N
N

N

HAL

open science

Ultraparabolic H-measures and compensated
compactness
E. Yu. Panov

» To cite this version:

‘ E. Yu. Panov. Ultraparabolic H-measures and compensated compactness. 2010. hal-00449900

HAL Id: hal-00449900
https://hal.science/hal-00449900

Preprint submitted on 23 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00449900
https://hal.archives-ouvertes.fr

Ultraparabolic H-measures and compensated compactness
E.Yu. Panov

Abstract

We present a generalization of compensated compactness theory to
the case of variable and generally discontinuous coefficients, both in the
quadratic form and in the linear, up to the second order, constraints. The
main tool is the localization properties for ultra-parabolic H-measures cor-
responding to weakly convergent sequences.

1 Introduction

Recall the classical results of the compensated compactness theory ( see
[4, 9] ). Suppose that €2 is an open subset of R”, and a sequence

uy = (ur(z), ... une(2)) € L2(Q,RY), r € N, weakly converges to a vector-
function u(z) in L*(Q, RY). Assume that as,y are real constants for s =1,...,m,
a=1,....,N, k=1,...,n, and the sequences of distributions

N n

ZZamkaxkum, s=1,...,m, reN, (1)

a=1 k=1

are strongly precompact in the space Hy ! (Q) = Wiﬁm(ﬂ). Hereafter, we denote
by Wp_,lic(Q), 1 < p < oo the locally convex space consisting of distributions
v € D'() such that the distribution fv belongs to the Sobolev space W, =
W, L (R™) for all f(x) € C5°(Q2). The topology in W, 1 () is generated by the
family of semi-norms u — [Juflly,-1, f(z) € C5°(2). Introduce the set

N n
A:{)\ERN|3&6[@",57&0:ZZamk)\afk:OVSzl,...,m}.

a=1 k=1

Now, let ¢(u) = Zgﬁzl Japliats be a quadratic functional on R! such that
q(A) >0 for all A € A, and
q(u,) — v weakly in the sense of distributions on €2 (in D'(2) ).

Then, under the above assumptions,

q(u(z)) <v in D'(Q)

(the weak low semicontinuity). In particular, if ¢(A) = 0 on A then v = g(u).
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In this paper we generalize this result to the case when the differential con-
straints may contain second order terms, while all the coefficients are variable
and may be discontinuous. Thus, assume that a sequence w,(x) is bounded in
LF (Q,RY), 2 < p < oo and converges weakly in D'(2) to a vector-function u(z)

asrT — 00. Let d=p/(p—1)if p < 0o, and d > 1 if p = co. Assume that the
sequences

N n N n
Z Z azk (asakuar) + Z Z axkxl(bsakluar)a s = 17 cee, M (2)
a=1 k=1 a=1 k,l=v+1

are pre-compact in the anisotropic Sobolev space W, 11)’0_2(9)7 which will be defined
later in Section 2. Here v is an integer number between 0 and n, and the coeffi-
cients Gsak = Gsak (), bsakt = bsari(x) belong to the space L?Oqc(Q), qg=p/(p—2)
(g = 1in the case p = 00 ), if p > 2, and to the space C(2) if p = 2. One example
is given by p = 0o, ¢ = 1 and corresponds to the case when the functions w,(z)

are uniformly locally bounded.

We introduce the set A ( here i = /—1 ):
A:A(x):{)\E(CN | 3¢ €R™E£0:

N v n
Z(l Zasak(x)fk — Z bsakl(x)§k§l> )\a = O \V/S = 1, oo, } (3)
a=1 k=1 k,l=v+1
Consider the quadratic form ¢(x,u) = Q(x)u - u, where Q(z) is a symmetric
matrix with coefficients g.g(x), o, = 1,...,N and u - v denotes the scalar

multiplication on RY. The form ¢(z,u) can be extended as Hermitian form on
C¥ by the standard relation

a@w) = > qus(w)uaTs,

anﬁzl

where we denote by w the complex conjugation of u € C. We suppose that the
coefficients gop(x) € LiL () if p > 2, and gup(z) € C(Q) if p = 2.
Now, let the sequence ¢(x,u,) — v as r — oo weakly in D'(€2). Since for

each a, 8 = 1,..., N the sequences uq,(z)ug,(x) are bounded in Lfo/f(Q) (here
p/2 = oo for p = o0) then, passing to a subsequence if necessary, we may claim

that
Uar (l’)’dgr (l’) r——>>oo Caﬁ (l’)

weakly in Lj O/f(Q) if p > 2 (hereafter, the weak convergence in L7° () is under-

stood in the sense of the weak-x topology), and weakly in the space M;,.(£2) of
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locally finite measures on € if p = 2. In view of the relation %—l—% = 1 this implies
that

l' ur Z Qaﬁ gozﬁ
ozﬁ 1

weakly in M;,.(Q) (weakly in L}, .(Q) if p > 2) and therefore

Z Qaﬂ gozﬁ

a,B=1

In particular, v = v(z) € L} (Q) for p > 2 and v € M,.(Q) for p = 2.
Our main result is the following

Theorem 1. Assume that q(x,\) > 0 for all A € A(z), = € Q. Then
q(z,u(x)) < v (in the sense of measures ).

2 Main concepts

To prove Theorem 1 we will use the techniques of H-measures. Let

F(u)(€) :/ e Ty (2)dr, € € R,

n

be the Fourier transformation extended as a unitary operator on the space u(zx) €
LAR"), let S=S""1={&€R | |{=1} be the unit sphere in R".

The concept of an H-measure corresponding to some sequence of vector-valued
functions bounded in L?*(2) was introduced by Tartar [10] and Gerard [3] on
the basis of the following result. For r € N let U,(z) = (U}(z),...,UN(z)) €

L2(92,RY) be a sequence weakly convergent to the zero vector.

Proposition 1 (see [10, Theorem 1.1]). There exists a family of complex
Borel measures j1 = {/ﬂﬁ}fjﬁ:l in QxS and a subsequence of U,.(x) (still denoted
U, ) such that

§

(12, By (DT D)) = Tim | F(USD,)(E) (U2 a) ()1 (|§|

tim [ Jac @
for all ®1(x), Pa(x) € Co(Q2) and Y(§) € C(S).

The family py = { /ﬂﬁ}iv 51 is called the H-measure corresponding to U, (z).

