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Abstract

A nonparametric regression model with uniform random design and heteroscedastic
errors (with a deterministic structure) is considered. The distributions of the errors are
unknown; we only know that they admit finite moments of order 2. Based on this
general framework, we want to estimate the unknown regression function. To reach
this goal, an adaptive nonlinear wavelet estimator is developed. Taking the minimax
approach under the MISE over Besov balls, we prove that it attains a sharp rate of con-
vergence, closed to the one attains by the optimal non-realistic linear wavelet estimator.

Keywords: Regression, heteroscedastic errors, minimax estimation, Besov balls,
wavelets, hard thresholding.
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1 Motivations

We observe n independent pairs of random variables (X1, Y1), . . . , (Xn, Yn) where,
for any i ∈ {1, . . . , n},

Yi = f(Xi) + ξi, (1.1)

f : [0, 1] → R is an unknown function, X1, . . . , Xn are n i.i.d. random variables having
the uniform distribution on [0, 1] and ξ1, . . . , ξn are n independent random variables inde-
pendent of X1, . . . , Xn. We assume that there exist two known sequences of real numbers,
(µi)i∈{1,...,n} and (σ2

i )i∈{1,...,n}, such that, for any i ∈ {1, . . . , n},

E(ξi) = µi, V(ξi) = E
(
(ξi − µi)2

)
= σ2

i .

The distributions of ξ1, . . . , ξn and possible finite moments of order δ > 2 are unknown.
We aim to estimate f from (X1, Y1), . . . , (Xn, Yn).

To reach this goal, we focus our attention on the wavelet methods. They are attractive
for nonparametric function estimation because of their spatial adaptivity, computational ef-
ficiency and asymptotic optimality properties. They can achieve near optimal convergence
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rates over a wide range of function classes (Besov balls, . . . ) and enjoy excellent mean
integrated squared error (MISE) properties when used to estimate spatially inhomogeneous
function.

If we consider (1.1) when ξ1, . . . , ξn are i.i.d. and ξ1 is Gaussian or with tail of ex-
ponentially decreasing, various wavelet methods have been developed. See, e.g., [13–15],
[16], [17], [7,8], [5,6], [10], [19] and [9]. When ξ1 has other kinds of distributions (Cauchy,
. . . ), see, e.g., [1,2] and [3]. When the distribution of ξ1 is unknown but admits known finite
moment of order δ with δ > 2, see, e. g., [22], [12], [26] and [3]. When δ > 0 (including
δ ∈ (0, 2]) and some conditions on the distribution of ξ1 are known, see [4]. For the nonin-
dependent case and δ > 2, we refer to [20]. However, to the best of our knowledge, there
is no adaptive wavelet estimator of f in (1.1) when the errors are heteroscedastic and only
finite moments of order 2 are known.

Adopting the methodology of [12], we develop two wavelet estimators: a linear non-
adaptive and a nonlinear adaptive based on the hard thresholding rule. We evaluate their
performances by taking the minimax approach under the MISE over Besov balls Bsp,r(M)

(to be defined in Section 3). We prove that the considered hard thresholding wavelet esti-
mator attains the rate of convergence

rn =

(
lnwn
wn

)2s/(2s+1)

,

where wn =
∑n
i=1

1
σ2
i

. This rate is sharp in the sense that it is the one attained by the
(non-realistic) linear wavelet estimator up to a logarithmic term. Moreover, if we restrict
our study to the Gaussian case, we prove that it is near optimal in the minimax sense.

The paper is organized as follows. Assumptions on the model and some notations are
introduced in Section 2. Section 3 briefly describes the wavelet basis on [0, 1] and the
Besov balls. The estimators are presented in Section 4. The results are set in Section 5.
Section 6 is devoted to the proofs.

2 Assumptions and notations

Assumption on f We suppose that there exists a known constant C∗ > 0 such that

‖f‖∞ = sup
x∈[0,1]

|f(x)| ≤ C∗. (2.1)

Assumptions on ξ1, . . . , ξn We recall that ξ1, . . . , ξn are non (necessarily) identically
distributed: there exist two known sequences of real numbers, (µi)i∈{1,...,n} and
(σ2
i )i∈{1,...,n}, such that, for any i ∈ {1, . . . , n},

E(ξi) = µi, V(ξi) = σ2
i .
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These sequences can depend on n. The distributions of ξ1, . . . , ξn are unknown. We
suppose that there exists a (known) constant c∗ > 0 such that

inf
i∈{1,...,n}

σ2
i ≥ c∗. (2.2)

We set

wn =

n∑
i=1

1

σ2
i

and we suppose that wn ≥ e (i.e. lnwn ≥ 1).

