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SIMILAR DISSECTION OF SETS

SHIGEKI AKIYAMA, JUN LUO, RYOTARO OKAZAKI, WOLFGANG STEINER,
AND JÖRG THUSWALDNER

Abstract. In 1994, Martin Gardner stated a set of questions concerning the dissection of
a square or an equilateral triangle in three similar parts. Meanwhile, Gardner’s questions
have been generalized and some of them are already solved. In the present paper, we solve
more of his questions and treat them in a much more general context.

Let D ⊂ R
d be a given set and let f1, . . . , fk be injective continuous mappings. Does

there exist a setX such thatD = X∪f1(X)∪. . .∪fk(X) is satisfied with a non-overlapping
union? We prove that such a set X exists for certain choices of D and {f1, . . . , fk}. The
solutions X often turn out to be attractors of iterated function systems with condensation
in the sense of Barnsley.

Coming back to Gardner’s setting, we use our theory to prove that an equilateral
triangle can be dissected in three similar copies whose areas have ratio 1 : 1 : a for
a ≥ (3 +

√
5)/2.

1. Introduction

In the present paper, we deal with the dissection of a given set D into finitely many
parts which are similar to each other. Before we establish the fairly general setting of the
present paper, we give a brief outline of the existing results on this topic.

In 1994, Martin Gardner [4] (see also [5, Chapter 16]) asked a set of questions concerning
the dissection of a square as well as an equilateral triangle in three similar parts. The
existence of such a dissection is easy to verify if all parts are congruent to each other. In
the case of the square, we get three congruent rectangles. Generalizing a result of Stewart
and Wormstein [10], Maltby [9] proved that this is the only dissection of a square in three
congruent pieces (see also [8], where an analogous question is settled for a parallelogram).

Finding a solution to Gardner’s set of problems becomes more tricky if one requires that
at least one of the parts is not congruent to the other ones. A nice solution to the problem of
dissecting an equilateral triangle in three parts, just two of which are congruent, was given
by Karl Scherer (see [5, p. 123]). It is depicted in Figure 1. Here, an equilateral triangle with
vertices (0, 0), (1, 0), (1/2,

√
3/2) is dissected into three pieces X, f1(X), f2(X), where f1, f2

are two similarities with contractive ratios equal to 1/2 and X is the polygon with the con-
secutive vertices given by (1/3, 0), (1, 0), (1/2,

√
3/2), (1/4,

√
3/4), (7/12,

√
3/4). Scherer
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X

f1(X)

f2(X)

Figure 1. Karl Scherer’s dissection of an equilateral triangle in three similar
parts, just two of which are congruent.

found nice solutions also for the case of dissecting a square with just two congruent parts.
Also, the dissection of a square as well as an equilateral triangle in three non-congruent
pieces was done by him (all these dissections are depicted in [5, Chapter 16]). Chun, Liu
and van Vliet [3] studied a more general problem. Indeed, letm = a1+· · ·+an be an integer
composition of m. The question is to dissect a square in m similar pieces so that there are
a1 pieces of largest size, a2 pieces of second-largest size and so on. They prove that such a
dissection is possible if and only if the composition is not of the form m = (m− 1) + 1.

In the present paper, we are going to generalize these questions considerably. A first
stage of generalization is contained in the following question, which will be solved partially
in the subsequent sections and which will be used as a paradigm for our general theory.

Question 1.1. Can we dissect an equilateral triangle into three pieces of the same shape

with area ratio 1 : 1 : a for each a > 0?

Contrary to the results quoted above, we want to gain solutions to dissection problems in
similar parts whose similarity ratios are prescribed. Indeed, using our general framework,
we will be able to construct a dissection of an equilateral triangle in three pieces of area

ratio 1 : 1 : a with a ∈ {1} ∪
[

3+
√
5

2
,∞

)

. Moreover, we will not restrict ourselves to the

equilateral triangle but also consider arbitrary compact subsets of Rd. Interestingly, in
our studies we will meet the number “high phi” which is defined as the positive root of
x3 − 2x2 + x − 1 (see [5, p. 124]) and which already played a role in Scherer’s original
problems. We mention that “high phi” is the square of the smallest Pisot number.