In [1] the new concept of parabolic H-measures was introduced. Here we
need the more general variant of this concept recently developed in [5]. Suppose
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that X C R” is a linear subspace, X* is its orthogonal complement, Py, Py are
orthogonal projections on X, X L respectively. We denote for £ € R" f P&,
£ = P&, so that € € X, £€Xl E=¢+E Let Sy ={ &R | [E2+|f* =11
Then Sx is a compact smooth manifold of codimension 1; in the case when
X = {0} or X = R", it coincides with the unit sphere S = {f eR™| €l =1},
Let us define a projection mx : R"\ {0} — Sx by

i
(1§17 + €197 (€] + 1g]H)H

Remark that in the case when X = {0} or X = R", 7x(§) = {/[¢] is the
orthogonal projection on the sphere. We denote p(¢) = (|€]* + |€|Y)Y/*. The

following useful property of the projection wx holds (see [5, Lemma 1]).
Lemma 1. Let £,n € R™, max(p(€),p(n)) > 1. Then

6|¢ —n)
max(p(§), p(n))

Proof. For £ € R", a > 0, we define &, = a%¢ + af. Observe that for
all @ > 0, mx(&,) = mx(§). Without loss of generality we may suppose that

p(&) > p(n), and in particular p(§) > 1. Remark that 7x(§) = &, mx(n) = 13,
where o« = 1/p(&), 6 = 1/p(n). Therefore,

Wx(f) =

mx () — mx(n)] <

mx(6) = mx ()] = [€a = 18] < 1€ =l + N0 — 18] =
(a2 + a2l =) " 4 (6 — a®?Uif + (6 — @)?la) " <
al¢ —nl+ (B—a) (B+a)lilf +17%)"". ()
Here we take into account that a < 1 and therefore a* < . Since
(B+@)® <48” = 4(|7 + [al") > < 4/|7,
we have the estimate
(6 -+ lil* + [al* < 41l + 0P < 4 (P + [01)" < 6. (6)
Concerning the term 3 — «, we estimate it as follows

5= PE =P _ p(&)"* —p(n)* _
p&p(n)  p(Opn) (&) +p1))((p(E))* + (p(1))?)

€12 = [7* + [€]* — InI* <

p&)p(n)(p(&) +p(m)((p(§))* + (p(n))?) —
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(€] + DIE = @l + (€] + [T (€ + 171)€ — 7]

|
P@p @ + o) (PO + pm)D)

£+ il + 6]+ D (e + 1)
PO + p(PE) + pm © M=

()P + (1) + (Pl +P) (O + P 1 _
2(E)p(m) (€ + () () + <<>>>| o
21 —n

L2(0)+5tr) I -

p(&) +pn)  pE&pn) ~ p&)p(n)

Here we use that € < (p(6))%, € < p(€), 71 < (p(n)?, 7 < pln), and that p(€) +
p(n) > 1. Now it follows from (5), (6), (7) that

. € —nl , 2vV6]E—n] _6]E—n 6]
R R I R GR 0}

as was to be proved.[]

Let b(x) € Cp(R™), a(z) € C(Sx). We introduce the pseudo-differential oper-
ators B, A with symbols b(x), a(mx(§)), respectively. These operators are multi-
plication operators Bu(z) = b(x)u(z), F(Au)(§) = a(mx(£))F(u)(E). Obviously,
the operators B, A are well-defined and bounded in L?. As was proved in [10],
in the case when Sx = S, mx(§) = £/|¢| the commutator [A,B] = AB — BA
is a compact operator. In [5], using the assertion of Lemma 1, we extend this
result for the general case ( in the case dim X = 1 this was done in [1] ). For
completeness we give the details below.

Lemma 2. The operator [A, B] is compact in L*.

Proof. We can find sequences ai(z) € C*(Sx), bi(z) € C*(R"), k € N with
the following properties: F(by)(§) € C°(R™), and ag(z) — a(z), bp(x) — b(x) as
k — oo uniformly on Sy, R", respectively. Then the sequences of the operators
A, By, with symbols ag(mx(£)), br(z) converge as k — oo to the operators
A, B, respectively (in the operator norm). Therefore, [Ay, By] k:;o[A, B] and

it is sufficient to prove that the operators [Ay, By| are compact for all k € N
( then [A, B] is a compact operator as a limit of compact operators ). Let u =
u(z) € L*(R"). Then by the known property F(bu)(§) = F(b) * F(u)(§) =
J E®)(& —n)F(u)(n)dn,
F([Ag, Bplu)(§) = F(AeBru)(§) — F(BrAyu)(§) =
a(mx (&) F (bru)(§) — F(beAru)(§) =

/n(ak(ﬂx( )) = aw(mx (M) F (be) (€ = n) F (w)(n)dn.

§
§
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We have to prove that the integral operator Kuv(§ fRn n)dn with the

kernel k(&,n) = (ar(mx(€)) — an(mx (n)))F(br) (€ — 77) is Compact on L2(R”)
Since ay, € C*°(Sx) then by Lemma 1

€ — 1]
max(p(§), p(n))

ap(mx(€)) — ap(rx(n))] < C

for max(p(§),p(n)) > 1, where C' = const. Thus for all £,n € R" such that
max(p(€), p(n) > m > 1

(e (€)) — aurx ()| < € — . 0

Let X, (&, 1) be the indicator function of the set { (£,7) € R* | max(p(€), p(n))
m }, and

IN

km(€§5m) = Xm(§sm) (ar(mx (&) — an(mx (n))) F(b)(€ —n),
rm(&,m) = (1 = xm(&,n)) (ax(mx(§)) — ar(mx(n))) F(br)(§ —n).

Then k(&,n) = kn(&§,n) +1m(€,n) and K = K., + Ry, where K,,,, R, are integral
operators with the kernels k,,(¢,7n), r..(£,n), respectively. Since the function
km(&,m) is bounded and compactly supported then the operator K, is a Hilbert-
Schmidt operator, which is compact. On the other hand, in view of (8)

Rot(©1 < = [ 16~ mF@)E = n)llotmldn = [EF )] [0]1©)

and, by the Young inequality, for every v € L*(R")
C
1Rmvllz < —IEE (Br) 1 ][v]l2-

Therefore, || R,,|| < const/m and R, — 0 as m — oco. We conclude that K,,, — K
and therefore K is a compact operator, as a limit of compact operators. This
completes the proof. [

The ultra-parabolic H-measure u®, a, 3 =1,..., N corresponding to a sub-
space X C R" and a sequence U, (x) € L*(Q, RY), weakly convergent to the zero
vector, is defined on §2x Sy by the relation similar to (4): V@, (z), P2(z) € Co(R2),

P(&) € C(Sx)
(1, @1(2)Da(2)Y(€)) = lim [ F(RLUL) () F(D:U7)(E)vh(mx(€))dE. (9)

r—00 Jpn



The existence of the H-measure u®? is proved exactly in the same way as in [10],
using the statement of Lemma 2. For completeness we give the details below.