3 Wavelet bases and Besov balls

Wavelet basis Let φ be a father wavelet of a multiresolution analysis on R and ψ be the
associated mother wavelet. Assume that Supp(φ) = Supp(ψ) = [1 − N,N ],∫ N
1−N φ(x)dx = 1 and, for any ` ∈ {0, . . . , N − 1},

∫ N
1−N x

`ψ(x)dx = 0. For
instance, the Daubechies wavelets dbN satisfy these assumptions.

Set
φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection

B = {φτ,k(.), k ∈ {0, . . . , 2τ−1}; ψj,k(.); j ∈ N−{0, . . . , τ−1}, k ∈ {0, . . . , 2j−1}},

(with an appropriate treatments at the boundaries) is an orthonormal basis of
L2([0, 1]) = {h : [0, 1]→ R;

∫ 1

0
h2(x)dx <∞}. See [11].

For any integer ` ≥ τ , any f ∈ L2([0, 1]) can be expanded on B as

f(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of f defined by

αj,k =

∫ 1

0

f(x)φj,k(x)dx, βj,k =

∫ 1

0

f(x)ψj,k(x)dx. (3.1)

Besov balls Let M > 0, s > 0, p ≥ 1 and r ≥ 1. Set βτ−1,k = ατ,k. A function f
belongs to Bsp,r(M) if, and only if, there exists a constant M∗ > 0 (depending on
M ) such that the associated wavelet coefficients (3.1) satisfy ∞∑

j=τ−1

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤M∗.

In this expression, s is a smoothness parameter and p and r are norm parameters.
For a particular choice of s, p and r, the Besov balls contain the Hölder and Sobolev
balls. See [21].
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4 Estimators

Wavelet coefficient estimators The first step to estimate f consists in expanding f on B
and estimating the unknown wavelet coefficients. For any integer j ≥ τ and any
k ∈ {0, . . . , 2j − 1},

• we estimate αj,k by

α̂j,k =
1

wn

n∑
i=1

1

σ2
i

(Yi − µi)φj,k(Xi), (4.1)

• we estimate βj,k by

β̂j,k =
1

wn

n∑
i=1

1

σ2
i

(Yi − µi)ψj,k(Xi)1{
1

σ2
i

|(Yi−µi)ψj,k(Xi)|≤γn
}, (4.2)

where, for any random event A, 1A is the indicator function on A,

γn = θ

√
wn

lnwn

and θ =
√
C2
∗/c∗ + 1.

Notice that β̂j,k is the thresholded version of the empirical estimator of βj,k (see,
e.g., [13–15]). The idea of this thresholding is to operate a selection on the obser-
vations: when, for i ∈ {1, . . . , n}, f is ”too noisy” by ξi, the observation Yi is
neglected. Such a β̂j,k has been introduced by [12] when ξ1, . . . ξn are i.i.d. (non-
heteroscedastic case) and ξ1 admits finite moments of order 3.

Linear estimator Assuming that f ∈ Bsp,r(M) with p ≥ 2, we define the linear estimator
f̂L by

f̂L(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), (4.3)

where α̂j,k is defined by (4.1) and j0 is the integer satisfying

2−1w1/(2s+1)
n < 2j0 ≤ w1/(2s+1)

n .

The definition of j0 is chosen to minimize the MISE of f̂L. It is not adaptive since it
depends on s, the smoothness parameter of f .

Hard thresholding estimator We define the hard thresholding estimator f̂H by

f̂H(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1{|β̂j,k|≥κλn}ψj,k(x), (4.4)
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where α̂j,k is defined by (4.1), β̂j,k by (4.2), j1 is the integer satisfying

2−1wn < 2j1 ≤ wn,

κ ≥ 8/3 + 2 + 2
√

16/9 + 4, λn is the threshold

λn = θ

√
lnwn
wn

(4.5)

and θ =
√
C2
∗/c∗ + 1. The definitions of γn and λn are chosen to minimize the

MISE of f̂H and to make it adaptive. Notice than f̂H is a modified version of the
one of [12].

