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Abstract 
 

 

 

A large variety of distributed systems have been developed and deployed throughout the 

world in order to solve various real-world problems or in order to meet specific demands and 

provide novel types of services. Communication is an essential property of every distributed system. 

The components of the distributed system must communicate with each other in order to meet the 

system’s goals (e.g. solve a problem, or provide a service). As the attributes of a distributed system 

may vary considerably, so can their communication requirements. Some types of requirements can 

be easily met, but most of them pose challenges which have been insufficiently addressed so far. 

This book focuses on the broad topic of communication flow optimization in distributed systems 

and proposes two types of solutions: algorithmic and architectural. 

The algorithmic solutions consist of online and offline methods and techniques, which are 

applicable in multiple types of communication optimization problems. The architectural solutions 

consist of centralized, decentralized and hybrid architectures for optimizing several communication 

metrics, which are relevant in many classes of distributed systems. 

The book considers both point-to-point and multicast data transfers, as well as a wide range 

of communication parameters (e.g. bandwidth, latency, cost, reliability). The addressed 

communication flow optimization problems are modeled based on the communication requirements 

of a subset of the most important types of distributed systems. These requirements and the main 

communication parameters are identified in Chapter 2, where a thorough analysis of the current 

state-of-the-art in the field is presented. 

Chapter 3 presents several decentralized peer-to-peer architectures for optimizing point-to-

point communication flows, as well as flows generated by content search and retrieval. Many new 

types of techniques applicable in these architectures are also presented.  

Chapter 4 proposes a centralized real-time data transfer scheduling architecture, together 

with many algorithmic techniques, for solving the problem of providing end-to-end Quality-of-

Service (QoS) guarantees to the communication flows occurring in a distributed system. 

Chapter 5 presents new algorithms for several offline point-to-point communication flow 

scheduling problems. 

In Chapter 6 we present solutions for optimizing multicast data transfers. We present a peer-

to-peer multicast tree architecture with bounded node degrees and small diameter, as well as offline 

algorithms for new models of multicast and broadcast in tree networks. 

Chapter 7 considers several replica placement problems in tree-like networks and focuses on 

solving the associated communication optimization problems. We present new algorithms for 

optimally placing replicas such that the communication cost associated to accessing the replicas is 

minimized. 

Chapter 8 concludes the book and presents an overview of the original contributions of this 

book. 

The results presented in this book are based upon the author’s Ph.D. thesis, which was 

written under the guidance of Prof. Nicolae Ţăpuş, Ph.D. 

 



 9 

Acknowledgements 
 

 

 

 Writing this book was not an easy task and most certainly it wasn’t a solitary task. I have 

quite a lot of people to thank to who, one way or another, shaped the direction, focus and intensity 

of my research and, thus, influenced the contents of this book. I would like to start by thanking my 

Ph.D. advisor, Prof. Nicolae Ţăpuş, who has been my mentor during all the years while I have been 

a Ph.D. student. I have learnt a lot from him and he has always guided my research in the most 

appropriate directions (I really don’t know how he always managed to be right). 

I would also like to thank my current and former colleagues from the Computer Science & 

Engineering Department, with whom I worked on many projects, from whom I learnt how to write 

papers or how to perform research activities, and who motivated me to work harder for my Ph.D.: 

Eliana-Dina Tîrşa, Florin Pop, Corina Stratan, Alexandru Costan, Alexandru Herişanu, Ciprian 

Mihai Dobre, Emil Sluşanschi, Laura-Elena Duţă, Răzvan Adrian Deaconescu, George Milescu, 

Lucian Muşat, Adrian Muraru, Mihaela Dediu, Traian Rebedea, Andrei-Horia Mogoş and Cătălin 

Leordeanu. Florin has motivated me with his long list of Ph.D. publications and gave me the 

confidence to express my ideas and results in a coherent manner, according to rigorous scientific 

standards. Corina has been awarded an IBM Ph.D. Fellowship twice. These outstanding 

achievements of hers made me work harder with the hope of at least reaching the same level of 

research excellency. 

I would particularly like to address an extra special thanks to Eliana-Dina Tîrşa, who has 

helped me in more ways than I can remember in order to perform the research work required to 

write this book. She has helped me from a scientific point of view (as we wrote several research 

papers together), and many times she has provided me with the motivational support required to 

perform much of the work presented in this book. 

I also have to acknowledge the contributions of Prof. Valeriu Iorga, Prof. Nicolae Cupcea, 

Prof. Valentin Cristea and Prof. Cristian Giumale, who shaped my Ph.D. experience in subtle, but 

meaningful ways. 

 I must also thank Alexandra Carpen-Amarie, Irina Borozan, Lucian-Ionuţ Bălăceanu and 

Eduard-Marius Dragomir. They were undergraduate students with whom I had the pleasure to 

collaborate while they were working on their diploma thesis. The results of our collaborations were 

published in several papers. 

 I am also in debt to Prof. Theodor Borangiu and Anamaria Dogar, who supported me for 

obtaining a prestigious IBM Ph.D. Fellowship. On the same line, I have to thank Alain Ozan and 

Dan Gârlaşu from Oracle, who supported my Ph.D. research with an Oracle Ph.D. scholarship. My 

Ph.D. research has also been supported by a research grant for young Ph.D. students, funded by the 

National Council for Scientific Research in Higher Education (CNCSIS), for which I am very 

grateful. Managing this grant taught me how to handle deadlines, how to coordinate my research 

activities efficiently, how to write reports, and how to plan and handle budget expenses. 

 I would also like to thank my „external” collaborators, for without their help or persistence, 

the contents of this book would have been of a lower quality. I thank Alexandru Iosup and Cătălin 

Dumitrescu, as they were the first ones to introduce me in the world of scientific research, even 

before I started my Ph.D. Together we developed ServMark and we had long talks over late-night 

beers in Delft. I would also like to thank Prof. Johan Pouwelse for his enthusiastic and pushy 

attitude towards the development of peer-to-peer content delivery networks. He provided me with 

both the motivation and the pressure to perform high quality research work. I must also thank Mihai 

Pătraşcu, together with whom I participated at the national and international olympiads in 

Informatics when we were still in high school. In the mean time, Mihai earned a Ph.D. degree from 

MIT and has a good perspective on the directions in which research in theoretical computer science 

should go. I thank him for sharing some of his thoughts on this topic with me. I also have to thank 



 10 

Florin Manea, whose dedication to research excellency inspired me. We discussed several times 

about research topics that we both found interesting. Last but not least, I would like to thank Iosif 

Charles Legrand, for inviting me to join the MonALISA project’s team and for providing much of 

the initial motivation for this book. 

 In the end, I would like to thank my family: my mother, Cristina Teodora Andreica, my 

father, Marin Andreica, and my sister, Mădălina Ecaterina Andreica. Without their constant support, 

I would not have been able to follow my research interests and write this book. However, their help 

was not only „collateral”. They actively helped me with my research and we even published several 

papers together. I am proud to be part of a family of scientists ! ☺ 



 11 

Chapter 1 – Introduction 
 

 

 

Distributed systems are becoming more and more wide-spread nowadays, being used for 

numerous purposes and in many fields. From the client-server model of the web to instant 

messaging applications, video conference systems, peer-to-peer file sharing programs, Grids and 

massively multiplayer online games, distributed systems arise as natural solutions to many 

problems. However, due to their nature, distributed systems present many challenging issues which 

have not yet been handled successfully. Some of these important issues are concerned with the 

efficient communication between the various components of a distributed system. 

A distributed system is a complex ensemble of several components. From a structural point 

of view, a distributed system is composed of geographically distributed nodes collaborating at 

solving a common task (e.g. offering several types of services or running computationally intensive 

scientific applications). Each node is an individual entity which communicates with a subset 

(possibly all) of the other nodes in order to solve the common task. The nodes may have several 

roles and the roles of two nodes need not be identical. New nodes may join the system and old 

nodes may leave (gracefully or due to failures) at any time. 

From a functional point of view, a simplistic (but sufficient for the purpose of this book) 

scheme of a distributed system consists of 2 layers: the application layer and the communication 

layer. The application layer is concerned with all the details regarding the common task (the 

computations to perform, the algorithms to use, the actions to take) and the communication layer 

offers communication services to the application layer. We considered this simplistic 2-layered 

structure because the focus of this book is on the communication aspects of a distributed systems 

and not on the computations the system performs. 

Any distributed system fits both the structural and the functional scheme we proposed in the 

previous two paragraphs. The web is composed of servers and clients as nodes and the common 

task is that of providing access to content stored at various web sites (text documents, images, 

multimedia streams and many others). The nodes of an instant messaging system are mainly the 

applications running on the users’ machines. Except for these, dedicated servers which facilitate 

user login, discovery and inter-connection may exist. The common task is that of facilitating the 

interaction between users. 

Audio and video conference systems, peer-to-peer file sharing applications and massively 

multiplayer online games are composed of user clients (which may be differentiated into normal 

clients and super-nodes, depending on their capabilities and resources) and dedicated servers which 

facilitate content search, discovery and distribution, state maintenance, and user login and discovery. 

Grids are composed of a large variety of heterogenous resources (e.g. processors, storage devices) 

and the common task of the Grid nodes is to be available when large-scale complex problems 

requiring large amounts of resources need to be solved. 

Note how our definition of a distributed system includes both what are traditionally called 

distributed applications, and service-oriented systems. Note also that, according to the proposed 

two-layer scheme, it is quite possible that a distributed system providing communication services 

may form (part of) the communication layer of another distributed system. Thus, distributed 

systems may be layered one on top of another. What actually defines a distributed system is its 

application layer (the common goal aimed by all of the system’s nodes), while its communication 

layer is just an attribute of the system. 

Communication is one of the key issues in every distributed system, but although it is 

extremely important, efficient communication is often difficult to achieve. Every system has its own 

communication requirements and, thus, its own way of defining communication efficiency; 

communication needs vary broadly and depend on many parameters. For instance, some systems 

require reliable, possibly out of order, message transmission, others require a steady transfer rate, 
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with occasional packet losses being considered acceptable, while others are interested in achieving 

high bandwidth communication flows. Unfortunately, for many real-life systems, no efficient 

communication techniques are known, and, in practice, suboptimal greedy or heuristic algorithms 

are used. This is caused by several factors, like: 

• the complexity of the behavior patterns of the system (synchronization elements, system 

state information dissemination, cooperative coordinated solving of complex tasks and so 

on) 

• the dynamic nature of the system (components/nodes may join or leave the system at any 

time) 

• the scale of the system (it may be composed of thousands of nodes distributed throughout 

the world) 

 

The topic of communication optimization in a distributed system is very broad and is related 

to many other topics, like network protocols, scheduling, resource allocation and reservation, 

approximation and online algorithms, data structures, and many others. Furthermore, within the 

topic of communication optimization there are many problems and challenges, some of which are 

solved or partially solved, others are open and many more will soon be posed, due to the rapid 

development of the communication and information technology. 

In every setting where communication optimization is needed, there exists a set of internal 

requirements which must be fulfilled and a set of external factors which cannot be overcome. This 

is the set of constraints for the communication optimization problem. Moreover, there also exists an 

objective function whose value must be optimized. This function is defined as a combination of 

several measurable parameters. We classify the optimization objective as either hard or soft. 

A hard objective means that the value of the objective function should reach a global 

optimum (minimum or maximum) or should be within some controllable threshold from this value 

(this is the domain of exact, approximation and competitive, online algorithms). 

A soft objective is not as strict, i.e. the values of the objective function should be optimized 

as much as possible, but in some cases we do not know how to verify if a value is optimal or not. A 

good example of a soft objective is to minimize the response time of a scheduling algorithm which 

handles many scheduling or reservation requests. However, even considering everything else fixed, 

the response times depend on the algorithm chosen. Although it is obvious that some algorithms are 

better than others, we cannot tell which one is the optimal one, in the exact sense. 

This book addresses a series of practical and theoretical communication optimization 

problems and proposes multiple novel solutions and approaches. The proposed solutions are of two 

types: 

• algorithmic 

o online / offline algorithms 

o centralized / decentralized algorithms 

o data structures 

• architectural 

o decentralized architectures (e.g. peer-to-peer) 

o centralized architectures (e.g. for data transfer scheduling) 

o hybrid architectures 

 

Offline algorithms assume that complete information is available for performing their 

optimization decisions. Although having all the data is definitely much easier than having to deal 

with uncertainty, there are many situations in which this fortunate situation does not help much. 

Offline problems can be classified as belonging either to the class P or to the class NP, according to 

their computational complexity. 

Problems in P have a polynomial time algorithm which solves them optimally for any input 

instance. Problems belonging to NP (most likely) do not have such an algorithm – only exponential 

algorithms can solve them to optimality. Although at the moment of writing this book the fact that 
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P≠NP has not been proved, it is largely believed to be so. It is clear that the problems belonging to 

NP cannot take advantage of the full information being available. Hopefully, there are 

approximation algorithms which can find solutions to some NP problems which are only a number 

of times worse than the corresponding optimal solutions. When they are only a constant number of 

times worse, we may decide that the solution produced by the approximation algorithm is 

acceptable. However, there are many NP problems for which no constant factor approximation 

algorithm exists. 

Online problems are more difficult to tackle than offline problems, because of the 

incomplete information. A decision must be made in real-time, using only past and present 

information, without any knowledge of the future. Although knowledge of the future is unavailable, 

there are many situations in which the data forms patterns, which can be estimated and predicted 

based on the knowledge available so far. In these cases, a more or less accurate estimation of future 

information is possible. Most real-life communication optimization problems belong to this class. 

A centralized algorithm is run on a single machine (or processor), while a decentralized 

algorithm is run on multiple machines (or processors) which communicate between them. A 

centralized algorithm is (most of the times) easier to implement and has the advantage that all the 

required information is gathered in a single place. Decentralized algorithms have to deal with state 

gathering, consistency and synchronization issues. Moreover, the information is not fully available 

in a single place or, if it is, it may be not be recent. The advantage of a decentralized algorithm over 

a centralized one is its increased fault-tolerance and its potential for performing more computational 

operations during the same period of time (because it may use multiple processors). 

Centralized and decentralized architectures share the properties of centralized and 

decentralized algorithms. A centralized architecture stores all of its information and makes all of its 

decisions at a central server. In a decentralized architecture, data is stored over multiple nodes and 

decisions are made locally (each node makes its own independent decisions). Centralized 

architectures are easier to design and implement, but are less fault-tolerant. Decentralized 

architectures are more reliable and may use more computing power (and possess more storage 

space), but efficient coordination between the nodes is more difficult. A hybrid architecture 

contains both centralized and decentralized components. 

 

The structure of this book consists of 8 chapters. The rest of Chapter 1 (Introduction) 

provides a high level overview of the contents of all the other chapters and should offer the reader a 

clear picture of the types of problems and solutions which are addressed and proposed in this book. 

Chapter 2 – Related Work and Relevant Communication Parameters starts by 

identifying and classifying the main communication parameters and the main communication 

requirements which are relevant in many (if not most) of the existing distributed systems. The 

communication parameters are classified into two categories: 

• category 1: communication parameters which are „visible” at the application layer of a 

distributed system 

• category 2: communication layer parameters 

 

Among the parameters belonging to category 1 are: bandwidth, time-related parameters 

(latency, latency jitter, earliest start time, latest finish time), or communication reliability. Category 

2 contains parameters like communication topology, scalability, packet reordering, fault tolerance 

and security. As communication requirements, we identify: 

• type of communication based on the number of receivers 

o unicast 

o multicast 

o broadcast 

• communication paradigm 

o remote procedure call 

o message passing 



 14 

o distributed objects 

o connection-oriented 

 

The communication paradigm can be considered both as a requirement (imposed by the 

application to the communication layer), or as a parameter (an API provided by the communication 

layer to the application). 

 The second part of Chapter 2 surveys and analyzes related work on the topics addressed by 

this book. The survey is focused on presenting the kinds of problems that have beedn addressed and 

the types of solutions that have been proposed so far in the literature, while the analysis is 

concerned with determining how efficient the solutions are, and with the identification of their 

advantages and disadvantages. This analytical survey provides the context into which the results 

presented in this book can be placed, as well as part of the motivation for the research work carried 

out and presented in this book. 

 In Chapter 2 we also argue for the need of application-level routing overlays, by presenting 

five convincing motivating scenarios. These scenarios, together with the current packet routing 

characteristics of the Internet (described in the following two paragraphs), motivated the work on 

peer-to-peer overlay networks and algorithms, which is presented in Chapter 3. 

 The current Internet architecture provides only best-effort data transfer services, without any 

kind of Quality of Service (QoS) guarantees. Under these conditions, providing a sufficient data 

transfer quality to many types of communication flows (like real-time or on-demand multimedia 

streams) is mostly a game of chance. Even when QoS guarantees are not required, the best effort 

model may still not be suitable because it may provide only a poor data transfer performance (e.g. 

low data transfer speed). 

On the other hand, in some situations, the best effort attempts of the Internet are too much 

for the application’s requirements. For instance, content sharing applications would like to upload 

files to other users without interferring too much with the traffic of the other applications running 

on the machine. Such low priority traffic would be better served by a less-than-best-effort data 

transfer service. Content sharing applications also have other specific requirements, like system-

level data transfer fairness and user-perceived high data transfer and retrieval quality. Many times, 

these two objectives are in conflict with one another, no matter how we define data transfer (and 

retrieval) fairness and quality. 

Chapter 3 – Peer-to-Peer Architectures and Techniques for Data Transfer and 
Retrieval Optimization addresses all the problems mentioned above (except for providing QoS 

data transfer guarantees) by proposing a family of scalable, collaborative peer-to-peer architectures. 

We first design a generic, fully distributed, peer-to-peer architectural model. This model defines the 

main properties that a peer-to-peer architectures should have: 

• every peer must be aware of only a small number of other peers 

• a message must be routed within the peer-to-peer overlay topology from any peer X to any 

(other) peer Y using local decisions only 

• the local message routing decisions of a peer X must be based on local information only (i.e. 

information which can be obtained from the peer’s neighbors or from itself) 

 

The model proposes that every peer should have an identifier which is a point in a multi-

dimensional space. Then, peers will form the overlay topology based on the distances between their 

corresponding identifiers. The model defines several neighbor selection methods based on which 

the peer-to-peer topology is created (and modified). These methods are named based on the 

geometric concepts they use: 

• the Independent Dimensions method 

• the Local Voronoi method 

• the Hyperplanes method 

 

Each neighbor selection method is defined as generic as possible (e.g. they allow for the use 
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of many distance functions, or for many types of hyper-planes). The described methods are 

convergent, i.e. in the absence of new peers joining the system or old peers leaving the system, the 

peer-to-peer topology reaches an equilibrium. This equilibrium is reached in a fully distributed 

manner (i.e. no central coordination is required). 

The model also describes the procedures taken when a new peer joins the system or an old 

peer leaves it. These procedures are very light-weight and make use of the properties of the 

neighbor selection methods. 

 After defining the generic peer-to-peer architectural model, we present two peer-to-peer 

architectures for data transfer optimization. The first one uses the presented model as a core and, 

based on it, defines its own specific functions (e.g. message routing functions). This architecture 

uses an instance of the Independent Dimensions neighbor selection method, where each peers has a 

1D identifier (actually, the identifiers are strings of characters, which, when sorted, form a 1D 

space). This peer-to-peer system has two goals: 

• increasing the overall throughput of the point-to-point data transfers taking place between 

peers within the system 

• balancing the traffic load in the system 

 

The main method used for increasing the throughput is that of routing the data over multiple 

paths within the peer-to-peer overlay topology. This way, more data is transferred in parallel 

towards the destination, using different peers in the system. The routing process consists of two 

stages and makes use of the concept of zone. In the first stage, a peer within the zone is chosen as 

the next peer to make routing decisions. Then, a path towards this peer is chosen, based on a 

maximum flow algorithm and the data is source-routed towards the peer (i.e. the peers on the path 

towards the chosen peer are stored within each message). 

The traffic load is balanced over multiple paths as a result of the routing process. Peers and 

paths which are known to be congested (i.e. have a low available bandwidth) are used for 

transferring data with a lower probability than peers and paths with higher amounts of available 

bandwidth. 

The second data transfer optimization peer-to-peer system is a hybrid architecture and makes 

use of the concepts of the generic peer-to-peer model only partially. Each peer chooses a 1D 

identifier based on its ping times to K selected servers (landmarks) in the Internet. A central tracker 

stores information about all the peers existing in the system and the content they store. When a peer 

wants to transfer a content unit, it queries the tracker and obtains the list of peers currently storing 

the content. Then, the content is transferred over multiple paths from all the peers in the list. The 

peer-to-peer topology is not fixed, but rather created on-demand (e.g. TCP connections are opened 

when required and closed when they are no longer used). Like in the case of the first peer-to-peer 

system, mechanisms for distributing the data transfer over multiple paths are used. 

In Chapter 3 we also present a fault-tolerant object storage peer-to-peer architecture with 

multidimensional range search capabilities. This architecture uses the generic peer-to-peer model 

defined in the first part of the chapter as its core. The architecture uses a special type of the 

Hyperplanes neighbor selection method, based on the L1 metric. This special method has been 

chosen because it has two important properties: 

1. it allows the system to perform geometric routing with a high probability (i.e. starting from 

any peer, we can reach the peer whose identifier is closest to a given point) 

2. it is less computationally intensive than other methods which also have the first property 

(e.g. the Local Voronoi method) 

 

On top of the core based on the generic peer-to-peer architectural model, we define a layer 

which implements the specific functions of the system (e.g. object management functions, like 

insertion and retrieval). An important property of this architecture is that it support efficient 

multidimensional range queries: the number of peers visited for answering a range query is 

proportional to the volume of the queried range. Moreover, the architecture does not have a 
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hierarchical structure like many other similar architectures, meaning that it is free of hot spots. 

The second type of contributions presented in Chapter 3 consists of techniques applicable 

within peer-to-peer systems (irrespective of their topology). We address the system-level fairness 

and user-perceived quality problems by introducing novel techniques for handling data transfers at 

the communication layer of a (peer-to-peer) content sharing system. The data transfer quality is 

improved by establishing path reservations within the peer-to-peer topology. One of the novelties of 

this approach is that it is not specific to a certain type of topology. The system-level fairness 

problem is addressed by assigning a priority to each reservation. Then, when multiple reservations 

share an overlay link, they are assigned bandwidth shares proportional to their priority. This is 

achieved by limiting the bandwidth of incoming reservations at each peer to an appropriate fraction. 

Novel mechanisms for estimating the upload capacity of a machine are also presented in 

Chapter 3. These mechanisms make use of the concept of helper peers and they are the first of their 

kind to be proposed in the literature. Using some of the techniques developed for estimating the 

upload capacity, we propose a novel upload congestion control mechanism which acts as a less-

than-best-effort data transfer service. 

 In the final part of Chapter 3 we introduce ServMark, ar architecture for automated testing of 

distributed systems. It is well known that relevant testing of distributed systems is a very difficult or 

tedious task. ServMark can be used for automatically deploying the nodes of a distributed system 

and for generating workloads according to a wide range of user-specified parameters. Although 

ServMark was validated by testing web servers, it can also be used for testing peer-to-peer 

applications and protocols. 

 None of the techniques developed in Chapter 3 provide QoS data transfer guarantees. They 

are either more-than-best-effort or less-than-best-effort techniques. They are suitable for providing 

real-time optimizations, but cannot be used for planning data transfers in advance. This problem is 

addressed in Chapter 4 - Real-Time Centralized Scheduling of Data Transfer Requests by 

proposing a centralized data transfer scheduling framework and by developing several centralized 

data transfer scheduling techniques (based on novel algorithms and data structures). We begin by 

defining multiple types of data transfer requests and provide guidelines regarding their pricing 

methods, risk assessment and economic feasibility: 

• fixed-bandwidth fixed-duration requests 

• fixed-data fixed-duration requests 

• fixed-bandwidth variable-duration requests 

 

Multiple types of request processing modes are also considered (e.g. online and batched). 

The underlying assumption in Chapter 4 is that the owner of the network infrastructure is also the 

data transfer service provider. In order for this to happen, the data transfer provider must benefint 

from economic incentives. We discuss several principles for pricing such data transfer services and 

for managing the risks associated to such a service. 

After defining and discussing the three types of data transfer requests, we focus on 

developing efficient online algorithmic techniques for the fixed-bandwidth fixed-duration category. 

First, we consider the single network link, for which we developed a new data structure, Time Slot 

Groups. For some particular situations of this case we developed novel extensions and frameworks 

for the segment tree and block partitioning data structures, focused on range update operations. 

Then, we considered the single network path case, for which multidimensional extensions of the 

frameworks developed for the segment tree and block partitioning data structures can be used 

efficiently. 

The next type of network topology which naturally extends the single link and single path 

case is the tree topology. The tree topology is not just a particular case of a more generic „real” 

topology, because the structure of the Internet interconnections is hierarchical and, thus, in a sense, 

tree-like. Moreover, many solutions for general topologies can be approximated by a solution for a 

spanning tree of the topology. For the tree topology case we considered both the online and batched 

data transfer scheduling modes. The time was divided into equally-sized time slots. Based on their 
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duration (expressed as a number of time slots) and on the amount of bandwidth requested, four 

types of non-preemptive data transfer requests were considered: 

• unit duration data transfer requests with full link usage 

• unit duration data transfer requests with partial link usage 

• multi-unit duration data transfer requests with full link usage 

• multi-unit duration data transfer requests with partial link usage 

 

Algorithmic techniques specific to each of the four types and each of the two scheduling 

modes are presented in Chapter 4. These techniques can be classified as having based on several 

distinct algorithmic cores, like: 

• (multidimensional) data structures like the segment tree or the block partitioning method 

• modelling the conflicts between the requests by using a conflict graph 

• computing optimal matchings in bipartite graphs consisting of the data transfer requests (on 

one side) and the time slots (on the other side) 

 

Finally, after considering several types of particular topologies (single link, path, tree), for 

which efficient (and topology-specific) algorithms and data structures were developed, we consider 

the case of a general network topology. We present a technique which handles the requests online 

and which makes its decisions based on computing a maximum flow in a time-expanded graph (a 

graph which models the traffic in the network over time). This technique is evaluated against 

several decentralized strategies and under multiple workloads (i.e. request submission patterns). The 

results show that it outperforms by a large margin any decentralized algorithm, suggesting that, at 

least for the time being, providing hard QoS guarantees can only be performed efficiently in a 

centralized manner. 

All the algorithmic techniques presented for the single link, path, tree, and general topology 

case were based on dividing the time into equally-sized time slots. In Chapter 4 we also consider the 

other perspective, in which time is seen as being event-based. Each network link has several events 

assigned to it, representing the beginning of a data transfer (decrease of its available bandwidth) or 

the end of a data transfer (increase of the bandwidth). Using this event-based paradigm, we present 

several heuristic algorithmic methods for scheduling fixed-bandwidth fixed-duration data transfer 

requests in networks with arbitrary topology. 

The last part of Chapter 4 presents novel, efficient, algorithmic solutions for the case when 

the conflicts between the data transfer requests are modelled using conflict graphs. Several 

particular cases for the structure of the mutual exclusion graph (e.g. tree, intersecting cliques) are 

considered, together with several possibilities regarding the timing constraints of the request (e.g. 

common deadline, separate earliest start time and latest finish time). 

 Offline optimization of multiple communication flows is considered in Chapter 5 - Offline 
Optimal Scheduling of Constrained Point-to-Point Communication Flows. In this chapter, a 

communication flow is analyzed at the packet level and decisions are made for individual packets. 

We consider several particular cases, like data items with divisible sizes, or communication flows 

with ordering constraints for their packets. We focus on objectives like minimizing the makespan of 

the (weighted) sum of completion times. For each case, we present new, polynomial-time 

algorithms. A particularity of the problems considered in Chapter 5 is that in most cases the sender 

and the receiver are connected by multiple (classes of) disjoint paths. From this perspective, these 

scheduling problems are related to the problems of scheduling jobs on multiple (classes of) 

processors. 

In the last part of Chapter 5 we introduce a model for representing TCP conversations, based 

on which we consider the problem of minimizing the total TCP sender processing time. All the 

results presented in Chapter 5 are exclusively of a theoretical nature, and are based on a solid 

theoretical, efficiency and optimality analysis. 

 Another problem with the current Internet (which has not been mentioned so far) is that it 

can only provide point-to-point data transfers, although there are many situations in which multicast 
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communication is required (e.g. for sending notifications or for live streaming). Of course, multicast 

communication can be realized through multiple point-to-point data transfers. However, this 

presents two disadvantages: 

• the consumed bandwidth would be much greater than in the case of using, for instance, a 

multicast tree 

• it may happen that not all the destinations of the data are known by the source (e.g. when 

there are many such destinations) 

 

Multicast has been recognized as being an important communication mechanism by the 

development of IP multicast. However, IP multicast is not widely deployed at the Internet level and, 

thus, it does not provide a good solution. Application-layer multicast routing has emerged as an 

efficient alternative to IP multicast. Application-layer routing has the advantage that multicast can 

be performed using any topology we consider fit and that we can emphasize any metric we want 

(e.g. bandwidth, delay, traffic load). 

In Chapter 6 - Multicast Communication Optimization Techniques we present a novel 

peer-to-peer application-layer multicast routing architecture. The system maintains a multicast tree 

with bounded node degrees and small node diameter. Each peer maintains information regarding the 

number of nodes and the longest path in the part of the tree defined by each of its neighbors. This 

information is updated through gossiping. A convergence and correctness theorem is proved, which 

shows that after every peer insertion or departure, these values converge to their correct values after 

a number of gossiping rounds which is proportional to the diameter of the tree. A particular 

advantage of the presented architecture is that it is the first fully-decentralized and non-hierarchical 

system which can maintain a perfectly balanced tree (under certain limits regarding node arrivals 

and departures).  

In Chapter 6 we also present novel offline multicast routing strategies for optimizing the 

reliability of the transmission or its duration. We consider a problem called maximum reliability k-

hop multicast strategy, in which the root of a tree has to send a message to all the leaves of the tree. 

The message must reach the leaves after passing through an upper-bounded number of relay nodes. 

The problem is a re-interpretation of another problem, for which the best time complexity results 

from two papers published in 2001 and 2006. The solution presented in this book improves the 

previous best known solution by a logarithmic factor. 

The last part of Chapter 6 presents new extensions of the well-studied single-port broadcast 

model in tree networks. We introduce sending and receiving constraints for the tree vertices, under 

several scenarios (the constraints are periodical, or they disappear after a fixed period of time). For 

each scenario we present new algorithmic solutions, based on dynamic programming or greedy 

techniques. 

 In content sharing systems, content (and content replica) placement is of paramount 

importance, because good placements can drastically reduce access times and improve user 

satisfaction. In Chapter 7 – Optimal Replica Placement in Tree-Like Content Delivery 
Networks we consider several such (offline) data placement problems in tree-like graphs. We 

consider multiple placement cost functions and we present new algorithmic techniques for 

optimizing the considered cost functions. 

 Many replica placement problems can be modelled as a k-center or k-median problem in the 

graph representing the network topology. Thus, we consider the 1-center problem in cactus graphs, 

for which we provide a new linear time solution. The developed algorithmic techniques can also be 

easily extended to solving the longest path or diameter problem on the same class of graphs. Then, 

we consider (k+p)-center and –median problem in trees (a (k+p)-center/median problem means that 

p replicas are already placed and we need to place at most k additional replicas such that the 

objective function is minimized). 

Moreover, we also consider the additional constraint that the (at most) k vertices of the 

graph at which replicas are stored should form a connected subgraph, both in the center and in the 

median case. This constraint is meaningful when the replicas need to be updated frequently. In 
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order to solve these problems we introduce a novel algorithmic framework for many types of 

combinatorial optimization problems in trees. Then, we use this framework in order to develop 

efficient solutions for the considered problems. 

 We also discuss a balanced content replication problem in trees, which we model as a k-

equitable coloring problem for which we present a new greedy solution based on a hierarchy of (re-

)coloring permutations. The algorithm is evaluated in the context of a new tree reliability metric 

based on a solution to the unrestricted vertex multicut (UVMC) problem in trees. As a side result, 

we also present the first linear time solution to the UVMC problem (although a polynomial-time 

solution was previously known). 

 Another particular case that we consider is that of path graphs. We optimally solve a 

constrained k-center problem in these graphs by using a new linear time algorithm based on a 

geometric interpretation of the problem. 

 Finally, at the end of Chapter 7 we consider one of the most general classes of tree-like 

graphs: graphs with bounded pathwidth. We define a new algorithmic framework for solving 

combinatorial optimization problems on this class of graphs. Then, using this framework, we 

optimally solve a replica placement problem in these graphs. 

 Chapter 8 - Conclusions is the final chapter of this book, in which we conclude. We 

present an overview of the results, as well as a summary of the novel contributions of this book. 