Proposition 2. There exist a family of complex Borel measures p =
{,uo‘ﬂ}gﬁ:l in Q x Sx and a subsequence of U.(z) (still denoted by U, ) such
that relation (9) holds for all ®,(z), Po(x) € Co(2), ¥(§) € C(Sx). Besides,

the matriz-valued measure p is Hermitian and positive definite, that is, for each

N
¢=(C,...,Cn) € C" the measure u¢ - ¢ = Z 1¢,Cs > 0.
a,B=1
Proof. Denote

199(®y, @y, ) = / F(®,0°)(€) F(@aU7 ) (&) (mx (€))de

n

and observe that, by the Buniakovskii inequality and the Plancherel identity,

1127 < 1@ulloc [ Dalloo ¢ lloo - U 20 10 Nl 20x0),

where K C () is a compact containing supports of ®; and ®5. In view of the
weak convergence of sequences U in L*(K) these sequences are bounded in
L?*(K). Therefore, for some constant Cx we have HUS‘H%Q(K) < Ck for all r € N,
a=1,...,N. Hence,

|129(@1, @, )] < Ciel| @1l | Palloo ]| (10)

and the sequences I2? are bounded. Let D be a countable dense set in (Cp(€2))? x
C(Sx). Using the standard diagonal process, we can extract a subsequence U,
(we keep the notation U, for this subsequence) such that

Igﬂ(q)la@27w) Tjoo‘[aﬁ(q)h@Q)w) (1]‘)

for all triples (®1,®P2,79) € D. By estimate (10) we see that sequences
I8 (®y, @y, 1p) are uniformly continuous with respect to (@1, @9, 1) € (Cp(2))? x
C(Sx) and since D is dense in (Cy(£2))? x C(Sx), we conclude that limit relation
(11) holds for all ®(x), Po(z) € Co(Q), ¥(§) € C(Sx). Passing in (10) to the
limit as r — oo, we derive that for all ®;(z), Po(x) € Co(Q2), ¥(§) € C(Sx)

[1°9(®1, @3, )| < Crel|Puloc]| D2loc ]9 |oc, (12)

with K = supp ®; U supp 5. Now, we observe that
Igﬁ(@b@%w) = (q)lUg7A(®2UTB))27 (13)



where A is a pseudo-differential operator on L? = L*(R™) with symbol ¢ (mx (£)),
and (-, ) is the scalar product in L?. Let B be a pseudo-differential operator on
L? with symbol ®,(x), and let w(z) € Co(R") be a function such that w(z) =1
on supp ®5. Then

A(®,UP) = AB(wUP) = BA(WUP) + [A, B|(wUP). (14)

Since wUP — 0 as r — oo weakly in L? while, by Lemma 2, the operator [A, B is
compact on L2, we claim that [A, B](wU?) — 0 as r — oo strongly in L2. Since
the sequence ®,U® is bounded in L?, we conclude that (®,U%, [A, B](wU?))s — 0
as 7 — 00. It follows from this limit relation and (13), (14) that

lim (@, U, BA(WU?))y = lim I9%(®y, Oy, p) = [P (D1, 0y, 1)).

r—00

Taking into account that

(®,U2, BAWUP)), = / By () B () UL (2) AU (),

R
we find that

129(®1, s, 1) = 170(@1 D5, 45),
where T°%(®,1)) is a bilinear functional on Cy(R2) x C(Sx) for each a,f =
1,..., N. Taking in the above relation ®; = ®(z)//|P(z)| (we set ®1(x) = 0 if
O(z) = 0), Py = /|P(2)|, where ®(x) € Cp(£2), we find with the help of (12)
that

[19(@,9)] = [1%(@1, @2, 9)| < O )| [loo | P2l oo |9
= Ck[|®l|[¥]loc, K = supp P.
This estimate shows that the functionals I*?(®,1)) are continuous on Cp(€2) x
C(Sx). Now, we observe that for nonnegative ®(z) and ¢(§) the matrix
I = {I°°(®,¢)}) 5_; is Hermitian and positive definite. Indeed, taking ®:(x) =
Oy (z) = /P(z), we find

[°9(®, ) = I°°(®y, By, ¢h) =
lim [ F(@U) () F(D1U7) () (mx (€))de. (15)

rT—00 Rn

For ¢ = (¢y,...,¢y) € CY we have, in view of (15),

N

fC-C= 30 @065 = lim [ IP@V)(EPora(€)de >

avﬁzl



N .

where V,.(z) = > U%(,. The above relation proves that the matrix I is Hermitian
a=1

and positive definite.

We see that for any ¢ € C" the bilinear functional I (@, ) - ¢ is continuous

on Cy(2) x C(Sx) and nonnegative, that is, I(®, )¢ - ¢ > 0 whenever ®(x) > 0,
(&) > 0. It is rather well known ( see for example [10, Lemma 1.10] ), that
such a functional is represented by integration over some unique locally finite
non-negative Borel measure p = pi¢c(z,§) € Moe(2 X Sx):

I[(®,4)¢- ¢ = O(2)(&)dpc(x, €).

QXSX

As a function of the vector ¢, ¢ is a measure valued Hermitian form. Therefore,

N
pe= > 1% (16)

avﬁzl

with measure valued coefficients ;% € Mo (2 X Sx ), which can be expressed as
follows

Naﬁ = [Nea—f—eg + Zﬂea-I—ieg]/Q — (1 +9)(pheo + Meg)/Qa

where ey, ..., ey is the standard basis in CV, and i = —1.

By (16)

@, )¢ = > (u, @(x)(£))¢als
a,B=1

and since
l

H®,9)C-¢= > I*(®,4)¢uls,
a,B=1
then, comparing the coefficients, we find that

(1, ()1 () = I7(®, ). (17)

In particular,
</‘Laﬁv él(x)mw(g» = ]aﬁ(q)lv cD?a ¢) =
lim [ F(®U) () F(®:U7) () (mx (€))dE.

r—o0 [pn

To complete the proof, observe that for each ¢ € CV the measure

N J—
> G = e 2 0.

avﬁzl



Hence, i is Hermitian and positive definite. [J

As it follows from the above Proposition, the matrix with component
(u?, g(x,€)) is Hermitian and positive definite for each real nonnegative g(z, &) €

Co(Q X Sx)

Remark 1. We can replace the function 1 (mx(§)) in relation (9) by a func-
tion (&) € C(R™), which equals (mx(§)) for large |£|. Indeed, since ®o(z) is

a function with compact support, ®,U° — 0 weakly in L?(R") as well as in
LY(R™). Therefore, F'(®,U7)(£) — 0 point-wise and in L7 (R") ( in view of the

bound |F(®,U7)(€)| < ||®2UF ||y < const ). Taking into account that the function
X(&) = (&) —(mx(€)) is bounded and has a compact support, we conclude that

F(2.U7)(€)x(€) — 0 in L*(R).

r—00

This implies that

lim [ F(@,U2)(€)F(0:U7)(€)x()dE = 0.

r—0o0 [pn

Therefore,

lim [ F(®,U2)(E)F(DUF)(€)d(€)dE =

rT—00 R

lim [ F(0U7)(€)F(®:U7) () (mx (€))dé = (u, @1 (2)Py()1h(€)),

r—o0 [pn

as required.

Let the sequence U, = {U*}Y_, converges weakly as r — oo to the zero

vector, let it be bounded in Lj, (€, RY), p > 2, and let p = {u*?});_; be an
ultra-parabolic H-measure corresponding to this sequence. We define n = Tru =
ij:l u*.  As follows from Proposition 2, 7 is a locally finite non-negative
measure on {2 X Sx. We assume that this measure is extended on o-algebra of
n-measurable sets, and in particular that this measure is complete. We denote
by 7 the projection of n on 2, that is, 7(A) = n(A x Sx) if the set A x Sx is
n-measurable. Obviously, v is a complete locally finite measure on €2, v > 0.
Under the above assumptions the following statements hold.

