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Ultraparabolic H-measures and compensated compactness
E.Yu. Panov

Abstract

We present a generalization of compensated compactness theory to
the case of variable and generally discontinuous coefficients, both in the
quadratic form and in the linear, up to the second order, constraints. The
main tool is the localization properties for ultra-parabolic H-measures cor-
responding to weakly convergent sequences.

1 Introduction

Recall the classical results of the compensated compactness theory ( see
[4, 9] ). Suppose that Ω is an open subset of Rn, and a sequence
ur = (u1r(x), . . . , uNr(x)) ∈ L2(Ω,RN ), r ∈ N, weakly converges to a vector-
function u(x) in L2(Ω,RN). Assume that asαk are real constants for s = 1, . . . , m,
α = 1, . . . , N , k = 1, . . . , n, and the sequences of distributions

N
∑

α=1

n
∑

k=1

asαk∂xk
uαr, s = 1, . . . , m, r ∈ N, (1)

are strongly precompact in the space H−1
loc (Ω)

.
= W−1

2,loc(Ω). Hereafter, we denote

by W−1
p,loc(Ω), 1 ≤ p ≤ ∞ the locally convex space consisting of distributions

v ∈ D′(Ω) such that the distribution fv belongs to the Sobolev space W−1
p

.
=

W−1
p (Rn) for all f(x) ∈ C∞

0 (Ω). The topology in W−1
p,loc(Ω) is generated by the

family of semi-norms u→ ‖uf‖W−1
p

, f(x) ∈ C∞
0 (Ω). Introduce the set

Λ =
{

λ ∈ R
N | ∃ξ ∈ R

n, ξ 6= 0 :
N
∑

α=1

n
∑

k=1

asαkλαξk = 0 ∀s = 1, . . . , m
}

.

Now, let q(u) =
∑N

α,β=1 qαβuαuβ be a quadratic functional on Rl such that
q(λ) ≥ 0 for all λ ∈ Λ, and
q(ur) → v weakly in the sense of distributions on Ω ( in D′(Ω) ).

Then, under the above assumptions,

q(u(x)) ≤ v in D′(Ω)

(the weak low semicontinuity). In particular, if q(λ) = 0 on Λ then v = q(u).
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In this paper we generalize this result to the case when the differential con-
straints may contain second order terms, while all the coefficients are variable
and may be discontinuous. Thus, assume that a sequence ur(x) is bounded in
Lp

loc(Ω,R
N), 2 ≤ p ≤ ∞ and converges weakly in D′(Ω) to a vector-function u(x)

as r → ∞. Let d = p/(p − 1) if p < ∞, and d > 1 if p = ∞. Assume that the
sequences

N
∑

α=1

n
∑

k=1

∂xk
(asαkuαr) +

N
∑

α=1

n
∑

k,l=ν+1

∂xkxl
(bsαkluαr), s = 1, . . . , m (2)

are pre-compact in the anisotropic Sobolev spaceW−1,−2
d,loc (Ω), which will be defined

later in Section 2. Here ν is an integer number between 0 and n, and the coeffi-
cients asαk = asαk(x), bsαkl = bsαkl(x) belong to the space L2q

loc(Ω), q = p/(p− 2)
( q = 1 in the case p = ∞ ), if p > 2, and to the space C(Ω) if p = 2. One example
is given by p = ∞, q = 1 and corresponds to the case when the functions ur(x)
are uniformly locally bounded.

We introduce the set Λ ( here i =
√
−1 ):

Λ = Λ(x) =
{

λ ∈ C
N | ∃ξ ∈ R

n, ξ 6= 0 :

N
∑

α=1

(

i
ν
∑

k=1

asαk(x)ξk −
n
∑

k,l=ν+1

bsαkl(x)ξkξl

)

λα = 0 ∀s = 1, . . . , m
}

. (3)

Consider the quadratic form q(x, u) = Q(x)u · u, where Q(x) is a symmetric
matrix with coefficients qαβ(x), α, β = 1, . . . , N and u · v denotes the scalar
multiplication on RN . The form q(x, u) can be extended as Hermitian form on
CN by the standard relation

q(x, u) =
N
∑

α,β=1

qαβ(x)uαuβ,

where we denote by u the complex conjugation of u ∈ C. We suppose that the
coefficients qαβ(x) ∈ Lq

loc(Ω) if p > 2, and qαβ(x) ∈ C(Ω) if p = 2.
Now, let the sequence q(x, ur) → v as r → ∞ weakly in D′(Ω). Since for

each α, β = 1, . . . , N the sequences uαr(x)uβr(x) are bounded in L
p/2
loc (Ω) (here

p/2 = ∞ for p = ∞) then, passing to a subsequence if necessary, we may claim
that

uαr(x)uβr(x) →
r→∞

ζαβ(x)

weakly in L
p/2
loc (Ω) if p > 2 (hereafter, the weak convergence in L∞

loc(Ω) is under-
stood in the sense of the weak-∗ topology), and weakly in the space Mloc(Ω) of
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locally finite measures on Ω if p = 2. In view of the relation 1
q
+ 2

p
= 1 this implies

that

q(x, ur) →
r→∞

N
∑

α,β=1

qαβ(x)ζαβ(x)

weakly in Mloc(Ω) (weakly in L1
loc(Ω) if p > 2) and therefore

v(x) =

N
∑

α,β=1

qαβ(x)ζαβ(x).

In particular, v = v(x) ∈ L1
loc(Ω) for p > 2 and v ∈Mloc(Ω) for p = 2.

Our main result is the following

Theorem 1. Assume that q(x, λ) ≥ 0 for all λ ∈ Λ(x), x ∈ Ω. Then
q(x, u(x)) ≤ v ( in the sense of measures ).

2 Main concepts

To prove Theorem 1 we will use the techniques of H-measures. Let

F (u)(ξ) =

∫

Rn

e−2πiξ·xu(x)dx, ξ ∈ R
n,

be the Fourier transformation extended as a unitary operator on the space u(x) ∈
L2(Rn), let S = Sn−1 = { ξ ∈ R | |ξ| = 1 } be the unit sphere in R

n.
The concept of anH-measure corresponding to some sequence of vector-valued

functions bounded in L2(Ω) was introduced by Tartar [10] and Gerárd [3] on
the basis of the following result. For r ∈ N let Ur(x) =

(

U1
r (x), . . . , UN

r (x)
)

∈
L2(Ω,RN) be a sequence weakly convergent to the zero vector.

Proposition 1 (see [10, Theorem 1.1]). There exists a family of complex

Borel measures µ =
{

µαβ
}N

α,β=1
in Ω×S and a subsequence of Ur(x) (still denoted

Ur) such that

〈µαβ,Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Uα
r Φ1)(ξ)F (Uβ

r Φ2)(ξ)ψ

(

ξ

|ξ|

)

dξ (4)

for all Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family µ =
{

µαβ
}N

α,β=1
is called the H-measure corresponding to Ur(x).

In [1] the new concept of parabolic H-measures was introduced. Here we
need the more general variant of this concept recently developed in [5]. Suppose
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that X ⊂ Rn is a linear subspace, X⊥ is its orthogonal complement, P1, P2 are
orthogonal projections on X, X⊥, respectively. We denote for ξ ∈ Rn ξ̃ = P1ξ,
ξ̄ = P2ξ, so that ξ̃ ∈ X, ξ̄ ∈ X⊥, ξ = ξ̃+ ξ̄. Let SX = { ξ ∈ Rn | |ξ̃|2 + |ξ̄|4 = 1 }.
Then SX is a compact smooth manifold of codimension 1; in the case when
X = {0} or X = Rn, it coincides with the unit sphere S = {ξ ∈ Rn | |ξ| = 1 }.
Let us define a projection πX : Rn \ {0} → SX by

πX(ξ) =
ξ̃

(|ξ̃|2 + |ξ̄|4)1/2
+

ξ̄

(|ξ̃|2 + |ξ̄|4)1/4
.

Remark that in the case when X = {0} or X = Rn, πX(ξ) = ξ/|ξ| is the
orthogonal projection on the sphere. We denote p(ξ) = (|ξ̃|2 + |ξ̄|4)1/4. The
following useful property of the projection πX holds (see [5, Lemma 1]).

Lemma 1. Let ξ, η ∈ Rn, max(p(ξ), p(η)) ≥ 1. Then

|πX(ξ) − πX(η)| ≤ 6|ξ − η|
max(p(ξ), p(η))

.