Note that the problem of finding a dissection with area ratios 1 : 1 : a for arbitrary a > 0
is trivial if we do not fix the set D which we want to dissect. For instance, as illustrated
in Figure 2, for each r > 0, we can find a rectangle that admits an obvious dissection
into three parts with area ratio 1 : 1 : r−2. Thus, throughout the present paper we are
interested in finding dissections of a fixed set D ⊂ R

d in similar parts with prescribed
ratios.
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(0, 0) (2r + 1/r, 0)

(0, 1)

(r, 0) (2r, 0)

Figure 2. For any given r > 0, we can find a rectangle that can be dissected
into three similar rectangles (each of whose side-lengths have ratio r : 1) with
area ratios 1 : 1 : r−2.

We now set up a general framework that contains the problems discussed above as special
cases. In what follows, µd will denote the d-dimensional Lebesgue measure.

Definition 1.2. Let D ⊂ R
d be a compact set with D◦ = D and F := {f1, f2, . . . , fk} a

finite family of injective mappings from R
d to itself. We say that F admits a dissection of

D if there exists a compact set X ⊂ R
d with X◦ = X such that

D = X ∪ f1(X) ∪ f2(X) ∪ . . . ∪ fk(X),

where µd(fi(X) ∩ fj(X)) = 0 for all disjoint i, j ∈ {1, . . . , k} and µd(X ∩ fi(X)) = 0 for
each i ∈ {1, . . . , k}. We call X the generator of the dissection.

The difficulty of constructing a dissection of D for a given family F depends on the
properties of F and D. Actually, one of our main aims is to discuss the existence and the
uniqueness of the compact set X so that D = X ∪ f1(X)∪ · · ·∪ fk(X) is a dissection of D.
The treatment of the following classes turns out to be easier than the general case.

Definition 1.3. Let D ⊂ R
d be a compact set with D◦ = D and F := {f1, f2, . . . , fk} a

finite family of injective mappings from R
d to itself.

• F is called inside family (with respect to D) if fi(D) ⊂ D for each i ∈ {1, . . . , k}.
• F is called non-overlapping family (with respect to D) if µd

(

fi(D) ∩ fj(D)
)

= 0
holds for each i, j ∈ {1, . . . , k} with i 6= j.

If all the functions in F are contractions, then F can be regarded as an iterated function

system (IFS for short) in the sense of Hutchinson [7]. In this case, there exists a unique
non-empty compact set K ⊂ R

d, called the attractor of the IFS F , satisfying

K =

k
⋃

i=1

fi(K).

Setting

Φ(X) =
k
⋃

i=1

fi(X),
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this can be written as K = Φ(K).
A variant of IFS are so-called IFS with condensation (cf. Barnsley [1]).

Definition 1.4 (IFS with condensation). Let F = {f1, . . . , fk} be a family of contractions
in R

d and A ⊂ R
d a nonempty compact set. Then the pair (F , A) is called an IFS with

condensation A. The unique non-empty compact set K satisfying the set equation

K = A ∪ f1(K) ∪ . . . ∪ fk(K) = A ∪ Φ(K)

is called the attractor of the IFS F with condensation A.

The unique existence of K is proved by a standard fix point argument. It is given by

K = A ∪ Φ(A) ∪ Φ2(A) ∪ . . .

In some cases, the solution X to our dissection problem will be an attractor of an IFS
related to F with a certain condensation depending on the set D.

2. Non-overlapping inside families

We start with the easiest case, non-overlapping inside families. We can construct a
dissection for these families provided that F consists of contractions and D is compact.
The main result of this section, Theorem 2.2, will be used in subsequent sections in order
to settle more complicated cases.

For the proof of Theorem 2.2, we need the following consequence of the invariance of
domains.