Proposition 3.
(i) Asr — oo

N
U> =D U @) — v
a=1

10



weakly in M,.(Q); if p > 2 then v € Lp/Q(Q) (here we identify v and the

loc
corresponding density v of v with respect to the Lebesgue measure dx, so that
v = F(z)dz), and |U,|2 — y(x) weakly in L (Q);

(i) The H-measure p is absolutely continuous with respect to n, more pre-
cisely, jp = H(x,&)n, where H(x, &) = {h*(x,€)}X 5_, is a bounded n-measurable
function taking values in the cone of positive definite Hermitian N X N matrices,
besides |hP(x,€)| < 1.

Proof. By the Plancherel identity and relation (9) with ¢ =1

| o@@@ e =Y [ P @ FET

— (2, €), P1(2)Pa(2)) = (7, P1(2) Pa(2))

r—00

Since any function ®(z) € Cp(2) can be represented in the form ®(x) =
O (x)Py(z) ( for instance, one can take ®i(x) = P(x), Py(z) being arbitrary
function in Cy(Q2) equal to 1 on supp ®@;(z) ), we conclude that |U.]*> — v as
r — oo weakly in M,.(2). In the case p > 2 (here p/2 = oo if p = o0) the
sequence |U, |2 is bounded in LP/?(€2), and we conclude that v € LY?(Q). The
first assertion is proved.

To prove (ii), remark firstly that pu** <7 for all « = 1,..., N. Now, suppose
that o, 5 € {1,..., N}, a # 3. By Proposition 2 for any compact set B C 2 x Sy

the matrix
( pe(B) pf(B) )
(8] 1(B)

is positive-definite; in particular,

L(B)| < (u*(B)u**(B))"* < n(B).

By regularity of measures ;¢ and 7 this estimate is satisfied for all Borel sets B.
This easily implies the inequality Var u®® < 5. In particular, the measures p®?
are absolutely continuous with respect to n, and by the Radon-Nykodim theorem
puB = heB(x, €)n, where the densities h’(z, &) are n-measurable and, as follows
from the inequalities Var u®® < n, |h*?(z,€)| < 1 n-a.e. on Q x Sx. We denote
by H(x,&) the matrix with components h*?(x, ¢). Recall that the H-measure p
is positive definite. This means that for all ¢ € CV

p¢ - ¢ = H(z,&)¢-¢n>0. (18)

Hence H(z,£)¢ - ¢ > 0 for n-a.e. (x,€) € 2 x Sx. Choose a countable dense
set £ C CM. Since E is countable, then it follows from (18) that for a set

11



(x,€) € Q x Sx of full p-measure H(z,£)( - ¢ > 0 V(¢ € E, and since E is dense
we conclude that actually H(x,&)¢ - ¢ > 0 for all ( € CV. Thus, the matrix
H(z,§) is Hermitian and positive definite for n-a.e. (z,&). After an appropriate
correction on a set of null n-measure, we can assume that the above property is
satisfied for all (z,£) € Q x Sy, and also |h*?(z,€)| < 1 for all (z,&) € Q x Sy,
a,6=1,...,N. The proof is complete. []

Corollary 1. Suppose that the sequence U, = {U%}N_, is bounded in
L' (Q,RY), p> 2. Let ¢ = p/(p—2) (as usual we set ¢ =1 if p = 00), and
let qu(Q) be the space of functions in L*1(S) having compact supports. Then
relation (9) still holds for all functions ®1(x), ®y(z) € L2(Q), 1(€) € C(Sx).

Proof. Let K be a compact subset of Q and ®,(z), ®(z) € L*(K). The
functions from L??(K) are supposed to be extended on 2 as zero functions outside

of K. Using the Plancherel identity and the Holder inequality (observe that

1 1
— + — = —), we get the following estimate
2g p 2

| F@UHOF @U@ vins ()it
< [l U2 10207 < (Coc P - 11 1 (19)

where C = sup ||U, || r (k). On the other hand, by Proposition 3
reN

(7, @1(2) Do (2)0(€)) | = [(n, h*¥(2,€) @1 (2) P2 ()1 (€))]
< II@/)IIOO/Q|<1>1($)®2($)|7(93)d17 < [ llollvIl o7y 191 [l2q | D21l 24 (20)

(in the last estimate we used again the Holder inequality). Estimates (19), (20)
show that both sides of relation (9) are continuous with respect to (®1,®,) €
(L*1(K))?. Since (9) holds for ®;,®y € Cy(K) and the space Cy(K) is dense in
L*(K), we claim that (9) holds for each ®;(z), ®5(z) € L*(K). To conclude the
proof, it only remains to notice that K is an arbitrary compact subset of 2. [J

We will need in the sequel some results about Fourier multipliers in spaces
L% d > 1. Recall that a function a(§) € L*(R") is a Fourier multiplier in L% if
the pseudo-differential operator A with the symbol a(¢), defined as F(Au)(§) =
a(&)F(u)(€), u = u(x) € L*(R")N LYR") can be extended as a bounded operator
on LY(R"), that is

| Aullg < Cllullg Yu € L*(R™) N LYR"™), C = const.
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We denote by M, the space of Fourier multipliers in L¢. We also denote

R* = (R\{0)" ={ &= (&, &) | []&#0}

The following statement readily follows from the Marcinkiewicz multiplier theo-
rem (see [8, Chapter 4]).

Theorem 2. Suppose that a(€) € C*(R™) is a function such that for some
constant C'

£°D%a(¢)] < C VEeR” (21)

for every multi-indexr o = (v, . .., ) such that || = aqg + -+ a,, < n. Then
a(§) € My for all d > 1.

n oy,

Here we use the standard notations £* = [[;_, ()%, D* = H (i) .

o N0

Actually (see [8]), it is sufficient to require that (21) is satisfied for multi-indexes
a such that oy, € {0,1}, k=1,...,n.

We also need the following simple lemma (see [5, Lemma 8]).

Lemma 3. Let h(y,z) € C*"((R” x R"™)\ {0}) be such that for some k € N,
veR

Vt >0 h(thy,tz) = 'h(y, 2). (22)
Then there exists a constant C' > 0 such that for each multi-indexes «

(.. a0), B = (b1, Bn), o +18] < nand all y € R”, z € R",

Y,z #0
Dy DEh(y, )| < C(|yl* + |22 [y| 1|27,

Proof. In view of (22), for all t > 0 we have
a s __ gk|al+|B|—- a s k
DyDCh(y,2) =t lad-+16] T(Dy DIh)(t7y, tz).
Taking t = (Jy|® + |2|*) "2 in this relation, we find

N —kla|-|8]

Dy DIy, 2) = (lyl* + |=[*) =5 (Dy DIn)(y', ), (23)
where y' = thy, 2/ = tz, so that |y/|* + |2/|** = 1. Since the set of such (y/,2') is
a compact subset of R™\ {0} the derivatives (D3D?h)(y/, 2), |a| + |B] < n, are
bounded on this set, and relation (23) implies that for some constant C' > 0

DS D2h(y, )| < Cllgl + o) (lyf? + |=24) 2P+ |224) /9 <
Oy + o) y| 2|

13



for all y, z # 0. The proof is complete. [

Now we can prove that some useful for us functions are Fourier multipliers.
Namely, assume that X is a linear subspace of R", and let wx : R® — Sx be the
projection defined in Section 2.