In summary, the addressed problems and proposed solutions presented in this book can be 

classified in one of the following categories: 

1. peer-to-peer architectures for data transfer and content retrieval optimization, and algorithmic 

techniques applicable in peer-to-peer systems (Chapter 3) 

2. real-time centralized scheduling of QoS-constrained data transfer requests (Chapter 4) 

3. offline constrained communication flow scheduling (Chapter 5) 

4. multicast peer-to-peer architectures and offline constrained multicast data transfer models and 

strategies (Chapter 6)  

5. optimal offline replica placement in tree-like networks (Chapter 7) 

 



 20 

Chapter 2 – Related Work and Relevant Communication 
Parameters 
 

 

 

As presented in the previous chapter, this book addresses multiple communication 

optimization problems and proposes many types of solutions for these problems, ranging from 

distributed system architectures to centralized and decentralzied, online and offline algorithms. 

However, the purpose and validity of the presented techniques would be at least questionable 

without placing them in the broader context of the state-of-the-art communication optimization 

techniques developed by the scientific community. The purpose of this chapter is to survey the 

relevant (and related) existing techniques from the scientific literature, to analyze them from a 

critical point of view, and to provide the necessary context for the contributions presented in the rest 

of this book. 

We begin by identifying the main (types of) communication requirements and parameters of 

a distributed system. Then, we argue for the need for application-layer routing peer-to-peer overlays 

using a series of 5 scenarios as motivational examples. Afterwards, we survey the relevant and most 

important types of existing peer-to-peer architectures, explictly stating what the original conribution 

of our novel proposed architectures is. We then continue on the same trend, by critically analyzing 

existing system-level fairness enforcing techniques and user satisfaction enhancement methods in 

peer-to-peer content sharing systems.  

Afterwards, we analyze network link capacity estimation techniques and congestion control 

methods. We also survey and analyze some of the most important testing infrastructures of 

distributed systems. In Sections 2.8 and 2.9 we focus on data structures and algorithms for real-time 

scheduling of data transfers. Sections 2.10-2.12 are dedicated to offline problems: offline 

constrained communication flow scheduling, offline multicast strategies and offline replica 

placement in tree-like networks. Every time we survey existing results, we point out some of their 

drawbacks and show what is the novelty of our approaches. At the end of this chapter, the reader 

should have a clear picture of the context in which the techniques described in the rest of this book 

are placed, as well as a general idea regarding the description of these techniques. 

2.1. Relevant Communication Requirements and Parameters 

2.1.1. Application Layer Communication Requirements and Parameters 

The communication requirements of a distributed system are dictated by its application layer, 

which uses the services provided by the communication layer. We will identify the most important 

requirements in this part of the report and introduce a set of communication parameters which are 

„visible” at the application layer of a distributed system. The communication requirements will be 

expressed in terms of these parameters. The communication requirements of a distributed system 

can be viewed as a set of rules specifying the acceptable levels of communication quality, in terms 

of a set of quantifyable parameters. The parameters will be either numeric or boolean and their 

values can be observed at the application layer. Thus, distributed applications can verify by 

themselves if the communication requirements are met by the communication layer. 

2.1.1.1. Communication Paradigm 
From the point of view of the communication paradigm, we will consider the following 

cases which present practical interest: 

• the remote procedure call paradigm 

• the distributed objects paradigm 

• the message passing paradigm 
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• the connection-based paradigm 

The communication paradigm is visible at the application layer mostly due to the provided 

communication API used by the application. For some applications, some paradigms are better 

suited, because they match the internal structure of the application better. 

2.1.1.1.1. Remote Procedure Call 

This model is similar to the procedural programming paradigm, in which one node may call 

some functions implemented in a different module. The difference between the usual procedural 

programming consists in the fact that the two modules are not necessarily located on the same 

computer. Applications structured on function and procedure calls benefit from this communication 

paradigm more than other applications (e.g. object-oriented applications). 

2.1.1.1.2. Distributed Objects 

Another communication model makes use of distributed objects. These objects contain data 

and methods, and some of these methods are public. The methods of a public-server object can be 

called by its clients. This model corresponds to the object-oriented programming paradigm, in 

which objects are located on different computers.  

The model offers all the facilities of object-oriented programming, including separating the methods 

and data in an object into security access classes (public, protected, private). This model can easily 

be fit into modular and/or object-oriented applications, because it provides a seamless way of 

accessing remote objects as if they were local objects. Thus, it can be integrated without much 

effort into such an application. The model is less suited for applications whose internal structure is 

not focused on objects and/or classes. 

2.1.1.1.3. The Message Passing Communication Paradigm 

This model differs significantly from those presented above, where the communication is 

achieved through function and procedure calls. A source node sends a message to a destination node, 

containing some important information. The destination receives the message, decodes it, performs 

the necessary processing and then transmits back a response message (if necessary). 

The main difference between this model and the remote procedure calls is given by the fact 

that RPC communication is synchronous (blocking), while message passing communication is 

(usually) asynchronous (non-blocking). 

In the message passing paradigm, the transmission medium is shared by all the nodes and 

the nodes communicate among themselves by sending messages. A message is the smallest 

individual entity of information. Every message has one source node and one or more destination 

nodes. The application layer of the source nodes produces the content of the message and passes the 

content to the communication layer, which is responsible with its delivery to the destination(s). 

This model is somewhat more difficult to integrate into applications, because we need to 

take care explicitly of sending and receiving messages. In the previous two models, messages were 

sent implicitly, within the function call (for the RPC model) or within a call of an object’s method 

(for the distributed objects model). However, it offers the largest amount of flexibility to the 

application developer and, thus, can be adjusted to a wide variety of communication requirements, 

although at a cost of increased effort. 

2.1.1.1.4. The Connection-Oriented Paradigm 

Connection-oriented communication is based on establishing connections between a source 

node and one or more destinations. After a connection is established, the source node may send 

information to the other nodes to which the source node connected. Although the information may 

be split into messages when being sent along a connection, this communication paradigm is 

different from the message passing paradigm, because of its focus. The connections may be 

unidirectional or bidirectional (information may be sent both from and towards the initiator of the 

connection). The most common case consists of connections between two nodes, but, at least 

theoretically, connections between multiple nodes may be established (e.g. when the source node 

needs to send the same content to a subset of other nodes). 

A connection is a logical concept, which does not need to have a direct correspondent at the 

physical level (for instance, a connection between two nodes does not need to be mapped to a 
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physical network path between those nodes, although this may be the case in some situations). As a 

result, information sent along a connection may follow different paths at different times (or may 

even be sent on multiple parallel paths). 

A sigificant difference between this model and the previous one is the fact that information 

is seen as a continuous flow of data, not necessarily split into arbitrary chunks (messages). It is the 

application’s responsibility to split the data flow into meaningful pieces. 

2.1.1.2. Unicast, Multicast and Broadcast Communication 
As the nodes of a distributed system work together towards a common goal, they need to 

exchange information about the state of the realization of the goal. From the point of view of the 

number of senders and receivers of the information, there are four communication types of practical 

interest: 

• 1 sender, 1 receiver 

• 1 sender, more than 1 receiver 

• more than 1 sender, 1 receiver 

• more than one sender, more than one receiver 

The 1 sender – 1 receiver case is the most common and describes the unicast type of 

information distribution. When one sender needs to send information to several receivers, we 

distinguish two cases: 

• broadcast: send the information to all the nodes in the distributed system 

• multicast: send the information to a subset of the nodes of the distributed system 

Obviously, broadcast is a special kind of multicast, where the subset of receivers consists of 

all the nodes. 

The case when there are multiple senders and only one receiver is the inverse situation of the 

one sender - multiple receivers situation and we will consider it as a special type of multicast. This 

is because when such a situation occurs, it is usually as a reply (or acknowledgement) to a message 

previously sent by a node to a subset of other nodes. 

The multiple senders - multiple receivers case is mostly of theoretical interest, because it is 

difficult to handle in practice. Although some optimizations may be possible by considering this 

case, it is difficult in practice to obtain and make use of information regarding this situation; thus, it 

is usually interpreted simply as multiple independent multicast transmissions. 

From the application layer perspective, a protocol verifying whether unicast, multicast and 

broadcast transmissions are correctly supported by the communication layer can be easily 

implemented, if we consider some supplementary assumptions. The verification would consist in 

checking if all the destinations received the information correctly. We can make every destination 

send a reply message to the source node (or a confirmation message to a third party) as soon as it 

receives the incoming message from the source. However, at any moment in time, we cannot know 

if the original message was not delivered to the destination(s) or is still in transit somewhere inside 

the system. Thus, we need to introduce a time limit for receiving the reply message. 

Unicast communication capabilities are required in every type of distributed system. 

Multicast and broadcast capabilities used to be less needed, but are becoming more prevalent 

nowadays. A few examples of systems requiring multicast and/or broadcast capabilities are the 

following: audio and video conference systems, multimedia streaming farms and applications (e.g. 

YouTube), scientific applications which generate important data which needs to be analyzed at a 

later time (see, for instance, the recent experiments at CERN), massively multiplayer online games 

which need to transmit the state of the game to the other players. 

2.1.1.3. Bandwidth 
Bandwidth represents the speed of the data transmission and is measured in bits (bytes) per 

time unit (usually Megabits or Gigabits per second). When a source node needs to send some data 

continuously (over a non-negligible time interval) to a destination node, the bandwidth of a data 
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transfer can be computed by the receiver (and, possibly, by the sender, too) and becomes an 

important factor in characterizing the communication between the nodes of a distributed system. 

When the nodes need to transfer large files or multimedia streams between each other, it is 

sometimes necessary that the transfer speed be larger than a threshold value (otherwise, the transfer 

would not finish on time or the quality of the multimedia stream would be poor). As bandwidth is 

relatively easy to measure in the case of end-to-end transfers (and only slightly more complicated in 

the case of multicast transfers), it is one of the communication parameters best describing the 

quality of the communication. 

Sometimes the bandwidth achieved by a data transfer is also called throughput or goodput 

(meaning the transfer speed of the useful data, ignoring the lower level headers and trailers). 

Bandwidth is an important parameter in data-intensive applications and systems (e.g. applications 

which need to transmit large files by some specified deadline; audio/video conference and 

multimedia streaming systems which need to transmit data at a constant, specified bandwidth; file 

sharing applications, where the file download speed is the most appreciated parameter). 

2.1.1.4. Time Parameters 
Time is a very important parameter when characterizing the communication between the 

nodes of a distributed system. There are several types of relevant time constraints and we will 

discuss most of them in this section. 

2.1.1.4.1. Latency 

The latency is the time duration between the time moment when a message is sent by the 

sender and the time moment when the message is received by the receiver. It measures the amount 

of time during which the message is in transit. End-to-end latency depends on the latencies of the 

network links composing the network path on which the message is routed and on the delays 

encountered at the intermediate nodes and network devices (routers, switches). It is usually 

desirable that latency is as low as possible, but there are situations when it is more important for the 

latency to be relatively constant (not have large variations), in order to obtain a predictable steady 

transfer rate. 

Having a small latency is particularly important in real-time distributed systems, where data 

has to arrive to the receiver(s) as soon as possible (e.g. nuclear power plants; systems allowing to 

perform medical operations on the Internet). Having a constant latency is important in multimedia 

streaming applications, where the user-perceived quality would be degraded by large variations in 

latency. 

2.1.1.4.2. Latency Jitter 

Latency jitter represents the variation of the latency over time. As mentioned in the previous 

subsection, there are situations when it is more important for the latency to be relatively constant 

rather than low (e.g. multimedia streaming systems). In these situations, a high amount of jitter is 

undesirable. Both latency and jitter are measurable at the receiver. The jitter can be estimated from 

the interarrival times between consecutive messages received from the same source. Latency can be 

computed if the message is time-tagged at the source and the deviation between the clocks of the 

sender and the receiver is either known or negligible. 

2.1.1.4.3. Earliest Start Time 

The communication layer does not necessarily offer only immediate communication 

services (i.e. sending out the information right away or as soon as possible). In some situations, in 

order to improve the overall communication quality (or simply in order to ensure the required 

quality levels of other nodes), the communication layer may employ scheduling techniques. Most 

commonly, these techniques schedule the data transfers in time and make use of efficient data 

structures. In these cases, the application layer may submit a data transfer request to the 

communication layer in advance. The request may have an associated earliest start time t, meaning 

that the data transfer should not start before time t (possibly because the data is not ready before that 

time). The communication layer must consider the earliest start time constraints when scheduling 

the data transfers. 
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Earliest start time constraints arise, for instance, in multimedia streaming applications, when 

the user requests for the multimedia stream in advance, but specifies that it will only be available 

after a certain time and in file transfer scheduling with dependencies (we cannot start a file transfer 

before another activity finishes). 

2.1.1.4.4. Latest Finish Time 

Just like the earliest start time, a data transfer request may have an associated latest finish 

time, i.e a time moment t before which the data transfer should be completed (deadline). The same 

types of distributed systems mentioned for the Ealiest Start Time parameter can also make use of a 

Latest Finish Time parameter. However, this parameter is more common in practices. Usually, users 

and/or applications request some data and specify some deadline before they need to receive that 

data (e.g. ). Using deadlines is common to our society and, thus, it is also prevalent in the use of 

distributed systems. 

2.1.1.4.5. Lower and Upper Bounds for the Transmission Duration 

Still considering the data transfer requests model, other time constraints which may be 

specified are a lower and upper bound for the data transfer duration. This allows the communication 

layer to have more flexibility in creating the data transfer schedules. In some situations, the total 

transmission duration (makespan) needs to be minimized (i.e. send the data as quickly as possible).  

Other time parameters can be defined based on those already mentioned. For instance, in the 

case of multiple communication flows, we may be interested in minimizing the sum of (weighted) 

completion times. 

2.1.1.5. Communication Reliability 
Communication reliability is a statistical measure regarding the good functionality of the 

communication layer. Communication reliability can be mathematically defined in many ways, but 

the important thing is that it captures the „trust” that the communication layer will provide the 

required communication quality levels. A reliability metric and value (between 0 and 1) can be 

associated to every (other) communication parameter P, signifying the „trust” that the values of the 

parameter P will be of „good” quality (above and/or below a pre-specified threshold). 

Reliability is defined as the probability that the communication layer will not fail, where a 

failure can be defined in many ways. If we consider the reliability of delivering messages to the 

destination(s) as 0.9, this tells us that there is a 0.1 probability that a message will not reach its 

destination (will be lost somewhere inside the system). If the reliability of a message reaching its 

destination(s) after a time duration dt in [lbt, ubt] is 0.75, this tells us that there is a 25% chance that 

the message will reach a destination after a time duration either smaller than lbt or larger than ubt. 

Some distributed systems can handle lower levels of reliability, by retransmitting data. 

However, critical and real-time systems (like those supervising nuclear power plant processes or 

medical operations over the Internet) required a very high reliability. 

2.1.2. Communication Layer Parameters 

There exists a subset of parameters which are not exposed to the application layer or their 

impact upon the communication quality cannot be clearly quantified at that layer. We will discuss 

these parameters in this section. 

2.1.2.1. Communication Topology 
The communication topology of a distributed system refers to the communication 

interactions between the system nodes. The topology is very important especially for the task of 

message routing. In order for a message to reach its destination(s), it will pass through several 

(possibly zero) intermediate nodes of the distributed system (as well as some network devices, like 

switches or routers). 

The communication layer of a distributed system is usually built on top of a communication 

layer available from the operating system or on top of some communication libraries. As such, the 
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communication layer of a distributed system does not have much (any) control on the network 

(physical) path a message takes from a source node to the destination(s). The communication layer 

may estimate some parameters of the OS/library communication layer (the same parameters the 

application layer can estimate regarding the communication layer- latency, jitter, bandwidth) and 

make decisions based on these parameters, but it cannot control the network path. 

Under these circumstances, the only way the communication layer can impose some control 

is by scheduling data transfers in time and by establishing a virtual communication topology, 

overlaid on the physical, network topology. Such a topology is described as a graph, in which the 

vertices are the nodes of a distributed system and the edges correspond to point-to-point 

connections between the nodes. The graph may be directed or undirected (i.e. the point-to-point 

connections may be uni- or bidirectional). 

The easiest way for a communication layer is to not establish any virtual communication 

topology and rely fully on the OS/library communication layer. However, in order to achieve 

increased communication performance, many communication layers choose to establish their own 

communication topology, which brings many new challenges. 

We will use the classification employed by peer-to-peer systems in order to characterize the 

communication topology of a distributed system. There are two types of topologies: structured and 

unstructured. In the case of structured topologies, the nodes have identifiers which are mapped into 

a metric space. The connections between nodes are related to the distance measure of the metric 

space, in the sense that nodes whose identifiers are close in the metric space are connected together 

(through a bidirectional connection). 

Routing a message from a source node to a destination is performed through intermediate 

nodes such that the distance between the identifier of the current (intermediate) node and the 

destination node constantly decreases. Structured communication topologies have the advantage 

that a node may only have partial knowledge of the topology (at the very least, he only needs to 

know its own direct neighbors). However, structured topologies are very sensitive to churn. Large 

churn values imply that the topology is not stable and, thus, the message routing process may not 

converge to the destination properly. Unstructured topologies are very simple to implement, yet this 

is their only advantage. As the system grows larger, the nodes either need to store more and more 

information about the newly joined nodes or they need to exchange more and more node discovery 

messages (thus flooding the system). 

The communication topology is also related to the way the actions of the distributed system 

are coordinated. A centralized coordination ensures a consistent view, but limits the scalability 

(mentioned below). Decentralized decision making increases the scalability, but introduces 

problems related to consistency and consensus (which are harder to achieve than in the case of the 

centralized coordination). The two types of coordinating actions lead to significantly different 

communication patterns. In between them there are many types of hybrid coordination strategies, 

which make use of both centralized and decentralized decision making strategies. 

2.1.2.2. Scalability 
Scalability is a property of the communication layer of a distributed system which ensures 

that the communication performance degrades gracefully as the number of nodes increases. First of 

all, it is normal that some communication parameters degrade as the number of nodes increases, 

because extra effort is required to reach the new nodes as destinations of messages. On the other 

hand, an increased number of nodes may improve other parameters (e.g. throughput, because there 

will be more paths on which messages can be sent). 

Scalability is strongly connected to the communication topology. Structured communication 

topologies are very scalable (but sensitive to churn), while unstructured communication topologies 

usually do not scale well. Scalability is a desirable feature in every distributed system, but it is 

particularly important in those systems which are likely to contain a large amount of nodes/users 

(e.g. peer-to-peer file sharing, multimedia streaming). 
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2.1.2.3. Fault Tolerance 
The fault tolerance of the communication layer is tightly connected to the reliability 

measures visible at the application layer. The fault tolerance is indirectly visible to the application 

layer through the reliability metrics, but, otherwise, it is an „internal” parameter of the 

communication layer. Unlike reliability, fault tolerance is not easily quantified. We might be 

tempted to define it through a probability measure (just like reliability), but, in fact, fault tolerance 

has a more qualitative nature. 

We propose in this section a novel description of the fault tolerance of the communication 

layer based on scenarios. Each scenario describes an „unexpected” event (fault) and the fault 

tolerance measure consists of a description of the system’s response to the event. For instance, a 

possible scenario may consists of the failure of a node in the distributed system through which a 

large portion of the messages in the system were routed. The response to such an event may consist 

of the system adapting itself and rerouting the messages through other nodes or the system may take 

no immediate action (and, thus, some messages may be lost or delayed). 

In the context of the communication topology, unstructured topologies are more fault 

tolerant than structured ones, because they are less complex (decreased complexity implies that 

there are fewer things that can go wrong when a fault occurs). 

2.1.2.4. Packet Reordering 
Packet reordering is discussed in the context of a communication flow between a source and 

one or more destinations. The packets (messages) composing a flow can be ordered sequentially. 

Normally, these packets must be sent and received in the logical sequential order. However, if the 

receiver has the ability to properly reorder the packets, then we can achieve some improvements, by 

sending multiple packets in parallel or out of order. 

2.1.2.5. Security 
Security is an important communication parameter in many situations. In some distributed 

systems, critical applications exchange confidential data, whose security is paramount. Because the 

transmission medium is usually shared, cyptographic techniques need to be used in order to ensure 

the four standard security requirements: authentication, authorization, confidentiality and non-

repudiation. 

2.2. The Need for Application-Layer Routing Peer-to-Peer Overlays 

The main property of a peer-to-peer architecture is that it connects all the components of a 

distributed system into a live overlay topology, which consists of point-to-point logical connections 

or transport-level (e.g. TCP) connections. A live overlay topology, coupled with an application-

level routing mechanism presents several advantages for optimizing the communication flows (and 

access to data), which will be illustrated by presenting 5 scenarios. 

 
Scenario #1 – There is no appropriate option to communicate to a large number of peers 
 

 Suppose an application (from now on, we will use the term „peer”) needs to communicate to 

many other peers (tens of thousands of them). The message delivery needs to be reliable, so the 

most appropriate solution would be to use TCP. What choices does a peer have in order to do that ? 

 One possibility would be to establish a TCP connection for each message it needs to send to 

some other peer. Then, after the messages is sent, the connection to the destination peer would be 

closed. If messages need to be sent frequently, the TCP connection establishment time would 

introduce a potentially unacceptable delay. 

 Another possibility, which avoids opening a new TCP connection for each message would 

be to open a TCP connection to any peer it might ever need to communicate with and keep the 

connection open. This way, when a message needs to be sent, the connection is already established, 
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so there is no overhead. However, on a computer there are at most 2
16

 ports, so only that many 

connections could be open at any time. If that peer needed to communicate to more peers than this, 

it couldn’t. Anyway, operating system have a much lower limit on the number of open files and a 

TCP connection is treated like a file, so the actual number of open connections would be much less 

(around a few thousands). 

 

Scenario #2 – Network-layer routing algorithms were not designed to match the communicating 

peers’ goals  
 

 The path on which a message is delivered is entirely entrusted to the routers. This implies 

that the routing protocols running on those routers are the most appropriate for the needs of the 

communicating peers. However, this is rarely the case. The routing algorithms were designed 

having goals different than those of the communicating peers. 

 For instance, suppose that the purpose of the peers is to be able to deliver as many messages 

as possible to one another, making full use of the available bandwidth. This would require, among 

other things, an appropriate routing metric and load balancing. There is no guarantee that the 

routing algorithms use the same metric the communicating peers are interested in. Also, there is no 

guarantee that the routing algorithms might use any load-balancing. They might route all the 

incoming messages on the same path, which might have been the most appropriate path at the time 

the first message was delivered, but which might have become congested due to the large flow of 

messages routed on it. 

 Another possible problem with the routing algorithms at the network layer is that some of 

them are prone to errors. There have been remarkable cases when slow convergence or routing 

loops have caused significant problems. In a large scale network, no routing algorithm guarantees a 

100% rate of success (not any algorithm that we know of), but new more reliable algorithms might 

have been discovered in the mean time. However, although new, more intelligent algorithms might 

exist, it is unreasonable to expect a change in the routing algorithms used by every router in the 

world. Routing algorithms used by routers are resistant to improvement. Once they were set loose, it 

is very difficult to replace them. 

 

Scenario #3 – Multicasting is a big problem 
 

 Multicasting turns out to be a big problem at the network layer. Although solutions like IP 

multicast do exist, they are not implemented in many places around the world. So, some peers 

might take advantage of multicast technologies, while others might not. 

 Efficient multicast algorithms are a current research topic. However, even if some very 

efficient multicast algorithms are found, it would still be very difficult to implement on every router 

in the world. Basically, just like in the previous scenario, it is very difficult to change world-wide 

the algorithms used by routers. 

 

Scenario #4 – One long-distance TCP connection could be slower than a chain of TCP 

connections connecting the same pairs of peers through other intermediate peers 
 

 Suppose that one peer established a TCP connection to a distant peer and the connection has 

a high error rate and packets are lost and need to be redelivered frequently. Because TCP uses 

adaptive timers, the time it waits for an ACK is proportional to the time needed for the packet to 

travel from source to destination. However, the longer the distance the packet needs to travel, he 

higher the probability that some error might occur (or the packet might be lost entirely). By using 

such a connection, the transmission speed would be quite low. 

 Perhaps surprisingly, using more intermediary peers to route the packet might provide a 

better transmission time. Suppose that, instead of directly connecting to the far-away destination 

peer, the source peer connects to a peer close-by. This peer to which the source peer connects to 
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will connect to another peer close-by and so on, until you get to the actual destination. By using a 

chain of TCP connections, packet losses are detected more quickly. It is like having checkpoints 

along the initial long distance connection, as opposed to only checking for packet delivery at the 

ends of the connection. 

 

Scenario #5 – It is impossible to initiate communication with peers located behind firewalls or 

which use Network Address Translation (NAT) 
 

 Suppose that a peer needs to send a message to another peer and in order to do this, it tries to 

establish a TCP connection to that peer. But that peer might be located behind a firewall which 

rejects incoming TCP connections. So, the only way for the two peers to communicate by using a 

TCP connections would be if the destination peer established a TCP connection to the source peer. 

However, there is no way to tell the destination peer to do that. 

 A similar situation arises when the destination peer is using NAT (Network Address 

Translation) in order to communicate with the “outside world”. The source peer cannot establish a 

TCP connection to the destination peer, therefore the sending of messages becomes impossible. 

 

 The 5 scenarios presented above should be sufficient to motivate the development of 

application layer routing algorithms. From the point of view of the OSI reference model, it would 

be like subdividing the application layer. We would have a communication framework which uses 

the overlay network (application-level network, as defined before) and provides a communication 

interface to other applications. The communication framework would be the lower half of the 

Application layer and the applications using it would reside on the upper half. 

2.3. Relevant Existing Peer-to-Peer Architectures 

 One of the original purposes for developing peer-to-peer architectures was file sharing. 

Systems like Napster [Napster] or Gnutella [Lua, Crowcroft, Pias, Sharma and Lim, 2005] formed 

either fully centralized or fully decentralized (and unstructured) peer-to-peer overlays which 

faciltated the search and retrieval of content. Later, systems like Bittorrent [Bittorrent] and Kazaa 

[Kazaa] emerged, which focused on improving both the search process and the content delivery. 

Bittorent uses swarming content delivery. All the peers trying to download the same file are part of 

the same swarm. In order to download a file, a peer has to contact a central tracker. After that, the 

peer connects to several randomly chosen peers in the swarm. Files are decomposed into smaller 

pieces and a client may start sharing the downloaded pieces before downloading the entire file. 

Bittorent uses a tit for tat scheme which encourages peers to upload files, not just download them. 

Kazaa’s peers are differentiated into clients and super-peers. Super-peers are chosen 

automatically based on their computational power, storage capacity and bandwidth. Clients connect 

to the closest super-peer, using it for file search and download. All of these systems allow keyword-

based searches only and their architecture combines centralized and decentralized components. 

Content search is performed either by inspecting a centralized directory (e.g. the central 

bittorrent tracker or Napster’s central server) or by flooding the search query in the system (e.g. 

Gnutella). The first search method is not scalable because of the single point(s) of failure 

represented by the central component; moreover, the central component may be a bottleneck when 

there are many peers in the system. The second approach is not scalable because it may generate a 

lot of undesirable traffic. The flood search may be limited to a fixed hop count, but in this case we 

have no guarantees that the searched content is actually found. 

 The first generation of peer-to-peer systems which were used for a somewhat different 

purpose than content sharing and which had a fully decentralized, yet very structured, architecture, 

were the distributed hash tables (DHTs). DHTs are decentralized distributed systems that provide a 

simple API consisting mainly of two functions: put(key, value) and get(key). They partition the keys 

inserted into the hash table among the participating nodes and usually form a structured overlay 

network in which each communicating node is connected to a small number of other nodes. 
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CAN (Content Addressable Network) [Ratmasamy, Francis, Handley, Karp and Shenker, 

2001] is a DHT which uses a virtual coordinate space represented by a d-dimensional torus. Each 

node has a unique ID in this space. Considering that there are N nodes in the system, a message 

reaches its destination after O(d·N
1/d

) hops. The amount of routing information stored by each node 

is O(2·d). 

In [Stoica, Morris, Karger, Kaashoek and Balakrishnan, 2001], the authors introduce Chord. 

The identifiers of the participating nodes are 160-bit numbers ordered on a circle modulo 2
160

. Each 

node X is connected to its numerical successor and stores a list of O(log2(N)) “fingers” to other 

nodes. The i
th

 element of this list contains the identifier of the peer which succeeds X by at least 2
i-1

. 

A node can reach any other node in O(log2(N)) hops using this list. 

Pastry, presented in [Rowstron and P. Druschel, 2001], uses prefix-based routing in order to 

build an overlay network and route messages within this network. Each node has a 128-bit identifier 

in a circular space. The identifiers and the keys are interpreted as base B numbers. Any message 

reaches its destination after O(logB(N)) hops. The amount of routing information stored by each 

node is O((B-1)·logB(N)). 

 CAN, Chord and Pastry were the initial DHTs which started a whole new research area. 

After them, many other DHTs were developed, like Kelips [Gupta, Birman, Linga, Demers and van 

Renesse, 2003], Kademlia [Maymounkov and Mazieres, 2002] or Viceroy [Malkhi, Naor and 

Ratajczak, 2002]. A very good survey on peer-to-peer overlay schemes, of which a large part is 

dedicated to DHTs, is [Lua, Crowcroft, Pias, Sharma and Lim, 2005]. DHTs are very appealling for 

distributed data storage and retrieval, because every operation requires the traversal of only a small 

number of hops, with small amounts of routing information. Their drawbacks are the following: 

• they require connectivity capabilities between any pair of nodes, so they are less likely to 

deal appropriately with machines located behind NATs and firewalls 

• peers which are close in the overlay network may be very far geographically; thus, latencies 

may be quite high, although the number of hops is small 

• they only support key-based searches 

 

DHTs provided the inspiration and also the building blocks for many of the future advances 

in peer-to-peer architectures. On one hand, DHTs were used for providing multicast communication 

services. Scribe [Rowstron, Kermarrec, Castro and Druschel, 2001] is based on Pastry and 

constructs a single multicast tree for data delivery. Splitstream [Castro et al., 2003] uses multiple 

Scribe trees. 

Multicast communication services based on multicast trees and which do not use DHTs at 

their core have also been proposed. Such a multicast data delivery system, based on multiple, 

concurrently used, balanced trees, is presented in [den Burger, Kielmann and Bal, 2005]. A system 

called ZIGZAG, maintaining a multicast balanced tree, is presented in [Tran, Hua and Do, 2003]. 

Every peer has O(K
2
) degree and the diameter of the tree is O(logK(N)). ZIGZAG has a hierarchical 

structure and whenever a new peer joins the tree, it contacts the root first, which redirects it to 

another peer, and so on. Collaborative multiple multicast tree approaches were presented in 

[Padmanabhan, Wang, Chou and Sripanijkulchai, 2002] and [Venkataraman, Yoshida and Francis, 

2006]. In [Cohen and Kaempfer, 2001], the authors consider several optimization objectives for 

constructing a multicast tree (e.g. a maximum bottleneck multicast tree). Other concerns regarding 

multicast trees are anonymity [Xiao, Liu, Gu, Xuan, Liu, 2006] or transfer reliability. 

On the other hand, the drawbacks of the DHTs motivated researchers to find novel solutions 

for distributed data storage and retrieval systems. Some form of locality awareness was introduced 

in DHTs [Wu et al., 2008], in order to reduce the latencies. Key-based searches were extended to 

range queries by introducing tree-based indexing techniques over DHTs [Zheng, Shen, Li and 

Shenker, 2006], [Lopes and Baquero, 2007], [Gao and Steenkiste, 2004]. However, in tree-based 

schemes, the peer storing the tree root is accessed too often (during every operation). Even with 

replication, the system peers storing the replicas of the tree nodes located closer to the root will be 

accessed more frequently. An extension of Chord to support range queries was presented in 
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[Abdallah and Buyukkaya, 2006]. All of these DHT extensions to range queries only support 1D 

range queries, as DHTs are essentially using only one coordinate value (with the possible exception 

of CAN). To overcome this limitation, systems supporting scalable multidimensional range queries 

were proposed in [Hauswirth and Schmidt, 2005], [Gupta, Agrawal and Abbadi, 2005], [Bharambe, 

Agrawal and Seshan, 2004]  and [March and Teo, 2006]. 

Distributed systems supporting distributed data storage and multidimensional (i.e. multi-

attribute) range queries are useful, for instance, in order to develop efficient resource discovery 

mechanisms. For example, the jobs which are executed in Grids have specific requirements 

regarding the resources they need (e.g. minimum amounts of available memory and storage space, 

minimum and/or maximum CPU frequency, minimum number of processors or cores, maximum 

machine load, and possibly many others). When making a job scheduling decision, a Grid scheduler 

needs to consider only those resources (e.g. machines) whose characteristics satisfy the 

requirements of the job. In many scheduling systems this part is trivially addressed by assuming 

that the scheduler is aware of all the available resources within the system and their up-to-date 

characteristics, either by subscribing to a notification (and/or monitoring) service or by inspecting a 

(centralized) catalogue. 

These simple approaches can be successfully adopted in distributed systems of small and 

medium sizes. However, in large Grids, where thousands or tens of thousands of resources are 

dynamically available and whose characteristics change frequently, it is unfeasible to assume that 

any single entity (or fixed number of entities) can be aware of all the existing resources within the 

system. Thus, scalable, decentralized, distributed resource discovery techniques are required (as 

was noticed in [Hauswirth and Schmidt, 2005] and [Gupta, Agrawal and Abbadi, 2005]). For a 

critical analysis of middleware for Grids and other distributed systems see [Pop et al., 2009]. 