Lemma 2.1. Let f : R
d → R

d be an injective contraction and X ⊂ R
d a compact set.

Then ∂f(X) = f(∂X).

Proof. By the invariance of domains (see e.g. [6, Theorem 2B.3]), the mapping f is a
homeomorphism. This implies the result. �

Theorem 2.2. Let D ⊂ R
d be a compact set with D = D◦ and µd(∂D) = 0. Let F :=

{f1, . . . , fk} be an IFS on R
d, whose attractor is denoted by E. Suppose that F is a non-

overlapping inside family. Then F admits a dissection of D if and only if µd(E) = 0.
Moreover, the generator of the dissection is unique.

Proof. Assume that F admits a dissection of D generated by X . Then we have X◦ ∩
Φ(X◦) = ∅, thus the non-overlapping inside property implies that Φ(X◦) ∩ Φ2(X◦) = ∅,
which yields Φ2(X◦) ⊂ D◦ \ Φ(X◦). Since X◦ = X and X ∪ Φ(X) = D, we obtain that
Φ2(X) ⊂ X . By induction, we see that

(2.1) Φ2n(X) ⊂ X for all n ≥ 0.

Set Y := D \ Φ(D). Then we have Y ⊂ X and, by (2.1),

(2.2) Y ∪ Φ2(Y ) ∪ Φ4(Y ) ∪ . . . ⊂ X.

Hutchinson’s classical theory on IFS (see [7]) implies that (Φ2n(Y ))n≥0 converges to E in
Hausdorff metric. Since X is closed, we obtain

(2.3) E ⊂ X.
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By definition, we have E = Φ(E), implying that E ⊂ X ∩ Φ(X) and, hence, µd(E) ≤
∑k

i=1 µd

(

X ∩ fi(X)
)

= 0. Therefore, F can admit a dissection of D only if µd(E) = 0.

Y Y

f1(Y ) f2(Y )

Y

f1f1(Y )

f1f2(Y ) f2f1(Y )

f2f2(Y )

f1(Y ) f2(Y )

E

Figure 3. The attractor E of the IFS with an inside non-overlapping family
{f1, f2} (below right) and the convergence process in the IFS with conden-

sation
(

{f1f1, f1f2, f2f1, f2f2}, Y ∪ E
)

, Y := D \ Φ(D), to the generator of
the dissection of D with respect to {f1, f2}. The mappings f1, f2 are given
in Example 2.6, with r = 9/20.

Assume now that µd(E) = 0 and consider the set

Z := E ∪ Y ∪ Φ2(Y ) ∪ Φ4(Y ) ∪ . . .

with Y defined as above. Note that

(2.4) Z = Z◦

because Φ2n(Y ) = Φ2n(Y )◦ (by Lemma 2.1) and E is the Hausdorff limit of the sequence
of sets (Φ2n(Y ))n≥0. By the non-overlapping condition, we have

(2.5) µd

(

fi(Z) ∩ fj(Z)
)

= 0 for i 6= j.

Next, we shall prove that

(2.6) µd

(

Φn(Y ) ∩ Φm(Y )
)

= 0 for n 6= m.

See Figure 3 for an illustration of Y,Φ(Y ),Φ2(Y ),Φ3(Y ),Φ4(Y ) and E. As µd(∂D) = 0,

µd

(

Φn(Y ) ∩ Φm(Y )
)

= µd

(

Φn(D \ Φ(D)) ∩ Φm(D \ Φ(D))
)

.
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By the non-overlapping condition, we obtain

(2.7) µd

(

Φn(Y ) ∩ Φm(Y )
)

= µd

(

(

Φn(D) \ Φn+1(D)
)

∩
(

Φm(D) \ Φm+1(D)
)

)

.

Since Φ(D◦) ⊂ D◦ by the inside condition, we know that Φn+1(D◦) ⊂ Φn(D◦), thus the
sets Φn(D◦) \Φn+1(D◦) are pairwise disjoint, hence the right hand side of (2.7) is 0, which
yields (2.6). Thus, as µd(E) = 0 by assumption, we get

(2.8) µd

(

Z ∩ Φ(Z)
)

≤ µd(E) + µd

(

Φ(E)
)

= 0.