Proposition 4 (cf. [5, Proposition 6]). The following functions are multipli-
ers in spaces L for all d > 1:

(i) ar(§) = P(rx(§)) where i € C"(Sx);

(i) az(€) = p(&)(L + €] + [E1)2(I€]* + €)1/, where p(€) € C=(R™) is
a_function such that 0 < p(&) < 1, p(&) = 0 for [€]* + [£]* < 1, p(§) = 1 for
€2 + [¢]* = 2; o

fiii) a3 (€) = (1+ 1€ P)V2(1 + &2 + 1614 12;

(iv) ai(€) = (1 + € + |E[9V2(1 + [¢]2)

Proof. Since the space M, is invariant under non-degenerate linear trans-
formations of the variables & ( see [2, Chapter 6] ) then we can assume that
X=R' ={eR" &= (y1,--,¥,0,...,0) } while X+ = {£ e R" | £ =
0,...,0,21,...,2n_) }. Since mx(t?y,t2) = nx(y,2) fort >0,y € X, z € X+
then h = a1(€) = Y(mx(§)) satisfies the assumptions of Lemma 3 with k = 2,
v = 0. By this Lemma for each multi-indexes «a, 3, || + |58 < n

|y|la\|z‘\ﬁl|D;Dfa1(y, z)| < C' = const.

This, in particular, implies that assumption (21) of Theorem 2 is satisfied. By
this Theorem we conclude that a;(§) € M, for each d > 1.

To prove that as(£) € My we introduce the function hy(s,y,2) = (s*> + |y|> +
2|2 s € R. This function satisfies the assumptions of Lemma 3 with y
replaced by (s,y) € R“T!, and k = v = 2. By this Lemma

|DYDIh(s,y,2)| < C(s* + [y + 2|2 |y |71l 2|18 ¢ = const.
Taking s = 1 in this relation, we arrive at the estimate
1Dy DZha(1,y, 2)] < CL+ Jyl? + =)y 717,

and by the Leibnitz formula we obtain that for each multi-indexes «, 3 such that
laf+ 8] <n

DYDYl p(y, 2)hn(1,y, 2)| < CL (1 + [yl* + [2]*)2[y| 1=V, (24)

C) = const ( we use that p(y,z) = 1 for |[y|*> + |z|* > 2 ). Let ho(y,2) =
(|y|> + |2|*)~"/2. This function satisfies (22) with & = 2, v = —2. By Lemma 3
for some constant Cy and every multi-indexes «, 3 such that |a] + || < n

| Dy D2ha(y, 2)| < Collyl* + [2[) 2|yl 1277, (25)

14



By the Leibnitz formula we derive from (24), (25) the estimates
|D;D§p(ya Z)hl(lﬂ Y, 2)h2(y7 Z)| <
Cs(L+ [y[* + 1212 (1y1? + [ )72y [T 17 < 2Cs[y[ 27171 (26)
in the domain |y|? + |z|* > 1, here |a| 4 |3] < n, C3 = const. In view of (26) we
conclude that in this domain for each «a, 3, |a| + [3] < n

y|'™| 2P| D DB as(y, 2)| < const.
Yy z

Since as(y, z) = 0 for |y|*> + |z|* < 1 we see that the requirements of Theorem 2
are satisfied. Therefore, as(§) € M, for all d > 1.
Now we introduce the functions hy (s, y, 2) = (s2 + |y|2 + [2|*)2, hao(s,y, 2) =
(P +yP+12) 7 hals, 9, 2) = (SPHyP+]2]) 712 hals,y, 2) = (S [y P[22,
seR, ye X =RY ze Xt These functions satisfy (22) where y is replaced
by (s,y) € R with the parameters k =y =1 k= 1,7y = -2, k = 2,y = —2;
k =~ = 2, respectively. By Lemma 3 we find that for each «, 3, |a] + |5 < n
[yl Dy D2 (1, 2) < C(L+ [yl + [2)12,
[yl 11Dy D ha(1,y, 2) < CQL [yl + 217
[y !12]"?| Dy DZha(1,y, 2)| < C(L+ [yl* + )2,
[y 12111 Dy DZha(1,y, 2)] < C(L+ [yl + o),
where C' = const. Since a3(§) = hi(1,y, 2)hs3(1,y, 2), as(§) = ha(1,y, 2)ha(1,y, 2)

where y = £, z = £ then, using again the Leibnitz formula, we derive the esti-
mates: for some constant C'

[yl D5 DEag(y, 2)] < O+ [yf? + o) V21 + [yl + |=1) /2 < 2¢
[l Dy DRas(y, ) < CO+ [yl* + [2*) 7 (1 + [yl + |22 < 2C.

Here we take into account the following simple inequalities:

1+|y|2+|2|2 — 1+|y|2 |Z|2 < 1+min(|z|2 |Z|_2) <9

L+ [yP+ [t T4yl + (2" T+[yP+ [ ’ -
2 4\1/2 2\1/2 2

(Lt lyP + 19" _ (At lyP) I

L+fyP+ 122 7 14yl + P T+ yP+ [

In view of Theorem 2, we conclude that a3(§),as(§) € M, for each d > 1. The
proof is now complete.l]

We define the anisotropic Sobolev space I/Vd_l’_2 consisting of distributions
u(x) such that (1 + |€)% + [E])7V2F(u)(€) = F(v)(€), v = v(x) € LYR"). This
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is a Banach space with the norm ||u|| = ||v||4. The following proposition claims
that this space lays between the spaces W L and W, 2,
Proposition 5 (cf. [5, Proposition 7]). For each d >1 W;'c W; "7 ¢
W, 2 and the both embeddings are continuous.
Proof. Let u € W;'. This means that (1+ [£]?)"V2F (u)(&) = F(w)(€), w =
w(x) € L4R"). By Prop051t10n A(iii) ag(€) = (1+]ED)Y2(1+|€2+|E[*) 12 e M,
Therefore,

(L+ €7+ [E[) 2 F(u)(€) = as () F(w)(§) = F(v)(€), v(z) € LY(R"),

that is, u € W, "% We deduce that W;' c W, 7% Since |[v|lg < C|lwl4,
C = const this embedding is continuous.