 All of the currently existing systems which support multidimensional range searches suffer 

from one or more of the following drawbacks: 

• they lack load balancing 

• they do not consider data replication (i.e. some data may be lost even if only a single node 

fails) 

• they support only read-only objects 

• the peer-to-peer topology is structured in such a way that some queries may be forwarded to 

too many peers 

 

The peer-to-peer data storage and retrieval system presented in [Andreica, Tîrşa and Ţăpuş, 
2009a] (and part of which is described in Chapter 3) overcomes most of these limitations: it uses 

explicit load balancing (although there are situations in which the technique we chose is not too 

efficient), it replicates objects on multiple peers, it support both reads and writes (although we only 

present the read-only case in Chapter 3) and the peer-to-peer topology is naturally mapped upon the 

multidimensional geometric attributed space. 

As we have seen, most peer-to-peer systems that have been developed were focused on data 

storage, data access, data search and retrieval, or all of these. There have been only few attempts to 

develop peer-to-peer systems for optimizing (point-to-point or multipoint-to-point) data transfers. 

Let’s note first that any DHT could be used for providing fully decentralized point-to-point 

communication services. When we want to transfer data from a peer X to a peer Y, we just transfer it 

along one of the paths within the DHT (using other DHT nodes as intermediate nodes). The DHT 

guarantees that the data will eventually reach the peer Y, even though peer X does not know 

anything about peer Y. However, using the DHTs in this way does not help optimize any 

communication metric, except for the number of hops. Latency may be arbitrarily high (except, 

perhaps, in the case of locality-aware DHTs) and the transfer speed may be even lower than in the 

case of using the best effort transfer service of the Internet. 

Perhaps surprinsingly, the Bittorrent peer-to-peer system may be a better starting point for 

developing data transfer optimization peer-to-peer architectures. Bittorrent is concerned with 

optimizing the upload and download speeds of the participating peers. Thus, there is no surprise in 
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the fact that the Bittorrent protocol was used for developing a data transfer optimization service for 

Grids [Zissimos, Doka, Chazapis and Koziris, 2007]. An agent-based peer-to-peer architecture for 

data transfers (but for wireless sensor networks) was proposed in [Shakshuki, Hussain, Matin and 

Matin, 2006]. Optimization of media flows in peer-to-peer overlays using a distributed approach 

was considered in [Argyriou and Chakareski, 2008]. 

 In the context presented so far, the family of peer-to-peer architectures presented in Chapter 

3 and the multicast tree architecture described in Chapter 6 bring multiple original contributions. At 

first, in Chapter 3, we present a generic peer-to-peer architectural model, which is the first of its 

kind. Then, we implement this model in a communication framework focused on providing high 

throughput data transfers and we evaluate its performance in practical settings. The communication 

framework routes the data over multiple paths in order to improve the throughput, a feature which 

has not been encountered in any of the peer-to-peer architectures developed so far. Based on the 

same peer-to-peer architectural model, we develop a fault tolerant peer-to-peer architecture for 

storing data objects, which efficiently supports multidimensional range queries. This architecture is 

the first of its kind which supports both object replication and multidimensional range queries. 

2.4. System Level Fairness and User Satisfaction in Peer-to-Peer 
Content Sharing Systems 

 Most of the peer-to-peer file sharing systems use some kind of mechanism for imposing 

system-level fairness (i.e. in order to avoid freeriding). Bittorrent is the most popular such system 

nowadays and it uses the tit for tat mechanism [Zghaibeh and Harmantzis, 2008]. In essence, this 

mechanism should ensure that the download speed of a user is proportional to its upload speed. 

Thus, if a user does not upload data, then it shouldn’t be able to download it, either. Based on the 

original Bittorrent protocol many peer-to-peer file sharing applications have been developed. 

Tribler [Pouwelse et al., 2008] is one such application which emphasizes the social aspect more 

than other systems of its type. 

A distributed mechanism called Bartercast has been developed for Tribler in order to prevent 

lazy freeriding [Meulpolder, Pouwelse, Epema and Sips, 2009]. This mechanism essentially 

computes maximum data flows between pairs of peers and is reliable even in the presence of lies 

(i.e. peers which report that they uploaded more data than they actually did). Bittorrent clients 

focused on free riding (like Bitthief) have been developed [Locher, Moor, Schmid, Wattenhofer, 

2006] and they showed that the tit for tat mechanism can be fooled (when most of the other peers 

are cooperative, normal, Bittorrent clients). An analysis of several fairness issues in peer-to-peer 

networks has been performed in [Wong, 2002]. 

 In Chapter 3 we present several techniques which impose system-level fairness at the 

communication layer. These techniques are complemented by a set of other techniques whose 

purpose is to enhance the user satisfaction (i.e. to improve the user’s perception regarding the 

quality provided by the system), like the use of distributed path reservations as a means of 

increasing the data transfer quality. We introduce a novel technique for enforcing fairness at the 

communication layer by sharing the available incoming bandwidth of each peer proportionally 

among multiple path reservations. The concept of using path reservations is not new. It has been 

mentioned in many papers, like [Carbunar, Ioannidis and Nita-Rotaru, 2004], [Jurca and Frossard, 

2008], [Sahni et al., 2007] and [Wu and Katzela, 2000]. Moreover, the idea of sharing bandwidth 

among multiple data transfers under given proportions has also been used before. However, the 

method we use for sharing the incoming bandwidth among reservations is completely new. 

2.5. Network Link and Path Capacity Estimations 

 The capacity of a network link is the largest bandwidth at which an application may send 

data over that link. The capacity of a network path is the minimum of the capacities of the network 

links composing the path. Many end-to-end network path estimation techniques have been 

presented in the literature, like packet pair/train dispersion, variable packet size, or self-loading 

periodic streams (see [Prasad, Dovrolis, Murray and Caffy, 2003] for a short survey on this, and 
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[Lai and Baker, 1999]), each of them having varying degrees of intrusiveness (i.e. generating 

varying degrees of extra traffic required for computing the estimation). 

However, no technique has been proposed for estimating the capacity of the upload link of a 

machine. Information regarding the upload capacity of a link is useful in many peer-to-peer content 

sharing systems, for instance, for selecting super-peers (i.e. peers which large upload capcities 

which could serve other less endowed peers). In Chapter 3 we present the first technique for 

estimating the upload capacity of a network link. The technique uses the concept of helper peers, 

which send upload bandwidth estimations based on packet interarrival times back to the source peer. 

2.6. Congestion Control Algorithms 

 Congestion control is an important issue in many data transfer applications. Congestion 

control is usually implemented at the transport protocol level (e.g. TCP) and its purpose is to avoid 

the congestion of the network. It is well-known that TCP’s congestion control algorithm is too 

conservative and is unable to fill well network links with large latencies and high bandwidths. 

Because of this, many alternatives to the TCP protocol have been proposed, most of them 

modifying only the congestion control algorithm. Scalable TCP [Kelly, 2003], HighSpeed TCP 

[Floyd, 2003], FAST TCP [Jin, Wei and Low, 2004], TCP Cubic [Rhee and Xu, 2005] are just 

some of the novel proposed protocols. Application-level protocols based on UDP have also been 

proposed, e.g. RBUDP [He, Leigh, Yu and DeFanti, 2002], SABUL [Gu, Hong, Mazzucco, 

Grossman] and UDT [Gu and Grossman, 2007]. 

The use of multiple parallel TCP sockets has also been considered as possibly one of the 

simplest alternatives which could be deployed (due to the fact that no support for any new protocol 

is required) [Sivakumar, Bailey and Grossman, 2000]. A good survey on these alternatives to TCP 

is [He, Primet and Welzl, 2005]. 

Most of the efforts in developing these protocols were on overcoming TCP’s limitations in 

the case of high bandwidth – high latency network links and on fairness in regard to standard TCP 

flows (i.e. the new protocols should not behave too aggressively to standard TCP flows; instead, 

they should behave as if they had equal priority to standard TCP flows). A direction which has been 

explored to a less extent is that of developing less-than-best-effort data transfer protocols. Such a 

protocol assumes that it has the lowest priority and tries not to influence the speed of any other 

competing communication flow. However, at the same time, such a protocol should try to fill as 

much of the available upload bandwidth as possible. We can say that we would like for such a 

protocol to always use only that part of the bandwidth which is not used by the other 

communication flows. 

2.7. Distributed Testing Infrastructures 

There are many projects which have tried to tackle the distributed systems performance 

assessment problem from different perspectives: modeling workloads and simulating their run 

under various environment assumptions [Bucur and Epema, 2003], [Ernemann, Hamscher, 

Schwiegelshohn, Yahyapour and Streit, 2002], [Weil and Feitelson, 2001], and creating tools for 

launching benchmarks/application-specific functionality tests and reporting results like the 

GridBench project [Tsouloupas and Dikaiakos, 2005] and the NMI [Pavlo et al., 2006] projects. 

ServMark (presented in Chapter 3) is the natural complement to these approaches, by 

offering a much larger application base, more advanced workload modeling features, and the ability 

to replay existing workload traces. In addition, ServMark can be used for much more than just Grid 

performance evaluation. ServMark is based on the already existing tools DiPerF [Dumitrescu, Raicu, 

Ripeanu and Foster, 2004] and GrenchMark [Iosup and Epema, 2006]. 

2.8. Data Structures for Online Resource Reservations 

Many resource reservation and scheduling techniques [Marchal, Primet, Robert, and Zeng, 

2005] make use of efficient data structures capable of improving the response time. The simplest 

one is an array storing the available bandwidth for each time slot, but this takes O(T) time per 
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operation. The segment tree [Andreica and Ţăpuş, 2008f] and the bandwidth tree [Wang and Chen, 

2002] provide a time complexity of O(log(T)) per operation, but only for simple requests: for D=1 

(D=s2-s1+1) we need a range maximum (minimum) query operation, together with a range addition 

update. A dynamic version of an augmented segment tree is proposed in [Brodnik and Nilsson, 

2002] and a linked-list data structure is presented in [Xiong, Wu, Xing, Wu and Zhang, 2005]. 

The segment tree and the principles behind the block partitioning technique have been 

known for a long time. However, no general purpose algorithmic framework (like the one presented 

in Chapter 4) has been published so far. Moreover, our framework is equally focused on supporting 

range updates and range queries, while most previous papers seem to have ignored the range update 

capability.  

None of the data structures we mentioned (or that we are aware of) can efficiently support 

the complex requests that the Time Slot Group data structure (presented in Chapter 4) does. All of 

them exhibit linear (O(T)) or superlinear (O(T·log(T))) time for at least one of the two operations, 

while our data structure takes sublinear time for both. 

2.9. Real-Time Centralized Scheduling of Data Transfers 

A scheduling framework for real-time data transfers has been proposed in [Cîrstoiu, 2008] 

and [Cîrstoiu, Voicu and Ţăpuş, 2008]. The framework considers that it has full control over the 

underlying network infrastructure. Bandwidth reservations are placed across all the links of a path 

along which a data transfer occurs. The actual data transfer is performed using the FDT software 

[FDT]. The architecture of the data transfer scheduling framework presented in Chapter 4 is an 

extension of the one presented in [Cîrstoiu, 2008] and [Cîrstoiu, Voicu and Ţăpuş, 2008]. We added 

new components, like prediction and simulation components, and we also developed new 

techniques for these components (e.g. using neural networks for pattern detection and forecast, like 

we did in [Andreica, Cătăniciu and Andreica, 2009]). Moreover, all the scheduling algorithms and 

data structures introduced in Chapter 4 are new – they are more complex than the data transfer 

scheduling methods used in [Cîrstoiu, Voicu and Ţăpuş, 2008]. 

A problem which is similar to our centralized deadline-constrained data delivery 

optimization problem (presented in Chapter 4) was considered in [Chen and Primet, 2007]. The 

main difference is that the data is not split into individual packets, but rather viewed as being 

continuous. For their problem, the authors of [Chen and Primet, 2007] provide a polynomial-time 

solution. An online deadline-constrained data transfer scheduling problem similar to ours and to the 

offline problem studied in [Chen and Primet, 2007] was addressed in [Eltayeb, Dogan and Ozguner, 

2004], where several heuristics were proposed. [Soldati, Zhang and Johansson, 2009] discusses a 

deadline-constrained data transfer scheduling problem in wireless networks, in which a solution 

based on network flows in a time-expanded graph is presented. We also use a time-expanded graph 

for our centralized, real-time deadline-constrained data transfer scheduling problem from Chapter 4. 

Mutual exclusion scheduling problems with different constraint graphs (trees, permutation 

graphs, comparability graphs) were considered in [Jansen, 2003] and [Baker and Coffman, Jr., 

1996]. These problems are similar to the ones we considered in Chapter 4 for scheduling the data 

transfer from the same batch. However, the existing solutions only considered requests with unit 

duration and a common deadline. The algorithms we presented introduce variable durations and 

start and finish time constraints into mutual exclusion scheduling problems. 

2.10. Offline Optimal Scheduling of Constrained Point-to-Point 
Communication Flows 

The high multiplicity scheduling problem for files with divisible sizes studied in the section 

5.1 is related to the problems of job scheduling and resource allocation [Pruhs, Sgall and Torng, 

2004]. In [McCormick, Smallwood and Spieksma, 2001], an O(P·log(T)) high multiplicity 

multiprocessor scheduling algorithm is presented for C=2, given the maximum value for the 

makespan T, but the sizes are not considered to be divisible. Another related problem is bin-packing 

with variable bin sizes and divisible item sizes [Coffman, Jr., Garey and Johnson, 1987] or the 
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multiple knapsack problem [Chekuri and Khanna, 2000], for which several objectives have been 

considered (minimizing the number of bins, minimizing costs). Related to the bin packing problem 

is the knapsack problem with divisible item sizes, for which a polynomial time algorithm was 

presented in [Verhaegh and Aarts, 1997]. 

The problem discussed in section 5.2, regading the (high multiplicity) scheduling of two 

communication flows, is related to the flexible job shop problem [Jansen, Mastrolilli and Solis-Oba, 

2000], in which there are several jobs, each of which composed of a number of operations. The 

operations of a single job must be executed sequentially on any of the m machines given. There are 

important differences, however. The problem we considered is a high multiplicity scheduling 

problem and all the operations (packets) that compose a job (flow) are identical. 

TCP buffer management strategies have been proposed in many papers, for optimizing 

different performance metrics [Ocher and Cohen, 1998], [Goldenberg, Kagan, Ravid and Tsorkin, 

2005], [Afsahi and Dimopoulos, 2002]. As far as we know, TCP sender buffer management has not 

been addressed from the perspective discussed in section 5.5. However, by reinterpreting the 

parameters of that perspective, we obtain the (uncapacitated) economic lot sizing problem, which 

has been studied extensively (under different variations) in many papers [Bitran and Yanasse, 1982], 

[Federgruen and Tzur, 1991], [Wagelmans, van Hoesel and Kolen, 1992], [Wagner and Whitin, 

1958].  Optimal O(n·log(n)) algorithms were proposed in the literature. Although we only 

developed an O(n·log
2
n) algorithm, this algorithm is simpler to implement than other approaches. 

This can be noticed by the fact that the pseudocode presented can be immediately turned into a 

program in many programming langiuages. Besides, the techniques employed by the algorithm are 

of interest by themselves, as they can be used for solving other problems, too. 

2.11. Offline Optimal Multicast Strategies 

Communication scheduling in networks with tree topologies was considered in many papers 

(e.g. [Erlebach and Jansen, 1997], [Henzinger and Leonardi, 2003]) and the optimization of content 

delivery trees (multicast trees) was studied in [Cui, Xue and Nahrstedt, 2004]. Optimal broadcast 

strategies in trees in the single-port model have been studied in [Slater, Cockayne and Hedetniemi, 

1981] and [Cohen, Fraginaud and Mitjana, 2002]. In [Koh and Tcha, 1991], the problem was 

enhanced with non uniform edge transmission times and an O(n·log(n)) algorithm was proposed. 

The single-port model refers to the fact that at every time moment, a tree node can only send a 

message to (at most) one of its neighbors. We extended the single-port model with sending and 

receiving constraints in Chapter 6 and we developed a new set of algorithmic techniques for this 

case. 

A dynamic programming algorithm was presented in [Birchler, Esfahanian and Torng, 

1996] for the minimum time broadcast in directed trees, under the single port line model. Reliable 

multicast strategies and reliable multicast trees have been the object of many research papers, like 

[Miloucheva, Reyes, Mahnke and Jonas, 2006], [Kinoshita, Shiroshita and Nagata, 1998] and [Lai 

and Liao, 2001]. 

The k-station placement (k-SP) problem (equivalent to the k-hop multicasting problem 

discussed in section 6.2) was investigated in [Galdi, Kaklamanis, Montangero and Persiano, 2001] 

and was solved in polynomial time for directed trees. The time complexity of the algorithm 

presented in [Galdi, Kaklamanis, Montangero and Persiano, 2001] is O(k·n·M(n)), where M(n) is the 

fastest min-cut algorithm on a graph with n vertices and O(n) edges. M(n) is O(n·log(n)) [Borradaile 

and Klein, 2006] and the time complexity of the algorithm in [Galdi, Kaklamanis, Montangero and 

Persiano, 2001] is O(k·n
2
·log(n)), but the implementation is cumbersome. Our solution is quite easy 

to implement and has a better time complexity, of only O(k·n
2
). 

Some other types of (multicast) transportation strategies in trees were presented in [Andreica, 

Briciu and Andreica, 2009]. 

2.12. Offline Optimal Replica Placement in Tree-Like Networks 

 Center, diameter and longest path problems have been considered in [Ben-Moshe, 
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Bhattacharya, Shi, Tamir, 2007], [Das and  Pas, 2008] and [Lan, Wang and Suzuki, 1999], where 

efficient algorithms were proposed for several weighted and unweighted center problems on cacti. 

Our algorithms from Chapter 7, however, are derived from the dynamic programming solutions on 

trees and may be more easily extended to other problems which have a dynamic programming 

solution on trees. In [Yen and Chen, 2006], a linear time algorithm for the unweighted connected k-

center problem in trees was given. A framework for centrality problems on trees (which resembles 

the framework we proposed to some extent) was introduced in [Rosenthal and Pino]. Center 

problems on path networks were considered in [Halman, 2003]. 

Reliability metrics have been proposed before in many research papers (e.g. [Wood, 2001] 

and [Weichenberg, Chan and Medard, 2004]), but, as far as we are aware, none of them uses the 

unrestricted vertex multicut as a subproblem for computing the metric’s values. The O(V·H) 

solution for the Unrestricted Vertex Multicut Problem on trees was presented in [Guo, Huffner, 

Kenar, Niedermeier and Uhlmann, 2006]. Other papers [Gottlob and Lee, 2007] studied the vertex 

multicut problem, but their focus was on making a distinction between classes of problems which 

are solvable in polynomial time, and not on developing efficient polynomial time algorithms. 

Equitable colorings of trees have been studied either explicitly [Chen and Lih, 1994], [Jarvis 

and Zhou, 2001] or by solving scheduling problems [Baker and Coffman. Jr., 1996]. In [Chen and 

Lih, 1994], the equitable coloring of trees with a minimum number of colors was studied and a 

polynomial time algorithm was proposed. In [Jarvis and Zhou, 2001], the authors present an O(n
3
) 

algorithm for the equitable k-bounded vertex coloring of trees with n vertices. In [Baker and 

Coffman. Jr., 1996], the authors try to minimize the total number of colors used, subject to 

limitations like the maximum number of vertices colored with the same color and they present a 

linear time algorithm for trees, but are not necessarily interested in obtaining an equitable coloring. 

Equitable colorings on graphs with bounded treewidth have also been studied [Bodlaender, and 

Fomin, 2004], but so far the known polynomial algorithms are only of theoretical interest. Our 

equitable coloring algorithm from Chapter 7 brings a fresh perspective on the class of tree 

(equitable) coloring problems. 

Data placement in networks should also consider the network’s reliability, which is an 

important property of a distributed system. Failure detection techniques have been developed 

[Dobre, Pop, Costan, Andreica and Cristea, 2009], in order to decide when a component fails and 

when a replica should replace a failed component. In order to make informed decisions regarding 

network upgrades (with the purpose of optimizing either fault tolerance or the access time to the 

data), network analysis techniques are important. In [Andreica, Ungureanu, Andreica and Andreica, 

2009], efficient algorithms for classifying critical edges relative to matchings and to minimum 

spanning trees are given. 
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Chapter 3 – Peer-to-Peer Architectures and Techniques for 
Data Transfer and Retrieval Optimization 
 

 

 

This chapter presents a family of peer-to-peer architectures, models and techniques used for 

the online optimization of point-to-point communication flows, as well as for optimizing the storage 

and retrieval (search) of distributed data objects. The structure of the chapter is the following. At 

first, a generic peer-to-peer architectural model is introduced, after which two peer-to-peer 

communication frameworks based on this model are presented. One of them follows the 

architectural model closely, while the other one is based on a hybrid architecture (making use of 

both centralized and decentralized components). Afterwards, two objectives relevant in peer-to-peer 

content sharing systems, fairness and (user perceived) QoS, are considered, for which novel 

techniques, implementations and experimental results are presented. 

Section 3.5 introduces another fully decentralized peer-to-peer architecture, whose purpose 

is to store data objects and allow efficient retrieval (multidimensional range search) of the stored 

objects. This architecture follows the architectural model from section 3.1 but differs in purpose 

from the other two peer-to-peer systems based on the same model: it does not optimize general 

point-to-point communication flows, but rather communication flows generated by data access 

requests. In the end of the chapter, a new upload bandwidth estimation technique is introduced, 

which is quite useful in peer-to-peer content sharing systems, as well as a distributed testing 

frameworks for distributed systems (peer-to-peer systems in particular). 

The original contributions presented in this chapter were published in [Andreica, Dragomir 

and Ţăpuş, 2009], [Andreica, Borozan, Bălăceanu and Ţăpuş, 2009], [Andreica and Ţăpuş, 2009d], 

[Andreica and Ţăpuş, 2009f], [Andreica, Tîrşa and Ţăpuş, 2009a], [Andreica, Tîrşa and Ţăpuş, 
2009c], [Andreica, Legrand and Ţăpuş, 2007] and [Andreica et al., 2006]. 

3.1. The Design of a Generic Peer-to-Peer Architecture 

This section presents a generic peer-to-peer architectural model which will be used in future 

sections for developing peer-to-peer systems for optimizing (multi)point-to-point data transfers, as 

well as storage and retrieval of data objects. 

3.1.1. Properties of the Peer-to-Peer Architecture 

The peer-to-peer architecture must have the following properties: 

• every peer must know only a small subset of other peers 

• using local decisions only, we must be able to reach any peer Y, starting from any (other) 

peer X  

• every peer must make message routing decisions based on local information only (i.e. 

information which can be obtained from its neighbors or from itself) 

 

In order to provide all these properties, every peer will be assigned the coordinates of a point 

in a d-dimensional space. Every peer can generate its own coordinates, using d different hash 

functions. The arguments of the hash functions can be any combination of IP address, MAC 

address, time of day, application-specific information, randomly generated information, and so on. 

By using hash functions on a large enough number of bits, we can expect, with a high probability, 

that the set of coordinates of each peer will be unique. 

Every peer X will periodically broadcast its existence to all the peers which are located at 

most BR≥2 hops away from X in the peer-to-peer topology (BR is the broadcast radius). Every peer 

X will maintain a set I(X) containing the peers Y which broadcasted their existence to X during the 

past Tlimit,1 seconds. Periodically, based on the peers in the set I(X), peer X will choose its set ND(X) 
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of desired direct neighbors. For each peer Y in ND(X), peer X will initiate a new connection to Y (or 

will mark the connection as desirable and announce this to peer Y, if such a connection is already 

open). 

We denote by N(X) the current set of direct neighbors of a peer X. If a connection from X to 

a peer Y in N(X) has not been marked as desirable by any of the two peers (X and Y) during the past 

Tlimit,2 seconds, the connection will be closed. It should be obvious that the sets of peers I(X) and the 

structure of the peer-to-peer topology are co-dependent. The set I(X) depends on the current 

structure of the topology and the structure of the topology changes based on the information in I(X). 

We also draw attention to the fact that the connections we speak about are only logical connections. 

From an implementation point of view, they may correspond to one or several (open) TCP 

connections between the same pair of peers X and Y, or to UDP based communication. 

The part concerning the way a peer X chooses its neighbors from the set I(X) was left 

unspecified. This is because we want to construct a general framework and allow the possibility of 

using any neighbor selection method. However, the chosen method must create a topology which 

satisfies the 3 properties we mentioned. Several neighbor selection methods are presented next, 

after which the joining and leaving processes of the peers are described. 

Note that the described model ignores NAT and firewall issues and assumes that any peer 

may initiate a connection to any other peer. 

3.1.2. Neighbor Selection Methods 

A desirable property of a neighbor selection method is to be convergent, i.e. considering that 

no new peer joins the system and no old peer leaves the system, after a finite amount of time every 

peer X should reach a state where it will not change its set of neighbors N(X) anymore. Let’s denote 

by co(X,j) the j
th

 coordinate assigned to peer X. 

In the first method, for every dimension j (1≤j≤d), every peer X sorts the peers Y in I(X) 

according to co(Y,j). Then, peer X splits the peers Y from I(X) into two sets: A(X,j) contains the 

peers Y with co(Y,j)≤co(X,j) and B(X,j) contains those peers Y with co(Y,j)>co(X,j). Peer X will 

connect to the K≥1 peers Y from each set A(X,j) and B(X,j), whose j
th

 coordinates are closest to 

co(X,j) (thus, at most 2·K such peers). We call this method the Independent Dimensions method. 

A second method (the Hyperplanes method) consists of choosing a set of H hyper-planes 

passing through the origin of the geometric coordinate system. These hyper-planes define Q regions 

in the d-dimensional space (all the points in the same region are in the same half-space relative to 

each hyper-plane). Each peer X translates itself to the origin and classifies all the peers Y in I(X) 

according to the regions in which they are located, relative to the peer X. The desired neighbors of 

peer X are the (at most) K≥1 closest peers from each of the Q regions (closeness is measured using a 

distance function like, for instance, the L1, L2 or L∞ norm). 

Another method is based on computing the local Voronoi diagram, using any distance 

function (e.g. any Lp norm, 1≤p≤∞). Peer X computes the (d-dimensional) Voronoi diagram of the 

points assigned to the peers in the set EI(X)=I(X) ∪ {X}. We define by Vlocal(X,Y) the Voronoi cell of 

a peer Y from EI(X). The set of desired neighbors of peer X is composed of those peers Y in EI(X) 

such that Vlocal(X,Y) touches (is adjacent with) Vlocal(X,X). This method stabilizes after a finite 

amount of time and every Voronoi cell Vlocal(X,X) converges towards the Voronoi cell Vglobal(X) of 

the point assigned to peer X, where Vglobal(X) is computed by considering all the peers in the system 

(not just those in EI(X)). This Local Voronoi method has several advantages upon other methods, 

but the computation of the Voronoi diagram in d≥3 dimensions is a tedious task. Other methods, 

based on distributed geometric spanner construction [Farshi and Gudmundsson, 2005], can also be 

used. 

3.1.3. Joining and Leaving 

When a peer X joins the system, it must know at least one other peer which is part of the 

system. The peers it initially knows form the initial set I(X). Based on this set, peer X chooses an 

initial set of neighbors N(X). From now on, peer X is within the system and will gradually change 



 38 

its neighbors until the topology stabilizes. 

When a peer X leaves the system, it will no longer broadcast its existence to the neighboring 

peers (located at most BR hops away from X). Thus, after Tlimit,1 seconds from the moment X leaves 

the system, no other peer will consider X as a potential (direct) neighbor. 

3.2. An Implementation of the Peer-to-Peer Generic Architecture for Data 
Transfer Optimization 

 In this section we describe a communication framework which was developed and 

implemented according to the principles of the peer-to-peer architectural model introduced in the 

previous subsection. The main aspects which will be covered are: 

• name space and topology construction and maintenance 

• the kind of routing information that is being maintained by the peers 

• the message routing algorithms used 

• methods for estimating the available bandwidth on the connections between peers 

3.2.1. Name Space and Topology Construction and Maintenance 

We consider that the communication network is composed of one or more communication 

nodes (or cells). Each cell may have zero or more names. A name is simply a string of characters 

which must not contain the special character ‘*’. The names are coordinates in a metric space where 

the distance between two names is the lexicographic distance. The names assigned to a cell are 

important in establishing the topology of the overlay network. For each name it has, the cell tries to 

establish direct connections to the K closest cells having a name lexicographically smaller and the K 

closest cells having a name lexicographically larger.  

 
 

Fig. 3-1. A Possible Overlay Network Topology for K=2, M=1 and P=0. 

Because some of these cells might not be directly accessible, because of NATs or firewalls, 

the K closest directly accessible cells are chosen. A cell also tries to connect to M other cells, 

chosen randomly from the set of known cells, and to P of the known cells which are very distant in 

the overlay network, in order to maintain a well-connected network. Fig. 3-1 shows a possible 

network topology for 8 cells, K=2, M=1 and P=0. 

The applications using a given cell for communication purposes may add a new name or 

remove one of the old names. They can do this based on their current communication interests. If a 

group of applications expects to communicate intensely, they may add names which are close to 

each other in the metric space, thus bringing the corresponding cells closer in the overlay network. 

These names may also be added in order to reflect geographic proximity and make the cells 

establish low latency connections, by using the reversed DNS name or a hierarchically structured 

name (for instance, “country.city.institution. machine_name”). 

The names of the cells form a 1D geometric space (using the terminology form the Section 

3.1). A cell may have multiple names, thus effectively corresponding to multiple points in the 1D 

space. 
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3.2.2. Routing Information 

Routing information is exchanged between cells by sending routing update messages at 

regular intervals. These messages are sent to all the cells located at a distance of at most R hops in 

the overlay network, where R is the neighborhood radius. There are two types of routing update 

messages: updates which advertise the state of the direct connections and updates advertising other 

known peers in the network. 

The first type of messages contains information about the measured available bandwidth of 

each direct connection. This information is used by each cell in order to build a detailed view of 

their neighborhood. 

The second type of routing update message contains information about other cells in the 

overlay network that the sending cell knows about. For each known peer, also called destination 

peer, a set of cells from the neighborhood of the sending cell is sent. The peers in this set are 

candidate nodes when choosing an intermediate cell in the routing process. For each peer in the set 

an estimation of the overall available bandwidth of all the paths towards the destination peer is also 

sent. Based on this information, the receiving cell computes the available bandwidth on all the paths 

from the sending cell to the advertised cell which do not contain any other node in the 

neighborhood of the receiving cell. The names of the advertised cells and the computed information 

are stored in a trie. 

In order to avoid the propagation of every piece of information to every node in the system, 

each cell allows only a maximum number of T entries in the trie. Once this threshold is reached, 

either new entries or already existing entries should be discarded. The algorithm we used allows, in 

fact, for a maximum of f·T (f>1) entries in the trie and periodically selects only the T most 

significant such entries, deleting the others. Newer entries, entries which have a shorter common 

prefix with all other entries at the moment of insertion and entries which are frequently used in the 

routing process are preferred. 

3.2.3. The Routing Algorithm 

3.2.3.1. Routing Unicast Messages 
Routing unicast messages is a two step process. First, the name of the destination is looked 

up in the trie. Here one of the peers which are located in the neighborhood of the cell routing the 

message and which advertised paths towards the destination is chosen. This choice is non-

deterministic. A peer i is chosen as an intermediate cell according to the formula 

Pi = ABi /SAB .                                                       (3-1) 

Pi is the probability to choose the i
th

 peer, ABi is the advertised available bandwidth of peer i 

towards the destination and SAB is the sum of the available bandwidths of all the candidate peers. 

Only peers having a name which is lexicographically closer to the destination than any of the names 

of the cell making the routing decision are considered as candidate peers, in order to make sure that 

the lexicographic distance towards the destination decreases. In case the name is not found in the 

trie, the name which is lexicographically closest to the destination is chosen. This operation can be 

performed very efficiently using the trie data structure. 

The second step consists of choosing a path towards the intermediate peer selected in the 

first step. In order to make this decision, the knowledge about a cell’s neighborhood is interpreted 

as a directed graph. The vertices of the graph are represented by the cells of the network and the 

edges of the graph are represented by connections between these cells. Each edge has an associated 

capacity equal to the measured available bandwidth of that edge. The graph is directed because the 

measured available bandwidth might differ when measured from each of the two end points of each 

edge. 