Moreover, since Y ∪Φ(Y )∪ . . .∪Φn(Y ) = D \ Φn+1(D), which tends to D \ E in Hausdorff
metric, we get

(2.9) Z ∪ Φ(Z) = E ∪ Y ∪ Φ(Y ) ∪ Φ2(Y ) ∪ . . . = D.

Combining (2.4), (2.5), (2.8) and (2.9), we conclude that F admits a dissection of D.
Two examples for dissections originating from non-overlapping inside families are given in
Figure 4 (see also Example 2.6).

Figure 4. The dissections discussed in Example 2.6 for r = 9/20 and r = 1/2.

To prove the uniqueness of the generator of a dissection, assume that X generates a
dissection of D, which is different from Z. Then (2.2) and (2.3) imply that Z ⊂ X . As
Z = Z◦ and X = X◦, we obtain µd(X \ Z) > 0. By the dissection property of Z, we
have X \ Z ⊂ Φ(Z) ⊂ Φ(X), thus µ

(

X ∩ Φ(X)
)

≥ µ(X \ Z) > 0, which contradicts the
dissection property of X . �

If all the fi are similarities, the condition µd(E) = 0 can be checked easily.

Corollary 2.3. Let D ⊂ R
d be a compact set with D = D◦ and µd(∂D) = 0. Let

F := {f1, . . . , fk} be an IFS on R
d, where every fi is a similarity. Suppose that F is a

non-overlapping inside family and Φ(D) 6= D. Then F admits a unique dissection of D.
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Proof. By Theorem 2.2, we only have to show that µd(E) = 0. Observe that Φ(D) 6= D
implies that

µd(D) > µd

(

Φ(D)
)

=
k

∑

i=1

rdi µd(D),

where ri is the contraction ratio of fi for each i ∈ {1, . . . , k}, thus ∑k
i=1 r

d
i < 1. Since

E = Φ(E), we have

µd(E) = µd

(

Φ(E)
)

=

k
∑

i=1

rdi µd(E),

which implies µd(E) = 0. �

From the definition of Z in the proof of Theorem 2.2, we obtain the following description
of the dissection in terms of an IFS with condensation.

Corollary 2.4. Let D and F be given as in Theorem 2.2. Let E be the attractor of the

IFS F , µd(E) = 0. Then the unique dissection of D with respect to F is given by the

unique solution of the IFS with condensation
(

{f ◦ g : f, g ∈ F}, D \ Φ(D) ∪ E
)

.

In the following, we discuss some examples for Theorem 2.2.

Corollary 2.5. Subdividing a star body by the ratio 1 : a is possible for any a > 0.

Proof. Let D ⊂ R
2 be a star body and suppose the origin is the center of this star body,

i.e., any segment connecting the origin and a point in D is entirely in D. Take F = {f1}
with f1(x) = x/

√
a. Then D and F meet the conditions of Theorem 2.2. This proves the

corollary. �

Figure 5 shows an example for a subdivision of the equilateral triangle with area ratio
1 : 2.

Y

f1(Y )

Figure 5. A dissection of the triangle with area ratio 1 : 2. The dissection
is done by the IFS {f1} with f1(x, y) =

√

1/2R(5π/8)(x, y)+ (4/5, 0) where

R(α) denotes the counterclockwise rotation with angle α; Y = D \ f1(D).
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Example 2.6. We want to dissect the equilateral triangle D = △
(

(0, 0), (1, 0),
(

1
2
,
√
3
2

))

with the IFS {f1, f2}, where

f1(x, y) = rR
(2π

3

)

(x, y) + (r, 0) and f2(x, y) = rR
(4π

3

)

(x, y) +
(

1− r

2
,
r
√
3

2

)

,

with r ∈ (0, 1/2] and R(α) being the counterclockwise rotation with angle α around the
origin (cf. Figure 3). It is easy to see that {f1, f2} is an inside non-overlapping family,
providing a dissection of D with respect to {f1, f2} in view of Corollary 2.3. Figure 4 shows
the dissections for the choices r = 9/20 and r = 1/2.

