1}. We consider a general statistical model. We denote P f the distribution of the observations indexed by the unknown function f . Suppose that there exists a set of functions E ⊆ L 2 ([0, 1]) containing h 0 , . . . , h m such that :

Assumption (C1). there exists a real number υ > 0 satisfying, for any (i, l) ∈ {0, . . . , m} 2 with i = l,

1 0 (h i (x) -h l (x)) 2 dx 1/2 ≥ 2υ.
Assumption (C2). there exists a constant p 0 ∈]0, 8 

))) ≤ p 0 log m,
where Λ(P hi , P h l ) = dP hi /dP h l is the likelihood ratio between the distributions indexed by h i and h l .

Then there exists a constant c > 0 such that

inf f sup f ∈E E 1 0 f (x) -f (x) 2 dx ≥ cυ 2 ,
where the infimum is taken over all the possible estimators of f .

Our aim is to apply Lemma 6.1 with the model (1.1) in the Gaussian case and the set of functions E = B s p,r (M ). Let j 0 be an integer such that

c 0 w 1/(2s+1) n ≤ 2 j0 ≤ C 0 w 1/(2s+1) n ,
where c 0 and C 0 are two constants which will be chosen a posteriori. For any sequence ε = (ε k ) k∈{0,...,2 j 0 -1} ∈ {0, 1} 2 j 0 , we define h

ε : [0, 1] → R by h ε (x) = M * 2 -j0(s+1/2) 2 j 0 -1 k=0 ε k ψ j0,k (x),
where M * > 0 denotes a constant which will be chosen a posteriori. The wavelet coefficients of h ε are

β j,k = 1 0 h ε (x)ψ j,k (x)dx =    M * 2 -j0(s+1/2) ε k if j = j 0 , 0 otherwise. 
Therefore 2 j0(s+1/2) (2 -j0 2 j 0 -1 k=0 |β j0,k | p ) 1/p = M * . So, with a suitable choice of M * , we have h ε ∈ B s p,r (M ). Let us now investigate Assumptions (C1) and (C2) of Lemma 6.1. Assumption (C1). The Varshamov-Gilbert theorem (see [START_REF] Tsybakov | Introduction a l'estimation non-paramtrique[END_REF]Lemma 2.7]) asserts that there exist a set E j0 = ε (0) , . . . , ε (Tj 0 ) and two constants, c ∈]0, 1[ and α ∈]0, 1[, such that, for any u ∈ {0, . . . , T j0 }, ε (u) = (ε (u) k ) k∈{0,...,2 j 0 -1} ∈ {0, 1} 2 j 0 and any (u, v) ∈ {0, . . . , T j0 } 2 with u < v, the following hold:

2 j 0 -1 k=0 |ε (u) k -ε (v) k | ≥ c2 j0 , T j0 ≥ exp(α2 j0 ).
Considering such a E j0 , for any (u, v) ∈ {0, . . . , T j0 } 2 with u = v, we have

1 0 (h ε (u) (x) -h ε (v) (x)) 2 dx 1/2 ≥ c2 j0/2 2 -j0(s+1/2)   2 -j0 2 j 0 -1 k=0 |ε (u) k -ε (v) k |   1/2 ≥ c2 -j0s = 2υ.
The functions (h ε (u) ) u∈{0,...,Tj 0 } satisfy Assumption (C1) with m = T j0 and υ = C2 -j0s . On Assumption (C2). Consider the following lemma. Consider the functions (h ε (u) ) u∈{0,...,Tj 0 } introduced in Assumption (C1). For any (u, v) ∈ {0, . . . , T j0 } 2 with u = v and any x ∈ [0, 1],

|h ε (u) (x) -h ε (v) (x)| ≤ C2 -j0(s+1/2) 2 j 0 -1 k=0 |ψ j0,k (x)| ≤ C2 -j0(s+1/2) 2 j0/2 = C2 -j0s .
Applying Lemma 6.3 and taking c 0 large enough, we obtain Proof of Lemma 6.3. We have

E h ε (u) (log(Λ(P h ε (u) , P h ε (v) ))) = 2 -1 w n 1 0 (h ε (u) (x) -h ε (v) (x)) 2 dx ≤ Cw n 2 -2j0s ≤ Cc -2s+1
Λ(P hv , P h l ) = dP hv dP h l = exp -2 -1 n i=1 1 σ 2 i (Y i -µ i -h v (X i )) 2 - n i=1 1 σ 2 i (Y i -µ i -h l (X i )) 2 = exp -2 -1 n i=1 1 σ 2 i (h l (X i ) -h v (X i ))(2Y i -2µ i -h v (X i ) -h l (X i )) .
So, under P hv , we have

Λ(P hv , P h l ) = exp 2 -1 n i=1 1 σ 2 i (h v (X i ) -h l (X i )) 2 + n i=1 (h v (X i ) -h l (X i ))(ξ i -µ i ) .
Therefore E hv (log(Λ(P hv , P h l ))) = E hv 2 -1

n i=1 1 σ 2 i (h v (X i ) -h l (X i )) 2 = 2 -1 n i=1 1 σ 2 i E hv (h v (X 1 ) -h l (X 1 )) 2 = 2 -1 w n 1 0
(h v (x) -h l (x)) 2 dx. (6.17)

This ends the proof of Lemma 6.3.
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 631 For any functions h v and h l in L 2 ([0, 1]), we haveE hv (log(Λ(P hv , P h l ))) = 2 -1 (h v (x) -h l (x)) 2 dx.

0 2 j0 2 dx.

 22 ≤ p 0 log T j0 , with p 0 ∈]0, 8 -1 [. Assumption (C2) is satisfied.It follows from Lemma 6.1 applied with (h ε (u) ) u∈{0,...,Tj 0 } , m = T j0 and υ = C2 -j0s that there exists a constant c > 0 satisfying inf ≥ c2 -2j0s ≥ cw -2s/(2s+1) n The proof of Theorem 5.3 is complete.

  r ≥ 1, p ∈ [1, 2) and s > 1/p, since B s p,r (M ) ⊆ B

								s+1/2-1/p 2,∞	(M ) and (2 -p)(2s +
	1)/2 + (s + 1/2 -1/p)p = 2s, we have	
		j1		2 j -1			
	S 4,2 ≤ Cλ 2-p n				|β j,k | p	
		j=j2+1	k=0			
	≤ C	ln w n w n	(2-p)/2	∞ j=j2+1	2 -j(s+1/2-1/p)p
	≤ C	ln w n w n	(2-p)/2	2 -j2(s+1/2-1/p)p ≤ C	ln w n w n	2s/(2s+1)	.
	So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},
		S 4 ≤ C		ln w n w n	2s/(2s+1)	.	(6.15)
	It follows from (6.11), (6.12), (6.14) and (6.15) that
		S ≤ C	ln w n w n	2s/(2s+1)	.

This work is supported by ANR grant NatImages, ANR-08-EMER-009