5 Results

5.1 Upper bounds

Theorem 5.1. Consider (1.1) under the assumptions of Section 2. Suppose that f ∈
Bsp,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂L be (4.3). Then there exists a constant
C > 0 such that

E
(∫ 1

0

(
f̂L(x)− f(x)

)2
dx

)
≤ Cw−2s/(2s+1)

n .

The proof of Theorem 5.1 uses a moment inequality on (4.1) and a suitable decompo-
sition of the MISE. Due to our weak assumptions on ξ1, . . . , ξn, the optimal lower bound
of the model seems difficult to determine (see, e.g., [18] and [25]). However, since f̂L is
constructed to be the linear estimator which optimizes the MISE and w−2s/(2s+1)

n is the
optimal rate of convergence in the Gaussian case (see Theorem 5.3 below), our benchmark
will be

rn = w−2s/(2s+1)
n .

Theorem 5.2. Consider (1.1) under the assumptions of Section 2. Let f̂H be (4.4). Suppose
that f ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}. Then there
exists a constant C > 0 such that

E
(∫ 1

0

(
f̂H(x)− f(x)

)2
dx

)
≤ C

(
lnwn
wn

)2s/(2s+1)

.

The proof of Theorem 5.2 is based on several probability results (moment inequalities,
concentration inequality,. . . ) and a suitable decomposition of the MISE. Note that our proof
differs from the one of [12, Theorem 4]. This difference enables us to improve the moment
assumption (only 2 finite moments is required against 3 in [12]) and to take into account
the heteroscedasticity of the errors.
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Theorem 5.2 proves that f̂H attains rn up to a logarithmic term. Notice that when
ξ1, . . . , ξn are i.i.d. and only admits finite moments of order 2, f̂H achieves the same rates
of convergence than the standard hard thresholding estimator defined when ξ1 is Gaussian
(see [12] and [13–15]). And this one is optimal up to a logarithmic term.

5.2 Lower bound

Theorem 5.3 below investigates the lower bound of (1.1) in the Gaussian case.

Theorem 5.3. Consider (1.1) when ξ1, . . . , ξn are Gaussian. Then there exists a constant
c > 0 such that, for any s > 0, p ≥ 1 and r ≥ 1,

inf
f̃

sup
f∈Bsp,r(M)

E
(∫ 1

0

(
f̃(x)− f(x)

)2
dx

)
≥ cw−2s/(2s+1)

n ,

where the infimum is taken over all the possible estimators f̃ of f .

Theorems 5.1 and 5.3 prove that, in the Gaussian case, rn = w
−2s/(2s+1)
n is the optimal

rate of convergence.

5.3 Perspectives

A possible perspective of this work will be to investigate the estimation of f in (1.1)
when X1 has a more complex distribution than the random uniform one. In this case, the
warped wavelet basis introduced in the nonparametric regression estimation by [19] seems
to be a powerful tool. To improve the estimation of f (and remove the extra logarithmic
term in rn), maybe other thresholding rules can be developed. The thresholding rule named
BlockJS introduced in wavelet methodology by [5, 6] seems to be a good alternative. All
these aspects need further investigations that we leave for a future work.

6 Proofs

In this section, we consider (1.1) under the assumptions of Section 2. Moreover, C
represents a positive constant which may differ from one term to another.

6.1 Auxiliary results

Proposition 6.1. For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k be the
wavelet coefficient (3.1) of f in (1.1) and α̂j,k be (4.1). Then there exists a constant C > 0

such that

E
(

(α̂j,k − αj,k)
2
)
≤ Cw−1n .
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Proof of Proposition 6.1. For any i ∈ {1, . . . , n}, let us set

Wi = (Yi − µi)φj,k(Xi).

Since Xi and ξi are independent, we have

E(Wi) = E(f(Xi)φj,k(Xi)) + E(ξi − µi)E(φj,k(Xi))

= E (f(X1)φj,k(X1)) =

∫ 1

0

f(x)φj,k(x)dx = αj,k.