The mappings defined in Example 2.6 show that the equilateral triangle can be dissected
in similar parts with area ratios 1 : 1 : a for each a ≥ 4. Figure 4 suggests that it is possible
to go beyond this bound. Indeed, we will establish dissections coming from families where
the inside as well as the non-overlapping condition will be violated. An application will be
the construction of dissections of the equilateral triangle with area ratio 1 : 1 : a for each
a ≥ (3 +

√
5)/2.

3. A general dissection result and its consequences

In this section we will give a criterion which enables us to construct dissections of D
with respect to (not necessarily inside and non-overlapping) families F .

Theorem 3.1. Let D ⊂ R
d be a compact set with D = D◦ and µd(∂D) = 0. Let F :=

{f1, . . . , fk} be an IFS on R
d, whose attractor E satisfies µd(E) = 0.

Suppose that there exists some Y ⊂ D satisfying the following conditions.

(1) Y ◦ = Y , µd(∂Y ) = 0,
(2) Y, f1(Y ), . . . , fk(Y ) are subsets of D which are mutually disjoint in measure,

(3) Y, f1
(

D \Φ(Y )
)

, . . . , fk
(

D \Φ(Y )
)

are subsets of D which are mutually disjoint in

measure.

Then D admits a dissection with respect to F .

Proof. Let C = D \
(

Y ∪ Φ(Y )
)

. Obviously, the set C is compact and the closure of its
interior. Moreover, we have µd(∂C) = 0. We only have to show that F is an inside non-
overlapping family for C. By Theorem 2.2, this implies that F admits a unique dissection
of C generated by X . From this immediately follows together with (2) thatX∪Y generates
a dissection of D with respect to F .

We first prove that F is an inside family for C, i.e., that fi(C) ⊂ C. By (3), we have

(3.1) µd

(

Y ∩ fi
(

D \ Φ(Y )
))

= 0.

Moreover, since by (2) we have Y ⊂ D \Φ(Y ) up to a set of measure zero, (3) implies that

(3.2) µd

(

fj(Y ) ∩ fi
(

D \ Φ(Y )
))

= 0 (i 6= j).

By the injectivity of fi we have

(3.3) µd

(

fi(Y ) ∩ fi(D \ Y )
)

= 0.
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Combining (3.1), (3.2) and (3.3) we arrive at

(3.4) µd

(

(

Y ∪ Φ(Y )
)

∩ fi
(

D \
(

Y ∪ Φ(Y )
))

)

= 0.

Together with (1) and the fact that µd(∂D) = 0 equation (3.4) yields

µd

(

(

Y ∪ Φ(Y )
)

∩ fi(C)
)

= 0.

Applying (3) again, we conclude that fi(C) ⊂ C, thus F is an inside family for C.
The non-overlapping property of F for C follows from (3) as well. This proves the

theorem. �

Remark 3.2. In view of Condition (2), Condition (3) can be rewritten as

(3’) f1(C), . . . , fk(C) are subsets of C which are mutually disjoint in measure.

Here, C = D \
(

Y ∪ Φ(Y )
)

as in the proof of Theorem 3.1.

Remark 3.3. If F is a non-overlapping inside family, then we can choose Y = ∅ in
Theorem 3.1.

Corollary 3.4. Let D ⊂ R
d be a compact set with D = D◦ and µd(∂D) = 0. Let

F := {f1, . . . , fk} be an IFS on R
d, whose attractor E satisfies µd(E) = 0.

If F is a non-overlapping family,

(i) Φ
(

D \ Φ(D)
)

⊂ D and

(ii) Φ
(

D ∩ Φ2(D)
)

⊂ D,

then D admits a dissection with respect to F .