Proof. For ξ ∈ Rn, α > 0, we define ξα = α2ξ̃ + αξ̄. Observe that for
all α > 0, πX(ξα) = πX(ξ). Without loss of generality we may suppose that
p(ξ) ≥ p(η), and in particular p(ξ) ≥ 1. Remark that πX(ξ) = ξα, πX(η) = ηβ,
where α = 1/p(ξ), β = 1/p(η). Therefore,

|πX(ξ) − πX(η)| = |ξα − ηβ | ≤ |ξα − ηα| + |ηα − ηβ | =
(

α4|ξ̃ − η̃|2 + α2|ξ̄ − η̄|2
)1/2

+
(

(β2 − α2)2|η̃|2 + (β − α)2|η̄|2
)1/2 ≤

α|ξ − η| + (β − α)
(

(β + α)2|η̃|2 + |η̄|2
)1/2

. (5)

Here we take into account that α ≤ 1 and therefore α4 ≤ α2. Since

(β + α)2 ≤ 4β2 = 4(|η̃|2 + |η̄|4)−1/2 ≤ 4/|η̃|,

we have the estimate

(β + α)2|η̃|2 + |η̄|2 ≤ 4(|η̃| + |η̄|2) ≤ 4
(

2(|η̃|2 + |η̄|4)
)1/2 ≤ 6(p(η))2. (6)

Concerning the term β − α, we estimate it as follows

β − α =
p(ξ) − p(η)

p(ξ)p(η)
=

p(ξ)4 − p(η)4

p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)
=

|ξ̃|2 − |η̃|2 + |ξ̄|4 − |η̄|4
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

≤
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(|ξ̃| + |η̃|)|ξ̃ − η̃| + (|ξ̄| + |η̄|)(|ξ̄|2 + |η̄|2)|ξ̄ − η̄|
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

≤

|ξ̃| + |η̃| + (|ξ̄| + |η̄|)(|ξ̄|2 + |η̄|2)
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

|ξ − η| ≤

(p(ξ))2 + (p(η))2 + (p(ξ) + p(η))((p(ξ))2 + (p(η))2)

p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)
|ξ − η| ≤

1 + p(ξ) + p(η)

p(ξ) + p(η)

|ξ − η|
p(ξ)p(η)

≤ 2|ξ − η|
p(ξ)p(η)

. (7)

Here we use that ξ̃ ≤ (p(ξ))2, ξ̄ ≤ p(ξ), η̃ ≤ (p(η))2, η̄ ≤ p(η), and that p(ξ) +
p(η) ≥ 1. Now it follows from (5), (6), (7) that

|πX(ξ) − πX(η)| ≤ |ξ − η|
p(ξ)

+
2
√

6|ξ − η|
p(ξ)

≤ 6|ξ − η|
p(ξ)

=
6|ξ − η|

max(p(ξ), p(η))
,

as was to be proved.�

Let b(x) ∈ C0(R
n), a(z) ∈ C(SX). We introduce the pseudo-differential oper-

ators B,A with symbols b(x), a(πX(ξ)), respectively. These operators are multi-
plication operators Bu(x) = b(x)u(x), F (Au)(ξ) = a(πX(ξ))F (u)(ξ). Obviously,
the operators B,A are well-defined and bounded in L2. As was proved in [10],
in the case when SX = S, πX(ξ) = ξ/|ξ| the commutator [A,B] = AB − BA
is a compact operator. In [5], using the assertion of Lemma 1, we extend this
result for the general case ( in the case dimX = 1 this was done in [1] ). For
completeness we give the details below.

Lemma 2. The operator [A,B] is compact in L2.
Proof. We can find sequences ak(z) ∈ C∞(SX), bk(x) ∈ C∞(Rn), k ∈ N with

the following properties: F (bk)(ξ) ∈ C∞
0 (Rn), and ak(z) → a(z), bk(x) → b(x) as

k → ∞ uniformly on SX , R
n, respectively. Then the sequences of the operators

Ak, Bk with symbols ak(πX(ξ)), bk(x) converge as k → ∞ to the operators
A, B, respectively (in the operator norm). Therefore, [Ak,Bk] →

k→∞
[A,B] and

it is sufficient to prove that the operators [Ak,Bk] are compact for all k ∈ N

( then [A,B] is a compact operator as a limit of compact operators ). Let u =
u(x) ∈ L2(Rn). Then by the known property F (bu)(ξ) = F (b) ∗ F (u)(ξ) =
∫

F (b)(ξ − η)F (u)(η)dη,

F ([Ak,Bk]u)(ξ) = F (AkBku)(ξ) − F (BkAku)(ξ) =

ak(πX(ξ))F (bku)(ξ) − F (bkAku)(ξ) =
∫

Rn

(ak(πX(ξ)) − ak(πX(η)))F (bk)(ξ − η)F (u)(η)dη.
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We have to prove that the integral operator Kv(ξ) =
∫

Rn k(ξ, η)v(η)dη with the
kernel k(ξ, η) = (ak(πX(ξ)) − ak(πX(η)))F (bk)(ξ − η) is compact on L2(Rn).

Since ak ∈ C∞(SX) then by Lemma 1

|ak(πX(ξ)) − ak(πX(η))| ≤ C
|ξ − η|

max(p(ξ), p(η))

for max(p(ξ), p(η)) ≥ 1, where C = const. Thus for all ξ, η ∈ R
n such that

max(p(ξ), p(η)) > m > 1

|ak(πX(ξ)) − ak(πX(η))| ≤ C

m
|ξ − η|. (8)

Let χm(ξ, η) be the indicator function of the set { (ξ, η) ∈ R2n | max(p(ξ), p(η)) ≤
m }, and

km(ξ, η) = χm(ξ, η)(ak(πX(ξ)) − ak(πX(η)))F (bk)(ξ − η),

rm(ξ, η) = (1 − χm(ξ, η))(ak(πX(ξ)) − ak(πX(η)))F (bk)(ξ − η).

Then k(ξ, η) = km(ξ, η)+rm(ξ, η) and K = Km +Rm, where Km, Rm are integral
operators with the kernels km(ξ, η), rm(ξ, η), respectively. Since the function
km(ξ, η) is bounded and compactly supported then the operator Km is a Hilbert-
Schmidt operator, which is compact. On the other hand, in view of (8)

|Rmv(ξ)| ≤
C

m

∫

Rn

|(ξ − η)F (bk)(ξ − η)||v(η)|dη = [|ξF (bk)| ∗ |v|](ξ)

and, by the Young inequality, for every v ∈ L2(Rn)

‖Rmv‖2 ≤
C

m
‖ξF (bk)‖1‖v‖2.

Therefore, ‖Rm‖ ≤ const/m and Rm → 0 asm→ ∞. We conclude thatKm → K
and therefore K is a compact operator, as a limit of compact operators. This
completes the proof. �

The ultra-parabolic H-measure µαβ, α, β = 1, . . . , N corresponding to a sub-
space X ⊂ Rn and a sequence Ur(x) ∈ L2(Ω,RN), weakly convergent to the zero
vector, is defined on Ω×SX by the relation similar to (4): ∀Φ1(x),Φ2(x) ∈ C0(Ω),
ψ(ξ) ∈ C(SX)

〈µαβ,Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)ψ(πX(ξ))dξ. (9)
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The existence of the H-measure µαβ is proved exactly in the same way as in [10],
using the statement of Lemma 2. For completeness we give the details below.

Proposition 2. There exist a family of complex Borel measures µ =
{

µαβ
}N

α,β=1
in Ω × SX and a subsequence of Ur(x) (still denoted by Ur) such

that relation (9) holds for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX). Besides,
the matrix-valued measure µ is Hermitian and positive definite, that is, for each

ζ = (ζ1, . . . , ζN) ∈ Cn the measure µζ · ζ =

N
∑

α,β=1

µαβζαζβ ≥ 0.

Proof. Denote

Iαβ
r (Φ1,Φ2, ψ) =

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)ψ(πX(ξ))dξ

and observe that, by the Buniakovskii inequality and the Plancherel identity,

|Iαβ
r | ≤ ‖Φ1‖∞‖Φ2‖∞‖ψ‖∞ · ‖Uα

r ‖L2(K)‖Uβ
r ‖L2(K),

where K ⊂ Ω is a compact containing supports of Φ1 and Φ2. In view of the
weak convergence of sequences Uα

r in L2(K) these sequences are bounded in
L2(K). Therefore, for some constant CK we have ‖Uα

r ‖2
L2(K) ≤ CK for all r ∈ N,

α = 1, . . . , N . Hence,

|Iαβ
r (Φ1,Φ2, ψ)| ≤ CK‖Φ1‖∞‖Φ2‖∞‖ψ‖∞ (10)

and the sequences Iαβ
r are bounded. Let D be a countable dense set in (C0(Ω))2×

C(SX). Using the standard diagonal process, we can extract a subsequence Ur

(we keep the notation Ur for this subsequence) such that

Iαβ
r (Φ1,Φ2, ψ) →

r→∞
Iαβ(Φ1,Φ2, ψ) (11)

for all triples (Φ1,Φ2, ψ) ∈ D. By estimate (10) we see that sequences
Iαβ
r (Φ1,Φ2, ψ) are uniformly continuous with respect to (Φ1,Φ2, ψ) ∈ (C0(Ω))2 ×
C(SX) and since D is dense in (C0(Ω))2 ×C(SX), we conclude that limit relation
(11) holds for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX). Passing in (10) to the
limit as r → ∞, we derive that for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX)

|Iαβ(Φ1,Φ2, ψ)| ≤ CK‖Φ1‖∞‖Φ2‖∞‖ψ‖∞, (12)

with K = supp Φ1 ∪ supp Φ2. Now, we observe that

Iαβ
r (Φ1,Φ2, ψ) = (Φ1U

α
r ,A(Φ2U

β
r ))2, (13)
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where A is a pseudo-differential operator on L2 = L2(Rn) with symbol ψ(πX(ξ)),
and (·, ·)2 is the scalar product in L2. Let B be a pseudo-differential operator on
L2 with symbol Φ2(x), and let ω(x) ∈ C0(R

n) be a function such that ω(x) ≡ 1
on supp Φ2. Then

A(Φ2U
β
r ) = AB(ωUβ

r ) = BA(ωUβ
r ) + [A,B](ωUβ

r ). (14)