Considering, in turns, each cell in the neighborhood as a sink and the current cell as a source, 

the Edmonds-Karp algorithm is used in order to compute the maximum flow in the corresponding 

flow network. After computing the flow, a maximum of D paths from the source to the sink are 



 40 

selected and stored. Each path is chosen considering only the graph’s edges which have a positive 

amount of flow. For each such path, the minimum amount of flow f on any of the edges on the path 

is computed. This will be the capacity of that path. The quantity f is then subtracted from the 

amount of flow existing on each of the graph’s edges which are part of the path. The next path is 

computed considering the new amounts of flow on the graph’s edges, and so on. The process of 

selecting a path from the current cell to an intermediate cell located in its neighborhood consists of 

non-deterministically choosing one of the paths. Each path i is chosen with a probability computed 

according to the formula 

PAi = Capi /SumCap.                                                         (3-2) 

 
Fig. 3-2. A Possible Path from B.1 to D.2. 

PAi is the probability to choose the i
th

 path, Capi is the capacity of the i
th

 path and SumCap is 

the sum of the capacities of all the selected paths towards the intermediate cell. The message is then 

routed along this path. The next cell making a routing decision is the last cell of the selected path. 

The path a message follows to the destination is composed of two types of cells, chosen in 

the two steps of the routing process. The first type is represented by the main cells and they are the 

ones making routing decisions. The names of these cells get increasingly closer to the destination’s 

name, as the cells are located further away along the path. Between two consecutive main cells on 

the path there may be several secondary cells. The secondary cells only pass the message forward 

and are not subject to naming restrictions. However, all the secondary cells between two 

consecutive main cells A and B are in the neighborhood of the cell A. 

The separation into main and secondary cells is based only on the actions taken when 

routing a message along a path. Any cell could be a main cell for some messages and  a secondary 

cell for others. Fig. 3-2 shows a possible path a message could follow between the cells B.1 and D.2. 

The path contains the cells B.1, A.2, C.1, B.2, C.2, D.2, in this order. The network topology is the 

one presented in Fig. 3-1 and the radius R of a cell’s neighbordhood was considered to be 1 hop. 

3.2.3.2. Routing Multicast Messages 
The presented architecture can also route multicast messages, although this is not its main 

purpose. A multicast message is sent to a destination of the type “PREFIX*”, meaning that the 

message must reach all the cells having a name starting with the prefix “PREFIX”. Routing such a 

message consists of two stages. In the first stage, the message is routed as a unicast message. The 

message is being routed towards cells having an increasingly longer common prefix with the 

destination. 

Eventually, the message will reach a cell having the prefix “PREFIX”. When such a cell is 

reached, the second stage begins. The multicast message is broadcasted towards all the neighbors of 

the cell which have a name starting with the prefix “PREFIX”. These neighbors will broadcast the 

message further to other peers having a name beginning with the string “PREFIX”, and so on. 
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Because of the way the topology is built, all the cells sharing the same common prefix will try to 

form a connected subgraph in the overlay network and the message will reach all of the destinations. 

3.2.4. Measuring the Available Bandwidth 

We need to measure the available bandwidth for every direct connection. In order to do this, 

we will consider every connection to be a cylindrical pipe, having a certain length and a certain 

cross section. The “length” L of the pipe will be measured in milliseconds. The cross section of the 

pipe has an area A and will be measured in kilobytes per second. The volume of the pipe, which is 

the length multiplied by the area, is measured in kilobytes. The capacity of the pipe is its cross-

section A and is the value we want to determine. 

In order to do this, L is periodically estimated based on the round-trip times of several small 

messages (a few bytes in size). Then, when sending a “large” message having X bytes through the 

pipe, its “length” will be X/A. The time it takes for the whole message to reach the other side will be 

(L+X/A). Fig. 3-3 shows a message having X bytes being sent on the connection. The measured RTT 

(round-trip time) will be equal to twice the value of (L+X/A) and the desired value of A will be 

L
2

RΤΤ

X
A

−

= .                                                             (3-3) 

However, if X/A is less than 1, the RTT will be approximately equal to 2·L and the 

denominator in (3) would be close to 0. In order to achieve a good result, we would need a value of 

X for which X/A is significantly larger than 1. We can use binary search for X, between a lower limit 

of 1 byte and some specified upper limit. An upper limit of 3 megabytes for X is enough even for 

connections having a bandwidth of 10 Gbps. With the binary search, we are looking for values of X 

for which the RTT is not too close to 2·L, aiming for an RTT value close to F·L (2.2<F<4). Binary 

search messages are sent at regular intervals. 

The value of the estimated available bandwidth is computed with the following formula: 

 ABnew = t · ABold + (1-t) ·  ABcomputed .                                        (3-4) 

t is a real number between 0 and 1, ABcomputed is the value of the available bandwidth 

computed based on the size and RTT of the most recent message, according to (3), ABold is the 

previous estimation of the available bandwidth and ABnew is the new estimation of the available 

bandwidth. 

Because the value of the available bandwidth might largely fluctuate over time, we do not 

use a tight binary search. Instead, when we need to increase the lower  limit of the binary search, we 

will slightly increase the upper limit, too. Similarly, when decreasing the upper limit of the binary 

search, we will also decrease the lower limit a bit. Doing so, we provide a solution for the case 

when the value of the available bandwidth suddenly moves outside the current range of the binary 

search. 

The algorithm estimates the available bandwidth of the TCP connection, as seen from the 

application level. It does not try to measure the end to end available bandwidth outside the context 

of the running application. The measurements are affected by the TCP buffer sizes and by the time 

the messages spend in the message queues. In order to achieve higher throughput, several TCP 

tuning techniques should be used, as mentioned in [Lee et al., 2001]. These techniques are outside 

the scope of this book. 

 
Fig. 3-3. Sending an X Bytes Message on the Connection. 
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3.2.5. Experimental Results 

 The communication framework was implemented using the Java programming language. 

The implementation has been tested using only a small number of cells. Our test scenarios consisted 

of 8 cells running on 8 different machines, located at 3 different sites. 2 machines were located at 

the California Institute of Technology (Site 1), 3 machines were located at CERN (European Center 

for Nuclear Research), in Switzerland (Site 2) and 3 machines were located at the Polytechnic 

University of Bucharest, in Romania (Site 3). 2 machines (one at Site 2 and one at Site 3) were 

located behind firewalls. At the beginning, every machine had a single name and knew the IP and 

port of one or two other peers. The neighborhood radius was chosen to be 2 hops. 

The 2 communication cells located at the first site were named: Site1.Host1 and Site1.Host2. 

The 3 cells located at the second site had a similar naming model, with names ranging from 

Site2.Host1 to Site2.Host3. The machines at Site 3 were named following the same pattern, ranging 

from Site3.Host1 to Site3.Host3. Every communication cell tried to connect to the 2 closest cells 

having a name lexicographically smaller, the 2 closest cells having a name lexicographically larger 

and another randomly chosen cell. All the communication cells were started roughly at the same 

time. 

The test cases consisted of sending trains of packets. We considered 3 test scenarios. In the 

first one, 10.000 messages each having 25.000 bytes were sent from Site1.Host1 to Site3.Host1. Fig. 

3-4 shows the way the total amount of bytes received varied in time. As can be noticed, all the 250 

million bytes were received within a time interval of approximately 3 minutes, achieving an average 

transfer rate of nearly 1.4 MB/s, with a peak rate of about 2.3 MB/s during the first minute. For 

comparison purposes, we also transferred 250 million bytes using SCP (Secure copy), which 

achieved a peak rate of 210 KB/s. 

Except for the SCP test, we also wanted to know what the transfer rate would be if only the 

direct connection between Site1.Host1 and Site3.Host1 was used. In order to achieve this, we 

generated a second test scenario, where only Site1.Host1 and Site3.Host1 were started. Fig. 3-5 

shows the variation with time of the total amount of bytes received by Site1.Host1. We achieved a 

constant transfer rate of approximately 280 KB/s. The transfer rate was noticeably higher when 

using all the 8 cells, proving that our balanced message flow distribution could be a feasible 

technique for achieving high throughput data transfers. 

 
Fig. 3-4. The Variation with Time of the Total Amount of Bytes received by Site3.Host1 during the First Test 

Scenario. 

In the third test scenario we wanted to understand if the message routing overhead was 

significant. For this, we sent 10.000 messages each having 25.000 bytes between two 

communication cells located on two machines at Site 2 (Site2.Host1 and Site2.Host2). The transfer 

rates ranged from 6 MB/s to 9 MB/s. We also transferred 250 million bytes between the 2 machines 

using SCP. With SCP, the transfer rate reached a peak of approximately 11.3 MB/s. Since in this 
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scenario most of the messages were routed along the direct connection between the 2 machines, the 

difference between the transfer rates of our system and those achieved by SCP was caused by the 

routing overhead. 

 
Fig. 3-5. The Variation with Time of the Total Amount of Bytes received by Site3.Host1 when using only the 

Direct Connection to Site1.Host1. 

Other test scenarios consisted in testing the multicast message delivery, but the amount of 

transferred data was quite small and the tests were only intended to verify the correctness of the 

implementation. 

The test results showed that our implementation worked well in a small distributed system. 

However, the good behavior cannot be extended to large distributed systems without further testing. 

The test results were also insightful, because we noticed that the routing overhead may be 

significant in some situations. 

3.3. A Hybrid Implementation of a Peer-to-Peer Data Transfer 
Optimization Framework 

This section introduces another peer-to-peer architecture for optimizing end-to-end data 

transfers between its peers, by forwarding messages over multiple paths. The architecture mixes 

centralized components (whose functionality could have been implemented in a distributed manner 

only with some difficulty) with a decentralized behavior. We assume that the peers are located on 

machines throughout the Internet and, thus, information about and the control of the underlying 

physical network links is impossible (particularly as other applications with unpredictable traffic 

patterns share the same medium). 

The main components of the architecture are: 

• Central Tracker - maintains information about all the peers in the system and the content 

stored by them 

• Peer - it participates in the data transfer process 

The main components of a peer application are: the Communication Module, the Routing 

Module and the Data Handling Module. 

The Central Tracker initially contains information about the locations (IP addresses and 

ports) of a set of (K) servers distributed throughout the world. These servers will be used as 

landmarks. When a peer joins the system, it contacts the Central Tracker and obtains the 

information regarding these servers. It then measures its ping times towards each of these servers 

and computes an identifier (ID) based on these ping times - there are many possibilities, ranging 

from a point in a K-dimensional space to a simple combination (e.g. maximum, average) of the K 

ping times. In our application we chose the simple case of computing their average. After a peer 

computes its ID, it announces the Central Tracker. The Central Tracker may slightly adjust the ID 

(in case it is already used by a different peer) and then it communicates the final value of the ID to 
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the peer. Afterwards, the association between the ID and the IP address and port of the peer is 

stored on the tracker. 

A data transfer request consists of transferring certain data from a source to a destination. 

The request is submitted by the destination node. We will consider here a slightly more general case, 

in which, instead of the source, the request specifies a piece of content to be downloaded. Then, the 

central tracker is queried and the destination peer obtains a list of all the source peers which contain 

the requested piece of content. Thus, the data transfers will in fact be multipoint-to-point. The peer 

application on the destination node is responsible for splitting the desired content into smaller 

pieces and requesting each piece separately from one of the sources. Piece requests are sent from 

the destination to one of the sources directly. 

Once a peer receives a piece request message, it grabs the requested data into memory and 

then the data is passed to the routing module. The routing module will choose a peer to which the 

data will be sent - that is, the content is not necessarily sent directly to the requesting peer. The 

routing module works as follows. It receives data from the communication module (received from 

another peer) or is passed data from the user application. The data packets processed by the routing 

module are of two types: CONTENT and ACK. Every data piece that arrives at the routing module 

has an associated destination identifier. 

For a piece of data of type CONTENT, the routing module first checks if the current peer is 

the final destination of the data. If the current peer P is the final destination, then the data is passed 

to the user application and an ACK is sent back to the (last) peer which forwarded the data to P. The 

ACK will follow the reverse path of the piece of data and will eventually reach the source of the 

data. If P isn’t the final destination of the data, then it contacts the central tracker in order to obtain 

a list of “neighbors” of the current peer P. This list can alternatively be requested from the tracker 

periodically and maintained locally. 

In order to define what a neighbor Q of a peer P is, let’s consider that X.ID denotes the 

identifier of a peer X. Let destid be the identifier of the final destination of the data. The distance 

dist between P.ID and destid is computed (in our case, the absolute difference between the two 

identifiers). The neighbors of P are those peers Q such that the distance between Q.ID and P.ID 

belongs to the interval [a·dist, b·dist] and Q.ID is closer to destid than P.ID. In the implementation, 

we used a=0.15 and b=0.85. However, every peer may use its own values of a and b and may even 

update them any time it considers appropriate. We decided that the peers Q’ at a distance smaller 

than a·dist are too close to P and would induce too many intermediate hops towards the destination. 

On the other hand, the peers Q’’ at a distance larger than b·dist may be too close to the destination 

and, thus, the transfer may not benefit completely from the multi-path property. Among the 

“neighbors” of the current peer P, we will choose the one having the smallest average ACK return 

time towards the destination for the given data size. 

Every peer P’ maintains the values ACKRT(P’.ID,R’.ID,D), representing a weighted average 

of the time durations between the moment when a piece of size D was received by P’ in order to be 

sent towards the destination R’, and the moment when the corresponding ACK was received. If we 

have some neighbors Q for which ACKRT(Q.ID,destid,D) was not computed, yet (because no ACK 

was received back), then we will choose one of these neighbors as the next intermediate peer (in 

order to give them a chance). We also implemented the option of not using ACKs. In this case, one 

of the neighbor peers is chosen randomly as the peer to which the data piece will be forwarded. If 

no neighbor satisfying the specified restrictions is found, then the current peer P sends the data 

directly to the destination peer. 

When the routing module of a peer P receives a piece of data from another peer Q, it stores 

an association between the identifier of the piece of data (every piece of data has a unique 

identifier), its size D and the peer Q, together with a time stamp and the destination identifier of the 

data. Then, when an ACK corresponding to the data piece is received from another peer (or 

generated by peer P if it is the final destination of the data piece), then peer P will forward the ACK 

to the peer Q from which the original data piece was received. 

When receiving an ACK, peer P will update ACKRT(P.ID,R.ID,D) as 
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pa(P.ID,R.ID,D)·ACKRT(P.ID,R.ID,D)+(1-pa(P.ID,R.ID,D))·currACKRT, where R is the 

destination of the original piece of data, currACKRT is the difference between the current time 

moment and the timestamp of the association stored when the data piece corresponding to the ACK 

was received and D is the size of the original piece of data. pa(P.ID,R.ID,D) is a weight factor, 

between 0 and 1, and its value may be changed dynamically. 

When a peer P forwards a data piece (not an ACK) to another peer Q, it will increment by 1 

a counter cnt(P.ID,Q.ID,D,destid) representing the number of data pieces of size D whose 

destination identifier is destid which were sent from peer P to peer Q and for which no ACK was 

received. When an ACK is received from a peer Q corresponding to a data packet of size D sent to a 

destination destid, the corresponding counter cnt(P,Q,D,destid) is decremented by 1. Then, when 

routing a new piece of data of size D towards a destination destid, peer P will disconsider as 

neighbors all the peers Q for which cnt(P.ID,Q.ID,D,destid) (or a combination of the values 

cnt(P.ID,Q.ID,*,destid)) is above a threshold set by peer P. 

A peer uses the following strategy for requesting a piece of content from the list of sources 

owning the requested content. It logically splits the content into pieces of equal size D (e.g. 256 KB 

chunks), except possibly for the last one. Then, it starts by requesting C≥1 different pieces from 

each source node (or possibly fewer from the last node from which a request is made). As soon as a 

piece arrives from a source node and not all the pieces have been requested, a new unrequested 

piece is requested from that source node. This way, whenever a piece is received, C-1 other pieces 

are on the pipeline to the considered source node. Source nodes which transfer the content at higher 

speeds to the destination will be asked data pieces more frequently and will thus send more data 

overall. 

Note that C is a parameter which may be different for every peer. Moreover, the same peer 

may modify the parameter C in real-time. For instance, it may use a value C(i) for every source 

node i. It could start with small values C(*); then, the destination could increase slightly the values 

C(i) corresponding to those source nodes i with high bandwidths and high latencies (in order to fill 

the pipeline better). 

When a peer wants to send a message to another peer, it first checks if it has an open TCP 

connection to that peer. If it doesn’t, then a new TCP connection is opened. Then, whenever a 

message is sent or received along a TCP connection, a lastUsed variable associated to the 

connection is updated (i.e. set to the current time moment). When a TCP connection has not been 

used for a time duration larger than one chosen by the peer, the connection is closed. 

The described peer-to-peer architecture was implemented in the Java programming language. 

4 peers were started on 4 different computers, 3 of which were located in Bucharest (denoted by E, 

T and P) and one of them located at the Technical University of Delft, in Netherlands (denoted by 

O). We used a video file (video.mp4), with a size of 30.696.688 bytes (approx. 29.3 MB). We chose 

a file which was large enough to emphasize the improvements that our architecture can bring. The 

file was split into pieces of 256 KB each (except possibly for the last chunk). 

We computed the data transfer duration under several conditions. The duration was 

computed as the time difference between the moment when the file was requested and the moment 

when the last piece of the file was received. At first we measured the duration of the data transfer 

between the computers E and O using SCP (Secure Copy). SCP is not one of the fastest data 

transfer applications, particularly because it needs to encrypt and decrypt the data, but we 

considered that it was sufficiently popular to be a relevant baseline for our application. Then, we 

started the central tracker on computer E, where we also started the source peer. We measured the 

duration of the data transfer from E to O using our application, without using any other intermediate 

peers. Then, we progressively added the peers T and P and re-ran the test each time. These peers 

were used as intermediate peers. Due to the limited network testbed we decided not to use ACK 

messages. We used C=1 in all the tests. 

Fig. 3-6 presents the time required to transfer the video file from E to O in the following 

conditions. At x=0 we have the duration of the SCP data transfer (253 sec). At x=1 we have the 

duration of the transfer between E and O using our application (285 sec). We notice that the 
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duration is higher than in the case of SCP, mostly due to the lack of code optimizations. At x=2 we 

used one extra peer and at x=3 we used two extra peers. 

 
Fig. 3-6. Data Transfer Duration under Various Circumstances. 

The test results indicate that the application scales well and improves the duration of the data 

transfers significantly, even under the restricted conditions of our network testbed. 

3.4. Fairness and QoS Enhancement Models and Techniques for Peer-
to-Peer Content Sharing Systems 

 In this section we consider peer-to-peer content sharing systems and focus on two objectives 

which are very important in such systems. The first objective is concerned with system level 

fairness. The system’s participants which contribute more to the well-being of the system should 

have more privileges than other participants. The second objective concerns user-level (perceived) 

quality of service. The users of the system will only use it if the quality of service of accessing (and 

transferring) the content found within the system is (perceived to be) good enough. Thus, the 

experienced QoS of the users is an important aspect of a peer-to-peer content sharing system. 

 We will conceptually divide the functionality of a peer-to-peer content sharing application 

into two layers: the application layer and the communication layer. In the rest of this section we will 

present several novel techniques for optimizing the system level fairness and the user’s (perceived) 

quality of service, which are applicable at the communication layer. We also developed application 

layer techniques addressing the same two objectives in [Andreica, Borozan, Bălăceanu and Ţăpuş, 
2009], but they were not included in this book. 

The peer-to-peer network is considered to be completely distributed and each peer knows 

only of those peers with which it has previously established contact. The connections between 

neighboring peers in the overlay network consist of (bidirectional) TCP connections, for reliability 

purposes. The network allows peers to join or leave the system at any time, and without prior notice. 

The communication (and data transfer) between peers is performed through other intermediate peers 

of the overlay network. In order to transmit information from a peer A to a non neighboring peer B, 

the message will travel on a path of directly connected peers: 

 
Fig. 3-7. A Path from Peer A to Peer B in the Overlay Network. 
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3.4.1. QoS Enhancement through Path Reservations 

The method proposed for enhancing the quality of the data transfers is that of using path 

reservations. Every peer X of the system has a reservation budget rv(X) and every data connection 

DC between two peers X and Y has a reservation budget of re(DC) (the value is stored both by X 

and Y). When a peer X wants to transfer data from/to a peer Y, we will initiate a path reservation 

request from peer X towards peer Y. The reservation request has a unique identifier rid and a 

priority prio(rid). The system needs to find a path from X to Y for which the reservation budgets of 

each connection and peer on the path is at least prio(rid). In order to find this path we will use a 

flood search method. Peer X sends the reservation request to every neighbor Z, which then sends it 

further, until it eventually reaches peer Y. 

When a peer A receives a reservation request rid from a neighboring peer B on a connection 

DC, it first checks if the request was received before (in which case it is dropped immediately). If it 

is a new reservation and rv(A)≥prio(rid), then peer A creates a partial reservation, sets 

prev(A,rid)=(p=B, c=DC) and decreases rv(A) by prio(rid). Then, peer A will send the reservation 

request to all of its neighbors (except B). When a peer A wants to send a reservation request rid 

further to a peer C, it will choose a connection DC between A and C s.t. re(DC)≥prio(rid) (among 

all the connections satisfying this constraint, it may choose the one with the largest, smallest or p
th

 

largest/smallest current reservation budget). If such a connection DC exists, then a partial 

reservation for DC is created by peer A. re(DC) is decreased by prio(rid) and then the reservation 

request is sent to peer C (on any of the connections between A and C, not necessarily on the 

connection DC). 

Every partial reservation has an associated timer (set by the peer creating the reservation). If 

the reservation rid is not confirmed until the timer expires, then the partial reservation is cancelled 

(i.e. if it was a partial reservation for a connection DC, then re(DC)=re(DC)+prio(rid); if it was a 

partial reservation for a peer A, then rv(A)=rv(A)+prio(rid)). 

When a peer A wants to modify the reservation budget of a connection DC between A and C, 

it must do so in an atomic manner, since the connection is shared by both peers A and C. Peer A will 

ask peer C if it agrees with the proposed modified value of re(DC). If a positive answer is not given 

within a specified time interval (e.g. because peer C also wanted to modify re(DC) at the same 

time), then: (1) if peer A wanted to create a new partial reservation (or transform one into a full 

reservation), then peer A either retries later (up to a maximum number of retrials) or just gives up 

(in case of giving up, peer A does not send the reservation request further to peer C, or the 

confirmation message to anyone else); (2) if peer A wanted to cancel a partial (or full) reservation, 

then peer A will retry after a specified time interval (cancellations of any reservations must succeed 

as long as DC is an active connection).  

Eventually, the reservation request will either get stuck at some peers, or will arrive to peer 

Y, which will send a reservation confirmation message back to X. The confirmation message will be 

sent along the prev “pointers”, i.e. when the confirmation of the reservation rid reaches a peer A, it 

will change its partial reservation (of peer A) into a full reservation. Then, if peer A previously 

created a (currently non-expired) partial reservation rid on a connection DC towards a peer C, it 

will change the partial reservation rid of the connection DC into a full reservation. After 

successfully doing this, A sends the reservation confirmation message to the neighboring peer 

prev(A,rid).p along one of the connections towards this peer. The confirmation will arrive back at 

peer X and a full reservation of a path between X and Y is made. 

A problem which might occur is that some partial reservations along the path from Y to X 

expire before receiving the reservation confirmation message, while others are changed into full 

reservations. Full reservations also have an associated timer. If no data corresponding to the 

reservation is sent during the first TR1 seconds after creating the full reservation, then the full 

reservation is cancelled (just like a partial reservation). After the first message corresponding to a 

path reservation is sent along a full reservation, then the timer is cancelled and another timer is 

started, which will cancel the full reservation only if no data is sent on it for TR2 consecutive 

seconds (TR2>TR1). TR1 and TR2 are chosen by the peer A creating the reservation, the way A sees 
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fit. After the path reservation is created, data can be sent to/from X from/to Y along the path. When 

all the data is sent, a reservation cancellation message is sent from peer X to peer Y along the path. 

When this message traverses a full reservation, the full reservation is cancelled (and the 

corresponding reservation budgets are increased accordingly).  

We will now discuss what exactly a peer reserves through a path reservation. Ideally, when 

negotiating a reservation, the requesting peer would ask for a specific bandwidth from each of the 

peers on the route to the destination peer. Throughout the life of that reservation, the bandwidth 

would remain free in case the peer that created the reservation wanted to use the path. However, this 

kind of reservation presents serious problems. Consider the network in Fig. 3-8, where peer A wants 

to reach peer E, and peer B wants to reach peer D. Both peer A and peer B are connected to peer C, 

but on the same Ethernet link. This means that the bandwidth each peer requests actually affects the 

bandwidth available to the other. More problematic is the fact that peer C is unaware that it is linked 

to a router before having access to peers E and D, and thus the bandwidth it measures to peer E and 

the bandwidth to peer D are not disjoint. They again restrict each other. 

 
Fig. 3-8. Non-disjoint Paths at the Physical Level. 

 
Fig. 3-9. Multiple Reservations sharing the Same Connections. 

In order to avoid this problem, we decided that each reservation represents a kind of 

percentage from the available bandwidth in between peers, whatever that bandwidth may actually 

be. So, peer A does not request for X MB/s on each link in between peers along the reservation path, 

but that on each link in between peers, its data transfer priority is somehow proportional to X. X is 

not a percentage, but is turned into one according to the following example. Consider Fig. 3-9. The 

lines of the same color represent reservation paths that contain the corresponding connection. More 

precisely, reservations of the same color transmit data on the same sockets, in the direction pointed 

by the arrows (outgoing sockets are not shown). 

At every peer D, every socket S will be assigned a priority Pr(D,S)=the sum of the priorities 

of the reservations which send data to D along the socket S (thus, only the incoming direction is 

considered). The reservation budget of a connection (socket) or peer is imposed such that the sum 

of all socket priorities does not surpass a certain value so that a scale of the importance is 
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maintained and, additionally, in order to ensure a somwehat equitable transfer even to small priority 

data reservations. Every socket S (on which data is sent towards peer D) is assigned a percentage by 

peer A: P(D,S)=Pr(D,S)/SumPr, where SumPr is the sum of the priorities of all the sockets of which 

peer D is an endpoint. In the example from Fig. 3-9 we consider the sockets SX, SY and SZ (colored 

with orange, blue and green). We have: 

 Z1PrioY2 PrioY1 PrioX3 PrioX2 PrioX1 Prio

X3 PrioX2 PrioX1 Prio
)SP(D, X

+++++

++
=   

(3-5) 
If an orange reservation (in Fig. 3-9) has priority Prio X2, this means that the sum of all the 

data transferred through the reservation from peer A to peer D (along the socket SX) is maintained 

proportional to Prio X2, relative to Pr(D,SX).The algorithm that achieves this will be described next. 

3.4.2. Limiting the Incoming Bandwidth of the Reservations 

In order to ensure fairness (i.e. proportional bandwidth according to the priority of the 

reservation), we need to limit the bandwidth of some reservations. Considering that data both enters 

and leaves the peers following a predetermined, reserved path, we should decide mainly if we 

should limit the incoming bandwidth of a reservation, the outgoing bandwidth or both. We chose to 

restrict the incoming bandwidth of a reservation, due to several reasons.  

Statistically, the download speed of a peer (the incoming bandwidth) is greater than the 

upload speed (the outgoing bandwidth). If we decided not to limit the incoming data, there is a 

possibility of receiving more data than a peer is capable of storing (even temporrarily), leading to 

potential overflows. In this sense, restricting the incoming data acts like a flow control mechanism. 

Flow control is not considered in any other ways in this section. Thus, it makes sense to impose 

limitations on the faster link (which is the incoming link). Note also that the main considered 

scenario is that of average computers, which have only one connection to the Internet. Thus, there is 

only one physical link on which all the data arrives and on which all the data is sent further. 

3.4.3. The Significance of Reservation Priorities 

Ideally, a user should be able to set the priority of its reservations only up to an upper limit 

which quantifies its contribution to the system. For instance, in a content sharing system, users 

which send (upload) more data to other users should be able to set higher priorities to their data 

transfers (i.e. to their downloads). Thus, reservation priorities can be seen as a sign of “social 

status”. Alternatively, in a scientific community, high priorities represent critical data transfers 

which need to be allotted a larger share of the bandwidth than the other data transfers. From an 

implementation point of view, if the maximum value of a reservation is limited and increases (or 

decreases) with time, there should be an entity which supervises the actions of the users and decides 

their merits. This entity could be easily implemented as a central server, where every user needs to 

login and authenticate. It seems more difficult to implement such mechanisms in a distributed 

manner, although several such attempts have been made [Meulpolder, Pouwelse, Epema and Sips, 

2009]. 

3.4.4. Implementation Details and the Fairness Decisions 

We implemented a prototype of the described communication architecture in the Java 

programming language. We constructed an unstructured peer-to-peer overlay network, in which 

every peer connects to at most KP≥1 other peers, known in advance. The main modules of the 

application are: the Communication module, the Data module, and the Fairness Decisions module. 

The Communication module is responsible with the transfer of data to and from the peer and 

is designed as a separate thread handling socket read, write and accept operations. Being built using 

the “non-blocking sockets” paradigm, it is the only thread to access the Selector object and its keys. 

It also contains methods for the creation of new SocketChannels to link the current peer to other 

peers in the network. Peers are interconnected through K separate channels (K may be different for 

each pair of peers), all of them “non-blocking”. The channels are used both for sending data 

messages and operational messages (reservation requests and confirmations). Alternatively, we 
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could reserve one (or more) of the channels between every pair of connected peers X and Y for 

sending and receiving operational messages only. This way, operational messages will never be 

delayed by data messages (or by the decisions of the Fairness decision module, which will be 

presented next). 

The Fairness Decisions module tries to ensure a certain degree of fairness among the data 

transferred through a peer. The sum of the priorities of the reservation paths resi passing through a 

peer A cannot exceed a predetermined value rv(A). This requirement is checked by the module 

when trying to establish a new (partial) reservation. Based on the current sum of the priorities of all 

the full reservations related to a peer (∑ =

n

i iresprio
1

)( ) and on the priority of each reservation i 

( )( iresprio ), the module tries to ensure that in a certain period of time T, the amount of data 

transferred through that reservation is at most: 
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(3-6) 

where n=total number of reservations on any socket at the beginning of the period of length T and 

InBw is the (current) total incoming bandwidth of the peer. 

The Fairness Decisions module implements a repeating algorithm taking place throughout 

the lifetime of the peer, at the end of each period of T seconds. Let’s consider that the periods of 

length T are assigned consecutive numbers starting from 1, according to their chronological order.  

Let ∑=
j jqisock resprioP )(,_

, where j iterates over all the existing reservations which are sending data on 

the socket sock_i to the peer A, at the beginning of the q
th

 period. Let ),( ,_,_ qqisockqisock InBwPfx =  = 

an estimation of the maximum allowed amount of data (bytes) that should be transferred by the 

reservations on the socket sock_i during the q
th

 period; InBwq is the incoming bandwidth available 

for the application at the beginning of the q
th

 period (we do not consider here the problem of 

estimating InBwq). Let ysock_i,q=the exact number of bytes transferred by all the reservations on 

sock_i during the q
th

 period. The peer’s total available buffer space is an upper bound on the sum of 

the values ysock_i,q. 

 
Fig. 3-10. Computation Steps of the Fairness Decisions Module (for Each Socket sock_i). 

At the end of the q
th

 (q≥1) period, xsock_i,q and ysock_i,q are compared. If ysock_i,q>fr·xsock_i,q 

(where fr is a fraction which tolerates a small excedent, e.g. fr=1.05) then we compute zsock_i,q=the 

number of consecutive periods (starting from the period q+1) during which no more data will be 

read from the socket sock_i. Alternatively, during every period q, we can refuse to read more than 

xsock_i,q bytes from the socket sock_i (by setting the read buffer size appropriately; thus, ysock_i,q≤ 

xsock_i,q). Then, if xsock_i,q (total) bytes are read during the period, we unregister the read operation of 

sock_i from the Selector (for the rest of the period) and re-register it at Step 2 (described below), at 

the end of the q
th

 period. We consider a virtual, separate, incoming socket at a peer P for every 

reservation whose origin is at peer P (thus, not reading data from such a virtual socket for a time 

period means not accepting data send calls from the application layer, or blocking such calls until 

new data can be accepted). 

From an implementation point of view, the socket sock_i’s read operation is unregistered 

from the Selector for zsock_i,q periods. (i.e. we ignore events regarding data arrival on the socket 

sock_i for zsock_i,q periods). In the Java source code, the steps of the Fairness Decisions module are 

implemented in the same thread in which the selector is running. Periodically, a timer sets a 

Boolean variable runFD to true and then wakes up the Selector. The Selector is woken up either by 
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the timer or when an interesting event on one of the registered sockets occurs (e.g. new data arrives 

on a socket, a socket is ready for writing new data on it, or a new connection request is received). 

When the Selector is woken up, it handles all the remaining read, write and accept operations (if 

any) and, afterwards, the boolean variable runFD is checked. If it is true, it runs the steps of the 

Fairness Decisions module. The steps taken at the end of the q
th

 period are summarized below: 

Step 1. For every active socket sock_i (a socket whose read operation is registered at the Selector) 

verify if data reception on the socket should be delayed; if yes, then compute zsock_i,q and unregister 

the socket’s read operation from the Selector. 
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Step 2. Verify for which of the previously delayed sockets we should re-register their read 

operation to the Selector (i.e. their delay expired at the end of the current period); re-register the 

read operation to the Selector for these sockets. 