Hence

E (α̂j,k) = E

(
1

wn

n∑
i=1

1

σ2
i

Wi

)
=

1

wn

n∑
i=1

1

σ2
i

E (Wi) =
1

wn
wnαj,k = αj,k. (6.1)

This implies

E
(

(α̂j,k − αj,k)
2
)

= V (α̂j,k) = V

(
1

wn

n∑
i=1

1

σ2
i

Wi

)
=

1

w2
n

n∑
i=1

1

σ4
i

V(Wi)

≤ 1

w2
n

n∑
i=1

1

σ4
i

E
(
W 2
i

)
. (6.2)

For any i ∈ {1, . . . , n}, sinceXi and ξi are independent, E
(
φ2j,k(Xi)

)
=
∫ 1

0
φ2j,k(x)dx =

1 and, by (2.1), ‖f‖∞ ≤ C∗, we have

E
(
W 2
i

)
= E

(
(f(Xi) + (ξi − µi))2φ2j,k(Xi)

)
= E

(
f2(Xi)φ

2
j,k(Xi)

)
+ 2E(ξi − µi)E(f(Xi)φ

2
j,k(Xi))

+ E
(
(ξi − µi)2

)
E
(
φ2j,k(Xi)

)
= E

(
f2(Xi)φ

2
j,k(Xi)

)
+ σ2

i ≤ C2
∗ + σ2

i .

So, by (2.2),

1

σ4
i

E
(
W 2
i

)
≤ 1

σ4
i

(C2
∗ + σ2

i ) ≤ θ2

σ2
i

. (6.3)

It follows from (6.2) and (6.3) that

E
(

(α̂j,k − αj,k)
2
)
≤ θ2

w2
n

n∑
i=1

1

σ2
i

= Cw−1n .

�

Proposition 6.2. For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k be the
wavelet coefficient (3.1) of f in (1.1) and β̂j,k be (4.2). Then there exists a constant C > 0

such that

E
((

β̂j,k − βj,k
)4)

≤ C (lnwn)2

w2
n

.
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Proof of Proposition 6.2. For any i ∈ {1, . . . , n}, let us set

Zi =
1

σ2
i

(Yi − µi)ψj,k(Xi).

Proceeding as in (6.1), we have

βj,k =

∫ 1

0

f(x)ψj,k(x)dx = E (f(X1)ψj,k(X1)) =
1

wn

n∑
i=1

E (Zi)

=
1

wn

n∑
i=1

E(Zi1{|Zi|≤γn}) +
1

wn

n∑
i=1

E(Zi1{|Zi|>γn}). (6.4)

This with the elementary inequality (x+ y)4 ≤ 8(x4 + y4), (x, y) ∈ R2, imply that

E
((

β̂j,k − βj,k
)4)

= E

( 1

wn

n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))
− 1

wn

n∑
i=1

E
(
Zi1{|Zi|>γn}

))4


≤ 8(A+B), (6.5)

where

A = E

( 1

wn

n∑
i=1

(
Zi1{|Zi|≤γn} − E(Zi1{|Zi|≤γn})

))4


and

B =

(
1

wn

n∑
i=1

E(|Zi|1{|Zi|>γn})

)4

.

Let us bound A and B, in turn.
Upper bound for A. We need the Rosenthal inequality presented in lemma below.

Lemma 6.1 (Rosenthal’s inequality [24]). Let p ≥ 2, n ∈ N∗ and (Ui)i∈{1,...,n} be n zero
mean independent random variables satisfying supi∈{1,...,n} E(|Ui|p) < ∞. Then there
exists a constant C > 0 such that

E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
p)
≤ C max

 n∑
i=1

E (|Ui|p) ,

(
n∑
i=1

E
(
U2
i

))p/2 .

Applying the Rosenthal inequality with p = 4 and, for any i ∈ {1, . . . , n},

Ui = Zi1{|Zi|≤γn} − E
(
Zi1{|Zi|≤γn}

)
,

we obtain

A =
1

w4
n

E

( n∑
i=1

Ui

)4
 ≤ C 1

w4
n

max

 n∑
i=1

E
(
U4
i

)
,

(
n∑
i=1

E
(
U2
i

))2
 .
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Using (6.3) (with ψ instead of φ), we have, for any a ∈ {2, 4} and any i ∈ {1, . . . , n},

E (Uai ) ≤ 2aE
(
Zai 1{|Zi|≤γn}

)
≤ 2aγa−2n E

(
Z2
i

)
≤ 2aγa−2n

θ2

σ2
i

.