Since ωUβ
r → 0 as r → ∞ weakly in L2 while, by Lemma 2, the operator [A,B] is

compact on L2, we claim that [A,B](ωUβ
r ) → 0 as r → ∞ strongly in L2. Since

the sequence Φ1U
α
r is bounded in L2, we conclude that (Φ1U

α
r , [A,B](ωUβ

r ))2 → 0
as r → ∞. It follows from this limit relation and (13), (14) that

lim
r→∞

(Φ1U
α
r ,BA(ωUβ

r ))2 = lim
r→∞

Iαβ
r (Φ1,Φ2, ψ) = Iαβ(Φ1,Φ2, ψ).

Taking into account that

(Φ1U
α
r ,BA(ωUβ

r ))2 =

∫

Rn

Φ1(x)Φ2(x)U
α
r (x)A(ωUβ

r )(x)dx,

we find that
Iαβ(Φ1,Φ2, ψ) = Ĩαβ(Φ1Φ2, ψ),

where Ĩαβ(Φ, ψ) is a bilinear functional on C0(Ω) × C(SX) for each α, β =
1, . . . , N . Taking in the above relation Φ1 = Φ(x)/

√

|Φ(x)| (we set Φ1(x) = 0 if

Φ(x) = 0), Φ2 =
√

|Φ(x)|, where Φ(x) ∈ C0(Ω), we find with the help of (12)
that

|Ĩαβ(Φ, ψ)| = |Iαβ(Φ1,Φ2, ψ)| ≤ CK‖Φ1‖∞‖Φ2‖∞‖ψ‖∞
= CK‖Φ‖∞‖ψ‖∞, K = supp Φ.

This estimate shows that the functionals Ĩαβ(Φ, ψ) are continuous on C0(Ω) ×
C(SX). Now, we observe that for nonnegative Φ(x) and ψ(ξ) the matrix
Ĩ
.
= {Ĩαβ(Φ, ψ)}N

α,β=1 is Hermitian and positive definite. Indeed, taking Φ1(x) =

Φ2(x) =
√

Φ(x), we find

Ĩαβ(Φ, ψ) = Iαβ(Φ1,Φ1, ψ) =

lim
r→∞

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ1U

β
r )(ξ)ψ(πX(ξ))dξ. (15)

For ζ = (ζ1, . . . , ζN) ∈ CN we have, in view of (15),

Ĩζ · ζ =
N
∑

α,β=1

Ĩαβ(Φ, ψ)ζαζβ = lim
r→∞

∫

Rn

|F (Φ1Vr)(ξ)|2ψ(πX(ξ))dξ ≥ 0,

8



where Vr(x) =
N
∑

α=1

Uα
r ζα. The above relation proves that the matrix Ĩ is Hermitian

and positive definite.
We see that for any ζ ∈ Cn the bilinear functional Ĩ(Φ, ψ)ζ · ζ is continuous

on C0(Ω)×C(SX) and nonnegative, that is, Ĩ(Φ, ψ)ζ · ζ ≥ 0 whenever Φ(x) ≥ 0,
ψ(ξ) ≥ 0. It is rather well known ( see for example [10, Lemma 1.10] ), that
such a functional is represented by integration over some unique locally finite
non-negative Borel measure µ = µζ(x, ξ) ∈Mloc(Ω × SX):

Ĩ(Φ, ψ)ζ · ζ =

∫

Ω×SX

Φ(x)ψ(ξ)dµζ(x, ξ).

As a function of the vector ζ , µζ is a measure valued Hermitian form. Therefore,

µζ =

N
∑

α,β=1

µαβζαζβ (16)

with measure valued coefficients µαβ ∈Mloc(Ω × SX), which can be expressed as
follows

µαβ = [µeα+eβ
+ iµeα+ieβ

]/2 − (1 + i)(µeα + µeβ
)/2,

where e1, . . . , eN is the standard basis in CN , and i2 = −1.
By (16)

Ĩ(Φ, ψ)ζ · ζ =
l
∑

α,β=1

〈µαβ,Φ(x)ψ(ξ)〉ζαζβ

and since

Ĩ(Φ, ψ)ζ · ζ =
l
∑

α,β=1

Ĩαβ(Φ, ψ)ζαζβ,

then, comparing the coefficients, we find that

〈µαβ,Φ(x)ψ(ξ)〉 = Ĩαβ(Φ, ψ). (17)

In particular,

〈µαβ,Φ1(x)Φ2(x)ψ(ξ)〉 = Iαβ(Φ1,Φ2, ψ) =

lim
r→∞

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)ψ(πX(ξ))dξ.

To complete the proof, observe that for each ζ ∈ CN the measure

N
∑

α,β=1

µαβζαζβ = µζ ≥ 0.

9



Hence, µ is Hermitian and positive definite. �

As it follows from the above Proposition, the matrix with component
〈µαβ, g(x, ξ)〉 is Hermitian and positive definite for each real nonnegative g(x, ξ) ∈
C0(Ω × SX).

Remark 1. We can replace the function ψ(πX(ξ)) in relation (9) by a func-
tion ψ̃(ξ) ∈ C(Rn), which equals ψ(πX(ξ)) for large |ξ|. Indeed, since Φ2(x) is
a function with compact support, Φ2U

β
r →

r→∞
0 weakly in L2(Rn) as well as in

L1(Rn). Therefore, F (Φ2U
β
r )(ξ) →

r→∞
0 point-wise and in L2

loc(R
n) ( in view of the

bound |F (Φ2U
β
r )(ξ)| ≤ ‖Φ2U

β
r ‖1 ≤ const ). Taking into account that the function

χ(ξ) = ψ̃(ξ)−ψ(πX(ξ)) is bounded and has a compact support, we conclude that

F (Φ2U
β
r )(ξ)χ(ξ) →

r→∞
0 in L2(Rn).

This implies that

lim
r→∞

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)χ(ξ)dξ = 0.

Therefore,

lim
r→∞

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)ψ̃(ξ)dξ =

lim
r→∞

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)ψ(πX(ξ))dξ = 〈µαβ,Φ1(x)Φ2(x)ψ(ξ)〉,

as required.

Let the sequence Ur = {Uα
r }N

α=1 converges weakly as r → ∞ to the zero
vector, let it be bounded in Lp

loc(Ω,R
N), p ≥ 2, and let µ = {µαβ}N

α,β=1 be an
ultra-parabolic H-measure corresponding to this sequence. We define η = Trµ =
∑N

α=1 µ
αα. As follows from Proposition 2, η is a locally finite non-negative

measure on Ω × SX . We assume that this measure is extended on σ-algebra of
η-measurable sets, and in particular that this measure is complete. We denote
by γ the projection of η on Ω, that is, γ(A) = η(A × SX) if the set A × SX is
η-measurable. Obviously, γ is a complete locally finite measure on Ω, γ ≥ 0.
Under the above assumptions the following statements hold.

Proposition 3.

(i) As r → ∞

|Ur|2 =
N
∑

α=1

|Uα
r (x)|2 → γ

10



weakly in Mloc(Ω); if p > 2 then γ ∈ L
p/2
loc (Ω) (here we identify γ and the

corresponding density γ̃ of γ with respect to the Lebesgue measure dx, so that
γ = γ̃(x)dx), and |Ur|2 → γ(x) weakly in L

p/2
loc (Ω);

(ii) The H-measure µ is absolutely continuous with respect to η, more pre-
cisely, µ = H(x, ξ)η, where H(x, ξ) = {hαβ(x, ξ)}N

α,β=1 is a bounded η-measurable
function taking values in the cone of positive definite Hermitian N ×N matrices,
besides |hαβ(x, ξ)| ≤ 1.