Proof. We show that Y := D \ Φ(D) satisfies Conditions (1)–(3) of Theorem 3.1. Since
D = D◦ and µd(∂D) = 0, the same properties hold for Y , which implies Condition (1).
Condition (2) is an immediate consequence of (i), the non-overlapping property and the
fact that

µd

(

Y ∩ Φ(Y )
)

≤ µd

(

Y ∩ Φ(D)
)

= 0.

To show Condition (3), note that

(3.5) D \ Φ(Y ) = D \ Φ
(

D \ Φ(D)
)

⊂ D \ Φ
(

D \ Φ(D)
)

⊂ D \
(

Φ(D) \ Φ2(D)
)

.

Since

(3.6) D \
(

Φ(D) \ Φ2(D)
)

=
(

D \ Φ(D)
)

∪
(

D ∩ Φ2(D)
)

,

using (3.5), (3.6), (i) and (ii), we obtain that

Φ
(

D \ Φ(Y )
)

⊂ Φ
(

D \ Φ(D)
)

∪ Φ
(

D ∩ Φ2(D)
)

⊂ D.

Together with the non-overlapping property and the fact that

µd

(

Y ∩ Φ
(

D \ Φ(Y )
))

≤ µd

(

Y ∩ Φ(D)
)

= 0,

this implies Condition (3). �

Remark 3.5. For each positive integer n, we can replace Conditions (i) and (ii) in Corol-
lary 3.4 by
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(i) Φ
(

D ∩ Φ2k
(

D \ Φ(D)
))

⊂ D for all 0 ≤ k < n and

(ii) Φ
(

D ∩ Φ2n(D)
)

⊂ D.

To prove this, set

Y := D ∩
⋃

0≤k<n

Φ2k
(

D \ Φ(D)
)

.

Again, we have to show that Conditions (1)–(3) of Theorem 3.1 are fulfilled. Conditions (1)
and (2) are proved as for Corollary 3.4. Condition (3) follows now from

D \ Φ(Y ) ⊂ D \
⋃

0≤k<n

Φ2k+1
(

D \ Φ(D)
)

⊂ D \
⋃

0≤k<n

(

Φ2k+1(D) \ Φ2k+2(D)
)

⊂ D ∩
(

⋃

0≤k<n

(

Φ2k(D) \ Φ2k+1(D)
)

∪ Φ2n(D)

)

=
⋃

0≤k<n

(

D ∩ Φ2k
(

D \ Φ(D)
)

)

∪
(

D ∩ Φ2n(D)
)

by the same reasoning as in the proof of Corollary 3.4.

4. Examples for general dissections

The following example shows that not every overlapping family yields a dissection. We
do not have a satisfactory answer for the existence of a solution, see Section 5.

Example 4.1. Let D = △
(

(0, 0), (1, 0),
(

1
2
,
√
3
2

))

and the IFS {f1, f2} given by

f1(x, y) = rR
(4π

3

)

(x, y) +
(r

2
,
r
√
3

2

)

, f1(x, y) = rR
(2π

3

)

(x, y) + (1, 0)

with r > 1/2. Then we have µ2

(

f1(Y )∩f2(Y )
)

> 0 for Y := D \ Φ(D), see Figure 6. Since
every dissection of D with respect to {f1, f2} must contain Y , we conclude that D admits
no such dissection.

As a first application of Theorem 3.1, we extend Example 2.6 to contraction ratios
r ≤ (

√
5− 1)/2.

Example 4.2. Let D = △
(

(0, 0), (1, 0),
(

1
2
,
√
3
2

))

and the IFS {f1, f2} given by

f1(x, y) = rR
(2π

3

)

(x, y) + (r, 0), f2(x, y) = rR
(4π

3

)

(x, y) +
(

1− r

2
,
r
√
3

2

)

with r ∈
(

0,
√
5−1
2

]

. Choose

Y := △
(( 1

2(1 + r)
,

√
3

2(1 + r)

)

,
(

1− 1

2(1 + r)
,

√
3

2(1 + r)

)

,
(1

2
,

√
3

2

))

.
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Y

f1(Y ) f2(Y )

Figure 6. The sets Y, f1(Y ), f2(Y ) showing that Example 4.1 admits no dissection.