Step 3. For every active socket sock_i (including those whose read operation was just re-registered 

at Step 2): 

3.1) (re)compute its priority for the next period q+1, Psock_i,q+1; note that new reservations may 

have been created on this socket and old ones may have been cancelled. 

3.2) compute xsock_i,q+1 = max{(min{InBwq+1·T, TotalBufq+1}· Psock_i,q+1 / SumPsockq+1) - 

OccBufsock_i,q+1 , 0}, where SumPsockq+1 is the sum of the priorities Psock_j,q+1 of all the active 

sockets sock_j, TotalBufq+1 is the total amount of temporary buffer space (both available and 

occupied) during the (q+1)
st
 period, and OccBufsock_i,q+1 is the amount of buffer space occupied at 

the end of the q
th

 period by data received on the socket sock_i and not yet sent further (or consumed 

by the application layer, if the current peer is the data’s destination). If xsock_i,q+1=0 then the read 

operation of the socket sock_i is unregistered from the Selector until the end of the next period. 

3.4.5. Experimental Results 

The testbed consisted of two machines located at the Politehnica University of Bucharest 

(peers A and B), one machine at the University of Craiova (peer C), and another one at the 

Technical University of Delft, in Netherlands (peer D). All these machines had public IP addresses. 

We also used two other peers with private IP addresses, located in Bucharest, Romania (peers E and 

F).  

An unstructured peer-to-peer overlay with all the 6 peers (A-F) was constructed. The peers 

were connected on a path (in the order A, B, D, E, C, F). Peer E had the lowest download bandwidth, 

of about 55 KB/s. We considered InBwq to be constant for all the peers and known in advance (from 

a configuration file). We initiated a reservation from peer A to peer E, with priority 10, and 

computed a transfer speed of nearly 50 KB/s. Then, we initiated another reservation, from peer F to 

peer E, with priority x (1≤x≤20). After initiating the reservation, we estimated the transfer speed of 

the first reservation (as an average over the following 120 seconds). The results are shown in Fig. 3-

11: the transfer speed of the first reservation varied according to the priority of the 2
nd

 reservation. 

We used T=2 seconds. 

 
Fig. 3-11. The Bandwidths of Reservations 1 and 2 (R1 and R2). 
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3.5. A Fault-Tolerant Peer-to-Peer Object Storage Architecture with 
Multidimensional Range Search Capabilities 

This section presents a new peer-to-peer architecture for storing and retrieving data objects. 

The retrieval mechanism is particularly efficient and the architecure supports multidimensional 

range reporting queries (i.e. find all the objects whose properties belong to a given 

multidimensional range). We will first present the functional requirements of such an architecture 

and then we will discuss the way the peer-to-peer topology is constructed and maintained. In the 

end, we will present simulation results for evaluating the performance of the proposed architecture. 

This solution was published in [Andreica, Tîrşa and Ţăpuş, 2009a], where we presented the 

full functionalities of the architecture, including how objects are managed, modified and replicated, 

and how load adaptation occurs (the load of a peer Y was defined as the ratio between the total size 

of the objects assigned to Y and Y’s total storage space; nevertheless, the size of the objects and the 

storage space can be replaced by any other metrics, and many other functions for computing the 

load may also be used). In this section we will only consider the restricted case of read-only data 

objects and load-unaware topology, in order to better focus on the processes taking place within the 

peer-to-peer architecture. Moreover, we will assume that, once inserted, objects are never removed 

by the user applications. 

3.5.1. Functional Requirements 

The objects (data items) stored by the system have a fixed number D≥1 of index properties 

(numbered from 1 to D). For simplicity, we will assume that every index property has numeric 

values (although we could use any value type, as long as a total order exists for the values of the 

property’s type). Every object must also have a unique identifier (which may be one of the D index 

properties). The unique identifier and the values of the index properties must be read-only. Besides 

these, an object may have any number of read-only data fields. 

The system must provide an external interface (API) to the user applications which should 

be independent of its internal structure. The API should allow the user applications to: 

• add an object inside the system 

• retrieve all (or at most M of) the objects whose index property values are within a given 

orthogonal range and for which the values of the data fields and of the index properties 

satisfy a given filtering condition 

 

We expect the user applications to handle the objects as follows. They can create objects of 

their own and handle them to the system for storage. They can retrieve (copies of) all (or at most M 

of) the objects within a given (orthogonal) range and read their index properties or data fields. The 

range is given as a cartesian product of D intervals, corresponding to each of the D index properties. 

Moreover, a range search may specify a filtering function. The filtering function is a boolean 

function, whose value depends on the values of the data fields and index properties of the searched 

objects. Thus, the values of the index properties of a returned object are within the given range and 

the filtering function returns true when applied on the values of the data fields and index properties 

of the object. 

The system is composed of any number of peers which are interconnected in an overlay 

topology which is not exposed to the user applications. A user application should be able to use any 

peer as an interface to the system. In fact, for any action it wants to perform, a user application 

should be able to use any peer and get the same response. This way, no dedicated resources 

(machines) are required for the user interface and no performance bottlenecks are introduced. 

3.5.2. The Peer-to-Peer Overlay Topology 

The peer-to-peer overlay topology must have the same properties of the generic peer-to-peer 

architectural model presented in Section 3.1. We will restate some of those properties here, in order 

to maintain the completeness of the presentation, and we will introduce new, specific properties, 
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that the peer-to-peer overlay topology of this system must have. 

The internal structure of the system is composed of a peer-to-peer topology. Every peer 

maintains open connections (e.g. TCP or „logical” connections) with a subset of other peers which 

are called its neighbors. We denote the set of neighbors of a peer X at a time t by N(X,t). We denote 

the extended neighborhood of a peer X, composed of all the peers located at a distance of at most R 

hops from peer X at time t, by EN(X,R,t) (X∉EN(X,R,t)). Thus, EN(X,1,t)=N(X,t). We will assume 

that every peer can connect to any other peer if it so wishes. Thus, we ignore NAT and firewall 

issues on purpose. Furthermore, we assume that connections never fail permanently as long as the 

two connected peers are still within the system (e.g. if a connection fails, it can be restored after a 

finite amount of time; if a connection fails permanently, it is because at least one of the two 

connected peers has left the system). 

Every peer X is assigned a point coord(X) in the D-dimensional space of the objects’ index 

property values (i.e. a set of D coordinates); coord(X,j) is the coordinate in dimension j (i.e. 

corresponding to the j
th

 index property). These coordinates are self-generated, using D hash 

functions (whose arguments are a combination of random parameters and parameters which are 

specific to peer X). The obtained hash values are then mapped and scaled to the corresponding 

ranges of the D dimensions. Note that the ranges of the values in each dimension are scaled to the 

same range [0,VMAX]. Thus, the property space is [0,VMAX]
D
. Some of the parameters mentioned 

from now may be local to the peers (i.e. every peer may use its own values for these parameters); 

such a parameter P will be marked by P
(*)

 when it is introduced; the local parameters of a peer X 

may have constant values or X may use its own strategies for assigning values to these parameters 

according to real-time conditions. All the other parameters are global parameters (i.e. all the peers 

must use the same values for these parameters). 

The overlay topology must have two main properties. The first property is the following: 

starting from any peer X in the system, we must be able to find the peer closestPeer(Q) which is 

closest (in coordinate space) to a given query point Q. We may use any distance function we 

consider suitable. To be more precise, let’s consider the following scenario. Peer X receives a 

request at time t for finding the closest peer to a given query point Q. As long as the closest peer to 

Q was not reached, the request is forwarded from the current peer to one of its neighbors (or one of 

the peers in EN(X,RD1,t), where RD1
(*)
≥1 is a small value). Thus, the request passes through several 

(other) peers and eventually reaches peer Y whose coordinates are closest to Q than those of any 

other peer in the system. 

Every peer X maintains a set of peers based on which it modifies its local connections. We 

denote by I(X,t) the set of peers maintained by peer X at time t. Periodically (every TP
(*)

 seconds), 

peers announce their existence (and current coordinates) to every peer in their extended 

neighborhood EN(X,RD2,t) (where RD2(*)≥1 is a small value). To make the analysis simpler, we 

will consider that time advances in discrete time steps and that peers announce their existence at 

every time step. Thus, at time step t, peer X sends an announcement to all the peers in EN(X,RD2,t). 

I(X,t+1) consists of all the peers which announced their existence to peer X at time step t. 

Afterwards, peer X chooses its set of neighbors N(X,t+1) based on the set of peers I(X,t+1). 

Peer X will then close the connections to the peers in (N(X,t)\N(X,t+1)) (except for those peers Y 

belonging to (N(X,t)\N(X,t+1)) for which X∈N(Y,t+1); N(X,t+1) is modified by also adding to it 

these peers Y) and open connections to the peers in (N(X,t+1)\N(X,t)). We point out the obvious fact 

that there is a co-dependency between the sets N(X,*) and I(X,*): N(X,t) is computed based on I(X,t) 

and I(X,t) depends on the announcements received by peer X from the peers in its extended 

neighborhood EN(X,RD2,t-1) (which depends on the sets N(*,t-1)). From a practical point of view 

(where time does not advance in discrete time steps), I(X,t) will be composed of all the peers Y 

which anounced their existence to peer X within a time interval [t-TLIMIT,t] (where TLIMIT
(*)

 is 

carefully chosen). 

The second property of the overlay topology of the system must be that, considering that no 

new peers join the system and no old peers leave the system, there must exist a finite time moment 

t0, such that for every t>t0, the set of neighbors N(X,t) of a peer X does not change anymore, i.e. the 
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topology eventually converges to an equilibrium. The equilibrium can only be disturbed when a 

new peer joins the system or when an old peer leaves it. When a new peer X joins the system at time 

t, it knows the identity of (at least) one peer Y which is already within the system. Thus, X connects 

to peer Y (updating the sets N(X,t) and N(Y,t)). After this initial connection, peer X will gradually 

change its neighbors, until a new equilibrium is reached. When an old peer X leaves the system, the 

process is even smoother. Since it does not announce its presence to the peers in its extended 

neighborhood, peer X will not be considered as a potential neighbor in the near future. 

We will now consider the routing problem (starting from a peer X which receives a routing 

request at time t, we must reach the peer closestPeer(Q), for a given point Q), for which we chose 

the following algorithm: 

1. peer X computes dist(X,Q)=the distance between its coordinates and the point Q 

2. if there is a peer Y∈N(X,t) such that dist(Y,Q)<dist(X,Q), then choose any peer Y∈N(X,t) 

with dist(Y,Q)<dist(X,Q) and forward the request to Y (or choose the peer Y∈N(X,t) with the 

smallest value dist(Y,Q) and with dist(Y,Q)<dist(X,Q)) 

3. otherwise, if there is a peer Y∈EN(X,RD3,t) (where RD3
(*)
≥1 is a small value) such that 

dist(Y,Q)<dist(X,Q), then choose any peer Y∈EN(X,RD3,t) with dist(Y,Q)<dist(X,Q) and 

forward the request to Y (or choose the peer Y ∈  EN(X,RD3,t) with the smallest value 

dist(Y,Q) and with dist(Y,Q)<dist(X,Q)) 

4. otherwise, we decide that X=closestPeer(Q) 

 

When RD3=1 for all the peers it is well-known that the overlay topology must be a 

supergraph of the Delaunay Graph of the peers’ coordinates if we want the algorithm described 

above to find closestPeer(Q) correctly for any point Q, no matter from which peer X we start. If the 

Delaunay graph is not a subgraph of the overlay topology, then there may be cases in which the 

algorithm „gets stuck” in a local minimum (i.e. we reach a peer X which is closer to Q than any 

other peer in EN(X,1,t), but is not the closest peer to Q in the whole system). The Delaunay graph of 

n points is the dual of the Voronoi diagram of the points. At every (discrete) time moment t, every 

peer X could use the Local Voronoi method described in section 3.1. This procedure converges 

towards the Delaunay graph of all the peer’s coordinates. However, computing the Voronoi diagram 

in D≥3 dimensions is a tedious task for any distance function. Because of this, we developed a 

simpler algorithm which is an instance of the Hyperplanes method (also described in section 3.1). 

We consider the L1 (Manhattan) metric as the distance function. For this metric and 

restricting our attention to two dimensions, the following graph is known to be a connected 

subgraph of the Delaunay graph. We consider the 8 octants around every point P, determined by the 

OX and OY axes, and by the two straight lines x=y and x=-y (considering point P as the origin). We 

add an edge between point P and the nearest neighbor in every octant (the point Q located in that 

octant for which the distance to P is minimum). We generalize this approach to D dimensions, as 

follows. 

We consider the set of hyper-planes a(1)·x(1)+...+a(D)·x(D)=0, with a(i) ∈{-1, 0, +1} and 

x(i) is a variable corresponding to the i
th

 dimension (1≤i≤D). We disconsider the case where all the 

a(*) values are 0. Moreover, we only consider the hyper-planes for which the first non-zero 

parameter a(i)=1 (thus, a(1≤j≤i-1)=0), because two hyper-planes A and B are identical if we can 

obtain the hyper-plane B by mutiplying the parameters of the hyper-plane A by -1. There are (3
D
-

1)/2 such hyper-planes. For every peer V∈I(U,t) (t=the current time moment), we compute its sign 

coordinates (s(1), ..., s((3
D
-1)/2)). s(i) (1≤i≤(3

D
-1)/2) is computed as follows. We consider the i

th
 

hyper-plane.  

We compute vv(i)=a(i,1)·dif(1)+...+a(i,D)·dif(D), where dif(j)=(coord(V,j)-coord(U,j)) 

(1≤j≤D) and a(i,1)·x(1)+...+a(i,D)·x(D)=0 is the equation defining the i
th

 hyper-plane. 

Then, if vv(i)<0, s(i)=-1; otherwise, if vv(i)>0, then s(i)=+1; otherwise, s(i)=0. We divide 

all the peers V∈I(U,t) into TS sets, where TS is the total number of distinct sign coordinates of the 

peers from I(U,t), and two peers A and B belong to the same set if they have the same sign 

coordinates. From every set ST (1≤ST≤TS), the peer U chooses (connects to) the K(ST)
(*)
≥1 peers 
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whose coordinates are closest to coord(U) (or fewer, if there aren’t K(ST) peers in the set ST) 

according to the L1 distance. 

The only problem is that we cannot provide any guarantees that the Delaunay graph of the 

peers is a subgraph of the obtained topology, in which case the routing algorithm (with RD3=1 for 

all the peers) would not work; but we can always make the algorithm work by increasing the K(*) 

values, RD3, or both. 

3.5.3. Object Management and Multidimensional Range Queries 

3.5.3.1. Object Management 
When a user application inserts an object O starting from a peer X, the peer X forwards the 

object to the peer Y whose coordinates are closest to object O’s properties’ values (we use the L1 

distance for measuring closeness). Peer Y will be object O’s owner. Each peer Y maintains a set 

with all the objects it owns. We denote this set by masterCopies(Y). 

Periodically (every TPObj
(*)

 seconds), each peer performs object management updates. The 

time duration between two consecutive object management updates is significantly larger than the 

time period between two consecutive topology updates. Thus, we will assume that the topology is 

stable (i.e. it converged to its equilibrium state) when an object managenement update is performed. 

An object management update consists of two steps. 

In the first step, every peer X sends a copy of every object MCO∈masterCopies(X) to every 

peer Y∈EN(X,RD4,t) (where RD4
(*)
≥1 is a small value). When a peer Y receives a copy of an object 

O, it verifies if it already contains a copy of the same object in its replicas(Y) set. If it doesn’t, then 

it inserts the copy into replicas(Y), after setting its lastUpdated field to the current time moment. If 

peer Y already contains a copy of the object in replicas(Y), then it only updates the lastUpdated 

field of the stored copy (setting it to the current time). 

The second step performed by each peer X is to recompute the owner of every object copy 

stored in the set replicas(X), which has not been updated for a long time. We consider two time 

parameters tmax1
(*)

 and tmax2
(*)

 (tmax1<tmax2). If the difference tdif between the current time and 

the lastUpdated field of some object copy O∈replicas(X) has the property tmax2<tdif, then the peer 

X assumes that X∉EN(Y,RD4,t), where Y is the (most recent) owner of the object’s master copy; 

thus, peer X deletes O from replicas(X). If tmax1≤tdif≤tmax2, then peer X may assume that the 

owner of the object’s master copy has left the system. Thus, it finds the peer Y which is closest to 

the object O in the property space. 

If peer Y owns the master copy of the object O, then peer X takes no further actions 

regarding this object. However, if O∉masterCopies(Y), then we distinguish two cases. If X=Y, then 

X assumes that it should be the new owner of the object O and removes O from replicas(X) and 

inserts it into masterCopies(X); otherwise, it tells peer Y to insert a copy of O into replicas(Y) 

(unless one is already there) and set the lastUpdated field of the stored copy to the current time of 

peer Y. This way, at a future object management update, peer Y will compute the owner of the 

object O (since O∈replicas(Y)) and will decide by itself if it is the (new) owner of the object’s 

master copy. 

Also as a part of this second step, each peer X considers every object O∈  masterCopies(X). 

For each such object O, it finds the peer Y which is closest in property space to object O. If X=Y, 

then no actions are taken regarding this object. However, if X≠Y, then peer X tells peer Y to insert 

object O into replicas(Y) (unless peer Y already contains a copy of the object O in replicas(Y)) and 

set the lastUpdated field of the stored copy to the current time of peer Y. Afterwards, peer X 

removes O from masterCopies(X) and inserts it into replicas(X). The lastUpdated field of the copy 

inserted into replicas(X) is set to the current time of the peer X. The case X≠Y may arise, for 

instance, after a new peer has joined the system. 

3.5.3.2. Multidimensional Range Queries 
A range is a D-dimensional hyper-rectangle R=[x(1,1),x(1,2)]x...x[x(D,1),x(D,2)], with 



 56 

x(i,1)≤x(i,2) (1≤i≤D). A range query consists of finding all (or at most a given number M of) the 

objects whose index property values are within the specified range (assuming that Prop(O,i) is the 

value of the i
th

 index property of the object O, we must have x(i,1)≤Prop(O,i)≤x(i,2) for every 

1≤i≤D) and whose data fields and property values satisfy a given filtering condition. 

When a user application wants to perform a range query it chooses any peer X and tells it to 

perform a range query for a given range R. Peer X computes the coordinates Q of the center of the 

hyper-rectangle R and then forwards the range query to the peer Y=closestPeer(Q). After reaching 

this peer Y, the range query enters into the second stage. During this stage, the request is 

broadcasted according to the following rules. As soon as a peer P receives a range query request (in 

the second stage), it forwards it further. If P’s coordinates belong to the query range R, then the 

request is forwarded to all of P’s neighbors (the peers in N(P,t); t=the current time moment). If P’s 

coordinates do not belong to the query range R, then it forwards the request only to those peers 

W∈EN(P,RD5,t) (where RD5
(*)
≥1 is a small value) whose coordinates either belong to the query 

range R or are closer than coord(P) to some part of R. 

To be more precise, we denote by closestPoint(X,HR) the closest point on the contour of a 

D-dimensional hyper-rectangle HR to the coordinates of peer X. Such a point is easy to compute in 

the L1 metric. P may forward the request to a peer P’ ∈ EN(P,RD5,t) if 

dist(P’,closestPoint(P’,R))<dist(P,closestPoint(P,R)). Thus, in the second stage of a range query, 

only peers which can store an object whose properties are within the query range are visited. 

When the request reaches a peer P, this peer checks every object O in the sets 

masterCopies(P) and replicas(P). If the index properties’ values of such an object O belong to the 

range R of the query and its index properties’ values and data fields satisfy the filtering condition, 

then the object’s identifier is sent to the peer Y which initiated the second stage. Every range query 

has a unique (self-generated) identifier and every peer maintains the identifiers of the queries it 

received in a cache. Thus, if a peer receives the same query request for the second time, then it 

ignores it (and does not forward it further). The entries in the cache expire after a certain time 

period. 

As soon as peer Y receives the identifier oid of an object from a peer P in the context of a 

request rid, it checks if it previously received the same identifier in the context of the same query: if 

it did not receive the identifier oid before in the context of the same query (and the threshold 

regarding the maximum number of objects specified by the query has not been reached), then it tells 

the peer P from which the object identifier was received to send the copy of the object (with 

identifier oid) to the peer X which initiated the range query (which will send the object to the user 

application). Peer Y (and/or the user application) may assign a time limit to every query and ignore 

every answer to the query which is received after the time limit is exceeded. 

We should mention that the same conditions which are required for the routing algorithm to 

work correctly are also required for the range query process to report all the objects in the range. 

Peers may store the objects in their masterCopies and replicas sets as they see fit. For 

instance, they could use any data structure which facilitates the range query process one way or 

another. Note also that, except for range reporting queries, we can also allow range aggregate 

queries. Such a query asks for an aggregate value (e.g. sum, max, product) of the values of a given 

property of all the objects whose index properties belong to a given range. In this case, when a 

query is processed by a peer P, this peer will compute the range query answer for all the objects 

from masterCopies(P) (and not replicas(P)) which belong to the query range (this computation may 

be facilitated by the use of some efficient data structures, as mentioned previously). The answer is 

then sent to the peer Y, which aggregates all the received answers and sends the final aggregate 

value to the peer which issued the query. 

3.5.4. Experimental Evaluation 

In order to validate and evaluate the proposed system, a time step-based simulation 

framework was developed and implemented in the Python programming language. For all the tests, 

the property space was considered to be [0,1000]
D
, RD1=...=RD5=1 and TS=10. The peers’ 
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coordinates were uniformly distributed in the property space. 

3.5.4.1. Topology Test 
We incrementally inserted 100 peers into the system (with D=2 and K(*)=1). After every 

insertion, we computed the number of time steps before the topology stabilized. Moreover, after 

every insertion, we computed the diameter of the network (the longest shortest path between any 

pair of peers), the maximum degree of a peer and the average degree of the peers (degree=number 

of neighbors). The results are shown in Fig. 3-12 (left). We can see that the number of iterations 

before the topology stabilizes (after every peer insertion) is proportional to the diameter of the 

network (plus or minus a very small constant). We can also see that both the average degrees and 

maximum degrees are sufficiently small. Thus, a good distribution of the peers in the property space 

was achieved, as well as (routing) traffic load balancing. Then, we incrementally inserted 1000 

peers into the system. After every insertion we computed the diameter of the network; the 

maximum diameter values were: 18 (for D=2 and K(*)=1), 13 (D=2, K(*)=2), 5 (D=3, K(*)=1) 

and 4 (D=3, K(*)=2). 

3.5.4.2. Orthogonal Range Query Test 
At first, we performed one range query test, with D=2, K(*)=2, 1000 peers and 1000 objects, 

whose property values were randomly generated within a square whose area occupied 

approximately 20% of the property space. We performed 130 random range queries and we 

measured the following parameters: the ratio between the number of reported objects and the total 

number of objects (objects ratio), the ratio between the number of queried peers and the total 

number of peers (peers ratio) and the ratio between the volume of the range and the total volume of 

the property space (volume ratio). The results are presented in Fig. 3-12 (right), where the range 

queries were sorted according to the objects ratio. The peers ratio was close and sometimes lower 

than the objects ratio. The volume ratio was strongly correlated with the peers ratio, due to the 

uniform distribution of the peers. Then, we performed similar range query tests for D=3 and D=4, 

with K(*)=1, 100 peers and 100 objects. The peers ratio was always very close to the volume ratio 

and close to or lower than the objects ratio. 

 
Fig. 3-12. Topology Test (left). Range Query Test (right). 

3.6. Upload Bandwidth Estimation and Congestion Control 

3.6.1. Upload Bandwidth Estimation 

Estimating the upload bandwidth of a machine (e.g. computer) is extremely useful in a wide 

variety of scenarios and applications, like, for instance, peer-to-peer applications based on the 

Bittorrent tit-for-tat mechanism or other similar techniques (many file sharing, live streaming, and 

video on demand systems belonging to this class have been proposed during the past few years – 

see, for instance, [Tewari and Kleinrock, 2007] and [Choe, Schuff, Dyaberi and Pai 2007]). In such 

systems, the downloaded data of every peer P is proportional to the data uploaded by peer P to the 
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other peers. Since in order to maximize its overall utility, a peer wants to download data at high 

transfer rates, it must also be able to upload data to other peers at high speeds. 

However, most Internet users are connected to the Internet via asymmetric links, in which 

the download speed (bandwidth) is significantly higher than the upload speed (bandwidth). As such, 

the situation in which the upload bandwidth is fully utilized can easily occur. Such a situation may 

cause some problems. One of the most pregnant ones is the behavior of TCP flows when the upload 

link is congested. Through experiments, we determined that if a peer P downloads data at a rate D 

through a TCP connection, then an upload rate U of up to 2-5% of D is used by the TCP protocol 

for sending ACK messages. 

If the upload link is congested and less than U bandwidth is available, the download rate D 

cannot be maintained and the TCP protocol makes use of its well known AIMD mechanism, which 

reduces the download speed drastically in a short time (while allowing it to increase back to its 

former values only slowly). Thus, when the upload link is congested, the download rates of TCP 

connections are, on average, far from the optimal performance. If, however, we knew the 

(available) upload bandwidth, we could reserve part of it for TCP acknowledgements, thus 

maintaining the download rate at a high average value. Other situations in which knowing the 

(available) upload bandwidth of a machine is useful are concerned with the implementation of 

higher-level functions and behaviors, like content seeding, peer selection, bandwidth trading, and so 

on. 

In this section we will present a novel upload bandwidth estimation technique, which was 

partly developed in the context of the European Union FP7 project P2P-Next. At the moment, the 

technique is applicable for estimating the upload capacity of a machine (i.e. its total upload 

bandwidth), in the absence of background traffic. The technique also works when background 

traffic is present, but it does not compute the available upload bandwidth, because the background 

communication flows can be influenced by this method. 

An upload bandwidth estimation technique should be as non-intrusive as possible (i.e. it 

should generate little extra traffic). If possible, it would be desirable to make use of the existing 

traffic in order to estimate the upload bandwidth. Due to portability reasons, the technique should 

be implemented in user-space and should not make use of operating system-specific functions. 

3.6.1.1. A Novel Upload Bandwidth Estimation Technique 
The proposed technique works as follows. When a peer S wants to estimate its upload 

bandwidth, it will need the help of N≥1 other helper peers (P(1), ..., P(N)). Peer S will send M(i) 

packets to each peer P(i) (1≤i≤N). The packets sent to the same peer P(i) must have equal sizes 

(PSize(i)), but packets sent to different peers may have different sizes. It is also not necessary to 

send the same number of packets to every peer P(i). Peer S will send the M(1)+…+M(N) packets 

one after another, in some order, such that any 2 consecutive packets sent by S should preferably be 

sent to two different peers. What is important, however, is that the upload bandwidth of the peer S 

should be constantly used, i.e. there should be no delays between two consecutive packets sent by S. 

We assume a FIFO queue at the sender (as is usually the case), i.e. the packets are transferred on the 

upload link in the order in which they are sent by S (no matter to which helper peer they are sent). 

When a peer P(i) receives the j
th

 packet, this packet will also contain the value TAB(i,j)=the 

total amount of bytes that peer S has sent to all the N peers up to the moment when the currently 

received packet was sent by S (including the size PSize(i) of the currently received packet). Then, 

let TAB(i,j-1) be the value received by P(i) at the previous packet (we consider the case j≥2). Let's 

assume that packet j-1 was received by P(i) at time T(i,j-1) and packet j was received at time T(i,j). 

Peer P(i) will compute an estimation 

 U(i,j-1)=(TAB(i,j)-TAB(i,j-1))/(T(i,j)-T(i,j-1))                                (3-8) 
of the upload bandwidth of peer S. Note that some of the packets sent by peer S may be lost and the 

j
th

 packet received by peer P(i) may not necessarily be the j
th

 packet sent by peer S to P(i). The 

packets may also be received out of order. When a peer P(i) receives a packet, it first checks if the 

information contained in the packet regarding the total number of bytes sent so far by peer S is 
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larger than that of the previously received packet (unless it is the first received packet) - if the 

information value is not larger, then the currently received packet is discarded. The information 

regarding the total number of bytes sent by peer S acts as a sequence number for the packets, 

because it increases with time. 

After sending the last packet to every peer P(i), peer S notifies every peer P(i) that the test is 

complete (the notification should preferably not be lost, although it is not important if a small 

fraction of peers do not receive the notification). Every peer P(i) has a time limit for waiting for 

new packets. When this limit is exceeded, it will assume that the test is complete (i.e. it will behave 

as if it had received the test completion notification). At the end, every peer P(i) has E(i) 

estimations: U(i,1), ..., U(i,E(i)). We will remove from this set the outliers (the values which are too 

high or too low) and compute an average Uavg(i) of the remaining values. Peer P(i) will then send 

Uavg(i) to peer S. 

For the outliers removal, the following technique was considered. We compute the median 

value Umed of the estimations. Then, we remove all the estimations which are smaller than p1·Umed 

or larger than p2·Umed (for some carefully chosen values 0≤p1≤1 and p2≥1). Afterwards, we perform 

an iterated removal of borderline values. As long as we have more than K estimations left (e.g. 

K=3) we perform the following actions: 

1. we compute Um=the average of the values of the remaining estimations and sgm=the 

standard deviation; 

2. we remove all the estimations whose values do not belong to the interval [Um-q·sgm, 

Um+q·sgm] (for a carefully chosen value of q; e.g. q=1);  

3. if no values were removed in step 2 then we break the loop.  

 

In the end, peer S will receive the estimations Uavg(i) from (some of) the peers P(i). If at 

least a fraction PA (e.g. PA=0.6) of these values are “close” (and at least PB·N values were 

received; 0<PB≤1), then we remove the other values and compute the average of the remaining 

values: this will be the estimated upload bandwidth. We define closeness as follows. We compute 

the median Umd of the received values and then we compute the number of received values which 

lie in the interval [p3·Umd, p4·Umd] (where 0≤p3≤1 and p4≥1). 

If we do not have at least a fraction PA of “close” values, then it is possible for the estimated 

values to be too low, because the upload bandwidth estimations of peer P(i) are also influenced by 

the available bandwidth AB(S,P(i)) of the path between S and P(i) (in fact, theoretically, we have 

T(i,j)-T(i,j-1)=max{(TAB(i,j)-TAB(i,j-1))/SUB, PSize(i) / AB(S, P(i))}, where SUB is the upload 

bandwidth of peer S). This issue can be solved by sending larger packets or by using more helper 

peers: this way, two consecutive packets will reach a peer P(i) after a larger time interval, 

overcoming the influence of AB(S,P(i)). Fig. 3-13 depicts the proposed technique, in which the 

same number of equally sized packets is sent to each of the N=4 helper peers in a round-robin 

fashion. 

Let’s have a closer look now at the way the upload bandwidth estimation technique works. 

If N=1, then P(1) actually estimates a value B which is upper bounded by the smaller of the 

following two values: the (available) bandwidth of the path between S and P(1) and the upload 

bandwidth of S. In fact, it is possible that the available bandwidth from peer S to any of the helper 

peers is smaller than the upload bandwidth of peer S. However, by sending packets to multiple peers 

(e.g. in a round-robin fashion), peer S does not congest the paths to the helper peers. Moreover, a 

helper peer P(i) also receives the total number of bytes sent by peer S so far during the test. The 

difference between the total number of bytes transmitted with two consecutive packets received by 

P(i) is larger than the number of bytes that peer S could have sent directly to P(i) in the same time 

period (when N>1). 

A requirement for the technique to work correctly is that the sum of the bandwidths of the 

paths from S to every helper peer should be at least as large as the upload bandwidth of peer S (that 

is why more helper peers are useful). If, however, the paths from S to multiple helper peers share 

common bottleneck links (other than the upload link of peer S), then the technique may still 
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incorrectly estimate (e.g. underestimate) the upload bandwidth. It is, thus, desirable for the helper 

peers to be geographically distributed, so that the paths from S to the helper peers may be as disjoint 

as possible. 

Let's notice that we can also use the method presented above for estimating the upload 

bandwidth in a continuous manner. Peer S repeatedly sends packets to each of the peers P(i). After 

receiving the j
th

 packet (j≥MinP(i)), peer P(i) can provide an estimation Uavg(i,j) using the previous 

MinP(i) estimations (thus, we use a sliding window kind of approach). MinP(i) is the minimum 

number of packets peer P(i) needs to receive in order to consider the estimations to be statistically 

relevant. 

If the upload bandwidth estimation technique is used in order to help the decision making 

process of an application App, then the technique can make use of the information regarding the 

upload bandwidth consumed by App (this information can be made available, as the technique is 

integrated into App). We will consider that all the upload traffic generated by App is sent to a 

"virtual helper peer" P(N+1), which will not send any estimation back (although, in reality, the 

upload traffic of App may have multiple destinations). 