Proof. By the Plancherel identity and relation (9) with ψ ≡ 1

∫

Ω

Φ1(x)Φ2(x)|Ur|2dx =
N
∑

α=1

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2Uα

r )(ξ)dξ

→
r→∞

〈η(x, ξ),Φ1(x)Φ2(x)〉 = 〈γ,Φ1(x)Φ2(x)〉

Since any function Φ(x) ∈ C0(Ω) can be represented in the form Φ(x) =
Φ1(x)Φ2(x) ( for instance, one can take Φ1(x) = Φ(x), Φ2(x) being arbitrary
function in C0(Ω) equal to 1 on supp Φ1(x) ), we conclude that |Ur|2 → γ as
r → ∞ weakly in Mloc(Ω). In the case p > 2 (here p/2 = ∞ if p = ∞) the

sequence |Ur|2 is bounded in L
p/2
loc (Ω), and we conclude that γ ∈ L

p/2
loc (Ω). The

first assertion is proved.
To prove (ii), remark firstly that µαα ≤ η for all α = 1, . . . , N . Now, suppose

that α, β ∈ {1, . . . , N}, α 6= β. By Proposition 2 for any compact set B ⊂ Ω×SX

the matrix
(

µαα(B) µαβ(B)

µαβ(B) µββ(B)

)

is positive-definite; in particular,

|µαβ(B)| ≤
(

µαα(B)µββ(B)
)1/2 ≤ η(B).

By regularity of measures µαβ and η this estimate is satisfied for all Borel sets B.
This easily implies the inequality Varµαβ ≤ η. In particular, the measures µαβ

are absolutely continuous with respect to η, and by the Radon-Nykodim theorem
µαβ = hαβ(x, ξ)η, where the densities hαβ(x, ξ) are η-measurable and, as follows
from the inequalities Varµαβ ≤ η, |hαβ(x, ξ)| ≤ 1 η-a.e. on Ω × SX . We denote
by H(x, ξ) the matrix with components hαβ(x, ξ). Recall that the H-measure µ
is positive definite. This means that for all ζ ∈ CN

µζ · ζ = H(x, ξ)ζ · ζη ≥ 0. (18)

Hence H(x, ξ)ζ · ζ ≥ 0 for η-a.e. (x, ξ) ∈ Ω × SX . Choose a countable dense
set E ⊂ CN . Since E is countable, then it follows from (18) that for a set

11



(x, ξ) ∈ Ω × SX of full η-measure H(x, ξ)ζ · ζ ≥ 0 ∀ζ ∈ E, and since E is dense
we conclude that actually H(x, ξ)ζ · ζ ≥ 0 for all ζ ∈ CN . Thus, the matrix
H(x, ξ) is Hermitian and positive definite for η-a.e. (x, ξ). After an appropriate
correction on a set of null η-measure, we can assume that the above property is
satisfied for all (x, ξ) ∈ Ω × SX , and also |hαβ(x, ξ)| ≤ 1 for all (x, ξ) ∈ Ω × SX ,
α, β = 1, . . . , N . The proof is complete. �

Corollary 1. Suppose that the sequence Ur = {Uα
r }N

α=1 is bounded in
Lp

loc(Ω,R
N), p > 2. Let q = p/(p − 2) (as usual we set q = 1 if p = ∞), and

let L2q
0 (Ω) be the space of functions in L2q(Ω) having compact supports. Then

relation (9) still holds for all functions Φ1(x),Φ2(x) ∈ L2q
0 (Ω), ψ(ξ) ∈ C(SX).

Proof. Let K be a compact subset of Ω and Φ1(x),Φ(x) ∈ L2q(K). The
functions from L2q(K) are supposed to be extended on Ω as zero functions outside
of K. Using the Plancherel identity and the Hölder inequality (observe that
1

2q
+

1

p
=

1

2
), we get the following estimate

∣

∣

∣

∣

∫

Rn

F (Φ1U
α
r )(ξ)F (Φ2U

β
r )(ξ)ψ(πX(ξ))dξ

∣

∣

∣

∣

≤ ‖ψ‖∞‖Φ1U
α
r ‖2‖Φ2U

β
r ‖2 ≤ (CK)2‖ψ‖∞ · ‖Φ1‖2q‖Φ2‖2q, (19)

where CK = sup
r∈N

‖Ur‖Lp(K). On the other hand, by Proposition 3

|〈µαβ,Φ1(x)Φ2(x)ψ(ξ)〉| = |〈η, hαβ(x, ξ)Φ1(x)Φ2(x)ψ(ξ)〉|

≤ ‖ψ‖∞
∫

Ω

|Φ1(x)Φ2(x)|γ(x)dx ≤ ‖ψ‖∞‖γ‖Lp/2(K)‖Φ1‖2q‖Φ2‖2q (20)

(in the last estimate we used again the Hölder inequality). Estimates (19), (20)
show that both sides of relation (9) are continuous with respect to (Φ1,Φ2) ∈
(L2q(K))2. Since (9) holds for Φ1,Φ2 ∈ C0(K) and the space C0(K) is dense in
L2q(K), we claim that (9) holds for each Φ1(x),Φ2(x) ∈ L2q(K). To conclude the
proof, it only remains to notice that K is an arbitrary compact subset of Ω. �

We will need in the sequel some results about Fourier multipliers in spaces
Ld, d > 1. Recall that a function a(ξ) ∈ L∞(Rn) is a Fourier multiplier in Ld if
the pseudo-differential operator A with the symbol a(ξ), defined as F (Au)(ξ) =
a(ξ)F (u)(ξ), u = u(x) ∈ L2(Rn)∩Ld(Rn) can be extended as a bounded operator
on Ld(Rn), that is

‖Au‖d ≤ C‖u‖d ∀u ∈ L2(Rn) ∩ Ld(Rn), C = const.
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We denote by Md the space of Fourier multipliers in Ld. We also denote

Ṙ
n = (R \ {0})n = { ξ = (ξ1, . . . , ξn) |

n
∏

k=1

ξk 6= 0 }.

The following statement readily follows from the Marcinkiewicz multiplier theo-
rem (see [8, Chapter 4]).

Theorem 2. Suppose that a(ξ) ∈ Cn(Ṙn) is a function such that for some
constant C

|ξαDαa(ξ)| ≤ C ∀ξ ∈ Ṙ
n (21)

for every multi-index α = (α1, . . . , αn) such that |α| = α1 + · · · + αn ≤ n. Then
a(ξ) ∈Md for all d > 1.

Here we use the standard notations ξα =
∏n

k=1(ξk)
αk , Dα =

n
∏

k=1

(

∂

∂ξk

)αk

.

Actually (see [8]), it is sufficient to require that (21) is satisfied for multi-indexes
α such that αk ∈ {0, 1}, k = 1, . . . , n.

We also need the following simple lemma (see [5, Lemma 8]).
Lemma 3. Let h(y, z) ∈ Cn((Rν ×Rn−ν) \ {0}) be such that for some k ∈ N,

γ ∈ R

∀t > 0 h(tky, tz) = tγh(y, z). (22)

Then there exists a constant C > 0 such that for each multi-indexes α =
(α1, . . . , αν), β = (β1, . . . , βn−ν), |α| + |β| ≤ n and all y ∈ R

ν , z ∈ R
n−ν ,

y, z 6= 0
|Dα

yD
β
z h(y, z)| ≤ C(|y|2 + |z|2k)

γ
2k |y|−|α||z|−|β|.

Proof. In view of (22), for all t > 0 we have

Dα
yD

β
z h(y, z) = tk|α|+|β|−γ(Dα

yD
β
z h)(t

ky, tz).

Taking t = (|y|2 + |z|2k)−
1

2k in this relation, we find

Dα
yD

β
z h(y, z) = (|y|2 + |z|2k)

γ−k|α|−|β|
2k (Dα

yD
β
z h)(y

′, z′), (23)

where y′ = tky, z′ = tz, so that |y′|2 + |z′|2k = 1. Since the set of such (y′, z′) is
a compact subset of R

n \ {0} the derivatives (Dα
yD

β
z h)(y

′, z′), |α| + |β| ≤ n, are
bounded on this set, and relation (23) implies that for some constant C > 0

|Dα
yD

β
zh(y, z)| ≤ C(|y|2 + |z|2k)

γ
2k (|y|2 + |z|2k)−|α|/2(|y|2 + |z|2k)−|β|/(2k) ≤

C(|y|2 + |z|2k)
γ
2k |y|−|α||z|−|β|

13



for all y, z 6= 0. The proof is complete. �

Now we can prove that some useful for us functions are Fourier multipliers.
Namely, assume that X is a linear subspace of Rn, and let πX : Rn → SX be the
projection defined in Section 2.