Then it is easy to see that Y satisfies the conditions of Theorem 3.1, see Figure 7. Indeed,
the sets f1(C) and f2(C) are disjoint in measure if and only if the first coordinate of
the rightmost point of f1(C) is less than or equal to 1/2. As this yields the inequality
r

1+r
+ 1

2
r2

1+r
≤ 1

2
, we obtain the condition r ≤ (

√
5 − 1)/2. Figure 8 shows the dissections

for the choices r = 11/20 and r = (
√
5− 1)/2.

Y

C
f1(Y ) f2(Y )

f1(C) f2(C)

Y

C
f1(Y ) f2(Y )

f1(C) f2(C)

Figure 7. The sets Y, f1(Y ), f2(Y ), C, f1(C), f2(C) for the choices r =
11/20 (above) and r = (

√
5− 1)/2 (below) in Example 4.2. The pictures on

the left show Condition (2) of Theorem 3.1. The pictures on the right show
Condition (3’) of Remark 3.2.
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Figure 8. Dissections from Example 4.2 for r = 11/20 and r = (
√
5− 1)/2.

Note that the boundary of this dissection can be described by another IFS with con-
densation: B = f1(B) ∪

[

r
1+r

, 1
1+r

]

∪ f2(B). The solution B satisfies fj(B) = C ∩ fj(C)

for j = 1, 2 and one can show that B is a simple arc for r > (
√
5 − 1)/2. The limit case

r = (
√
5 − 1)/2 is of interest because f1(B) = C ∩ f1(C) coincides with an IFS attractor

associated to the set of uniqueness U(
√
5−1)/2 in the golden gasket (see p. 1470–1472 in [2]).

Example 4.2 shows that the equilateral triangle can be dissected into similar parts with
area ratio 1 : 1 : a with a ≥ (3 +

√
5)/2.

Example 4.3. Let D = △
(

(0, 0), (1, 0),
(

1
2
,
√
3
2

))

and the IFS {f1, f2} given by

f1(x, y) = rR
(π

3

)

(x,−y), f2(x, y) = rR
(4π

3

)

(x, y) +
(

1− r

2
,
r
√
3

2

)

with r ∈ (0, 1/φ], where φ denotes “high phi”, the positive root of x3−2x2+x−1. Choose

Y := △
((r

2
,
r
√
3

2

)

,
(

1− r

2
,
r
√
3

2

)

,
(1

2
,

√
3

2

))

.

Then Y satisfies the conditions of Theorem 3.1, see Figure 9. We have f2(C) ⊂ C if and

only if the x-coordinate of the leftmost point of f2(C) is at least 1/2, i.e., r − r2(1−r)
2

≥ 1
2
.

Figure 10 shows the dissections for r = 1/2 and r = 1/φ. Note that X is not connected
for r < 1/φ.

Example 4.4. Let now D be the unit square. By Theorem 2.2, one can construct many
different dissections of ratio 1 : 1 : a with a ≥ 4. However, for φ2 ≤ a < 4 (φ denotes “high
phi” again), the following construction is basically the only one that we know, and we do
not know any dissection with 1 < a < φ2. Let

f1(x, y) = r(x, y), f2(x, y) = rR
(3π

2

)

(x, y) + (1− r, 1).

Figure 11 shows that Y := D \ Φ(D) satisfies the conditions of Theorem 3.1 for r ≤ 1/φ.
Indeed, we need µ2(f1(C)∩f2(Y )) = 0 in order to have f1(C) ⊂ C, and this holds if and only
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Y

C

f1(Y ) f2(Y )

f1(C)

f2(C)

Figure 9. The sets Y, f1(Y ), f2(Y ), C, f1(C), f2(C) for r = 1/φ in Example 4.3.