Note that in order for the presented technique to produce reliable results, peer S must never 

be idle in terms of upload traffic (i.e. it should always upload something): this is because when a 

peer P(i) measures the time difference between two consecutive packets that it receives, it makes 

the implicit assumption that peer S has been uploading data during all this time. Thus, as long as the 

upload buffer(s) of peer S are not empty, peer S does not have to send a new packet to any of its 

helper peers; it just has to increase the counter of the total number of bytes sent by S. However, 

since upload bandwidth estimations are received by peer S only from the peers P(i), peer S cannot 

postpone indefinitely the sending of a packet to a peer P(i) (even if the application App generates 

enough traffic). 

Thus, the previously described technique can be modified as follows. Peer S will only send 

the next packet to the next peer P(i) (e.g. in the round-robin order) if the amount of upload buffer 

space used by App is below a certain threshold or the duration between the moment when the 

previous message was sent to a helper peer P(*) and the current time moment exceeds a given time 

limit. Note that when we also use existing App traffic, we can reduce the number of packets after 

which a peer P(i) computes an estimation, thus reducing the overall extra traffic generated by this 

method. The number of packets after which an estimation is computed could even be determined by 

each helper peer separately, based on the values (TAB(i,j)-TAB(i,j-1)) and (T(i,j)-T(i,j-1)) (e.g. the 

larger these values are, the fewer packets are required before obtaining an accurate estimation). 

 
Fig. 3-13. Upload Bandwidth Estimation in Progress. 

3.6.1.2. Experimental Evaluation 
We implemented the proposed technique in the Python programming language and we 

validated it as follows. The source peer S was located behind a NAT (in Bucharest), running 

Windows Vista; we used N=3 helper peers, all running Linux: P(1) was located at the Technical 

University of Delft (Netherlands), P(2) was located at the University of Craiova (Romania), and 

P(3) was located at the Politehnica University of Bucharest (Romania). We sent M=20 packets to 

every helper peer, in a round-robin manner; we used p1=0.2, p2=5, p3=0.8, p4=1.2, PA=PB=0.6 

and PSize(1)=…=PSize(N). We ran 6 tests, in which we only changed the packet sizes: 1024, 2048, 

4096, 8192, 16384, and 32768 bytes. The source peer opened one TCP connection to every helper 

peer, for sending the corresponding packets (we designed our own protocol in order to mark the 
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beginning and the end of a packet). The estimation computed by each helper peer is presented in Fig. 

3-14. 

Later, we also performed the same test, by sending UDP packets (instead of TCP). The 

results were similar. We also computed the upload bandwidth of the computer by using the 

SpeedTest website (http://www.speedtest.net), obtaining a value of approximately 232.500 Bps. We 

noticed that the results of our test were closer to 240.000-245.000 Bps, which was, in fact, the 

appropriate range for the upload bandwidth of the tested computer. 
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Fig. 3-14. Estimated Upload Bandwidth (B/sec) as a Function of Packet Size (210

-2
15 bytes). 

Then, we wanted to decide which packet size is most suitable for estimating the upload 

bandwidth for the tested computer. We considered that the correct upload bandwidth was 240.000 

Bps and we computed the error between the estimated value and the correct value (i.e. the absolute 

difference between them) for each of the 6 tests. Then, we multiplied the error by the total 

generated traffic and we plotted the results in Fig. 3-15. Some good packet sizes are between 2048 

and 16384 bytes; of course, the lower the packet size, the better.  
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Fig. 3-15. The Product between the Error of the Estimation and the Total Generated Traffic for Each of the 

6 Tests. 

We also performed some tests which showed us that the technique is not currently efficient 

for estimating the available upload bandwidth. We used the same scenario, in which we started two 

background applications on the tested computer, uploading data at 70 KBps and, respectively, 80 

KBps overall. The applications were custom made. They uploaded random data to a given 

destination, using PT≥1 parallel TCP streams each and sending 4 KB packets. We first set PT=10 

and then we ran the same upload bandwidth estimation tests, except the one with packet size of 

1024 bytes. The overall transfer speed of each application decreased by at most 3 KBps during the 

tests and the test results were close to 90 KBps (i.e. the available upload bandwidth was estimated 

rather accurately). 

However, when we used PT=1, the transfer speeds of the two background applications 

dropped significantly, depending on the packet size. For packet sizes of 32768 bytes used during the 

test, the transfer speeds of the applications dropped down to 20-30 KBps each. Thus, the TCP flows 

of the background applications can be severely influenced by our proposed technique. If we could 

somehow instruct the operating system to handle the test packets as low priority packets (i.e. send 

the test packets only when no other packets are waiting to be sent, or after they were ignored for 

more than a certain time duration), then we might be able to use only the actual available upload 

bandwidth. However, it seems that most operating systems consider that every flow has the same 

priority and packets are sent in a first-come first-served manner. 

A possible way of estimating the available upload bandwidth AUB is the following. We can 

introduce an upload speed limit R in our technique – thus, peer S will not necessarily upload data 

continuously. Let U(R) be the upload bandwidth estimation obtained for a limit R. If U(R)≥cr·R, 

then R≤AUB; if U(R)<cr·R then R>AUB (where 0<cr≤1, but close to 1). Thus, we could use a 
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search technique (e.g. exponential and binary search) for finding the largest limit R for which 

U(R)≥cr·R (i.e. R≤AUB). 

In the end we mention that the presented technique also works when the tested machine has 

multiple physical upload links. In this case we must find a suitable set of helper peers, such that 

when performing the test, all the upload links are saturated (enough packets are sent through each 

link), or we could try to test every upload link separately. 

3.6.1.3. Alternative Approaches 
We also considered a different approach, for estimating the available upload bandwidth, 

based on measuring ping times to a set of carefully chosen landmarks from the Internet. The source 

peer S uploads data at (at most) a (total) given rate R to a subset of helper peers, for a duration T, 

during which it measures the ping times to the set of landmarks. We expect that, as the transfer rate 

R gets closer to the available upload bandwidth AUB, a larger fraction of pings exceed their time 

limit. Then, we could increase (or decrease) the rate R with small increments, until the ping times 

satisfy some quality conditions (e.g. a percentage of them are below some threshold), thus 

converging towards AUB. We present below the results of a first set of experiments. 

Peer S was located in Bucharest, did not have a public IP address, was running Windows 

Vista and its upload capacity was approx. 60 KBps. We chose only one helper peer P, located at the 

Politehnica University of Bucharest (UPB), running Linux and having a public IP address. We ran 

the test scenario 5 times. The maximum transfer rate was limited at: 25 KBps, 35 KBps, 40 KBps, 

45 KBps and unbounded. Every time, the total duration of the upload test was 10 minutes. We 

measured ping times from the peer S to a machine located at the UPB site. Without the test traffic, 

the ping times ranged from 15 to 60 milliseconds. For the 25 KBps upper bound, most of the ping 

times were under 100 msec, with only 3 occasional ping time spikes (two of which were ping 

timeouts). For the 35 KBps limit, most of the ping times were under 400 msec and no ping timeouts 

occurred. For the 40 KBps, several pings timed out in the beginning of the test; however, except for 

this, the ping times were quite constant, not exceeding 500 msec. For the 45 KBps, all the ping 

times during the actual data transfer exceeded our 20 second time limit. In the unbounded case, the 

average upload rate was 55 KBps and the ping times showed a steady increase towards our 20 

second time out limit, followed by many ping timeouts. 

From this set of experiments, we draw the following preliminary conclusions. During an 

upload bandwidth test without variable background traffic, the ping times present quite a regular 

behavior. We mention that this behavior is also the result of the technique used to limit the transfer 

rate. We considered several techniques, some of which led to irregular ping time behavior, and we 

settled on one where the actual upload rate is constantly corrected (both by introducing time delays 

and by sending at most a number X of bytes at a time, where X depends on the current upload rate 

and on the total number of bytes transmitted so far). As expected, the average ping time and the 

median ping time increase with the upper bound of the upload rate. 

The implemented mechanism is intrusive, because it needs to send a significant amount of 

extra traffic in the network. However, we believe that it can be used in a useful non-intrusive 

manner, as follows. In order to estimate AUB accurately using this technique, we might need to 

send data at the same rate as the available bandwidth. We consider this to be too intrusive and we 

propose the following use in applications App which want to use this technique in order to increase 

their total upload speed. We can estimate if AUB is larger than a small value R (by sending data at 

the rate R and checking if the ping times satisfy the quality conditions). Let’s assume that the 

current upload rate of App is U. If AUB≥R, we will use the technique again only after the upload 

transfer rate of App becomes U+R. Thus, we only generate as much extra traffic as App can use. 

As future work, we intend to find a correlation between a statistical measure SM of the ping 

times and the upload rate U. By using the technique for several small values {U1, ..., Ur} of the 

upload rates and computing the corresponding statistical measures {SM1, ..., SMr}, we hope to find a 

correlation U=f(SM). Then, by setting an upper limit SMmax on the statistical measure, we could 

compute the largest upload rate Umax that we can use. 
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3.6.2. Congestion Control 

Congestion control is an important problem in peer-to-peer applications. As peer-to-peer 

traffic constitutes the majority of Internet traffic nowadays, we need to make sure that network 

resources are efficiently utilized and also that the quality every user perceives is optimized. 

Experimental studies [Pouwelse, Garbacki, Epema and Sips, 2005] have shown, for instance, that 

Bittorrent users do not stay online for too long (e.g. more than one hour after finishing their 

downloads) in order to share the content they downloaded and, thus, to improve the download 

speeds of the other users. Because of this, a large amount of work has been dedicated to devising 

efficient incentives which should convince the users to remain online longer. However, it is possible 

that users do not stay online partly because they are worried that the uploading of data may reduce 

the transfer quality of the other applications they currently use, like email, web browsing, FTP 

traffic, and so on. Thus, it might be possible that users would feel comfortable staying online for 

longer periods if they knew that other applications were not affected by their upload share 

contribution to the peer-to-peer content sharing system. Novel congestion control algorithms are 

required in order to achieve this purpose. 

A “less than best effort” communication flow has the property that it has a lower priority 

than all the other normal “best effort” communication flows. This means that, in the presence of 

other flows, it should back-off and make room for the other flows. However, in order to be efficient, 

it would be desirable for the transfer speed of the communication flow to be as large as possible (i.e. 

fill the network link as much as possible) without affecting the “best effort” communication flows. 

In this section we briefly mention a novel congestion control method which makes the 

communication flows using it act as “less than best effort” flows in relation to other flows, but, at 

the same time, it attempts to fill the upload link as much as possible. The method is based on the 

experience derived from the upload bandwidth estimation experiments and is based on imposing a 

sending rate limit and then estimating the upload bandwidth (while this limit is in effect). The 

principle is that if the upload bandwidth is close to the sending rate limit, then the sending rate may 

be increased; otherwise, it should be decreased. 

3.7. Towards an Automated Framework for Testing Large Scale 
Distributed Systems 

Testing (large scale) distributed systems and applications (e.g. peer-to-peer systems) is 

important in order to be able to validate and evaluate the performance of the system. In the absence 

of automatic testing means, the most common procedure for testing a distributed application 

consists of deploying the application manually on several nodes and then running the tests. Such an 

approach is obviously not scalable. Its most important drawback is the large amount of work the 

application developer (or tester) needs to perform in order to run the tests once. Since a distributed 

application must be tested multiple times, in different stages of its development (or possibly after 

fixing some bugs), the amount of required work increases too much. It is obvious that a framework 

for automating the deployment and testing process of a distributed application would be highly 

desirable. 

In this section we will present the design and implementation of ServMark, a framework for 

automating the testing of large scale distributed systems (like, for instance, peer-to-peer systems). 

The framework was initially developed with the purpose of testing Grid and Web services, but we 

will explain how it can also be used for testing peer-to-peer systems. 

ServMark is a system that integrates two previously developed evaluation systems: DiPerF 

and GrenchMark. DiPerF is a distributed testing system and test generator, and GrenchMark is a 

centralized system that can generate complex testing scenarios. ServMark makes use of the 

properties of both systems in order to generate truly significant testing scenarios. The intended use 

for ServMark is to evaluate the performance of Grid environments and Grid and web services, but 

can also be used for deploying and testing peer-to-peer applications, as we will show in a future 

sub-section. 
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3.7.1. The Design of ServMark 

The testing process is initiated by a central controller, which distributes the testing 

parameters to multiple nodes. Each node generates its own test scenario based on the given 

parameters and then “plays” the generated scenario. 

The general requirements of a testing architecture like ServMark are the following: 

1. uniquely identify each test (REQ1) 

2. generate a multi-node test according to the user specifications (REQ2) 

3. store the test and make it available for replay (REQ3) 

4. run the test and store its results (REQ4) 

5. analyze the results and compute statistics (REQ5) 

6. the performance evaluation must be online: results should be able to be visualized as the 

testing process advances (REQ6) 

 

Fig. 3-16 shows the proposed architecture for ServMark, highlighting the relationship 

between GrenchMark, DiPerf and the new ServMark modules. The interaction between the user and 

the ServMark Controller goes as follows: the user decides the parameters to be used in the testing 

process (see REQ2), starts the ServMark Controller, then is notified when the testing operation has 

completed. The ServMark Controller should generate a test ID for the testing process initiated by 

the user (see REQ1), update the database and send the testing parameters to the DiPerF controller. 

The DiPerF controller controls the testing process, by invoking the DiPerF submitter. It also 

updates the results into the database. 

The DiPerF submitter creates the tester processes and communicates with them, sending in 

parameters and receiving back test results. The DiPerF tester invokes GrenchMark, which performs 

the actual testing process and communicates with GrenchMark, sending parameters and receiving 

back test results. GrenchMark generates a workload according to the user parameters and then 

submits the generated workload for execution, computing the test results and sending them to the 

DiPerF tester. The test parameters are inserted into the database by the ServMark controller. The 

DiPerF controller inserts and updates the test results into the database as the testing process 

advances. 

The behavior described above is very natural for testing deployed (Grid and web) services, 

but less adequate for testing custom peer-to-peer applications. In order to test a peer-to-peer 

application, together with a DiPerF tester, a peer-to-peer applications is also deployed and executed. 

Its parameters are sent along with the parameters of the DiPerF tester. Then, GrenchMark generates 

the workload for testing the peer-to-peer application. For instance, in order to test a data transfer 

optimization peer-to-peer application, the application is sent and run together with the DiPerF tester. 

GrenchMark then generates data transfer requests in order to test the peer-to-peer system. 

3.7.2. The Implementation of ServMark 

Fig. 3-18 presents the detailed architecture of ServMark. The ServMark Controller interacts 

directly with the database, in order to insert general information about the testing scenario, while 

the DiPerF controller interacts with the database through a database module, in order to insert or 

update the information gathered during the testing process. GrenchMark is composed of two major 

modules: the workload generator and the workload submitter. The workload generator schedules the 

execution times of the jobs which compose the testing scenario.The workload submitter is a multi-

threaded module which manages the job submission process, computes metrics and sends the results 

back to the DiPerF tester. 

In order to run test, the user places all the relevant test parameters in a test file. A sample test 

file is given in Fig. 3-17. 

The “Granularity” parameter refers to the testing strategy. When testing Grid systems, 

the jobs usually have a run time of the order of minutes, whereas when testing web services, the 

jobs have a running time of the order of tens of milliseconds. Other differences also exist, based on 

the way the results are sent back and the frequency at which the results are sent. This is specified by 
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the parameters „MonitoringInfoGathering” and “PushPeriod”.  

 
 

Fig. 3-16. The Proposed ServMark Architecture. 

Granularity = custom 
MonitoringInfoGathering = push 
PushPeriod = 3000  # msec 
ExecutableFileName = wget 
CommandLineArguments = http://141.85.99.160:8080 
NumberOfTesters = 50 
JobsPerTester = 100 
WorkloadDistribution = Poisson(1000) 
SitesFile = planetlab-serv.txt 
JobType = exe 
LogFile = single 
ProjectID = "servmark project" 
DBServerName = myserver 
DBUserName = myusername 
DBPassword = mypassword 
DBName = mydb 

Fig. 3-17. A Sample Test File. 

The “ExecutableFileName” parameter specifies the executable file name. When 

testing grid environments, this should be the name of the job to be executed. When testing web 

services, this should be the name of the client which will use the web services. When testing peer-

to-peer applications, this should be the name of the executable of the application. The executable is 

copied from the machine initiating the test to the machines on which the DiPerF testers are run. 

The parameter “CommandLineArguments” specifies the command line arguments 

which will be passed to the executable file (they can be enclosed between ‘”’ if they contain white 
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space – like “-a x y –g no” ; if no command line arguments are given, the user must specify 

“”, i.e. an empty string). 

 
 

Fig. 3-18. ServMark’s Detailed Architecture. 

The parameter “NumberOfTesters” specifies the number of testers and the parameter 

“JobsPerTester” specifies the number of jobs which will be issued by each tester. The 

parameter „WorkloadDistribution” specifies the distribution of the times at which jobs are 

submitted. This parameter must be given in a format specific to GrenchMark (see [GrenchMark]). 

The parameter “JobType” refers to the type of job and is a piece of information used by 

GrenchMark. Type “exe” represents a stand-alone application. Currently, there are several other 

types of jobs, all of which use the Koala Grid Resource Manager (see [Mohamed and Epema, 2004]  

and [Mohamed and Epema, 2005]). In order to test web services or peer-to-peer applications, type 
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“exe” is the most likely to be used. In order to test Grid environments, a type of job must be 

defined for its resource manager. GrenchMark is an extensible framework and new types of jobs 

can easily be defined. 

The parameter “LogFile” is used by GrenchMark and can take one of two values: 

„single” and „multiple”. The value „single” means that all the jobs write their standard 

output and standard error to the same file, while „multiple” means that each job uses its own 

file. When many jobs are issued, it is more appropriate to use only one file, in order to avoid the 

creation of too many files. 

The parameter “ProjectID” is used as a project identifier. It is part of the primary key of 

some of the tables in the database, together with an auto-generated test id. It is useful in order to 

group together several testing processes which are part of the same project. 

The parameter “SitesFile” represents the name of a file which contains a weighted list 

of machines on which testers will be spawned, one element on a line. A sample file is the following: 
fs3.das2.ewi.tudelft.nl/20 
s8.diperf.cs.uchicago.edu/10 
alice01.rogrid.pub.ro/5 

Fig. 3-19. A Sample Sites File. 

The numbers are separated by the names by a ‘/’ character. The number represents a weight 

(and can be a real number). When deciding on which machines the testers will be spawned, these 

weights will be considered. For instance, considering the above file and using 7 testers, 4 of them 

would be spawned on fs3.das2.ewi.tudelft.nl, 2 of them on s8.diperf.cs.uchicago.edu and 1 on 

alice01.rogrid.pub.ro. 

The parameters “DBServerName”, “DBUserName”, “DBPassword” and “DBName” 

refer to the database where results will be stored. “DBServerName” represents the name of the 

machine where the database server is installed (currently, only MySQL is supported), 

“DBUserName” and “DBPassword” represent the username and password used to connect to 

the database server, and “DBName” represents the name of the database. The database tables used 

by the testing process will be created (if they do not already exist) by the ServMark controller. 

3.7.2.1. The ServMark Controller 
The ServMark controller parses the test file and assigns default values to the parameters 

which are not given in the file. It uses the given parameters to generate a file containing the 

machines on which the testers will be spawned. The file is in a format specific to DiPerF. It then 

generates an input file for the DiPerF controller. Finally, the controller creates the corresponding 

tables in the database (if they do not already exist), inserts into the database the test parameters, thus 

generating a unique test ID and invokes the DiPerF controller. 

3.7.2.2. The Modified DiPerF Controller 
The DiPerF controller invokes the DiPerF submitter and the standard output of the submitter 

is connected to a pipe from which the controller will read back the results. The DiPerF controller 

keeps reading characters from the pipe. For every complete line it receives (ended by a newline 

character), it checks if it is a line containing results and, if so, it sends it to the database module. A 

line containing results has a specific prefix, called LOGFILE_PREFIX. When sent to the database 

module, this prefix is stripped off. 

3.7.2.3. The Modified DiPerF Submitter 
The DiPerF submitter receives its parameters in its command line invocation. Some of these 

extra parameters will be sent to each tester. Except for these parameters, each tester receives a 

unique ID from the submitter (the tester IDs are consecutive integer numbers ranging from 0 to the 

number of testers minus 1). 
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Each tester is invoked through a SSH connection on the machine on which it needs to be 

executed. Its standard output is connected to a pipe. The submitter reads from the pipes connected 

to each tester’s standard output and sends the lines read to the controller (by writing them to its own 

standard output). 

DiPerF allows for two modes of executing a tester. In the first mode, the tester receives the 

name of an executable file which will be executed and needs to be located on the machine of the 

tester. In the second mode, the tester receives through its standard input a .tar archive which is 

decompressed and then a file is executed which is contained inside the archive. This is the only way 

files can be transferred from the machine of the controller to the machine on which each tester is 

executed. In ServMark, only this second mode is used. The archive contains the GrenchMark files 

and, if required, also the executable file which needs to be invoked by the tester. 

3.7.2.4. The Modified DiPerF Tester 
The DiPerF tester receives its parameters in the command line, which are passed to 

GrenchMark. The tester decompresses the .tar archive given through its standard input and then 

executes a bash script from the archive. The bash script is located inside the archive and it provides 

the GrenchMark functionality. When testing a specific web service or peer-to-peer application, the 

script first starts the corresponding application. 

3.7.2.5. The Modified GrenchMark Module 
 At first, a workload description file is generated in a format specific to GrenchMark by a 

Python script wl-gen.py. The file contains parameters and job types which are known by 

GrenchMark. The Python file wl-submit.py reads the XML file written by wl-gen.py and actually 

submits the jobs for execution. The wl-submit.py file receives extra parameters (test id, project id, 

tester id, start time) used for reporting the results. 

The jobs are submitted for execution at specific times and a thread pool is used for 

submitting the jobs. A watchdog is used to check for threads which might have been blocked 

waiting for their job to execute and in order to report periodic statistical results for each thread. 

3.7.2.5.1. The Thread Pool 

The original behavior of the worker threads in the thread pool has been modified. In the 

original GrenchMark, each thread would get a job request from a job request queue and then 

execute a callback function given as a parameter in the job request. The callback function would 

actually submit the job for execution, compute all the needed values and return a result object to the 

worker thread. Now, the work of the callback function is partly done inside the worker thread. The 

callback functions is passed as a parameter a function of the worker thread (called runningProcess), 

which is called right before submitting the job. This function inside the thread actually submits the 

job and computes the most important values and the callback function compute only the remaining 

values contained in the result object. 

Each worker thread has a Cstats object for each metric it computes. This object is fed 

individual values computed for each job and is used to compute statistical values for the 

corresponding thread. 

In order to obtain the process ID of the executed job and a pipe to its standard output, the 

worker thread uses an object of type subprocess, contained in the popen5 package [Popen5]. 

Currently, Python does not offer any possibility to obtain both the process ID and a pipe connected 

to the standard output. 

A job is not executed directly. Instead, a wrapper is being used, called waiter.py. This 

wrapper changes its process group ID and then executes the job. This is useful in case the job 

spawns many processes and then blocks, because using a single kill command, all the spawned can 

be killed, because they would be part of the same (known) process group. This approach is useless 

in case the job changes its process group ID itself, in which case the process group will not be 

known or if each process spawned by the job changes its process group ID. 
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3.7.2.5.2. The Watchdog 

The WatchDog is implemented as an extension of the class of worker threads, because it has 

a similar behavior. It periodically checks if any threads are blocked waiting for their associated job 

to finish execution. If there are any threads blocked for a period longer than a specified amount of 

time, the job is killed by the watch dog. After the job is killed, the worker thread regains control as 

if the job had terminated normally. By inspecting the return code, the worker thread could notice 

that the job was, in fact, killed by the watchdog. 

The watchdog has another important function. It periodically collects statistical information 

from the worker threads, for every computed metric. Currently, there are 5 metrics computed: Run 

Time, Response Time, Waiting Time, Time to Job Failure and Time To Job Completion. Each 

metric is computed on a per thread basis. 

3.7.2.6. The Database Module 
The database module is implemented in Python (the file dbpy.py). It receives as a single 

command line argument a line which contains information to be entered into the database. 

Information is encoded. The fields are separated by the character having ASCII code 1 and the line 

may contain a prefix which specifies the table into which the information will be inserted (or 

updated). The DiPerF controller invokes the database module every time it receives a line 

containing information to be entered into the database (such a line has a particular prefix). 

The database module interacts with a MySQL database containing specific tables. 

3.7.2.7. The Metrics 
There are 5 metrics computed: Run Time, Response Time, Waiting Time, Time To Job 

Completion and Time To Job Failure. All of them are computed on a per thread basis. Currently, 

because of insufficient information, the waiting time is always considered to be 0 and the run time 

is always equal to the response time. The relations ship between them is: Response Time = Waiting 

Time + Run Time. However, once a job is submitted, there is no module implemented to measure 

the waiting time (or get it from the resource manager), so we consider the waiting time to be 0. 

The Time To Job Failure metric is computed for approximately equal intervals of time. For 

each failed job, the difference between the moment it failed and the previously moment when a job 

has failed (or the beginning of the time interval) is computed and passed to the corresponding Cstats 

module. This metric is a measure of how frequently job failures occur. 

The Time To Job Completion metric is computed in a similar way. For every correctly 

completed job, the difference between the previous moment when a job was completed correctly (or 

the beginning of the time interval) is computed and passed to the corresponding Cstats module. 

3.7.3. Validation and Testing 

3.7.3.1. Validation 
 We have validated the implementation on the DAS-2 environment [Bal et al., 2000], a  

wide-area distributed system consisting of 200 Dual Pentium-III computer nodes. The environment 

is built out of clusters of workstations, which are interconnected by SurfNet, the Dutch university 

Internet backbone for wide-area communication, whereas Myrinet, a popular multi-Gigabit LAN, is 

used for intra-cluster communication. The clusters are located at five Dutch Universities and from 

this point of view it can be considered as an experimental Grid system operating in the Netherlands. 

The validation focus was to show that ServMark can operate correctly, that is, that it can generate 

complex tests involving several test nodes, run the tests, obtain and analyze the results, and store all 

the produced output. We have used one node in each cluster to validate our implementation, by 

running on each of them several ServMark test nodes. Throughout the validation tests, ServMark 

displayed the expected functionality. 
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3.7.3.2. Testing 
In order to test the ServMark implementation, we chose to evaluate the performance of 6 

web servers: Apache, Null HTTPD, Apache Tomcat, Nweb, Jetty and Awhttpd. The purpose of this 

testing scenario was to prove the capabilities of our system and not to establish which of these web 

servers is the best, from an absolute point of view. 

 

3.7.3.2.1. Experimental Setup 

The ServMark “core” was installed on s8.diperf.cs.uchicago.edu , a machine located at the 

University of Chicago Computer Science Department. The characteristics of this machine are 

presented in table 3-1. 
Table 3-1. The Characteristics of the Machine on which the ServMark “Core” was Installed. 
OS Linux SuSE 
GCC version 3.3.3 
Python version 2.3.3 
Database Server MySQL 
MySQL version 4.0.18 

The web servers were started on alice01.rogrid.pub.ro, a machine located at the Politehnica 

University of Bucharest, Faculty of Computer Science. The characteristics of this machine are 

presented in table 3-2. 
Table 3-2. The Characteristics of the Machine on which the Web Servers were Started. 
OS Linux 
GCC version 3.2.3 
Java version 1.5 SE 

3.7.3.2.2. Test Setup Overview 

For every test, we used 22 testers, each executing 100 requests, generated using a Poisson 

distribution. The testers were spawned on machines which are part of PlanetLab. PlanetLab 

currently consists of 700+ machines, hosted by 350+ sites, spanning over more than 25 countries. 

Most of the machines are hosted by research institutions, although some are located in co-location 

and routing centers (e.g., on Internet2’s Abilene backbone). All of the machines are connected to 

the Internet. All PlanetLab machines run a common software package that includes a Linux-based 

operating system; mechanisms for bootstrapping nodes and distributing software updates; a 

collection of management tools that monitor node health, audit system activity, and control system 

parameters; and a facility for managing user accounts and distributing keys. The advantage to 

researchers in using PlanetLab is that they are able to experiment with new services under real-

world conditions, and at large scale. 

For each test, the testers were selected to run on hosts from North and South America, Asia, 

and Europe, simultaneously. 

 
Fig. 3-20. The Test Setup Overview. 
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A job which was running for more than 25 seconds was considered to be blocked and was, 

subsequently, killed. The watchdog gathered statistical information from the worker threads 

approximately every 15 seconds. 

3.7.3.2.3. Test Results 

Table 3-3 presents the statistical values for the response time of the 6 web servers we tested. 
Table 3-3. The Response Times computed for the 6 Web Servers (in Seconds). 

Web Server Average(Standard 

Deviation) 

Minimum Maximum Weighted 

Average 

Apache 1.0779 (0.647) 0.0810 16.5440 1.0969 

Null HTTPD 0.9442 (0.482) 0.1244 30.4872 0.9495 

Apache Tomcat 1.3617 (0.732) 0.1724 24.2665 1.3930 

Nweb 0.9731 (0.565) 0.1293 10.9908 1.0152 

Jetty 10.0745 (1.210) 0.2651 35.4375 9.0297 

Awhttpd 1.1739 (0.558) 0.1242 29.5580 1.0117 

The amount of data stored in the database generated by ServMark for each web server was 

estimated to be about 1.6 megabytes. However, the size of the information for each submitted job 

depends on the output of each test job, which is application-specific, and cannot be reduced by the 

testing infrastructure (e.g, by GrenchMark). 

The test parameters we chose (22 testers and 100 queries per tester) were large enough to 

make good use of the resources available at the testing nodes. However, they may not have been 

stressing enough to make the web servers use all of their resources. 
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Chapter 4 – Real-Time Centralized Scheduling of Data Transfer 
Requests 
 

 

 

 Many types of communication flows require hard QoS guarantees, like a guaranteed 

minimum bandwidth, maximum delay, or a guaranteed data delivery deadline. Such constraints are 

very difficult to provide when the network infrastructure is shared by multiple users who may 

unpredictably generate network traffic and, thus, consume network resources. Hard QoS guarantees 

can only be provided when the network infrastructure within which the communication flows are 

delivered is under the control of a single entity. Moreover, (background) traffic generation is also 

controlled (or limited) by the same entity. Such a centralized control provides the opportunity for 

centralized scheduling of the concurrent communication flows within the network. At the moment, 

Internet Service Providers (ISPs) are the most likely to meet the condition mentioned above (as they 

own and can have full control over their network infrastructure). Although they do not currently use 

their network infrastructure in order to provide QoS guarantees to their users, they may some day 

decide to provide QoS-constrained data transfer services, given enough economic incentives. 

 In the first part of this chapter we introduce several new types of data transfer services which 

may provided by a data transfer service provider, as well as guidelines for managing their risks and 

prices. The rest of the chapter is dedicated to presenting algorithmic techniques for computing 

efficient schedules under multiple (types of) constraints. The original contributions presented in this 

chapter were published in [Andreica, Deac and Tipa, 2009], [Andreica and Ţăpuş, 2009e], 

[Andreica and Ţăpuş, 2009f], [Andreica, Tîrşa, Ţăpuş, Pop and Dobre, 2009], [Andreica, Tîrşa and 

Ţăpuş, 2009b], [Costan, Stratan, Tîrşa, Andreica and Cristea, 2009], [Mogoş and Andreica, 2009], 

[Andreica, 2009a], [Andreica, Andreica and Cătăniciu, 2009], [Andreica, Andreica and Ardelean, 

2009], [Carpen-Amarie, Andreica and Cristea, 2008], [Andreica and Tîrşa, 2008], [Andreica and 

Ţăpuş, 2008b], [Andreica and Ţăpuş, 2008d] , [Andreica and Ţăpuş, 2008e], [Andreica and Ţăpuş, 
2008f], [Andreica and Ţăpuş, 2008g], [Andreica and Ţăpuş, 2008j], [Andreica and Ţăpuş, 2009b], 

[Andreica, 2008b] and [Andreica, 2008c]. 

4.1. Context and Types of Data Transfer Services 

The context in which dedicated data transfer services can be provided is that in which the 

entire network infrastructure is owned by the service provider. Thus, we define the network as a 

graph composed of n vertices and m edges. A vertex is either a user computer or the device through 

which the user connects to the network infrastructure of the provider (e.g. a cable modem or ADSL 

modem), a router, a switch, or any other network device. An edge between two vertices corresponds 

to a physical link between the two vertices and has an associated latency, bandwidth and, possibly, 

a cost (if we have a full-duplex link, then we need a latency, bandwidth and cost value for each 

direction). We only consider point-to-point links and we ignore shared network media (e.g. Ethernet 

on a bus topology, or wireless) on purpose. 

Note that the provider does not need to map its entire network in this graph. In this case, a 

vertex may stand for a group of network devices or for part of a network. However, the physical 

characteristics of the network links (graph edges) should be adjusted accordingly (e.g. an edge 

between two vertices i and j may now stand for multiple physical links between the network devices 

of the groups corresponding to the two vertices; in such a case, the bandwidth for each direction of 

the edge could be the sum of the bandwidths of the physical network links for that direction, but it’s 

difficult to say what the “combined” latency should be). We consider that all the traffic that exists in 

the network is the result of using some of the data transfer services which we describe next. 