Proposition 4 (cf. [5, Proposition 6]). The following functions are multipli-
ers in spaces Ld for all d > 1:

(i) a1(ξ) = ψ(πX(ξ)) where ψ ∈ Cn(SX);
(ii) a2(ξ) = ρ(ξ)(1 + |ξ̃|2 + |ξ̄|4)1/2(|ξ̃|2 + |ξ̄|4)−1/2, where ρ(ξ) ∈ C∞(Rn) is

a function such that 0 ≤ ρ(ξ) ≤ 1, ρ(ξ) = 0 for |ξ̃|2 + |ξ̄|4 ≤ 1, ρ(ξ) = 1 for
|ξ̃|2 + |ξ̄|4 ≥ 2;

(iii) a3(ξ) = (1 + |ξ|2)1/2(1 + |ξ̃|2 + |ξ̄|4)−1/2;
(iv) a4(ξ) = (1 + |ξ̃|2 + |ξ̄|4)1/2(1 + |ξ|2)−1.
Proof. Since the space Md is invariant under non-degenerate linear trans-

formations of the variables ξ ( see [2, Chapter 6] ) then we can assume that
X = Rν = {ξ ∈ Rn | ξ = (y1, . . . , yν , 0, . . . , 0) } while X⊥ = {ξ ∈ Rn | ξ =
(0, . . . , 0, z1, . . . , zn−ν) }. Since πX(t2y, tz) = πX(y, z) for t > 0, y ∈ X, z ∈ X⊥

then h = a1(ξ) = ψ(πX(ξ)) satisfies the assumptions of Lemma 3 with k = 2,
γ = 0. By this Lemma for each multi-indexes α, β, |α| + |β| ≤ n

|y||α||z||β||Dα
yD

β
z a1(y, z)| ≤ C = const.

This, in particular, implies that assumption (21) of Theorem 2 is satisfied. By
this Theorem we conclude that a1(ξ) ∈Md for each d > 1.

To prove that a2(ξ) ∈ Md we introduce the function h1(s, y, z) = (s2 + |y|2 +
|z|4)1/2, s ∈ R. This function satisfies the assumptions of Lemma 3 with y
replaced by (s, y) ∈ Rν+1, and k = γ = 2. By this Lemma

|Dα
yD

β
z h1(s, y, z)| ≤ C(s2 + |y|2 + |z|4)1/2|y|−|α||z|−|β|, C = const.

Taking s = 1 in this relation, we arrive at the estimate

|Dα
yD

β
z h1(1, y, z)| ≤ C(1 + |y|2 + |z|4)1/2|y|−|α||z|−|β|,

and by the Leibnitz formula we obtain that for each multi-indexes α, β such that
|α| + |β| ≤ n

|Dα
yD

β
z ρ(y, z)h1(1, y, z)| ≤ C1(1 + |y|2 + |z|4)1/2|y|−|α||z|−|β|, (24)

C1 = const ( we use that ρ(y, z) = 1 for |y|2 + |z|4 ≥ 2 ). Let h2(y, z) =
(|y|2 + |z|4)−1/2. This function satisfies (22) with k = 2, γ = −2. By Lemma 3
for some constant C2 and every multi-indexes α, β such that |α| + |β| ≤ n

|Dα
yD

β
zh2(y, z)| ≤ C2(|y|2 + |z|4)−1/2|y|−|α||z|−|β|. (25)
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By the Leibnitz formula we derive from (24), (25) the estimates

|Dα
yD

β
z ρ(y, z)h1(1, y, z)h2(y, z)| ≤

C3(1 + |y|2 + |z|4)1/2(|y|2 + |z|4)−1/2|y|−|α||z|−|β| ≤ 2C3|y|−|α||z|−|β| (26)

in the domain |y|2 + |z|4 ≥ 1, here |α| + |β| ≤ n, C3 = const. In view of (26) we
conclude that in this domain for each α, β, |α| + |β| ≤ n

|y||α||z||β||Dα
yD

β
z a2(y, z)| ≤ const.

Since a2(y, z) = 0 for |y|2 + |z|4 < 1 we see that the requirements of Theorem 2
are satisfied. Therefore, a2(ξ) ∈Md for all d > 1.

Now we introduce the functions h1(s, y, z) = (s2 + |y|2 + |z|2)1/2, h2(s, y, z) =
(s2+|y|2+|z|2)−1, h3(s, y, z) = (s2+|y|2+|z|4)−1/2, h4(s, y, z) = (s2+|y|2+|z|4)1/2,
s ∈ R, y ∈ X = Rν , z ∈ X⊥. These functions satisfy (22) where y is replaced
by (s, y) ∈ Rl+1 with the parameters k = γ = 1; k = 1, γ = −2; k = 2, γ = −2;
k = γ = 2, respectively. By Lemma 3 we find that for each α, β, |α| + |β| ≤ n

|y||α||z||β||Dα
yD

β
z h1(1, y, z)| ≤ C(1 + |y|2 + |z|2)1/2,

|y||α||z||β||Dα
yD

β
z h2(1, y, z)| ≤ C(1 + |y|2 + |z|2)−1,

|y||α||z||β||Dα
yD

β
z h3(1, y, z)| ≤ C(1 + |y|2 + |z|4)−1/2,

|y||α||z||β||Dα
yD

β
z h4(1, y, z)| ≤ C(1 + |y|2 + |z|4)1/2,

where C = const. Since a3(ξ) = h1(1, y, z)h3(1, y, z), a4(ξ) = h2(1, y, z)h4(1, y, z)
where y = ξ̃, z = ξ̄ then, using again the Leibnitz formula, we derive the esti-
mates: for some constant C

|y||α||z||β||Dα
yD

β
z a3(y, z)| ≤ C(1 + |y|2 + |z|2)1/2(1 + |y|2 + |z|4)−1/2 ≤ 2C,

|y||α||z||β||Dα
yD

β
z a4(y, z)| ≤ C(1 + |y|2 + |z|2)−1(1 + |y|2 + |z|4)1/2 ≤ 2C.

Here we take into account the following simple inequalities:

1 + |y|2 + |z|2
1 + |y|2 + |z|4 =

1 + |y|2
1 + |y|2 + |z|4 +

|z|2
1 + |y|2 + |z|4 ≤ 1 + min(|z|2, |z|−2) ≤ 2,

(1 + |y|2 + |z|4)1/2

1 + |y|2 + |z|2 ≤ (1 + |y|2)1/2

1 + |y|2 + |z|2 +
|z|2

1 + |y|2 + |z|2 ≤ 2.

In view of Theorem 2, we conclude that a3(ξ), a4(ξ) ∈ Md for each d > 1. The
proof is now complete.�

We define the anisotropic Sobolev space W−1,−2
d consisting of distributions

u(x) such that (1 + |ξ̃|2 + |ξ̄|4)−1/2F (u)(ξ) = F (v)(ξ), v = v(x) ∈ Ld(Rn). This
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is a Banach space with the norm ‖u‖ = ‖v‖d. The following proposition claims
that this space lays between the spaces W−1

d and W−2
d .

Proposition 5 (cf. [5, Proposition 7]). For each d > 1 W−1
d ⊂ W−1,−2

d ⊂
W−2

d and the both embeddings are continuous.
Proof. Let u ∈ W−1

d . This means that (1 + |ξ|2)−1/2F (u)(ξ) = F (w)(ξ), w =
w(x) ∈ Ld(Rn). By Proposition 4(iii) a3(ξ) = (1+|ξ|2)1/2(1+|ξ̃|2+|ξ̄|4)−1/2 ∈Md.
Therefore,

(1 + |ξ̃|2 + |ξ̄|4)−1/2F (u)(ξ) = a3(ξ)F (w)(ξ) = F (v)(ξ), v(x) ∈ Ld(Rn),

that is, u ∈ W−1,−2
d . We deduce that W−1

d ⊂ W−1,−2
d . Since ‖v‖d ≤ C‖w‖d,

C = const this embedding is continuous.
Now suppose that u ∈ W−1,−2

d . Then (1 + |ξ̃|2 + |ξ̄|4)−1/2F (u)(ξ) = F (v)(ξ),
v = v(x) ∈ Ld(Rn). By Proposition 4(iv) a4(ξ) = (1 + |ξ̃|2 + |ξ̄|4)1/2(1 + |ξ|2)−1 ∈
Md, and

(1 + |ξ|2)−1F (u)(ξ) = a4(ξ)F (v)(ξ) = F (w)(ξ), w ∈ Ld(Rn).