Hence, using wn ≥ e,

A ≤ C
1

n4
max

γ2n n∑
i=1

1

σ2
i

,

(
n∑
i=1

1

σ2
i

)2


= C
1

w4
n

max

(
w2
n

lnwn
, w2

n

)
= C

1

w2
n

. (6.6)

Upper bound for B. Using again (6.3) (with ψ instead of φ), for any i ∈ {1, . . . , n}, we
obtain

E
(
|Zi|1{|Zi|>γn}

)
≤

E
(
Z2
i

)
γn

≤ θ

σ2
i

√
lnwn
wn

.

Therefore

B ≤ C (lnwn)2

w2
n

(
1

wn

n∑
i=1

1

σ2
i

)4

= C
(lnwn)2

w2
n

. (6.7)

Combining (6.5), (6.6) and (6.7), we have

E
((

β̂j,k − βj,k
)4)

≤ C
(

1

w2
n

+
(lnwn)2

w2
n

)
≤ C (lnwn)2

w2
n

.

�

Proposition 6.3. For any integer j ≥ τ and any k ∈ {0, . . . , 2j−1}, let βj,k be the wavelet
coefficient (3.1) of f in (1.1) and β̂j,k be (4.2). Then, for any κ ≥ 8/3 + 2 + 2

√
16/9 + 4,

P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ 2w−2n .

Proof of Proposition 6.3. For any i ∈ {1, . . . , n}, let us set

Zi =
1

σ2
i

(Yi − µi)ψj,k(Xi).

Using (6.4), we have

|β̂j,k − βj,k|

=

∣∣∣∣∣ 1

wn

n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))
− 1

wn

n∑
i=1

E
(
Zi1{|Zi|>γn}

)∣∣∣∣∣
≤

∣∣∣∣∣ 1

wn

n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))∣∣∣∣∣+
1

wn

n∑
i=1

E
(
|Zi|1{|Zi|>γn}

)
.
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Using (6.3) (with ψ instead of φ), we obtain

1

wn

n∑
i=1

E
(
|Zi|1{|Zi|>γn}

)
≤ 1

γn

(
1

wn

n∑
i=1

E
(
Z2
i

))
≤ θ2

γn

(
1

wn

n∑
i=1

1

σ2
i

)
=
θ2

γn

= θ

√
lnwn
wn

= λn.

Hence

S = P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ P

(∣∣∣∣∣ 1

wn

n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))∣∣∣∣∣ ≥ (κ/2− 1)λn

)
.

Now we need the Bernstein inequality presented in the lemma below.

Lemma 6.2 (Bernstein’s inequality [23]). Let n ∈ N∗ and (Ui)i∈{1,...,n} be n zero
mean independent random variables such that there exists a constant M > 0 satisfying
supi∈{1,...,n} |Ui| ≤M <∞. Then, for any λ > 0, we have

P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

(
− λ2

2
(∑n

i=1 E (U2
i ) + λM

3

)) .
Let us set, for any i ∈ {1, . . . , n},

Ui = Zi1{|Zi|≤γn} − E
(
Zi1{|Zi|≤γn}

)
.

For any i ∈ {1, . . . , n}, we have E(Ui) = 0,

|Ui| ≤
∣∣Zi1{|Zi|≤γn}∣∣+ E

(
|Zi|1{|Zi|≤γn}

)
≤ 2γn

and, using again (6.3) (with ψ instead of φ),

E
(
U2
i

)
= V

(
Zi1{|Zi|≤γn}

)
≤ E

(
Z2
i

)
≤ θ2

σ2
i

.

So
n∑
i=1

E
(
U2
i

)
≤ θ2

n∑
i=1

1

σ2
i

= θ2wn.

It follows from the Bernstein inequality that

S ≤ 2 exp

− w2
n(κ/2− 1)2λ2n

2
(
θ2wn + 2wn(κ/2−1)λnγn

3

)
 .

Since

λnγn = θ

√
lnwn
wn

θ

√
wn

lnwn
= θ2, λ2n = θ2

lnwn
wn

,
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we have, for any κ ≥ 8/3 + 2 + 2
√

16/9 + 4,

S ≤ 2 exp

− (κ/2− 1)2 lnwn

2
(

1 + 2(κ/2−1)
3

)
 = 2w

− (κ/2−1)2

2(1+
2(κ/2−1)

3 )
n ≤ 2w−2n .