Now suppose that u € W; "7 Then (1 + |€]2 + |€]*) V2 F(u)(€) = (v)(f),
v =wv(z) € LYR"™). By Proposition 4(iv) as(€) = (1+ €]+ |€])2(1 + [£]2) ' e
My, and

(L+ 1€ Fu)(€) = as(§) F(v)(€) = F(w)(§), w € L(R").

This means that u € W, 2. We established that W, b2 W, 2. The continuity
of this embedding follows from the estimate ||w|lq < C||v|lq, C = const. The
proof is complete.l]

We also introduce the local space Wd 22(Q) consisting of distributions u(x)

such that uf(z) belongs to W, 72 for all f(z) € C3°(). The space Wd L2(Q)
is a locally convex space with the topology generated by the family of semi-norms
U — Huf”wd_i,_z, f(z) € C§(2). Analogously, we define the spaces Wy, L (Q),

Wi 2.(Q). As it readily follows from Proposition 5, VVCHOc C Wd e Wd e and
these embeddings are continuous.

We will need also the following statement, which is rather well known (see,
for example, [5, Lemma 6]).

Lemma 4. Let U.(z) be a sequence bounded in L?*(R™) N LY(R™) and weakly
convergent to zero; let a(§) be a bounded function on R™ such that a(§) — 0 as
€] — oco. Then a(§)F(U,)(E) — 0 in L*(R™).

Proof. First, observe that by the assumption that a(¢) — 0 at infinity, for
any € > 0 we can choose R > 0 such that |a(§)| < € for [{| > R. Then

[ ORI @ < SIFU I = 1l < 0 o)

where C' = sup, ¢y ||Ur||2 is a constant independent of r.
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Further, by our assumption U, — 0 as r — oo weakly in L'. This implies
that F'(U,)(§) — 0 point-wise as r — oco. Moreover, |F(U,)(&)| < ||U,]|1 < const.
Hence, using the Lebesgue dominated convergence theorem, we find that

[, @ FP @@ PaE ~ 0 (23)
as r — o0o. It follows from (27), (28) that

lim [ |a()*|F(U;)(§)dE < C<*.

r—00 Jpn

Since € > 0 is arbitrary, we conclude that

lim [ [a(&)*|F(U)(§)*dE =0,

r—00 Jpn

that is, a(§)F(U,)(§) — 0 in L*(R™). The proof is complete.[]

r—00

3 Localization principle and proof of Theorem 1
Suppose that the sequence u,(x) converges weakly to u(z) in LP (Q,RY), and
the sequences of distributions

N n N n
Z Zamk(asakuar) + Z Z Oppay (bsakilar), T €N, s=1,...,m,

a=1 k=1 =1 kl=v+1

are pre-compact in the anisotropic Sobolev space W 110’;2(9), where d > 1 is
indicated in the Introduction. We will also assume that d < 2. This assumption
is not restrictive, because of the natural embeddings Wd_,li’c_Z(Q) C Wd_l,lzb_c2(9)
for each d; < d. Let U, = u,(z) —u(z) = (UL,...,UN), UY = ugr(x) — ua(z).
Then U, — 0 as r — oo weakly in L2 (Q,RY). Therefore, after extraction of
a subsequence (still denoted U,), we can assume that the parabolic H-measure

p={pu*?}Y 5, corresponding to the subspace
X=R'={¢=(&,....,6,0,....,0) € R" }
is well defined.
Theorem 3 (localization principle). For each s=1,....m; f=1,...,N

N

Z Psoz(xaé),uaﬂ = Oa

a=1
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where

sa l’ 5 = 2m1 Z a'sak £k - 47T Z bsozk;l gkgl

k,l=v+1

Proof.
Since the coefficients asak (), bsari(x) belong to LZOC(Q), and 5- —|— = % the
sequences asarUnr, DsakiUar converge to zero as r — oo weakly in Lloc(Q RY) and

the sequences of distributions

N n N n
Lo=>Y 00 (U +D > O (bsarilU2), TEN, s=1,...,m,

a=1 k=1 a=1 k,l=v+1

converge weakly to zero. Using the pre-compactness of these sequences in
Wczlf)’c_Q(Q), we find that £, — 0 as r — oo in WCZ;’C_Q(Q). We choose
Q,(z) € C§°(£2) and consider the distributions

lsr = azk (a/sozkcI)ll—];-l - 2bsaklUﬁaxlq)l> + axka:l(bsaqu)l Uq?l) (29)

To simplify the notation, we use here and below the conventional rule of sum-
mation over repeated indexes, and suppose that the coefficients by are defined
for all k,l = 1,...,n with bgor = 0 if min(k,l) < v. We can also assume that
bsari = bsaui for k.1 =1,...,n. Then, as it is easy to compute,

lsr = q)l‘csr + asokugawkq)l - bsakanamkmquL (30)

Since the coefficients asqk (), bsari(z) belong to LZOC(Q), and 2—1q + % = %, the se-
quences asqr U0z, P1, bsariUOryz, P1 are bounded in L*(R™). Noticing that the
function ®;(z) has a compact support, we see that these sequences are bounded
also in L4(R") for all s = 1,...,m, and they weakly converge to zero as r — oo.
Therefore, they converge to zero strongly in W, '(R") and, in view of Propo-
sition 5, also in W, " *(R"). By our assumptions, ®;L,, — 0 as 7 — oo in
W, 72(R™). Hence, it follows from the above limit relations and (30) that I, — 0
as r — oo in W, 1’_Q(R”). Applying the Fourier transformation to this relation
and then multiplying by (1 + |€]> 4 |€]*)~"/2, we arrive at

(14 IE[2 + €)% (2mige P (a0as@1U2)(€)
ARG F (buanaUf 00, @1)(€) = AT GEF (a1 UP)(€)) = Fua)(€), (31)

where v, — 0 as r — oo in L4(R"). We take also into account that

GEF (bsau®iUS)(E) = D GEGF (bsam®1US)(€) = GEF (bsan®: U (€).

k,l=v+1
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By Proposition 4(ii), we have

as(€) = p(&) (L + [E* + €2 (€ + 1€1) Y € Ma.

Therefore, it follows from (31) that

PEVEP + 1617 (2mi&F (aan®1U2)(€) — Ami&kF (bsani U 00, 1)(E)
AT GEF (b ®1UL)(€)) = @2(€)F (va)(€) = Plwy)(€), (32)

we — 0 as r — oo in L4(R™) for all s = 1,...,m. Since

AOIEP
(I +1€14)2 —

p(§)[¢] ] + 1] . F1E-
WSP(@WSMLMH(KLH <2

( recall that 0 < p(¢) < 1, and p(&) = 0 for |€? + |§]* < 1), and
F(asax®1U2) (&), F (bsari®1US)(€), F(bsarU0,,®1)(€) € L*(R"™), we see that
F(wg)(€) € L*(R™), which implies that wy, € L*(R") as well.