This means that u ∈ W−2
d . We established that W−1,−2

d ⊂ W−2
d . The continuity

of this embedding follows from the estimate ‖w‖d ≤ C‖v‖d, C = const. The
proof is complete.�

We also introduce the local space W−1,−2
d,loc (Ω) consisting of distributions u(x)

such that uf(x) belongs to W−1,−2
d for all f(x) ∈ C∞

0 (Ω). The space W−1,−2
d,loc (Ω)

is a locally convex space with the topology generated by the family of semi-norms
u 7→ ‖uf‖W−1,−2

d
, f(x) ∈ C∞

0 (Ω). Analogously, we define the spaces W−1
d,loc(Ω),

W−2
d,loc(Ω). As it readily follows from Proposition 5, W−1

d,loc ⊂ W−1,−2
d,loc ⊂W−2

d,loc and
these embeddings are continuous.

We will need also the following statement, which is rather well known (see,
for example, [5, Lemma 6]).

Lemma 4. Let Ur(x) be a sequence bounded in L2(Rn)∩L1(Rn) and weakly
convergent to zero; let a(ξ) be a bounded function on Rn such that a(ξ) → 0 as
|ξ| → ∞. Then a(ξ)F (Ur)(ξ) →

r→∞
0 in L2(Rn).

Proof. First, observe that by the assumption that a(ξ) → 0 at infinity, for
any ε > 0 we can choose R > 0 such that |a(ξ)| < ε for |ξ| > R. Then

∫

|ξ|>R

|a(ξ)|2|F (Ur)(ξ)|2dξ ≤ ε2‖F (Ur)‖2 = ε2‖Ur‖2 ≤ Cε2, (27)

where C = supr∈N ‖Ur‖2 is a constant independent of r.
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Further, by our assumption Ur → 0 as r → ∞ weakly in L1. This implies
that F (Ur)(ξ) → 0 point-wise as r → ∞. Moreover, |F (Ur)(ξ)| ≤ ‖Ur‖1 ≤ const.
Hence, using the Lebesgue dominated convergence theorem, we find that

∫

|ξ|≤R

|a(ξ)|2|F (Ur)(ξ)|2dξ → 0 (28)

as r → ∞. It follows from (27), (28) that

lim
r→∞

∫

Rn

|a(ξ)|2|F (Ur)(ξ)|2dξ ≤ Cε2.

Since ε > 0 is arbitrary, we conclude that

lim
r→∞

∫

Rn

|a(ξ)|2|F (Ur)(ξ)|2dξ = 0,

that is, a(ξ)F (Ur)(ξ) →
r→∞

0 in L2(Rn). The proof is complete.�

3 Localization principle and proof of Theorem 1

Suppose that the sequence ur(x) converges weakly to u(x) in Lp
loc(Ω,R

N ), and
the sequences of distributions

N
∑

α=1

n
∑

k=1

∂xk
(asαkuαr) +

N
∑

α=1

n
∑

k,l=ν+1

∂xkxl
(bsαkluαr), r ∈ N, s = 1, . . . , m,

are pre-compact in the anisotropic Sobolev space W−1,−2
d,loc (Ω), where d > 1 is

indicated in the Introduction. We will also assume that d ≤ 2. This assumption
is not restrictive, because of the natural embeddings W−1,−2

d,loc (Ω) ⊂ W−1,−2
d1,loc (Ω)

for each d1 < d. Let Ur = ur(x) − u(x) = (U1
r , . . . , U

N
r ), Uα

r = uαr(x) − uα(x).
Then Ur → 0 as r → ∞ weakly in L2

loc(Ω,R
N). Therefore, after extraction of

a subsequence (still denoted Ur), we can assume that the parabolic H-measure
µ = {µαβ}N

α,β=1 corresponding to the subspace

X = R
ν = { ξ = (ξ1, . . . , ξν , 0, . . . , 0) ∈ R

n }

is well defined.
Theorem 3 (localization principle). For each s = 1, . . . , m; β = 1, . . . , N

N
∑

α=1

Psα(x, ξ)µαβ = 0,

17



where

Psα(x, ξ) = 2πi
ν
∑

k=1

asαk(x)ξk − 4π2
n
∑

k,l=ν+1

bsαkl(x)ξkξl.

Proof.

Since the coefficients asαk(x), bsαkl(x) belong to L2q
loc(Ω), and 1

2q
+ 1

p
= 1

2
, the

sequences asαkUαr, bsαklUαr converge to zero as r → ∞ weakly in L2
loc(Ω,R

N) and
the sequences of distributions

Lsr
.
=

N
∑

α=1

n
∑

k=1

∂xk
(asαkU

α
r ) +

N
∑

α=1

n
∑

k,l=ν+1

∂xkxl
(bsαklU

α
r ), r ∈ N, s = 1, . . . , m,

converge weakly to zero. Using the pre-compactness of these sequences in
W−1,−2

d,loc (Ω), we find that Lsr → 0 as r → ∞ in W−1,−2
d,loc (Ω). We choose

Φ1(x) ∈ C∞
0 (Ω) and consider the distributions

lsr = ∂xk
(asαkΦ1U

α
r − 2bsαklU

α
r ∂xl

Φ1) + ∂xkxl
(bsαklΦ1U

α
r ). (29)

To simplify the notation, we use here and below the conventional rule of sum-
mation over repeated indexes, and suppose that the coefficients bsαkl are defined
for all k, l = 1, . . . , n with bsαkl = 0 if min(k, l) ≤ ν. We can also assume that
bsαkl = bsαlk for k, l = 1, . . . , n. Then, as it is easy to compute,

lsr = Φ1Lsr + asαkU
α
r ∂xk

Φ1 − bsαklU
α
r ∂xkxl

Φ1. (30)

Since the coefficients asαk(x), bsαkl(x) belong to L2q
loc(Ω), and 1

2q
+ 1

p
= 1

2
, the se-

quences asαkU
α
r ∂xk

Φ1, bsαklU
α
r ∂xkxl

Φ1 are bounded in L2(Rn). Noticing that the
function Φ1(x) has a compact support, we see that these sequences are bounded
also in Ld(Rn) for all s = 1, . . . , m, and they weakly converge to zero as r → ∞.
Therefore, they converge to zero strongly in W−1

d (Rn) and, in view of Propo-
sition 5, also in W−1,−2

d (Rn). By our assumptions, Φ1Lsr → 0 as r → ∞ in
W−1,−2

d (Rn). Hence, it follows from the above limit relations and (30) that lsr → 0
as r → ∞ in W−1,−2

d (Rn). Applying the Fourier transformation to this relation
and then multiplying by (1 + |ξ̃|2 + |ξ̄|4)−1/2, we arrive at

(1 + |ξ̃|2 + |ξ̄|4)−1/2
(

2πiξkF (asαkΦ1U
α
r )(ξ) −

4πiξkF (bsαklU
α
r ∂xl

Φ1)(ξ) − 4π2ξ̄kξ̄lF (bsαklΦ1U
α
r )(ξ)

)

= F (vsr)(ξ), (31)

where vsr → 0 as r → ∞ in Ld(Rn). We take also into account that

ξkξlF (bsαklΦ1U
α
r )(ξ) =

n
∑

k,l=ν+1

ξkξlF (bsαklΦ1U
α
r )(ξ) = ξ̄kξ̄lF (bsαklΦ1U

α
r )(ξ).

18



By Proposition 4(ii), we have

a2(ξ) = ρ(ξ)(1 + |ξ̃|2 + |ξ̄|4)1/2(|ξ̃|2 + |ξ̄|4)−1/2 ∈Md.

Therefore, it follows from (31) that

ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/2
(

2πiξkF (asαkΦ1U
α
r )(ξ) − 4πiξkF (bsαklU

α
r ∂xl

Φ1)(ξ)

−4π2ξ̄kξ̄lF (bsαklΦ1U
α
r )(ξ)

)

= a2(ξ)F (vsr)(ξ) = F (wsr)(ξ), (32)

wsr → 0 as r → ∞ in Ld(Rn) for all s = 1, . . . , m. Since

ρ(ξ)|ξ̄|2
(|ξ̃|2 + |ξ̄|4)1/2

≤ 1,

ρ(ξ)|ξ|
(|ξ̃|2 + |ξ̄|4)1/2

≤ ρ(ξ)
|ξ̃| + |ξ̄|

(|ξ̃|2 + |ξ̄|4)1/2
≤ 1 + min(|ξ̄|, |ξ̄|−1) ≤ 2

( recall that 0 ≤ ρ(ξ) ≤ 1, and ρ(ξ) = 0 for |ξ̃|2 + |ξ̄|4 ≤ 1 ), and
F (asαkΦ1U

α
r )(ξ), F (bsαklΦ1U

α
r )(ξ), F (bsαklU

α
r ∂xl

Φ1)(ξ) ∈ L2(Rn), we see that
F (wsr)(ξ) ∈ L2(Rn), which implies that wsr ∈ L2(Rn) as well.