�

6.2 Proofs of the main results

Proof of Theorem 5.1. We expand the function f as

f(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

We have

f̂L(x)− f(x) =

2j0−1∑
k=0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

Hence

E
(∫ 1

0

(
f̂L(x)− f(x)

)2
dx

)
= A+B,

where

A =

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)
, B =

∞∑
j=j0

2j−1∑
k=0

β2
j,k.

Using Proposition 6.1, we obtain

A ≤ 2j0w−1n ≤ Cw−2s/(2s+1)
n .

Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

B ≤ C2−2j0s ≤ Cw−2s/(2s+1)
n .

So

E
(∫ 1

0

(
f̂L(x)− f(x)

)2
dx

)
≤ Cw−2s/(2s+1)

n .

The proof of Theorem 5.1 is complete.

�



12 Christophe Chesneau

Proof of Theorem 5.2. Following the methodology of [18], we expand the function f as

f(x) =

2τ−1∑
k=0

ατ,kφτ,k(x) +

∞∑
j=τ

2j−1∑
k=0

βj,kψj,k(x).

We have

f̂H(x)− f(x)

=

2τ−1∑
k=0

(α̂τ,k − ατ,k)φτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

(
β̂j,k1{|β̂j,k|≥κλn} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑
k=0

βj,kψj,k(x).

Hence

E
(∫ 1

0

(
f̂H(x)− f(x)

)2
dx

)
= R+ S + T, (6.8)

where

R =

2τ−1∑
k=0

E
(

(α̂τ,k − ατ,k)
2
)
, S =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k1{|β̂j,k|≥κλn} − βj,k
)2)

and

T =

∞∑
j=j1+1

2j−1∑
k=0

β2
j,k.

Let us bound R, T and S, in turn.

Using Proposition 6.1, wn ≥ e, lnwn < wn and 2s/(2s+ 1) < 1, we have

R ≤ C2τw−1n ≤ C
(

lnwn
wn

)2s/(2s+1)

. (6.9)

For r ≥ 1 and p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). So, using wn ≥ e, lnwn < wn and
2s/(2s+ 1) < 2s,

T ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ Cw−2sn ≤ C
(

lnwn
wn

)2s/(2s+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M). Since s > 1/p, we have

s+ 1/2− 1/p > s/(2s+ 1). So, using again wn ≥ e and lnwn < wn,

T ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ Cw−2(s+1/2−1/p)
n ≤ C

(
lnwn
wn

)2s/(2s+1)

.
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Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C
(

lnwn
wn

)2s/(2s+1)

. (6.10)

The term S can be decomposed as

S = S1 + S2 + S3 + S4, (6.11)

where

S1 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλn}1{|βj,k|<κλn/2}
)
,

S2 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλn}1{|βj,k|≥κλn/2}
)
,

S3 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλn}1{|βj,k|≥2κλn}

)
and

S4 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλn}1{|βj,k|<2κλn}

)
.

Let us analyze each term S1, S2, S3 and S4 in turn.
Upper bounds for S1 and S3. We have{

|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
,

{
|β̂j,k| ≥ κλn, |βj,k| < κλn/2

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
and {

|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C
j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλn/2}

)
.

It follows from the Cauchy-Schwarz inequality and Propositions 6.2 and 6.3 that

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλn/2}

)
≤

(
E
((

β̂j,k − βj,k
)4))1/2 (

P
(
|β̂j,k − βj,k| > κλn/2

))1/2
≤ C

lnwn
w2
n

.
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Hence, since lnwn < wn,

max(S1, S3) ≤ C lnwn
w2
n

j1∑
j=τ

2j ≤ C lnwn
w2
n

2j1 ≤ C lnwn
wn

≤ C
(

lnwn
wn

)2s/(2s+1)

.(6.12)

Upper bound for S2. Using Proposition 6.2 and the Cauchy-Schwarz inequality, we obtain

E
((

β̂j,k − βj,k
)2)

≤
(
E
((

β̂j,k − βj,k
)4))1/2

≤ C lnwn
wn

.

Hence

S2 ≤ C
lnwn
wn

j1∑
j=τ

2j−1∑
k=0

1{|βj,k|>κλn/2}.