Since bgar = 0 for £ < v,

G F (bsartU2 02, @1)(§) = Y & F (bsaraUf 05, ®1)(€) = 0. (33)
k=1

Now, observe that for each k the function

_ P(f)ék
(I€]> + (€142
satisfies the assumption of Lemma 4. Indeed, this follows from the estimate
Bl < e+ 1
(&> +[¢1%)

Since the sequences asn . ®1U, bsar Ut D, ®1 are bounded in L*(R™) N L} (R™) and
weakly converge to zero as r — oo, then by Lemma 4

a(§) =

a(©)] < p()(EP + 18"

U < 0 i F(R), (34)
mgw(bmwaﬁ@l)@:OOO in L*(R™). (35)
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It follows from (33), (35) that

ﬁw(bmmwaﬂ@l)(@ = 0 in L*(R™). (36)

Let ®y(x) € Co(R"), ¥(¢) € C™(Sx). Since the sequence ®U7 is bounded in
LP(€2) and supported in the compact supp @2, and d' = d/(d — 1) < p, this
sequence is also bounded in L?(R™) N L% (R™), By Proposition 4(i) for a fixed 3 =
L...,N  (rx(&)F(®UP) (&) = F(g,)(€), where the sequence g, is bounded
in L2(R™) N LY (R™). We multiply (32) by ¢ (7 x (€))F(®,UF)(€) and integrate the
result over £ € R". Passing then to the limit as » — oo and taking into account
relations (34), (36), we arrive at

i / P (i (50 ®1UP)() = AT*GEF (biars 1 U7 (€))
" (1€]2 + 1€14)2/2
X F(®:U7 )i (mx (€))d€ = lim | F(wy)(€)F(g9,)(€)dé

r—00

= lim Wer(2)gr(z)dz = 0. (37)

On the other hand, by relation (9), Remark 1 and Corollary 1 (in the case p > 2),
we see that

Iim P(f)(ngkF(asak%Uﬁ:) (€) i47r2£_kétlF(bsakl¢)1Ug)(§))
o0 JRe (112 + [€]11)1/2

X F(®oUR Y (mx (€))dé =

(1, (20 (1) — AT bgari (2)E16) D1 (1) D2 (2) ().

Then it follows from (37) that

(17, Poa(, €)1 (2) @2 (2)1(€)) = 0, (38)

where
Psa(l‘y é) = ZWiasak(x)ék - 47T2bsakl(x)gkgl =

27i Z Aok (T)Eg — 4m° Z bsakt (2)ExE1-
k=1

k,l=v+1

We underline that the functions Py, (z,&)®P(2)Ps(z)1(€) are measurable and
locally integrable with respect to the measure 7. This is evident in the case
p = 2 (then asuk, bsars € C(£2)) while in the case p > 2 this readily follows from
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Prop031t10n 3, from the assumptions asak, bsar € LlOC(Q), and from the inequality
2— +2 <l 2
g 'p g 'p

Since the functions ®,(z) € CP(Q), Po(x) € Co(?), (&) € C*(Sx) are
arbitrary, we derive from (38) that P, (z,&)u®® = 0 for each s = 1,...,m,
6 =1,...,N. The proof is complete. []

By Proposition 3 the H-measure p admits the representation p = H(z, £)n,
where H(z,£) = {h*"(z,£)}X ;_, is an Hermitian matrix.

Corollary 2. Forn-a.e. (x,§) € Q x Sx the image of H(x,§) is contained
in A(z).

Proof. By Theorem 3 P, (z,£)h*(z,&)n = 0. This can be written as
P(x,§)H(x,&) = 0, where P(x,€) is a m x N matrix with components P;,.
Therefore, for n-a.e. (z,£) € 2 x Sx Im H(z,£) C ker P(x,&). Now notice that
if A= (A1,...,Ay) € CY belongs to ker P(z, &) then

Z( Zasak 2775,19_ Z bsakl 27T£k2ﬂ-£l))\ =0

a=1 k,l=v+1

forall s = 1,...,m. Remark that 27¢ # 0 because of the inclusion £ € Sx. Hence,
A € A(x). We conclude that ker P(x,&) C A(z), and Im H(z, ) C ker P(x,&) C
A(x), as was to be proved. [J

Now we are ready to prove our main Theorem 1.

Proof of Theorem 1. Since H = H(x,&) > 0 there exists a unique
Hermitian matrix R = R(z,£) = H'Y? such that R > 0 and H = R?. By the
known properties of Hermitian matrices ker R = ker H, which readily implies
that In R = Im H. By Corollary 2 we claim that Im R(x,&) C A(x) for n-a.e.

(x,€) € QxSx. Now we represent the coefficients g,s5(z) of quadratic form g(x, u)
in the form Gap(T) = qég( )q((fg( ), where for j = 1,2 q(j)( )€ LX(Q) if p> 2,

loc

and q ( ) € C(Q) if p = 2. For instance, we can set

1 . 2
\5(2) = |gas(@)?sign qup(x), 45)(2) = |qap(2)]

Taking into account Corollary 1, we find that for real ®(x) € Cy(£2)

/Q (®(x))%q(z, Uy (2))dz = / 65 (2) @ (2) U2 (2)q) () ®(2) UP (2)dx =

R™

1/2

| F@dunoF@ddudiee

(1, (®(2))*ap(2)) :/Q . ((2))qas(@)h* (2, §)dn(z, €). (39)
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Since H = R? then h*%(z,&) = r,;T5;, where ry; = rij(z,€), i,j = 1,..., N are
components of matrix R. Therefore,

q@ﬂ(x)haﬁ = Gap(T)TajTsj = Z Q(x)Re; - Re;, (40)

where {e;}}1, is the standard basis in CV. Since Re; € Im R C A(x) then it

follows from the assumption of Theorem 1 that Q(z)Re; - Re; > 0 for n-a.e.
(z,6) € Q@ x Sx. In view of (40) we find that g.s(z)h*?(z,&) > 0 for n-a.e.
(x,€) € 2 x Sx. Now, it readily follows from (39) that

lim [ (®(x))*q(x, U, (z))dz >0 (41)

r—00 Q

for all real ®(x) € Cy(R).

In view of the weak convergence u, — u, q(z,u.(z)) — v as r — o0,

q(z, Un(2)) = q(z, ur(2)) + ¢(z, u(z)) = 2Re(Q(z)u,(2) - u(z)) — v = gz, u(z))

weakly in M;,.(€2), and we derive from (41) that

(v — q(z, u(z))dz, (®(x))?) > 0

Since (®(x))? is an arbitrary nonnegative function in Cy(2), this implies that
q(z,u(z)) <wv. The proof is complete. [

Corollary 3. Suppose that q(xz,\) = 0 for all X € A(z), v € Q. Then
v = q(z,u(x)), that is, the functional u — q(x,u) is weakly continuous.