Since bsαkl = 0 for k ≤ ν,

ξ̃kF (bsαklU
α
r ∂xl

Φ1)(ξ) =
ν
∑

k=1

ξkF (bsαklU
α
r ∂xl

Φ1)(ξ) = 0. (33)

Now, observe that for each k the function

a(ξ) =
ρ(ξ)ξ̄k

(|ξ̃|2 + |ξ̄|4)1/2
,

satisfies the assumption of Lemma 4. Indeed, this follows from the estimate

|a(ξ)| ≤ ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/4 |ξ̄|
(|ξ̃|2 + |ξ̄|4)1/4

≤ ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/4.

Since the sequences asαkΦ1U
α
r , bsαklU

α
r ∂xl

Φ1 are bounded in L2(Rn)∩L1(Rn) and
weakly converge to zero as r → ∞, then by Lemma 4

ρ(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
ξ̄kF (asαkΦ1U

α
r )(ξ) →

r→∞
0 in L2(Rn), (34)

ρ(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
ξ̄kF (bsαklU

α
r ∂xl

Φ1)(ξ) →
r→∞

0 in L2(Rn). (35)
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It follows from (33), (35) that

ρ(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
ξkF (bsαklU

α
r ∂xl

Φ1)(ξ) →
r→∞

0 in L2(Rn). (36)

Let Φ2(x) ∈ C0(R
n), ψ(ξ) ∈ Cn(SX). Since the sequence Φ2U

β
r is bounded in

Lp(Ω) and supported in the compact supp Φ2, and d′ = d/(d − 1) ≤ p, this
sequence is also bounded in L2(Rn)∩Ld′(Rn), By Proposition 4(i) for a fixed β =
1, . . . , N ψ(πX(ξ))F (Φ2U

β
r )(ξ) = F (gr)(ξ), where the sequence gr is bounded

in L2(Rn)∩Ld′(Rn). We multiply (32) by ψ(πX(ξ))F (Φ2U
β
r )(ξ) and integrate the

result over ξ ∈ Rn. Passing then to the limit as r → ∞ and taking into account
relations (34), (36), we arrive at

lim
r→∞

∫

Rn

ρ(ξ)(2πiξ̃kF (asαkΦ1U
α
r )(ξ) − 4π2ξ̄kξ̄lF (bsαklΦ1U

α
r )(ξ))

(|ξ̃|2 + |ξ̄|4)1/2

×F (Φ2U
β
r )ψ(πX(ξ))dξ = lim

r→∞

∫

Rn

F (wsr)(ξ)F (gr)(ξ)dξ

= lim
r→∞

∫

Rn

wsr(x)gr(x)dx = 0. (37)

On the other hand, by relation (9), Remark 1 and Corollary 1 (in the case p > 2),
we see that

lim
r→∞

∫

Rn

ρ(ξ)(2πiξ̃kF (asαkΦ1U
α
r )(ξ) − 4π2ξ̄kξ̄lF (bsαklΦ1U

α
r )(ξ))

(|ξ̃|2 + |ξ̄|4)1/2

×F (Φ2U
β
r )ψ(πX(ξ))dξ =

〈µαβ, (2πiasαk(x)ξ̃k − 4π2bsαkl(x)ξ̄kξ̄l)Φ1(x)Φ2(x)ψ(ξ)〉.

Then it follows from (37) that

〈µαβ, Psα(x, ξ)Φ1(x)Φ2(x)ψ(ξ)〉 = 0, (38)

where

Psα(x, ξ) = 2πiasαk(x)ξ̃k − 4π2bsαkl(x)ξ̄kξ̄l =

2πi
ν
∑

k=1

asαk(x)ξk − 4π2
n
∑

k,l=ν+1

bsαkl(x)ξkξl.

We underline that the functions Psα(x, ξ)Φ1(x)Φ2(x)ψ(ξ) are measurable and
locally integrable with respect to the measure η. This is evident in the case
p = 2 (then asαk, bsαkl ∈ C(Ω)) while in the case p > 2 this readily follows from
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Proposition 3, from the assumptions asαk, bsαkl ∈ L2q
loc(Ω), and from the inequality

1
2q

+ 2
p
< 1

q
+ 2

p
= 1.

Since the functions Φ1(x) ∈ C∞
0 (Ω), Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ Cn(SX) are

arbitrary, we derive from (38) that Psα(x, ξ)µαβ = 0 for each s = 1, . . . , m,
β = 1, . . . , N . The proof is complete. �

By Proposition 3 the H-measure µ admits the representation µ = H(x, ξ)η,
where H(x, ξ) = {hαβ(x, ξ)}N

α,β=1 is an Hermitian matrix.

Corollary 2. For η-a.e. (x, ξ) ∈ Ω × SX the image of H(x, ξ) is contained
in Λ(x).

Proof. By Theorem 3 Psα(x, ξ)hαβ(x, ξ)η = 0. This can be written as
P (x, ξ)H(x, ξ) = 0, where P (x, ξ) is a m × N matrix with components Psα.
Therefore, for η-a.e. (x, ξ) ∈ Ω × SX ImH(x, ξ) ⊂ kerP (x, ξ). Now notice that
if λ = (λ1, . . . , λN) ∈ CN belongs to kerP (x, ξ) then

N
∑

α=1

(

i

ν
∑

k=1

asαk(x)2πξk −
n
∑

k,l=ν+1

bsαkl(x)2πξk2πξl

)

λα = 0

for all s = 1, . . . , m. Remark that 2πξ 6= 0 because of the inclusion ξ ∈ SX . Hence,
λ ∈ Λ(x). We conclude that kerP (x, ξ) ⊂ Λ(x), and ImH(x, ξ) ⊂ kerP (x, ξ) ⊂
Λ(x), as was to be proved. �

Now we are ready to prove our main Theorem 1.
Proof of Theorem 1. Since H = H(x, ξ) ≥ 0 there exists a unique

Hermitian matrix R = R(x, ξ) = H1/2 such that R ≥ 0 and H = R2. By the
known properties of Hermitian matrices kerR = kerH , which readily implies
that ImR = ImH . By Corollary 2 we claim that ImR(x, ξ) ⊂ Λ(x) for η-a.e.
(x, ξ) ∈ Ω×SX . Now we represent the coefficients qαβ(x) of quadratic form q(x, u)

in the form qαβ(x) = q
(1)
αβ (x)q

(2)
αβ (x), where for j = 1, 2 q

(j)
αβ(x) ∈ L2q

loc(Ω) if p > 2,

and q
(j)
αβ (x) ∈ C(Ω) if p = 2. For instance, we can set

q
(1)
αβ (x) = |qαβ(x)|1/2 sign qαβ(x), q

(2)
αβ (x) = |qαβ(x)|1/2.

Taking into account Corollary 1, we find that for real Φ(x) ∈ C0(Ω)
∫

Ω

(Φ(x))2q(x, Ur(x))dx =

∫

Rn

q
(1)
αβ (x)Φ(x)Uα

r (x)q
(2)
αβ (x)Φ(x)Uβ

r (x)dx =
∫

Rn

F (Φq
(1)
αβU

α
r )(ξ)F (Φq

(2)
αβU

β
r )(ξ)dξ →

r→∞

〈µαβ, (Φ(x))2qαβ(x)〉 =

∫

Ω×SX

(Φ(x))2qαβ(x)hαβ(x, ξ)dη(x, ξ). (39)
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Since H = R2 then hαβ(x, ξ) = rαjrβj , where rij = rij(x, ξ), i, j = 1, . . . , N are
components of matrix R. Therefore,

qαβ(x)hαβ = qαβ(x)rαjrβj =

N
∑

j=1

Q(x)Rej · Rej , (40)

where {ej}N
j=1 is the standard basis in CN . Since Rej ∈ ImR ⊂ Λ(x) then it

follows from the assumption of Theorem 1 that Q(x)Rej · Rej ≥ 0 for η-a.e.
(x, ξ) ∈ Ω × SX . In view of (40) we find that qαβ(x)hαβ(x, ξ) ≥ 0 for η-a.e.
(x, ξ) ∈ Ω × SX . Now, it readily follows from (39) that

lim
r→∞

∫

Ω

(Φ(x))2q(x, Ur(x))dx ≥ 0 (41)

for all real Φ(x) ∈ C0(Ω).
In view of the weak convergence ur → u, q(x, ur(x)) → v as r → ∞,

q(x, Ur(x)) = q(x, ur(x)) + q(x, u(x)) − 2 Re(Q(x)ur(x) · u(x)) → v − q(x, u(x))

weakly in Mloc(Ω), and we derive from (41) that

〈v − q(x, u(x))dx, (Φ(x))2〉 ≥ 0

Since (Φ(x))2 is an arbitrary nonnegative function in C0(Ω), this implies that
q(x, u(x)) ≤ v. The proof is complete. �

Corollary 3. Suppose that q(x, λ) = 0 for all λ ∈ Λ(x), x ∈ Ω. Then
v = q(x, u(x)), that is, the functional u→ q(x, u) is weakly continuous.