The most common type of data transfer service, which is provided by most Internet Service 

Providers (ISPs) nowadays, is the following. They guarantee a maximum upload and download 
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bandwidth to the users and make no guarantees for anything else. The user can choose a quality 

level – the larger the quality level, the larger the upload and download bandwidths are. The users 

are charged a flat fee F(j) (for quality level j) per month as long as a combination C of the total 

upload traffic U and download traffic D (during the current month) does not exceed an upper bound 

B (C may be U+D, or some other function chosen by the provider). Then, the users are charged an 

extra fee, usually directly proportional with the excess: E(j)·(C-B). This business model works well, 

but it is not useful in any of the situations requiring QoS guarantees. This is because these are only 

best-effort services and provide no end-to-end guarantees. The following types of services focus on 

providing end-to-end guarantees. The best model for using such services is that in which the users 

(or user applications) submit data transfer requests to a central scheduler (like in [Andreica, Tîrşa, 

Ţăpuş, Pop and Dobre, 2009] and [Andreica and Tîrşa, 2008]). 

The first type of requests is given by fixed bandwidth-fixed duration requests. Such a request 

has the following parameters: (t1, t2, B, D, lmax, s, f), meaning that the data transfer requires a 

minimum amount of bandwidth B for a duration of time D, the earliest possible starting time of the 

transfer is t1, the latest possible finish time is t2, and the transfer takes place between nodes s and f. 

The scheduler must assign to the request a (directed) path from s to f in the graph and a time interval 

[ts, ts+D] in which the required amount of bandwidth is available on each edge on the path (in the 

direction from the source to the destination) and the sum of latencies of the edges on the path is at 

most lmax. Then, data is transferred on the assigned path and during the assigned time interval at (at 

most) the requested bandwidth. 

A second type of requests is given by fixed data-fixed duration requests. The parameters of 

such a request are: (t1, t2, TD, dataid, s, f, o), meaning that it needs to transfer TD bytes of data, the 

transfer takes place between nodes s and f, and the transfer must occur between time moments t1 and 

t2, but the transfer speed does not have to be constant (i.e. it can vary in time; all that matters is that 

the moment tf when the last byte of data arrives at the destination is ≤t2, and we do not start 

transferring the first byte of data before t1). The data is initially located at the source node s and is 

identified by an identifier dataid (e.g. file name, location and offset within the file). The data does 

not have to be transferred on a single path – this is up to the scheduler; but the transfer must be 

reliable (i.e. all the data must reach its destination). The o parameter is a boolean flag which 

indicates if the data must be received in order (o=true) or if it can be reordered at the destination 

(o=false) by adding extra information regarding its position in the flow to every transferred packet. 

Another type of requests is given by fixed bandwidth-variable duration requests. The 

parameters of such a request are: (t1, B, lmax, s, f), meaning that the scheduler needs to allocate to 

the request a (directed) path from s to f, starting at time moment t1 and for an indefinite duration. A 

bandwidth of at least B must be available on every edge of the path (in the corresponding direction, 

from s to f) and the sum of the latencies of the edges on the path must be at most lmax. 

So far, we only considered independent and unrelated requests. However, the two types of 

fixed duration requests can be extended as follows. The scheduler receives a group of M requests 

(r(1), …, r(M)) which are connected by precedence constraints. To be more precise, besides 

satisfying the constraints of each request, we are also given a directed acyclic graph (DAG) which 

has a vertex i for every request r(i). We have a directed edge from vertex i to vertex j if the data 

transfer corresponding to request r(j) must start only after the data transfer corresponding to request 

r(i) is complete. The group may contain both fixed bandwidth- and fixed data- fixed duration 

requests. 

4.2. Guidelines for Managing Prices and Risks 

Economic feasibility is strongly related to the profits the data transfer service provider can 

obtain from its customers. Thus, the pricing policy plays an important role. Depending on the 

(expected) number of customers, the provider may choose a fixed pricing policy or may negotiate 

the price for every data transfer request (it may even present multiple alternatives with different 

prices to the customer). 

In the case of fixed bandwidth-fixed duration requests, the price should be proportional to B 
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and D, and inversely proportional to the slack (t2-t1-D) and lmax. That is, the larger the requested 

bandwidth and duration are, the larger the price should be, and the smaller the upper bound on 

latency and the slack are, the larger the price should be. Prices may also depend on the time interval 

[t1,t2]. If it is difficult to find a time interval of length D where a path satisfying the Quality-of-

Service (QoS) constraints exists, then the price should be higher. Moreover, the price can be 

proportional to the amount of already reserved bandwidth on the edges on the chosen path (the 

higher the bandwidth of the path is utilized, the higher the price). 

Fixed data-fixed duration requests should be charged proportional to the total transferred 

data (TD), and inversely proportional to the length of the time interval [t1,t2]. Moreover, if the data 

should be delivered in an ordered fashion, the price should be higher (as there are more constraints 

imposed on the provider). 

Fixed bandwidth-variable duration requests are slightly more complicated. Obviously, the 

price should be proportional to B, to the actual duration of using the service, and inversely 

proportional to lmax. A combination of fixed and variable costs could be used here. For instance, if 

the service is used for a duration of at most D, then the price could be CF; otherwise, if the usage 

duration is D’>D the price will be CF+CV·(D’-D) (CF and CV depend on the other parameters of 

the request). 

Note that not all of the requests may be satisfied, as the provider may not have sufficient 

resources to accommodate all the requests. When receiving a request, if it can be satisfied, the 

provider should choose the price also based on the risk that this request may force the rejection of 

future requests which might bring larger revenues (we consider that once accepted, a request cannot 

be cancelled or rejected later). 

Fixed bandwidth-variable duration requests present the highest risk, as resources might 

need to be reserved for a long time in order to make sure that the request is satisfied (if, however, 

the provider is over-provisioned compared to the actual customer demand, these requests may be 

the most desirable, as they might use the network resources for larger time intervals and, thus, they 

may be favoured in some sense). Fixed bandwidth-fixed duration requests present the second 

highest risk and fixed data-fixed duration requests present the lowest risk (those with unordered 

data delivery are less risky than those with guaranteed ordered data delivery). However, handling a 

DAG of a group of requests presents significantly higher risks than handling independent requests. 

Thus, the provider should use a good risk model, as this will influence its pricing policy. 

A forecast and a simulation component should be included in the risk model. The forecast 

component should identify patterns of the parameters of the requests received so far and patterns of 

behaviour for the fixed bandwidth-variable duration requests (e.g. estimations of the actual 

durations). The forecast component should be used as follows. Given all the available information 

regarding the requests and a time interval [t1,t2], the forecast component should be able to generate 

a list of fake requests, which it estimates that might be received during the interval [t1,t2]. Then, 

when deciding the price of a newly received request, we use the simulation component to estimate 

the overall revenue if the request were accepted (ignoring its price) and the overall revenue if the 

request were rejected. The simulation is run for a carefully chosen duration (e.g. it simulates T 

seconds or minutes in the future) and uses as input the list of fake requests estimated by the forecast 

component for the interval [present time moment, present time moment+T], and the currently 

scheduled requests. The price of the request should be chosen such that the revenue in case of not 

accepting the request is not larger than the revenue in the case of accepting request (but ignoring its 

price) plus the price of the request. 

The forecast component may also be used differently. It could generate K≥1 lists of fake 

requests for a given time interval [t1,t2] and it could assign a probability of occurrence prob(i) to 

every list i (1≤i≤K). Then, the simulation is run for each of the K lists, a revenue R(K) is computed 

for every list and then an expected revenue ER=the sum of the values prob(i)·R(i) is computed and 

used (we assume that the sum of the values prob(i), 1≤i≤K, is 1). 
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4.3. Online Scheduling of Fixed-Bandwidth Fixed-Duration Data Transfer 
Requests on a Single Network Link 

In this section, we will consider a particular situation, in which the network is composed of 

only two nodes, connected by a single link. Fixed-bandwidth fixed-duration data transfer requests 

are sent from both nodes to a central scheduler (the maximum latency argument is ignored here). 

We will consider two bandwidth models for the requests. In the first model, each request asks for 

the whole bandwidth of the link and, thus, we can schedule at most one data transfer at a time. In 

the second model, each request asks for a fraction of the link’s bandwidth. The first model is, 

obviously, a particular case of the second model, but it can be handled more efficiently in some 

situations. The requests will be handled one at a time (i.e. online). 

The focus of this section is on techniques for deciding quickly if a request can be satisfied 

and, if it can, for creating a reservation for the request. We will present several data structures 

which can be used for this purpose, which bring successive performance improvements. We will 

start with some well-known data structures (for which the novelty consists of the way they are used) 

and we will end up with a new data structure, presented in [Andreica and Ţăpuş, 2008b]. All the 

data structures assume that time is divided into discrete, equally-sized, time slots and they will work 

with time slot numbers (time slots are numbered starting either from 0 or from 1, in their 

chronological order), rather than with time moments. 

4.3.1. The Time Slot Array 

We will first consider the first bandwidth model (i.e. each data transfer uses the full 

bandwidth of the link). A common approach is to divide the time horizon into m equally-sized time 

slots and build a time slot array [Burchard, 2005] over these slots. For each time slot t (1≤t≤m), the 

array ts contains an entry ts[t], which can be either 0 (no transfer is scheduled during this time slot) 

or 1 (a transfer was scheduled during this time slot). Using the time slot division, each transfer is 

started only at the beginning of a time slot and lasts for an integer number of consecutive time slots 

(even if the last time slot is not fully occupied, it is still marked as being fully occupied). In order to 

obtain a good performance, the time horizon must be divided into a large number of time slots (a 

fine-grained time resolution). In this situation, however, an important aspect to consider is the time 

it takes to traverse the time slot array for each request.  

We consider two operations to be performed on the array: a query and an update. A query 

verifies if a request can be granted and an update sets all the time slot entries of a data transfer to 

the same value (1, when scheduling a transfer; 0, when canceling a transfer). The pseudocode of 

these operations is described below (the time parameters are converted into time slots): 

 
Pseudocode 4-1. Update and Query Functions for the Time Slot Array. 

The time complexity of each operation is O(m). The time slot array can be easily enhanced 

in order to support the second bandwidth model. In this case, it is possible for multiple transfers to 

be scheduled simultaneously, as long as the maximum bandwidth of the link is not exceeded. The 

TSAQuery(t1, t2, D): 
nfree=0 

for t=t1 to t2 do { // t=ES, ES+1, …, LF-1, LF 

  if (ts[t]=0) then { 

    nfree=nfree+1 

    if (nfree=D) then return [t-D+1, t] 

  } else nfree=0 
} 
return “no interval found” 
 

TSAUpdate(ts, D, value): 
for t=ts to ts+D-1 do ts[t]=value // or ts[t]+=value 
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entry ts[t] of a time slot represents, in this case, the available bandwidth during that time slot. The 

update and query functions run in O(m) time. 

 
Pseudocode 4-2. Update and Query Functions for the Disjoint Sets Data Structure. 

4.3.2. Disjoint Sets for Non-Cancellable Reservations 

Using the first bandwidth model and if the data transfer reservations cannot be cancelled, we 

can use a disjoint sets data structure [Cormen, Leiserson, Rivest and Stein, 2001] in order to 

maintain the maximal intervals of time slots with an entry equal to 1 in the time slot array. This data 

structure provides two operations: Find(t), which returns the representative of the disjoint set 

containing element t and Union(a,b), which combines the sets of the elements a and b into one set 

(if they are not already in the same set). 

For each set representative sr we maintain two values: left[sr] and right[sr], the left and 

right endpoints of the interval of time slots represented by the set. Within the Union procedure we 

compute the set representatives of the elements a and b, sra and srb (sra=Find(a) and srb=Find(b)). 

Then, using some of the well-known heuristic criteria (like union by rank or union by size), one of 

the two representatives (call it sru) will be selected as the representative of the combined set. We 

will set left[sru] = min{left[sra], left[srb]} and right[sru]=max{right[sra], right[srb]}. 

The total time complexity of the updates is O(m·α(m,n)) (where α(m,n) is the inverse of the 

Ackermann function) and the query time is reduced, because we can jump over large intervals of 

occupied time slots. 

4.3.3. Using an Algorithmic Framework based on Block Partitioning 

In this section we will introduce an algorithmic framework for the block partitioning method. 

We consider an array of n cells, numbered from 0 to n-1, where each cell has a value vi (each cell 

corresponds to a time slot). We will divide the n cells into n/k blocks of size k (we assume that k is a 

divisor of n; if it is not, n can be extended to be a multiple of k or the last block may contain fewer 

cells). The blocks are numbered from 0 to (n/k)-1 (or n/k, if n is not a multiple of k). 

The cells 0, …, k-1 belong to block 0, the cells k, …, 2·k-1 belong to block 1, …, the cells (i-

1)·k, …, (i·k)-1 belong to block i-1, and so on. Thus, the cell j belongs to block (j div k) (integer 

division). For simplicity, we store for each block B the first and last cells of the block (left[B] and 

right[B]). Using this partitioning, we can support several update and query functions in O(k+n/k) 

time. By choosing k=sqrt(n), we will have O(k+n/k)=O(sqrt(n)); sqrt(x) denotes the (integer part of 

DSQuery(t1, t2, D): 
nfree=0; t=t1 

while (t≤t2) do { 

  if (ts[t]=0) then { 

    nfree=nfree+1 

    if (nfree=D) then return [t-D+1, t] else t=t+1 

  } else {  
    nfree=0 

    t=right[Find(t)]+1 

  } 
} 
return “no interval found” 
 

DSUpdate(tstart, D, value=1): 
for t=tstart to tstart+D-1 do { 

  ts[t]=value 

if ((t>1) and (ts[t-1]=value)) then Union(t-1, t) 

} 
if ((tstart+D≤m) and (ts[tstart+D]=value)) then Union(tstart+D-1, tstart+D) 
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the) square root of x. Queries consist of computing a function on the values of a range of cells [a,b] 

(range query) or on retrieving the value of a single cell (point query). 

Range Query(a, b): compute qFunc(va, va+1, …, vb). 

Analogously, we have point and range updates: 

Range Update(u, a, b): vi=uFunc(u, vi), a≤i≤b. 

The qFunc function must be binary and associative, i.e. qFunc(va,..,vb)= 

qFunc(va,qFunc(va+1,..,qFunc(vb-1, vb)..)) and qFunc(a,qFunc(b,c))=qFunc(qFunc(a,b),c). We must 

also have uFunc(x,y)=uFunc(y,x). Only values vi with O(1) size are considered (numbers and tuples 

with a fixed number of elements). uFunc and qFunc must be able to handle uninitialized arguments. 

If one of their arguments is uninitialized, they must simply return the other argument; this part will 

be intentionally left out of the functions’ descriptions. The algorithmic framework consists of the 

functions from Table 4-1. 
Table 4-1. Algorithmic Framework Functions. 

Update Functions Query Functions 
BPpointUpdate 

BPrangeUpdate 

BPrangeUpdatePoints 

BPrangeUpdatePartialBlock 

BprangeUpdateFullBlock 

BPpointQuery 

BPrangeQuery 

BPrangeQueryPoints 

BPrangeQueryPartialBlock 

BPrangeQueryFullBlock 

In order to perform a range update, we will call the BPrangeUpdate function with the 

corresponding parameters (the update value u and the update interval [a,b]). This function splits the 

update interval into three zones: the first block Ba intersected by the interval (containing the cell a), 

the last block Bb intersected by the interval (containing the cell b) and all the blocks in between Ba 

and Bb (the inner blocks). 

The blocks Ba and Bb may not be fully contained inside the interval: they will be updated in 

O(k) time (partial update). All the inner blocks are fully contained inside [a,b]: they will be updated 

in O(1) time each (full update). Since there are O(n/k) such blocks, the overall complexity of a 

range update will be O(k+n/k). 

The range query function (BPrangeQuery) works similarly. For each block B we will 

maintain two values: uagg and qagg. uagg is the aggregate of the update parameters of the function 

calls which updated all the elements of B (for which B was an inner block). uagg is reset to an 

uninitialized value on each partial update of the block. qagg is the answer to the query function 

called on all the elements of B. 

The point update and query functions are: BPpointUpdate and BPpointQuery. The 

framework also uses a “multiplication” operator mop, which computes the effects of an update 

operation upon the query result on a range of cells. This operator must exist when range queries and 

range updates are used together, but can be ignored otherwise. When the data structure is initialized, 

the uagg value of each block is set to uninitialized (qagg is initialized with the query result on the 

range of the block’s cells).  

In the case of point queries with range updates, only the uagg values are meaningful; 

similarly, only the qagg values are meaningful in the case of point updates with range queries. 

Common update and query functions can be easily integrated into the framework. For example, 

with uFunc(x,y)=(x+y), qFunc(x,y)=((x+y) (modulo M)) and mop(u,a,b)=((u·(b-a+1)) (modulo M)), 

we can support point and range sum queries, together with point and range addition updates. For 

uFunc(x,y)=x+y, qFunc(x,y)=min(x,y) and mop(u,a,b)=u, we can support point and range minimum 

(or maximum) queries, together with point and range addition updates. We can also consider point 

and range multiplication updates, uFunc(x,y)=x·y, with point and range queries: qFunc(x,y)=((x·y) 

(modulo M)) (with mop(u,a,b)=((u
b-a+1

) (modulo M))), qFunc(x,y)=min(x,y) and qFunc(x,y)=((x+y) 

(modulo M)) (with mop(u,a,b)=u). 

With mop(u,a,b)=u, we can support range queries and updates for some bit functions (where 

vi=0 or 1). For uFunc(x,y)=(x or y) and uFunc(x,y)=(x and y), we can have qFunc(x,y)=(x and y) 
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and qFunc(x,y)=(x or y). 

 
Pseudocode 4-3. Functions of the Block Partitioning Algorithmic Framework. 

BPpointUpdate(u, i): 
vi=uFunc(u,vi) 

B=the block to which the cell i belongs 

qagg[B]=BPrangeQueryPoints(left[B], right[B]) 
 

BPrangeUpdate(u, a, b): 
Ba, Bb=the blocks of cells a and b 

if (Ba=Bb) then { 
if ((a=left[Ba]) and (b=right[Ba])) then BPrangeUpdateFullBlock(Ba, u) 

else BPrangeUpdatePartialBlock(Ba, u, a, b) 

} else { 
BPrangeUpdatePartialBlock(Ba, u, a, right[Ba]) 

BPrangeUpdatePartialBlock(Bb, u, left[Bb], b) 

for block=Ba+1 to Bb-1 do BPrangeUpdateFullBlock(block, u) 

} 
 

BPrangeUpdatePoints(u, a, b): 
for p=a to b do vp=uFunc(u, vp) 
 

BPrangeUpdatePartialBlock(B, u, a, b): 
BPrangeUpdatePoints(uagg[B], left[B], right[B]) 

uagg[B]=uninitialized 
 

BPrangeUpdatePoints(u, a, b) 

qagg[B]=BPrangeQueryPoints(left[B], right[B]) 
 

BPrangeUpdateFullBlock(B, u): 
uagg[B]=uFunc(u, uagg[B]) 

qagg[B]=uFunc(mop(u, 1eft[B], right[B]), qagg[B]) 
 

BPpointQuery(i): 
B=the block to which the cell i belongs 

return uFunc(uagg[B], vi) 
 

BPrangeQuery(a, b): 
Ba, Bb=the blocks of cells a and b 

if (Ba=Bb) then return BPrangeQueryPartialBlock(Ba, a, b) 

else { 
qa=BPrangeQueryPartialBlock(Ba, a, right[Ba]) 

qb=BPrangeQueryPartialBlock(Bb, left[Bb], b) 
q=uninitialized 

for block=Ba+1 to Bb-1 do q=qFunc(q, BPrangeQueryFullBlock(block)) 

return qFunc(qa, qFunc(q, qb)) 

} 
 

BPrangeQueryPoints(a, b): 
q=uninitialized 

for p=a to b do q=qFunc(q, vp) 

return q 
 

BPrangeQueryPartialBlock(B, a, b): 
BPrangeUpdatePoints(uagg[B], left[B], right[B]) 

uagg[B]=uninitialized 

return BPrangeQueryPoints(a, b) 
 

BPrangeQueryFullBlock(B): 
return qagg[B] 



 79 

For the and update, we can also have qFunc(x,y)=(x xor y). We can support range xor 

updates and queries (uFunc(x,y)=qFunc(x,y)=(x xor y)), but with mop(u,a,b)=(if (((b-a+1) mod 

2)=0) then 0 else u). 

In order to obtain any combination of bit functions, we notice that the result of a query 

depends only on the number of 0 and 1 values (cnt0, cnt1) in the query range: if (cnt1>0) then or 

returns 1; if (cnt1 mod 2=1) then xor returns 1; if (cnt0=0) then and returns 1. Thus, we will work 

with (cnt0, cnt1) tuples as values. We will also consider the conceptual values cvi, which are the 

numerical values we conceptually work with. We have vi=(1-cvi, cvi). A query asks for the number 

of 0 and 1 conceptual values in the query range and an update changes this number according to the 

bit function used. 

 
Pseudocode 4-4. Update and Query Functions for any Bit Function. 

If the update function has the effect of setting all the values in a range to the same value s 

(range set), we will again need to work with tuples: the values vi and the update parameters u will 

have the form (numerical value, time_stamp). We need to have a timestamp() function which 

returns increasing values upon successive calls. We can use a global counter as a time stamp, which 

is incremented at every call. The initial numerical values are assigned an initial time stamp and 

every update parameter gets a more recent time stamp. The update function is: 

 
Pseudocode 4-5. Update Function for the ‚Set’ Operation. 

With these definitions, a point query function call on a position i will return the last update 

parameter of an interval containing that position.  

A useful range query function (used together with point updates) is finding the maximum 

sum segment (interval of consecutive cells) fully contained in a range of cells [a,b] (see [Chen and 

Chao, 2007] for this problem without updates). Conceptually, the value of a cell i is a number cvi, 

but in the framework we will use tuples consisting of 4 values: (totalsum, maxlsum, maxrsum, 

maxsum). Assuming that these values correspond to an interval of cells [c,d], we have the following 

definitions: 
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(4-1) 

In the framework, a value vi will be a tuple corresponding to the interval [i,i]. If cvi<0, then 

vi=(cvi, 0, 0, 0); otherwise, vi=(cvi, cvi, cvi, cvi). The point update function changes the value of cvi 

of a cell i and then recomputes vi. The qFunc function is given below: 

 
Pseudocode 4-6. Query Function for the Range Maximum Sum Segment Problem. 

qFunc((tx,mlx,mrx,mx), (ty,mly,mry,my)): 
return (tx+ty , max{mlx , tx+mly}, max{mry , ty+mrx}, max{mx , my , mrx+mly}) 

bitTupleQuery((cnt0,x, cnt1,x), (cnt0,y, cnt1,y)): 
return (cnt0,x+cnt0,y, cnt1,x+cnt1,y) 
 

bitTupleUpdate((1-u, u), (cnt0, cnt1), func): 
if (func=and) and (u=0) then return (cnt0+cnt1, 0) 

else if (func=or) and (u=1) then return (0, cnt0+cnt1) 

else if (func=xor) and (u=1) then return (cnt1, cnt0) 

else return (cnt0, cnt1) 

uFunc((wx, tx), (wy, ty)): 
if (tx>ty) then return (wx, tx) else return (wy, ty) 
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We can use the range set update together with the range maximum sum segment query. 

Conceptually, each cell has a numerical value cvi. Practically, the framework’s values vi will be 

tuples of the following form (totalsum, maxlsum, maxrsum, maxsum, time_stamp). The update, 

query and multiplication functions are given below. We notice that the fundamental combination 

(range set update, range sum query) is also solved. However, no suitable function definitions for the 

combination (range addition update, range maximum sum segment query) were found. 

 
Pseudocode 4-7. Functions for the Range Maximum Sum Segment Problem with the ‚Set’ Operation. 

The framework’s behaviour can be improved by adding a dirty flag to each block. With the 

dirty flag, the qagg value will be recomputed only “on demand” and not after every point or partial 

block update. We only need to replace the functions BPpointUpdate, BPrangeUpdatePartialBlock 

and BPrangeQueryFullBlock with the following definitions: 

We can use the block partitioning framework we just presented in order to handle data 

transfer scheduling requests. For the first bandwidth model, an update operation will consist of a 

range set operation (setting all the time slots in a range to the same value) and a query operation 

will consists of a range maximum sum segment query. To be more specific, we associate a value vt 

to each time slot t. This value will always be either 1 or -∞. An update with the parameter value=0 

sets the values of all the time slots in the interval [ts, ts+D-1] to 1. An update with value=1, sets the 

slots in the same interval to -∞. A query consists of the maximum sum segment query contained in 

the interval [t1, t2]. Such a segment will never contain a value vt=-∞ (unless no value equal to 1 

exists in that range). Thus, the returned interval is, in fact, the longest interval of free consecutive 

time slots and its length can be compared to the parameter D. We obtain a time complexity of 

O(k+m/k) for each query and update (i.e. O(sqrt(m)) for k=sqrt(m)). For t2-t1+1=D and considering 

the second bandwidth model, we can use the same framework. In this case, the operations used are: 

range addition update and range minimum query. 

 
Pseudocode 4-8. Functions of the Block Partitioning Algorithmic Framework using a Dirty Flag. 

BPpointUpdate(u, i): 
vi=uFunc(u,vi) 

B=the block to which the cell i belongs 

dirty[B]=true 
 

BPrangeUpdatePartialBlock(B, u, a, b): 
BPrangeUpdatePoints(u, a, b)  

dirty[B]=true 
 

BPrangeQueryFullBlock(B): 
if (dirty[B]) then { 
  BPrangeUpdatePoints(uagg[B], left[B], right[B])  

  uagg[B]=uninitialized 

  qagg[B]=BPrangeQueryPoints(left[B], right[B]) 

dirty[B]=false 

} 
return qagg[B] 

uFunc((totalx, mlx, mrx, mx, tx), (totaly, mly, mry, my, ty)): 
if (tx>ty) then return (totalx, mlx, mrx, mx, tx) 

else return (totaly, mly, mry, my, ty) 
 

qFunc((totalx, mlx, mrx, mx, tx), (totaly, mly, mry, my, ty)): 
return (totalx+totaly , max{mlx , totalx+mly}, max{mry , totaly+mrx}, max{mx, my , mrx+mly}, max{tx, 

ty}) 
 

mop((totalx, mlx, mrx, mx, tx), a, b): 
return ((b-a+1)·totalx, (b-a+1)·mlx, (b-a+1)·mrx, (b-a+1)·mx, tx) 
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4.3.4. Using an Algorithmic Framework based on an Extended Segment Tree 

 
Pseudocode 4-9. Functions of the Segment Tree Algorithmic Framework. 

The segment tree [Andreica and Ţăpuş, 2008f] is a binary tree structure used for performing 

operations on an array v with m cells. Each cell i (1≤i≤m) contains a value vi. Each node p of the 

tree has an associated interval [p.left, p.right], corresponding to an interval of cells. If the node p is 

not a leaf, then it has two sons: the left son (p.lson) and the right son (p.rson). The interval of the 

left son is [p.left, mid] and the right son’s interval is [mid+1, p.right], where 

mid=floor((p.left+p.right)/2). 

STpushUpdates(node): 
if (node.left<node.right) then { 

STrangeUpdateNodeFit(node.lson, node.uagg) 

STrangeUpdateNodeFit(node.rson, node.uagg) 

node.uagg=uninitialized 

} 
 

STrangeUpdate(node, u, a, b): 
STpushUpdates(node) 
if ((a=node.left) and (node.right=b)) then STrangeUpdateNodeFit(node, u)  
else { 
  lson, rson = left and right son of the current tree node 

  if ((a≤node.lson.right) and (node.lson.left≤b)) then 

   STrangeUpdate(node.lson, u, max(a, node.lson.left),min(b, node.lson.right)) 

  if ((a≤node.rson.right) and (node.rson.left≤b)) then 

   STrangeUpdate(node.rson, u, max(a, node.rson.left),min(b, node.rson.right)) 

STrangeUpdateNodeIncl(node, u, a, b) 
} 
 

STrangeUpdateNodeFit(node, u): 
node.uagg=uFunc(u, node.uagg) 

node.qagg=uFunc(mop(u, node.left, node.right), node.qagg)) 
 

STrangeUpdateNodeIncl(node, u, a, b): 
node.qagg=uFunc(mop(node.uagg, node.left, node.right), qFunc(node.lson.qagg, 

node.rson.qagg)) 

// for some uFunc functions, we can just modify node.qagg directly:  

// node.qagg=uFunc(mop(u, a, b), node.qagg) 
 

STrangeQuery(node, a, b): 
STpushUpdates(node) 
if (a=node.left and node.right=b) then return STrangeQueryNodeFit(node) 
else { 
q=uninitialized 

  if ((a≤node.lson.right) and (node.lson.left≤b)) then 

    q=qFunc(q, STrangeQuery(node.lson, max(a, node.lson.left), min(b, node.lson.right)) 

  if ((a≤node.rson.right) and (node.rson.left≤b)) then 

    q=qFunc(q, STrangeQuery(node.rson, max(a,node.rson.left), min(b, node.rson.right)) 

return uFunc(STrangeQueryNodeIncl(node, a, b), q) 

} 
 

STrangeQueryNodeFit(node): 
return node.qagg 
 

STrangeQueryNodeIncl(node, a, b): 
return mop(node.uagg, a, b) 
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The leaves are those nodes whose associated interval contains only one cell. The interval of 

the root node is [1,m]. The height of the segment tree is O(log(m)). The tree can be built in O(m) 

time. We consider the same types of (point and range) query and update operations as in the case of 

the block partitioning method. 

In order to perform an update we call the function STrangeUpdate with the segment tree 

root as its node argument and the appropriate update parameter. In order to query the segment tree, 

we call the function STrangeQuery, with the segment tree root as its node argument and the left and 

right cells of the query range. A query/update range is decomposed into O(log(m)) intervals, 

corresponding to O(log(m)) “covering nodes” of the tree (the query/update call stops at these nodes 

and does not go further down the tree). Besides the covering nodes, all the nodes on the path from 

the root to each covering node are visited (O(log(m)) nodes overall). We would like to use the 

segment tree in order to perform the same operations as in the previous subsection (regarding the 

block partitioning method), i.e. range set update and range maximum sum segment query. 

 
Pseudocode 4-10. Update and Query Functions for the Range Set and Range Sum Operations. 

 
Pseudocode 4-11. Functions of the Segment Tree Algorithmic Framework using a Dirty Flag. 

Each node of the segment tree maintains two values: uagg and qagg. uagg is the aggregate 

of all the update parameters of the update calls which “stopped” at that node. qagg is the query 

answer for the interval of cells corresponding to the current node, ignoring all the update calls 

which “stopped” further up in the tree (an update call which “stopped” at one of the current node’s 

ancestors affects the interval of cells of the current node, but its effects are not considered in the 

qagg field of the current node). However, in order to support the kind of range queries and updates 

we are interested in, we will need to use a function called STpushUpdates. Basically, the update 

aggregates are pushed down to the two sons (and then cleared) on every update and query call. We 

would, in fact, like to push these updates all the way towards the leaves, but doing this on every 

update would take O(m) time. Instead, we “piggy-back” future update calls and push the update 

aggregates “on demand”, without affecting the O(log(m)) complexity of the update/query function 

calls. We also use a multiplication operator mop, which estimates the effects of an update on a 

range of cells. 

With this framework we can support many types of pairs of updates and queries, like all 

STrangeUpdateNodeFit(node, u): 
node.uagg=uFunc(u, node.uagg) 

node.dirty=true 
 

STrangeUpdateNodeIncl(node, u, a, b): 
node.dirty=true 
 

STrangeQueryNodeFit(node): 
if (node.dirty=true) then { 
  if (node.left=node.right) then node.qagg=uFunc(mop(node.uagg, node.left, node.right)) 

else node.qagg = uFunc( mop(node.uagg, node.left, node.right),  

               qFunc(STrangeQueryNodeFit(node.lson), STrangeQueryNodeFit(node.rson)) 
node.dirty=false 

} 
return node.qagg 

uFunc((wx, tx), (wy, ty)): 
if (tx>ty) then return (wx, tx) else return (wy, ty) 
 

qFunc((wx, tx), (wy, ty)): 
res=wx+wy // or min{wx,wy} or max{wx,wy} 

return (res, max{tx,ty}) 



 83 

those mentioned in the previous subsection (e.g. uFunc(x,y)=qFunc(x,y)=(x+y) or 

uFunc(x,y)=qFunc(x,y)=((x+y) (modulo M)), and so on). We will focus now on range set updates. 

In order to perform a range set update, we need to consider tuples of values. For instance, if we 

want to perform range sum/minimum/maximum queries, each value of a cell is, in fact a pair (value, 

time_stamp). Successive update parameters obtain increasing time stamps. The uFunc and qFunc 

functions which are used by the framework are defined in Pseudocode 4-10. 