Let j2 be the integer defined by

2−1
(

wn
lnwn

)1/(2s+1)

< 2j2 ≤
(

wn
lnwn

)1/(2s+1)

. (6.13)

We have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
lnwn
wn

j2∑
j=τ

2j−1∑
k=0

1{|βj,k|>κλn/2}

and

S2,2 = C
lnwn
wn

j1∑
j=j2+1

2j−1∑
k=0

1{|βj,k|>κλn/2}.

We have

S2,1 ≤ C
lnwn
wn

j2∑
j=τ

2j ≤ C lnwn
wn

2j2 ≤ C
(

lnwn
wn

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M),

S2,2 ≤ C
lnwn
wnλ2n

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s

≤ C

(
lnwn
wn

)2s/(2s+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > 1/p, since Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M) and (2s + 1)(2 −

p)/2 + (s+ 1/2− 1/p)p = 2s, we have

S2,2 ≤ C
lnwn
wnλ

p
n

j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p

≤ C

(
lnwn
wn

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
lnwn
wn

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C
(

lnwn
wn

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

S2 ≤ C
(

lnwn
wn

)2s/(2s+1)

. (6.14)

Upper bound for S4. We have

S4 ≤
j1∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλn}.

Let j2 be the integer (6.13). We have

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλn}, S4,2 =

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλn}.

We have

S4,1 ≤ Cλ2n
j2∑
j=τ

2j ≤ C lnwn
wn

2j2 ≤ C
(

lnwn
wn

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j2+1

2−2js ≤ C2−2j2s ≤ C
(

lnwn
wn

)2s/(2s+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > 1/p, since Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M) and (2 − p)(2s +

1)/2 + (s+ 1/2− 1/p)p = 2s, we have

S4,2 ≤ Cλ2−pn

j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p

≤ C

(
lnwn
wn

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
lnwn
wn

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C
(

lnwn
wn

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

S4 ≤ C
(

lnwn
wn

)2s/(2s+1)

. (6.15)

It follows from (6.11), (6.12), (6.14) and (6.15) that

S ≤ C
(

lnwn
wn

)2s/(2s+1)

. (6.16)

Combining (6.8), (6.9), (6.10) and (6.16), we have, for r ≥ 1, {p ≥ 2 and s > 0} or
{p ∈ [1, 2) and s > 1/p},

E
(∫ 1

0

(
f̂H(x)− f(x)

)2
dx

)
≤ C

(
lnwn
wn

)2s/(2s+1)

.

The proof of Theorem 5.2 is complete.

�

Proof of Theorem 5.3. We need the following result.

Theorem 6.1 (Tsybakov [25]). Let m ∈ N − {0, 1}. We consider a general statistical
model. We denote Pf the distribution of the observations indexed by the unknown function
f . Suppose that there exists a set of functions E ⊆ L2([0, 1]) containing h0, . . . , hm such
that :

Assumption (C1). there exists a real number υ > 0 satisfying, for any (i, l) ∈ {0, . . . ,m}2

with i 6= l, (∫ 1

0

(hi(x)− hl(x))
2
dx

)1/2

≥ 2υ.

Assumption (C2). there exists a constant p0 ∈]0, 8−1[ such that

inf
l∈{0,...,m}

m−1
∑

i∈{0,...,m}
i6=l

Ehi(log(Λ(Phi ,Phl))) ≤ p0 logm,
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where Λ(Phi ,Phl) = dPhi/dPhl is the likelihood ratio between the distributions
indexed by hi and hl.

Then there exists a constant c > 0 such that

inf
f̃

sup
f∈E

E
(∫ 1

0

(
f̃(x)− f(x)

)2
dx

)
≥ cυ2,

where the infimum is taken over all the possible estimators of f .

Our aim is to apply Lemma 6.1 with the model (1.1) in the Gaussian case and the set of
functions E = Bsp,r(M). Let j0 be an integer such that

c0w
1/(2s+1)
n ≤ 2j0 ≤ C0w

1/(2s+1)
n ,

where c0 and C0 are two constants which will be chosen a posteriori. For any sequence
ε = (εk)k∈{0,...,2j0−1} ∈ {0, 1}2

j0 , we define hε : [0, 1]→ R by

hε(x) = M∗2
−j0(s+1/2)

2j0−1∑
k=0

εkψj0,k(x),

where M∗ > 0 denotes a constant which will be chosen a posteriori. The wavelet coeffi-
cients of hε are

βj,k =

∫ 1

0

hε(x)ψj,k(x)dx =

M∗2−j0(s+1/2)εk if j = j0,

0 otherwise.