Proof. Applying Theorem 1 to the quadratic forms ±q(x, u), we obtain the
inequalities ±v ≥ ±q(x, u(x)), which readily imply that v = q(x, u(x)). �

Remark 2. In the particular case ν = n relations (2) are reduced to the
requirement that the sequences of distributions

Lsr =

N
∑

α=1

n
∑

k=1

∂xk
(asαk(x)uαr), s = 1, . . . , m

are pre-compact in W−1
d,loc(Ω). In applications to conservation laws, it usually

happens that the sequences uαr are bounded in L∞
loc(Ω) (so that p = ∞) while

the sequences Lsr are bounded in Mloc(Ω). Since the space Mloc(Ω) is compactly
embedded in W−1

d,loc(Ω) for d < n/(n− 1) then condition (2) is satisfied.
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In the case ν = 0 the statement of Theorem 1 is a compensated compactness
result under the second order constraints

Lsr =
N
∑

α=1

n
∑

k,l=1

∂xkxl
(bsαkl(x)uαr), s = 1, . . . , m,

which are required to be pre-compact in W−2
d,loc(Ω). Observe also that in each of

the cases ν = n, 0 the set Λ(x) may be defined as a subset of real space RN .

4 Some applications

We consider the parabolic operator

L(u) = ∂tu−
n
∑

k,l=1

∂xkxl
(akl(t, x)g(t, x, u)), u = u(t, x), (t, x) ∈ Ω = (0,+∞)×V,

V being an open subset of Rn. It is assumed that for u = u(t, x)

u, g(t, x, u) ∈ Lp
loc(Ω), 2 ≤ p ≤ ∞, while

akl = akl(t, x) ∈ L2q
loc(Ω), where q = p/(p− 2), p > 2,

and akl ∈ C(Ω) if p = 2.

The matrix A(t, x) = {akl(t, x)}n
k,l=1 is supposed to be symmetric and strictly

positive: A(t, x)ξ ·ξ > 0 ∀ξ ∈ Rn, ξ 6= 0. The function g(t, x, u) is a Caratheodory
function on Ω × R, non-strictly increasing with respect to the variable u.

Assume that the sequences ur(t, x), g(t, x, ur(t, x)), r ∈ N are bounded in
Lp

loc(Ω), moreover, if p = 2 assume that the sequence ρ(ur(t, x)g(t, x, ur(t, x)))
is bounded in L1

loc(Ω) for some positive super-linear function ρ(u) (that is,
ρ(u)/|u| → ∞ as |u| → ∞). Also suppose that ur → u = u(t, x) as r → ∞ weakly
in D′(Ω) while fr = L(ur) → f strongly in W−1,−2

d,loc (Ω), where the latter space
correspond to the subspace X = { (ξ0, 0, . . . , 0) } ⊂ Rn+1, here (ξ0, ξ1, . . . , ξn)
are the dual variables ( ξ0 correspond to the time variable t ), and d = p/(p− 1)
(d > 1 in the case p = ∞).

Theorem 4. Under the above assumptions, L(u) = f in D′(Ω). In addition,
the sequence g(t, x, ur(t, x)) converges to g(t, x, u(t, x)) as r → ∞ strongly in
Lp

loc(Ω).
Proof. Let u1r = ur(t, x), u2r = g(t, x, ur(t, x)). Passing to a subsequence

if necessary, we can assume that u2r(t, x) → u2 = u2(t, x) weakly as r → ∞.
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Then the sequence (u1r, u2r) converges weakly to (u1, u2) ∈ Lp
loc(Ω,R

2) with u1 =
u(t, x). Further, it satisfies the condition that the sequence of distributions

fr = ∂tu1r −
n
∑

k,l=1

∂xkxl
(akl(t, x)u2r)

is pre-compact in W−1,−2
d,loc (Ω). In accordance with (3), we define the set Λ =

Λ(t, x):

Λ = {(λ1, λ2) ∈ C
2 | ∃(ξ0, ξ) ∈ (R × R

n) \ {0} iξ0λ1 + (A(t, x)ξ · ξ)λ2 = 0 }.

Since (A(t, x)ξ · ξ) > 0 for ξ 6= 0 then Λ = { (λ1, λ2) ∈ C2 | Reλ1λ2 = 0 }.
Therefore, the quadratic functional q = q(u) = (u1u2 + u2u1)/2 is zero for u =
λ ∈ Λ. By Corollary 3 (observe that all the assumptions of this Corollary are
satisfied) we claim that

q(u1r, u2r) = u1ru2r →
r→∞

q(u1, u2) = u1u2 (42)

weakly in L1
loc(Ω). Since the sequence ur is bounded in Lp

loc(Ω), p ≥ 2, then,
extracting again a subsequence (still denoted by ur), we may suppose that the
Young measure νt,x corresponding to this subsequence is well defined. Recall that
a Young measure νt,x on Ω is a weakly measurable map (t, x) → νt,x of Ω into the
space Prob(R) of probability measures on R. The weak measurability means that
for each bounded continuous function p(λ) the function (t, x) →

∫

p(λ)dνt,x(λ)
is Lebesgue measurable on Ω. It is known (see, for example, [7]) that the Young
measure corresponding to ur satisfies the property that whenever the sequence
ψ(t, x, ur(t, x)) converges weakly in L1

loc(Ω) for a Caratheodory function ψ(x, λ),
its weak limit is the function

ψ̄(t, x) =

∫

ψ(t, x, λ)dνt,x(λ).

Moreover, νt,x(λ) = δ(λ − u(t, x)), where δ(λ − u) is the Dirac mass at u, if
and only if ur → u in L1

loc(Ω). Since ur → u1 = u(t, x), g(t, x, ur) → u2(t, x),
urg(t, x, ur) = u1ru2r → u1u2 as r → ∞ weakly in L1

loc(Ω) then these limit
functions admit the representations:

u1 =

∫

λdνt,x(λ), u2 =

∫

g(t, x, λ)dνt,x(λ), u1u2 =

∫

λg(t, x, λ)dνt,x(λ).

It follows from these equalities that for a.e. (t, x) ∈ Ω

u(t, x)

∫

g(t, x, λ)dνt,x(λ) =

∫

λg(t, x, λ)dνt,x(λ).
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It is reduced to the equality
∫

(λ− u(t, x))g(t, x, λ)dνt,x(λ) = 0,

and since
∫

(λ− u(t, x))νt,x(λ) = 0, we arrive at the relation
∫

(λ− u(t, x))(g(t, x, λ) − g(t, x, u(t, x)))dνt,x(λ) =
∫

(λ− u(t, x))g(t, x, λ)dνt,x(λ) −

g(t, x, u(t, x))

∫

(λ− u(t, x))νt,x(λ) = 0 (43)

for a.e. (t, x) ∈ Ω. Taking into account the fact that the function g(t, x, λ) is
non-decreasing with respect to λ, we derive from (43) that for a.e. (t, x) ∈ Ω
g(t, x, λ) = g(t, x, u(t, x)) on supp νt,x. Therefore,

u2 =

∫

g(t, x, λ)dνt,x(λ) = g(t, x, u(t, x))

almost everywhere in Ω. Hence, in the limit as r → ∞

L(ur) → L(u) = ∂tu−
n
∑

k,l=1

∂xkxl
(akl(t, x)g(t, x, u)) in D′(Ω).

Since L(ur) = fr → f as r → ∞ in D′(Ω), we conclude that L(u) = f . Besides,
the image of νt,x under the map u → g(t, x, u) coincides with the Dirac measure
δ(λ− g(t, x, u(t, x))):

ν̃t,x(λ)
.
= (g(t, x, ·)∗νt,x)(λ) = δ(λ− g(t, x, u(t, x))).

It is easy to see that ν̃t,x(λ) is the Young measure corresponding to the sequence
g(t, x, ur(t, x)). Since this Young measure coincides with δ(λ−g(t, x, u(t, x))), we
conclude that the sequence g(t, x, ur(t, x)) converges to g(t, x, u(t, x)) strongly in
Lp

loc(Ω). Finally, observe that the limit function does not depend on the prescribed
above choice of a subsequence. Therefore, g(t, x, ur(t, x)) also converges strongly
to g(t, x, u(t, x)) for the original sequence ur. The proof is complete. �

Remark 3. In the case when the function g(t, x, u) is strictly monotone we
deduce from Theorem 4 the strong pre-compactness property for weak solutions
of the equation L(u) = f = f(t, x) ∈ W−1,−2

loc (Ω), which satisfy the equation in
D′(Ω). Notice that for entropy solutions of this equation (with f = f(t, x, u) ∈
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L1
loc(Ω, C(R))) the strong pre-compactness property follows from general results

of [5, 6].

Acknowledgements. This work was carried out during the author stay
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