Proof. Applying Theorem 1 to the quadratic forms +q(x,u), we obtain the
inequalities £v > +q(z, u(x)), which readily imply that v = q(x, u(z)). O

Remark 2. In the particular case v = n relations (2) are reduced to the
requirement that the sequences of distributions

n

Mz

axk a'sak )uOﬂ‘)a s=1,...,m
a=1 k=1

are pre-compact in W, lOC(Q). In applications to conservation laws, it usually
happens that the sequences u,, are bounded in L{S.(€2) (so that p = oco) while
the sequences Ly, are bounded in M;,.(£2). Since the space M,,.(£2) is compactly
embedded in Wczlim(Q) for d < n/(n — 1) then condition (2) is satisfied.
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In the case v = 0 the statement of Theorem 1 is a compensated compactness
result under the second order constraints

N n
Lsr = Z Z azkxl(bsakl(x>uar)a s = 17 cee, M,

a=1 k=1

which are required to be pre-compact in Wy liC(Q). Observe also that in each of
the cases v = n,0 the set A(z) may be defined as a subset of real space RV,

4 Some applications

We consider the parabolic operator

L(u) = Oyu— Z Oppay (ari(t, 2)g(t, z,w)), uw=u(t,x), (t,z) € Q= (0,400)xV,

k=1
V' being an open subset of R™. It is assumed that for u = wu(t, x)
u, g(t,z,u) € L} (), 2 < p < oo, while
ay = an(t,x) € Li2(Q), where ¢=p/(p—2), p > 2,
and ay € C(Q) if p=2.

The matrix A(t,z) = {an(t,z)};,=; is supposed to be symmetric and strictly
positive: A(t,z)¢-€ > 0VE € R™, € # 0. The function g(¢, x, u) is a Caratheodory
function on €2 x R, non-strictly increasing with respect to the variable u.
Assume that the sequences u,(t,z), g(t,z,u.(t,x)), r € N are bounded in
L? (€), moreover, if p = 2 assume that the sequence p(u.(t,x)g(t, z,u.(t,x)))
is bounded in L}, .(Q) for some positive super-linear function p(u) (that is,
p(u)/|u| — oo as |u| — o00). Also suppose that u, — u = u(t, z) as r — oo weakly
in D'(Q?) while f, = L(u,) — f strongly in Wczli’cfz(Q), where the latter space
correspond to the subspace X = { (£,0,...,0) } € R*™ here (&,&1,...,&)
are the dual variables ( &, correspond to the time variable ¢ ), and d = p/(p — 1)

(d > 1 in the case p = 00).

Theorem 4. Under the above assumptions, L(u) = f in D'(?). In addition,
the sequence g(t,x,u.(t,x)) converges to g(t,x,u(t,z)) as r — oo strongly in
LfOC(Q)'

Proof. Let uy, = u,(t,z), ug, = g(t,x,u.(t, x)). Passing to a subsequence
if necessary, we can assume that wue,.(t,z) — uy = uy(t, ) weakly as r — oo.
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loc(Q7 R2) with uy =
u(t, x). Further, it satisfies the condition that the sequence of distributions

Then the sequence (uy,., ug,) converges weakly to (uy,us) € LY

fr = atulr - Z axkzl(akl(ta x)UQT)

k=1

is pre-compact in W, 272(Q). In accordance with (3), we define the set A =
A(t, x):

A={(A1, ) € C* | J(&,6) € (Rx R\ {0} i + (A(t,2)6- A2 =0 }.

Since (A(t,z)¢-€) > 0 for € # 0 then A = { (A, X2) € C?2 | ReAjAy = 0 }.
Therefore, the quadratic functional ¢ = q(u) = (uuz + ugty)/2 is zero for u =
A € A. By Corollary 3 (observe that all the assumptions of this Corollary are
satisfied) we claim that

Q(ulra UZT) = U1, U2p rjoo Q(Uh Ug) = U1U2 (42)

weakly in Lj,.(Q2). Since the sequence u, is bounded in L! (Q), p > 2, then,
extracting again a subsequence (still denoted by u,), we may suppose that the
Young measure v, corresponding to this subsequence is well defined. Recall that
a Young measure v, on §) is a weakly measurable map (¢, z) — v, of {2 into the
space Prob(R) of probability measures on R. The weak measurability means that
for each bounded continuous function p(A) the function ( — [ p(N)dvy (A

is Lebesgue measurable on €. It is known (see, for example [7]) that the Young
measure corresponding to wu, satisfies the property that whenever the sequence
(t, x,u,(t, z)) converges weakly in L} () for a Caratheodory function v (x, \),
its weak limit is the function

Bt x) = / Ot 7, N (V).

Moreover, v;,(A) = d(A — u(t,z)), where §(A — u) is the Dirac mass at w, if

and only if u, — w in L} (Q). Since u, — u; = u(t,z), g(t,z,u,) — us(t,z),

urg(t, ,u,) = upug, — ujug as r — oo weakly in L} () then these limit
functions admit the representations:

U = /)\dum()\), Uy = /g(t,x, N dve (X)), ugus = /)\g(t,x, N)dve ().

It follows from these equalities that for a.e. (¢, x)

u(t,x)/ (t, 2, N)dvg . (A /)\g (t, 2, N)dvs .(N).



Tt is reduced to the equality
O uttaatt, N ) =0
and since [(A — u(t, z))v(\) = 0, we arrive at the relation
J O utta))gltm,3) = gt u(t,2)) () =
/ O — u(t, 2))g(t, 2, Ndva(2) —
gt au(t,)) [ ult,2)a() =0 (43)

for a.e. (t,x2) € Q. Taking into account the fact that the function g(¢,z, \) is
non-decreasing with respect to A, we derive from (43) that for a.e. (t,x) € Q
g(t,x, \) = g(t,x,u(t, z)) on supp v4,. Therefore,

Uy = /g(t,x, AN dvy (X)) = g(t, z,u(t, z))

almost everywhere in 2. Hence, in the limit as r — oo

L(u,) — L(u) = Ot — Y _ Oy, (ara(t, 2)g(t, z,u)) in D'(9).

k=1

Since L(u,) = f. — f as r — oo in D'(2), we conclude that L(u) = f. Besides,
the image of v;, under the map u — g(t, x,u) coincides with the Dirac measure

(A —g(t,z,u(t,z))):
Dt,:v()‘) = (g(t, , ')*VME)()‘) =0\ —g(t, z, ult,z))).

It is easy to see that 74, () is the Young measure corresponding to the sequence
g(t,z,u,(t,x)). Since this Young measure coincides with 6(A— g(t, z, u(t, z))), we
conclude that the sequence g(t, x, u,.(t, x)) converges to g(t, x,u(t, x)) strongly in
LY (). Finally, observe that the limit function does not depend on the prescribed

above choice of a subsequence. Therefore, ¢(t, x, u,(t,z)) also converges strongly
to g(t,z,u(t,x)) for the original sequence wu,. The proof is complete. O

Remark 3. In the case when the function ¢(¢, z,u) is strictly monotone we
deduce from Theorem 4 the strong pre-compactness property for weak solutions
of the equation L(u) = f = f(t,x) € W, "7*(€), which satisfy the equation in

D'(€2). Notice that for entropy solutions of this equation (with f = f(¢,x,u) €
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L} (9, C(R))) the strong pre-compactness property follows from general results
of [5, 6].
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