Therefore 2j0(s+1/2)(2−j0
∑2j0−1
k=0 |βj0,k|p)1/p = M∗. So, with a suitable choice of M∗,

we have hε ∈ Bsp,r(M).
Let us now investigate Assumptions (C1) and (C2) of Lemma 6.1.
Assumption (C1). The Varshamov-Gilbert theorem (see [25, Lemma 2.7]) asserts that

there exist a set Ej0 =
{
ε(0), . . . , ε(Tj0 )

}
and two constants, c ∈]0, 1[ and α ∈]0, 1[,

such that, for any u ∈ {0, . . . , Tj0}, ε(u) = (ε
(u)
k )k∈{0,...,2j0−1} ∈ {0, 1}2

j0 and any
(u, v) ∈ {0, . . . , Tj0}2 with u < v, the following hold:

2j0−1∑
k=0

|ε(u)k − ε
(v)
k | ≥ c2

j0 , Tj0 ≥ exp(α2j0).

Considering such a Ej0 , for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have

(∫ 1

0

(hε(u)(x)− hε(v)(x))2dx

)1/2

≥ c2j0/22−j0(s+1/2)

2−j0
2j0−1∑
k=0

|ε(u)k − ε
(v)
k |

1/2

≥ c2−j0s = 2υ.

The functions (hε(u))u∈{0,...,Tj0} satisfy Assumption (C1) with m = Tj0 and υ = C2−j0s.
On Assumption (C2). Consider the following lemma.
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Lemma 6.3. For any functions hv and hl in L2([0, 1]), we have

Ehv (log(Λ(Phv ,Phl))) = 2−1wn

∫ 1

0

(hv(x)− hl(x))2dx.

Consider the functions (hε(u))u∈{0,...,Tj0} introduced in Assumption (C1). For any
(u, v) ∈ {0, . . . , Tj0}2 with u 6= v and any x ∈ [0, 1],

|hε(u)(x)− hε(v)(x)| ≤ C2−j0(s+1/2)
2j0−1∑
k=0

|ψj0,k(x)| ≤ C2−j0(s+1/2)2j0/2 = C2−j0s.

Applying Lemma 6.3 and taking c0 large enough, we obtain

Eh
ε(u)

(log(Λ(Ph
ε(u)

,Ph
ε(v)

))) = 2−1wn

∫ 1

0

(hε(u)(x)− hε(v)(x))2dx

≤ Cwn2−2j0s ≤ Cc−2s+1
0 2j0 ≤ p0 log Tj0 ,

with p0 ∈]0, 8−1[. Assumption (C2) is satisfied.

It follows from Lemma 6.1 applied with (hε(u))u∈{0,...,Tj0}, m = Tj0 and υ = C2−j0s

that there exists a constant c > 0 satisfying

inf
f̃

sup
f∈Bsp,r(M)

E
(∫ 1

0

(
f̃(x)− f(x)

)2
dx

)
≥ c2−2j0s ≥ cw−2s/(2s+1)

n .

The proof of Theorem 5.3 is complete.

�

Proof of Lemma 6.3. We have

Λ(Phv ,Phl) =
dPhv
dPhl

= exp

(
−2−1

(
n∑
i=1

1

σ2
i

(Yi − µi − hv(Xi))
2 −

n∑
i=1

1

σ2
i

(Yi − µi − hl(Xi))
2

))

= exp

(
−2−1

(
n∑
i=1

1

σ2
i

(hl(Xi)− hv(Xi))(2Yi − 2µi − hv(Xi)− hl(Xi))

))
.

So, under Phv , we have

Λ(Phv ,Phl) = exp

(
2−1

n∑
i=1

1

σ2
i

(hv(Xi)− hl(Xi))
2 +

n∑
i=1

(hv(Xi)− hl(Xi))(ξi − µi)

)
.
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Therefore

Ehv (log(Λ(Phv ,Phl))) = Ehv

(
2−1

n∑
i=1

1

σ2
i

(hv(Xi)− hl(Xi))
2

)

= 2−1
n∑
i=1

1

σ2
i

Ehv
(
(hv(X1)− hl(X1))2

)
= 2−1wn

∫ 1

0

(hv(x)− hl(x))2dx. (6.17)

This ends the proof of Lemma 6.3.

�
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