Figure 10. Dissections from Example 4.3 for r = 1/2 and r = 1/φ.

if the rightmost point in C of the form (x, 1) satisfies rx ≤ 1−r, i.e., r(1−r(1−r)) ≤ 1−r.
The dissections for r = 1/2 and the limit case r = 1/φ are depicted in Figure 12.

The last example concerns non-overlapping outside families of the equilateral triangle.

Example 4.5. Let D = △
(

(0, 0), (1, 0),
(

1
2
,
√
3
2

))

and the IFS {f1, f2} given by

f1(x, y) = rR
(4π

3

)

(x, y) +
(r

2
,
r
√
3

2

)

, f2(x, y) = −r(x, y) +
(3r

2
,
r
√
3

2

)

,

with r ∈ (0, 1/φ]. This family is non-overlapping, and outside for r > 1/2. Figure 13
(where r = 1/φ) shows that it satisfies the conditions of Corollary 3.4. The dissection for
the case r = 1/φ is given in Figure 14.

5. Problems for Further Study

We want to finish this paper with some questions and conjectures that are related to
the topic of the present paper. First of all, some part of the question we stated at the
beginning remains unsolved.
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Y

Y

f1(Y )

f1(Y )

f2(Y )

f2(Y )

Y

Y

f1(Y )

f1(Y )
f2(Y )

f2(Y )

C

C

f1(C)

f1(C)

f2(C)

f2(C)

Figure 11. Two instances of Example 4.4: Y = D \ Φ(D), f1(Y ), f2(Y ) for

the non-overlapping case r = 1/2 (left), Y = D \ Φ(D), f1(Y ), f2(Y ), C =

D \ (Y ∪ Φ(Y )), f1(C), f2(C) for the overlapping case r = 1/φ (middle and
right).

Figure 12. Dissections from Example 4.4 for r = 1/2 (left) and r = 1/φ (right).

Question 5.1. Can we dissect an equilateral triangle in three similar parts having area

ratio 1 : 1 : a for some a ∈
(

1, 3+
√
5

2

)

?

Question 5.2. Can we dissect a square in three similar parts having area ratio 1 : 1 : a
for some a ∈

(

1, φ2
)

, where φ denotes “high phi”, the positive root of x3 − 2x2 + x− 1?

We want to generalize these questions. To this matter, let r(f) denote the contraction
ratio of a contractive mapping f .

Question 5.3. Let D ⊂ R
d, d ≥ 2, with D = D◦ and k ≥ 1 be given. Find the smallest

constant B < 1 depending on D and k with the following property. There exist only finitely

many families {f1, . . . , fk} of contractions satisfying mini r(fi) > B that give rise to a

dissection of D.
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f1(D)

f2(D)

f1Φ(D)

f2Φ(D)

Y

Y

f1(Y ) f1(Y )

f2(Y )

f2(Y )

C f1(C)

f2(C)

Figure 13. The sets Φ(D),Φ2(D), Y,Φ(Y ), C,Φ(C) for r = 1/φ in Example 4.5.

Figure 14. The dissection for r = 1/φ in Example 4.5.

The assumption d ≥ 2 cannot be dropped. For D = [0, 1] ⊂ R, it is trivially possible to
dissect D into similar k intervals by any ratio r1 : r2 : · · · : rk. To state a more concrete
variant of this question, we conjecture that, for each D ⊂ R

d with D = D◦, there are
only finitely many families {f1, . . . , fk} solving the dissection problem for D and satisfying
∑k

i=1 r(fi)
d > 1. We call such solutions “sporadic” solutions of the dissection problem.

The solution depicted in Figure 2 seems to be such a sporadic solution.
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Question 5.4. Let D and F be given. Can we find an algorithm for deciding whether

there exists a dissection?

We thank Arturas Dubickas and Charlene Kalle for stimulating discussions. Especially,
Figure 4 with r = 1/2 is due to Dubickas. We are deeply indebted to Tohru Tanaka at
Meikun high school who informed us about the reference [4].
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