We can also add dirty flags to every node of the segment tree (initially, all such flags will be 

set to false) and recompute the qagg values of every such node only when needed. The modified 

functions (except STpushUpdates) are shown below. However, in this case, such an approach will 

not bring significant savings on the running time. 

4.3.5. Time Slot Groups 

In this section we will present an efficient data structure which can be used for providing 

bandwidth guarantees to non-preemptive data transfers on a single network link, subject to time 

constraints, in the following context: applications submit bandwidth reservation requests to a 

bandwidth broker which either satisfies the requests or rejects them. The data structure divides the 

time horizon upon which bandwidth reservations are performed into T discrete equally-sized time 

slots and supports efficiently the following types of operations:  

• find(s1,s2,D,B) - finds a time slot interval [s,s+D-1], where at least a given amount of 

bandwidth B is available during every time slot of the interval, subject to the following QoS 

constraints: the length of the interval is D time slots, the earliest possible starting time slot is 

s1 and the latest possible finish time slot is s2 (i.e. s1≤s≤s+D-1≤s2); this, in fact, a fixed-

bandwidth fixed-duration data transfer request (except that the parameters were named 

differently) 

• reserve(s1,s2,B) - decreases by B the available bandwidth for each slot within the time slot 

interval [s1,s2] (if the value of B is negative, an increase takes place) 

The reserve (update) operation takes O(k+(T/k)) time and the find (query) operation takes 

O(k+(T/k)·log(k)) time, where 1≤k≤T is a user-defined parameter (e.g. a constant value or a function 

f(T)). Some situations where this functionality is useful are the transfer of multimedia streams to 

customers who are only available within some specific time intervals or the transfer of large data 

files in Grids and other distributed systems. 

4.3.5.1. The Enhanced Time Slot Array 
We will first show how a time slot array (TSA), availbw, can support the two operations. 

The slots are numbered from 0 to T-1 and the time parameters and the operations’ results are 

expressed in time slots. We give the reserve function below: 

 

Pseudocode 4-12. The reserve Function for the Time Slot Array. 

The bandwidth of a time slot interval [sa, sb] is: 

]}{availbw[sminB
sbssa

interval
≤≤

= . 
(4-2) 

In the find function we are looking for an interval of D slots, with a bandwidth greater than 

or equal to B. We will traverse the [s1,s2] interval with a sliding window consisting of D time slots 

and maintain a min-heap with the available bandwidths of the time slots in the window. When we 

move the right end of the window one position to the right, from s (s≥s1+D-1) to s+1, we remove 

from the heap the (leftmost) time slot s-D+1 (which now falls outside of the window) and insert 

into the heap the time slot s+1. 

We can reduce the time complexity of the find operation from O(T·log(T)) to O(T), if we 

replace the min-heap by a double-ended queue (deque) [Berman et al., 2004] which stores (time slot, 

reserve_TSA(s1 , s2  , B): 
for s = s1  to s2 do availbw[s] = availbw[s] – B 
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available bandwidth) pairs. The elements of the deque are sorted increasingly according both to the 

bandwidth and the time slot. The first element of the deque (deque.getFirst()) is always the one with 

the minimum bandwidth among the slots inside the current window. As the right end of the window 

slides to the next slot s, all the pairs at the end of the deque whose bandwidths are larger than the 

available bandwidth of slot s are removed. The element at the front of the deque is removed when it 

falls outside of the sliding window. This takes O(T) time, because we insert each time slot once and 

remove it at most once from the deque. The last element of a deque is obtained as the result of the 

call deque.getLast(). Checking if a deque is empty is performed by calling the function 

deque.gisEmpty(). 

The enhanced time slot array handles differently only the query and update function calls 

referring to all the slots (between s1=0 and s2=T-1). These calls will be named full-period calls. A 

full-period update needs to decrease the bandwidth of each time slot by the same value B. Instead of 

doing this, only the value of a variable called globalbw is modified. Thus, the real available 

bandwidth of each slot s will be availbw[s]+globalbw. For each full-period query, we will find the 

answer in O(1) time, by using a previously computed array sibw. sibw[L] stores the maximum 

bandwidth of an interval of L slots and the actual interval. 

 
Pseudocode 4-13. The find Function for the Time Slot Array. 

The sibw array will be computed after every non-full-period update. An efficient way to 

compute the sibw array would be to sort the values of the available bandwidths of the T time slots 

increasingly into an array called values. We will maintain a data structure (balanced tree) of 

(disjoint) time slot intervals which, initially, contains only one time slot interval consisting of all the 

T time slots. Then we will traverse the sorted values array. Every value will split the time slot 

interval inside which it is located into two time slot intervals (or one if it is located at the end of 

some time slot interval, or zero if the time slot interval consisted of just one slot). 

We will also have a binary max-heap with the length of the current time slot intervals. Using 

the balanced tree, we can retrieve easily the time slot interval into which a given time slot resides. 

Before performing a split at the i
th

 value, we will retrieve the maximum value L from the max-heap, 

meaning that a time slot interval of L time slots having a bandwidth equal to values[i] exists. We 

will store this interval at the position sibw[L]. After performing the split, the time slot interval 

which was split is removed both from the heap and the balanced tree and will be replaced by the 

resulting smaller intervals (which are inserted in the tree and the heap). After traversing all of the 

values (and performing all the splits), we traverse the array sibw from the largest length to the 

smallest one; if no interval was stored for  a length L, then we use the time slot interval for length 

L+1, removing from it the leftmost or the rightmost time slot. The overall time complexity is 

O(T·log(T)), because each of the T splits takes O(log(T)) time. 

We can compute the sibw array more efficiently, in O(T) time. If we consider the available 

bandwidth of a time slot s as the “height” of that time slot, we obtain a histogram. We can find all 

the O(T) maximal area rectangles inside the histogram in O(T) time, by adapting an algorithm 

find_TSA(s1 , s2 , D, B): 
deque = empty 

(ts,Bmax)=(-∞,-∞) 

for s = s1 to s2 do { 

while ((not deque.isEmpty()) and (deque.getLast().value≥availbw[s])) do 
   deque.removeLast() 

  deque.addLast((time_slot = s, value = availbw[s])) 

  if ((s–s1+1>D) and (deque.getFirst().time_slot=s-D)) then deque.removeFirst() 

if ((s–s1+1≥D) and (deque.getFirst().value≥B)) then 

  (ts, Bmax)=(s-D+1, deque.getFirst().value) 

} 
if (Bmax≥B) then return (intv=[tst=ts, tend=ts+D-1], maxbw=Bmax) 

else return (intv=“no interval found”, maxbw=Bmax) 
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presented in [Vandevoorde, 1998] for finding the largest area rectangle full of ones in a binary 

matrix. The algorithm maintains a stack of (time slot, bandwidth) pairs, sorted increasingly both 

according to the slot number and the bandwidth value. If, after processing a slot s, the stack contains 

some pair (s’,B), then the time slot interval [s’,s] has bandwidth B and is the longest interval ending 

at slot s having this bandwidth. The pseudocode of the (first version of the) functions is presented in 

Pseudocode 4-14. 

 
Pseudocode 4-14. Functions for the Enhanced Time Slot Array - Version 1. 

Because by using ETSA_v1, updating short intervals takes a longer time, we will maintain a 

dirty flag for the sibw array. This way, after each non-full-period update, the dirty flag is set and at 

the next full-period query, the sibw array is recomputed. The complexity of the find function for a 

full-period query becomes O(1) in an amortized sense. The second version of the functions 

(ETSA_v2) is shown in Pseudocode 4-15. 

The enhanced time slot array is augmented with three extra functions, getMinBw, 

getMinBwLeftToRight and getMinBwRightToLeft, computable in O(1) time. getMinBw returns the 

minimum bandwidth of any time slot. The minimum value in the availbw array, minbw, is 

computed in the computeSibw function (in O(T) time). The real minimum bandwidth is the sum of 

find_ETSA_v1(s1 , s2 , D , B): 
if (s1=0) and (s2=T-1) then { 

  if (sibw[D].bw + globalbw ≥ B) then 

    return (intv=[tst=sibw[D].s1 , tend=sibw[D].s2], maxbw=sibw[D].bw + globalbw) 

  else return “no interval found” 

} else return find_TSA(s1 , s2 , D , B-globalbw) 
 

reserve_ETSA_v1(s1 , s2 , B): 
if ((s1=0) and (s2=T-1)) then globalbw=globalbw–B  

else { 
  reserve_TSA(s1 , s2 , B) 

computeSibw() 

} 
 

computeSibw(): 
stack=empty; availbw[T]=-∞ 

sibw[L]=undefined, for each  L=1,…,T 

for s=0 to T do { 

  lslot=s 

  while ((not stack.isEmpty()) and (stack.top().bw≥availbw[s])) do { 

    L=s-stack.top().leftmost_slot; H=stack.top().bw 

    if ((H>availbw[s]) and ((sibw[L]=undefined) or (sibw[L].bw<H))) then { 

      sibw[L].s1= stack.top().leftmost_slot 

      sibw[L].s2=s-1; sibw[L].bw=H 

    } 
    lslot=stack.top().leftmost_slot; stack.pop() 

  } 
  stack.push((leftmost_slot = lslot , bw=availbw[s])) 

} 
for L=T-1 downto 1 do 

  if (sibw[L]=undefined) then { 

    sibw[L].s1=sibw[L+1].s1 

    sibw[L].bw=sibw[L+1].bw 

    sibw[L].s2=sibw[L+1].s2 -1 

  } 
  compute minbw, minBwLtoR and minBwRtoL 
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minbw and globalbw. In the computeSibw function we also compute in O(T) time two arrays: 

minBwLtoR and minBwRtoL, defined as follows: 

 ]}{availbw[jmin  i]minBwLtoR[
ij0 ≤≤

= , (4-3) 

 ]}{availbw[jmin  i]minBwRtoL[
Tji <≤

= . (4-4) 

The pseudocode of the getMinBwLeftToRight and getMinBwRightToLeft functions is shown 

in Pseudocode 4-16. 

 

Pseudocode 4-15. Functions for the Enhanced Time Slot Array - Version 2. 

 
Pseudocode 4-16. The getMinBwLeftToRight and getMinBwRightToLeft Functions. 

4.3.5.2. The Time Slot Groups Data Structure 
We divide the T time slots into ng=O(T/k) groups, containing k consecutive slots each (if the 

last group contains less than k slots, we increase T such that the last group also contains k time 

slots). Each group of time slots is an enhanced time slot array. The groups are stored in an array tsg 

and are numbered from 0 to ng-1. Group i contains the slots numbered from (i·k) to ((i+1)·k-1). 

Within the group, the slots are numbered from 0 to k-1. The execution of any function of any group 

takes at most O(k) time. Considering this division into groups, the time slot interval [s1,s2] of the 

reserve function can have one of the two types of structures: 

• Type A: s1 and s2 lie inside the same group G. 

• Type B: s1 is located inside some group G1 and s2 is located inside a group G2>G1. 

 

First, we will compute the group numbers (G1 and G2) and sr1 and sr2, the values of the time 

slots s1 and s2, relative to their groups: 

  /G i ksi= , 1,2)(ik  modssr ii == . 
(4-5) 

In the case of a Type A structure, we will simply call the reserve function of the group G 

with parameters (sr1, sr2, B), which will be executed in O(k) time. For a Type B structure, we will 

update the interval of time slots [sr1, k-1] in G1, the interval [0, sr2] in G2 and the intervals [0, k-1] 

for each group between G1 and G2. Updating G1 and G2 takes O(k) time, while updating the other 

O(T/k) groups takes O(1) time for each group. The overall complexity is O(k+T/k). 

getMinBwLeftToRight(p): 
if (p<0) then return +∞ 

else return minBwLtoR[min{p,T-1}]+globalbw 
 

getMinBwRigtToLeft(p): 
if (p≥T) then return +∞ 

else return minBwRtoL[max{p,0}]+globalbw 

find_ETSA_v2(s1 , s2 , D, B): 
if ((s1 = 0) and (s2 = T-1) and (dirtyFlag.isSet())) then { 

  computeSibw() 

  dirtyFlag.clear() 

} 
return find_ETSA_v1(s1 , s2 , D , B) 
 

reserve_ETSA_v2(s1 , s2 , B): 
if ((s1 = 0) and (s2 = T-1)) then globalbw = globalbw – B  else 

  reserve_TSA(s1 , s2 , B) 

  dirtyFlag.set() 
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Pseudocode 4-17. The reserve Function for the Time Slot Groups Data Structure. 

For the find function (Pseudocode 4-18), the time slot interval [s1,s2] can also have one of 

the two types of structures presented previously. We will also compute the group numbers of s1 and 

s2 (G1 and G2) and the values sr1 and sr2. If G1=G2, we just call the find function of G1, with (sr1, 

sr2, D, B) as parameters. This call takes O(k) time. If G1<G2, then we will first deal with a particular 

sub-case. 

If D is at most k, then the desired slot interval could be completely located within one of the 

groups G1+1,…,G2-1. For each such group, we call the find function, with parameters  (0,  k-1,  D,  

B).  Each call takes O(1) time. The time complexity of this particular case is O(T/k), as there are 

O(T/k) groups between G1 and G2. The interval could also lie in G1 (between sr1 and k-1) or G2 

(between 0 and sr2), if D is at most k-sr1, or at most sr2+1, respectively. Calling the appropriate 

functions for G1 and G2 takes O(k) time. The case where D>1 and the desired slot interval might 

cross several groups is presented next. 

 

Fig. 4-1. All the Events for: T=25, k=5, s1=1, s2=22, D=13. 

Before going any further, we will introduce several concepts. A candidate interval is an 

interval of D time slots fully included inside [s1,s2]. There are s2-s1-D+2=O(T) candidate intervals, 

one for each possible starting time slot. We will traverse the [s1,s2] interval from left to right with 

an interval consisting of D time slots, named the event interval. However, the first and last slots of 

this interval take only a special subset of values, each corresponding to an event. The set of all 

events is {[sfirst, slast] | [sfirst, slast] ⊆  [s1, s2] and (sfirst=s1 or sfirst=the first time slot of some group or 

slast=s2 or slast=the last time slot of some group) and (s2=s1+D-1)}. The events can be sorted from 

left to right, according to their leftmost time slot (see Fig. 4-1). 

The time slot interval [s1,s2] contains at most (T/k)-2 groups between G1 and G2. Thus, the 

number of events is O(T/k). For each event E, we will find the candidate interval having the 

maximum bandwidth, with the first time slot located between the first slot of E (inclusive) and the 

first slot of the next event (exclusive). If E is the last event, the next event is considered one slot to 

the right. Let’s assume that for the current event E, the first time slot is in the group Gbegin and its 

relative slot number in that group is sbegin. Similarly, the ending time slot’s group is Gend and its 

relative time slot number in that group is send. If E is not the last event (i.e. the ending slot of E is 

not s2), then we will also assume that send is not the last time slot in the group Gend (if it is, we 

consider send=-1 in the group Gend+1, i.e. right before the first time slot of Gend+1; after this, we 

reserve_TSG(s1 , s2 , B): 
compute G1  , G2 , sr1 , sr2 

if (G1=G2) then tsg[G1].reserve_ETSA_v(1/2)(sr1,sr2,B) 
else { 
  tsg[G1].reserve_ETSA_v(1/2)(sr1 , k-1 , B) 
  tsg[G2].reserve_ETSA_v(1/2)(0 , sr2 , B) 

for G=G1+1 to G2-1 do tsg[G].reserve_ETSA_v(1/2)(0, k-1 , B) 

} 
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also set Gend=Gend+1). 

 
Pseudocode 4-18. The find Function for the Time Slot Groups Data Structure. 

If Gbegin<Gend, we compute in O(1) time the distance dist (in terms of time slots) between E 

and the next event (if E is the last event, then dist=1). If we slide the event interval by any number 

of time slots between 0 and dist-1, the values of Gbegin and Gend will remain the same (although sbegin 

find_TSG(s1 , s2 , D , B): 
compute G1 , G2 , sr1 , sr2 

if (G1=G2) then return tsg[G1].find_ETSA_v(1/2)(sr1,sr2,D,B) 

else { 
  ts=Bmax=-∞ 

if (D≤k-sr1) then { 

    (intv, maxbw)=tsg[G1].find_ETSA_v(1/2)(sr1, k-1, D, B) 

    if (maxbw≥Bmax) then { 

      Bmax=maxbw 

      if (maxbw≥B) then ts=intv.tst }} 
if (D≤sr2+1) then { 

    (intv, maxbw)=tsg[G2].find_ETSA_v(1/2)(0, sr2, D, B) 

    if (maxbw≥Bmax) then { 
      Bmax=maxbw 

      if (maxbw≥B) then ts=intv.tst }} 

  if (D≤k) then { 

    for gr=G1+1 to G2-1 do { 

      (intv,maxbw)=tsg[gr].find_ETSA_v(1/2)(0, k-1, D, B) 

      if (maxbw≥Bmax) then { 

        Bmax=maxbw 

        if (maxbw≥B) then ts=intv.tst }}} 

  fts=s1; lts=s1+D-1 

compute Gbegin , sbegin , Gend , send for the first event 

  intGDQ=empty 

  add to intGDQ  the groups G in [Gbegin+1, Gend-1] in increasing order (by calling 

intGDQ.addLast(G, tsg[G].getMinBw())) 

  while (the last event has not been processed) do { 

    if (send=k-1) then { // move to Gend+1 

      if (Gbegin<Gend) then { 

        remove all the elements from the end of intGDQ having a bandwidth larger than the 

minimum bandwidth of the group Gend 

        intGDQ.addLast((grp=Gend, bw=tsg[Gend].getMinBw()) 

      } 
      send=-1 ; Gend=Gend+1 } 

    dist=the distance between the current event and the next event    

    compute popt // such that min{Bbegin(popt),Bend(popt)} is maximum 

    if (not intGDQ.isEmpty()) then Bgroups=intGDQ.getFirst().bw 
    else Bgroups=+∞ 
    if ((min{Bbegin(popt), Bend(popt), Bgroups}≥Bmax) and (Gbegin<Gend)) then { 
      Bmax=min{Bbegin(popt), Bend(popt), Bgroups} 
      if (Bmax≥B) then ts=fts+popt } 

    move to the next event (update Gbegin, Gend, sbegin, send, fts, lts) 

    if ((not intGDQ.isEmpty()) and (intGDQ.getFirst().grp=Gbegin)) then 
      intGDQ.removeFirst() 

} 
if (Bmax≥B) then return (intv=[ts,ts+D-1], maxbw=Bmax) 

else return [intv=“no interval found”, maxbw=Bmax] } 
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and send would increase). Let’s call the groups from Gbegin+1 to Gend-1 interior groups and let’s 

assume that we already know their minimum bandwidth Bgroups (the minimum of the values returned 

by the getMinBw function of each group). We will define cand(p)=the candidate interval obtained 

by sliding the current event interval p positions to the right. For 0≤p≤dist-1, cand(p) contains all the 

interior groups of the event interval. Only the intersections with the groups Gbegin and Gend change. 

We define Bbegin(p)=the minimum bandwidth among the time slots located in the intersection 

of cand(p) and Gbegin. Bbegin(p) is computed as getMinBwRightToLeft(sbegin+p) (in O(1) time), called 

for the group Gbegin. Analogously, we define Bend(p)=the minimum bandwidth among the time slots 

located in the intersection of cand(p) with the group Gend. Bend(p) = 

tsg[Gend].getMinBwLeftToRight(send + p). Since getMinBwRightToLeft(x) ≤ 

getMinBwRightToLeft(x+1) for any x, we have Bbegin(0) ≤ Bbegin(1) ≤ … ≤ Bbegin(dist-1). Similarly, 

we have Bend(0)≥Bend(1)≥…≥Bend(dist-1). We want to find the value of p (0≤p≤dist-1) for which 

min{Bbegin(p), Bend(p)} is maximum. We distinguish between 3 cases: 

• Case 1: Bbegin(0)≥Bend(0). The optimal value for p is 0, because for every p, min{Bbegin(p), 
Bend(p)}=Bend(p) and Bend(0) has the highest value. 

• Case 2: Bbegin(dist-1)≤Bend(dist-1). The optimal value for p is dist-1, because min{Bbegin(p), 
Bend(p)}=Bbegin(p) and Bbegin(dist-1) has the highest value. 

• Case 3: Bbegin(p)≤Bend(p) for 0≤p≤pw and Bbegin(p)>Bend(p) for pw<p≤dist-1. The value of 
pw can be found using a simple binary search. Since dist≤k, the binary search takes 

O(log(k)) time. Then, the value (p)}} B(p), B{minmax{ endbegin
dist-1p0 ≤≤

is found either for p=pw or for 

p=pw+1. 

Once the optimal value for p is found (popt), we compute the bandwidth of the candidate 

interval determined, which is min{Bgroups, Bbegin(popt), Bend(popt)} and compare it to the required 

bandwidth. In order to efficiently find the value Bgroups while moving from the current event to the 

next, we will use again a sorted deque (intGDQ), as presented in Section III. It is easy to see that, 

when moving to the next event, the former rightmost group Gend may become an interior group and 

the leftmost interior group may fall outside of the interval of interior groups. Thus, Bgroups can be 

computed in O(1) time for each event. The time complexity of the find function is dominated by the 

computation of the best candidate intervals and is of the order O(T/k·log(k)+k). For the case of 

simple requests (i.e. D=1 or D=s2-s1+1), the complexity of the query operation is only O(k+T/k). 

We notice that all the find functions (of the time slot array, enhanced time slot array and 

time slot groups data structures) find the largest bandwidth of an interval of D time slots located 

between the corresponding time slot parameters (s1 and s2). 

4.3.5.3. Experimental Results and Conclusions 
Table 4-2. Running Times (in Seconds): T=262,144 ; k=512(=T1/2). 

Total # of 
operations 

Number of time 
slots per query 

Number of time 
slots per update 

Time Slot 
Array 

TSG without 
dirty flag 

TSG with dirty 
flag 

10,000 0 1 - 3000 0.13 1.4 0.1 

10,000 0 150,000 - 

262,144 

8.75 1.17 0.1 

10,000  10 - 2000 0 0.31 0.29 0.28 

10,000 190,000 - 262,144 0 45.18 0.31 1.16 

10,000 210,000 - 262,144 0 55.49 0.45 0.5 

10,000 10 - 262,144 20,000 - 262,144 18.74 0.62 0.8 

Sum of running times : 128.6 4.24 2.94 

We implemented the data structure in the Java programming language and tested its 

performance against the standard time slot array (see Table 4-2).  For all the updates, B was 

uniformly distributed between -Bmax and +Bmax (the initial value of the available bandwidth of each 

time slot). For all the queries, D was at most 75% of the length of [s1,s2] and B was between 0 and 

Bmax. The tests were run one after another in the same session. We conclude that the experimental 

results confirmed the theoretical expectations: the running times are of the order O(k+(T/k)) for 

updates and O(k+(T/k)·log(k)) for queries, where k can be chosen according to the expected ratio 

between update and query operations. Moreover, the data structure behaves significantly better than 
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the standard time slot array. 

4.3.5.4. Possible Augmentations of the Time Slot Groups Data Structure 
 The Time Slot Groups (and, of course, the time slot array and enhanced time slot array data 

structures) data structure can be augmented with the following function: 

• find’(s1,s2,B) - finds a time slot interval [s,s+D-1], where at least a given amount of 

bandwidth B is available during every time slot of the interval, subject to the following QoS 

constraints: the length of the interval is the maximum possible value of D time slots, the 

earliest possible starting time slot is s1 and the latest possible finish time slot is s2 (i.e. 

s1≤s≤s+D-1≤s2) 

We can implement the find’ function by binary searching the maximum number of time slots 

D of the interval we are looking for (1≤D≤s2-s1+1). Then, we will call find(s1,s2,D’,B), where D’ is 

the current value chosen by the binary search (we call find_TSA in the case of the time slot array, 

find_ETSA_v(1/2) in the case of the enhanced time slot array and find_TSG in the case of the time 

slot groups data structure). If the maximum bandwidth of an interval with D’ time slots is ≥B then 

we search for larger values in the binary search; otherwise, we will search for smaller values. The 

largest value D’ found within the binary search for which we found an interval of D’ time slots 

whose bandwidth is at least B is the length D of the interval we are looking for (the interval itself is 

also returned by the find function of the 3 data structures we mentioned). 

4.4. Online Scheduling of Fixed-Bandwidth Fixed-Duration Data Transfer 
Requests on a Network Path 

We now consider the particular situation when the network is a path composed of n nodes v1, 

v2, …, vn (and there is a link between every two consecutive vertices in this order). A data transfer 

request contains, besides the parameters considered in the previous section, the identifiers of the 

source and the destination nodes. We could maintain a separate data structure for each network link 

and, for a data transfer request between two nodes i and j, we could query (and then update) the data 

structures of all the O(n) links in-between i and j. In many situations, this approach is good enough. 

However, we can do better than this, by using multidimensional data structures (for instance, two-

dimensional structures, where the first dimension corresponds to the network links and the second 

dimension corresponds to the time slots). 

4.4.1. The d-dimensional Segment Tree 

An extended d-dimensional segment tree (d≥2) is composed of a segment tree for the first 

dimension in which every node contains two (d-1)-dimensional segment trees Tcovering and Ttotal 

(instead of the uagg and qagg, which are stored only in the 1-dimensional segment trees). 

Considering that each dimension has O(m) elements, then the number of nodes in a d-dimensional 

segment tree is O(m
d
). Each tree node will maintain an attribute dim, representing the corresponding 

dimension (the nodes with dim=1 contain actual values; the other nodes only contain 

multidimensional data structures). Using the proposed algorithmic framework, we only need to 

redefine several functions (and add an extra parameter dr to STrangeUpdate and STrangeQuery). A 

range query/update consists of d intervals (one for each dimension): dr=[l1,h1] x [l2,h2] x … x [ld,hd]. 

A range update modifies the values of O(log(m)) intervals (tree nodes) in dimension d. For 

each tree node p in dimension d, the update function is called on the p.Ttotal (and/or p.Tcovering) (d-1)-

dimensional extended segment trees. Thus, O(log
d
(m)) tree nodes are visited. A range query 

aggregates the values of O(log(m)) covering nodes of each tree in dimension d. For each covering 

node, the query function is called on the p.Ttotal (and/or p.Tcovering) (d-1)-dimensional extended 

segment tree, thus taking O(log
d
(m)) time overall. 

We can easily support any combination of range updates and range queries, as long as the 

range of every query (or every update) consists of only one cell (point query/update). However, 

supporting both range queries and range updates with an extended segment tree seems to be 
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possible only for a few types of query and update functions (e.g. range addition updates and range 

sum queries, with mop(u,a,b)=(b-a+1)·u). We were unable to extend the 1D update aggregates 

pushing technique to multiple dimensions (as this would require pushing and merging 

multidimensional structures, instead of 0-dimensional structures, i.e. numerical values or tuples 

with a constant number of fields). 

 
Pseudocode 4-19. Functions for the d-dimensional Segment Tree Algorithmic Framework. 

 
Pseudocode 4-20. Functions for the d-dimensional Block Partitioning Algorithmic Framework. 

BPrangeUpdateFullBlock(blk, u, bpart, dr): 
if (bpart.dim>1) then { 
  BPrangeUpdate(u,lbpart.dim-1,hbpart.dim-1,bpart.Covp[blk], dr) 

BPrangeUpdate(mop(u, bpart.left[blk], bpart.right[blk]),   

                             lbpart.dim-1, hbpart.dim-1, bpart.Totalp[blk], dr) } 

} else { bpart.uagg[blk]=uFunc(u, bpart.uagg[blk]) 

         bpart.qagg[blk]=uFunc(mop(u, bpart.left[blk],  bpart.right[blk]), bpart.qagg[blk]) } 
 

BPrangeUpdatePartialBlock(blk, u, a, b, bpart, dr): 
if (bpart.dim>1) then BPrangeUpdate(mop(u, a, b),  

                          lbpart.dim-1, hbpart.dim-1, bpart.Totalp[blk], dr) 

else bpart.qagg[blk]=uFunc(mop(u, a, b), bpart.qagg[blk]) 

for i=a to b do 

if (bpart.dim>1) then BPrangeUpdate(u, l bpart.dim-1, hbpart.dim-1, bpart.dp[i], dr) 

 else bpart.vi=uFunc(u, bpart.vi) 
 

BPrangeQueryFullBlock(blk, bpart, dr): 
if (bpart.dim>1) then return BPrangeQuery(lbpart.dim-1, 

                                       hbpart.dim-1, bpart.Totalp[blk], dr) 

else return bpart.qagg[blk] 
 

BPrangeQueryPartialBlock(blk, a, b, bpart, dr): 
if (bpart.dim>1) then qres=mop(BPrangeQuery(lbpart.dim-1, 

                                     hbpart.dim-1, bpart.Covp[blk], dr), a, b) 

else qres=mop(bpart.uagg[blk], a, b) 

for i=a to b do 

  if (bpart.dim>1) then qres=qFunc(qres, BPrangeQuery(lbpart.dim-1, hbpart.dim-1, bpart.dp[i], dr)) 

  else qres=qFunc(qres, bpart.vi) 

return qres 

STrangeUpdateNodeFit(node, u, dr): 
if (node.dim>1) then { 

STrangeUpdate(node.Tcovering, u, lnode.dim-1, hnode.dim-1, dr) 

STrangeUpdate(node.Ttotal, mop(u, node.left, node,right), lnode.dim-1, hnode.dim-1, dr) 

} else use the 1D STrangeUpdateNodeFit function 
 

STrangeUpdateNodeIncl(node, u, a, b, dr): 
if (node.dim>1) then STrangeUpdate(node.Ttotal, mop(u,a,b), lnode.dim-1, hnode.dim-1, dr) 

else use the 1D STrangeUpdateNodeIncl function 
 

STrangeQueryNodeIncl(node, a, b, dr): 
if (node.dim>1) then return mop(STrangeQuery(node.Tcovering, lnode.dim-1, hnode.dim-1), a, b, dr) 
else use the 1D STrangeQueryNodeIncl function 
 

STrangeQueryNodeFit(node, dr): 
if (node.dim>1) then return STrangeQuery(node.Ttotal, lnode.dim-1, hnode.dim-1, dr) 
else use the 1D STrangeQueryNodeFit function 
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4.4.2. The d-dimensional Block Partition 

The block partitioning technique is extended by splitting each dimension into m/k k-sized 

blocks. In one dimension, the block division requires (k+1)·m/k memory locations. In d dimensions, 

the memory size increases to ((k+1)·m/k)
d
. Extending range queries with point updates (and range 

updates with point queries) to multiple dimensions is rather easy. We only need to redefine some of 

the framework’s functions. Range queries and updates can be supported when using the block 

division in time O(3
d
·m

d/2
), when choosing k=m

1/2
 (a range query/update has time complexity 

O(3·m
1/2

) in one dimension). 

Each d-dimensional partition into blocks consists of an array dp, where dp[i] is a (d-1)-

dimensional block partition, corresponding to the i
th

 cell of the d
th

 dimension, and two arrays, 

Totalp and Covp, where each entry of the arrays is a (d-1)-dimensional block partition, 

corresponding to a block in the d
th

 dimension. As before, each block partition has a field dim, 

corresponding to its dimension (dim=1 corresponds to a normal, one-dimensional block partition). 

Just like in the case of the multidimensional segment tree, a range query/update consists of d 

intervals (one for each dimension): dr=[l1,h1] x [l2,h2] x … x [ld,hd]. 

We assume the existence of two functions: BPrangeUpdate(u, a, b, bpart, dr) and 

BPrangeQuery(a, b, bpart, dr), similar to those defined in subsection 4.3.3. bpart is a block 

partition (with dimension bpart.dim) and [a,b] is the range in the dimension bpart.dim. The 

necessary functions are presented in Pseudocode 4-20. 

4.5. Practical Scenarios for Scheduling Data Transfer Requests on 
Network Links and Paths 

In this section we discuss the practical applicability of the data structures presented in the 

previous sections. We will present several scenarios, in which using their capabilities will be 

beneficial. 

In the first scenario, the data transfer scheduler receives requests which ask for a fixed 

amount of bandwidth B during a fixed time interval [t1,t2]. By dividing the time horizon into 

equally sized time slots, this problem has two components: 

• find the minimum available bandwidth among all the time slots in the interval [s1,s2], where 

s1 and s2 are the time slots in which t1 and t2 are located. 

• decrease the available bandwidth with the same value B for each time slot in [s1,s2]. 

These two operations are equivalent to a range addition update and a range minimum query 

and can be efficiently handled by the proposed data structures. 

In the second scenario, clients need to send multimedia data at a minimum rate R in a 

wireless network. The scheduler manages a set of N frequencies, numbered consecutively from 1 to 

N. For each frequency i, the scheduler keeps track of the maximum rate ri at which data can be sent 

on that frequency. We can consider the values ri<R as negative  and the others positive (by setting 

ri=ri-R). A request asks for an allocation of consecutive frequency numbers completely located 

inside an interval [fmin, fmax], such that the sum of the transfer rates on the frequency interval is 

maximum. Occasionally, the values ri may need to be updated. This problem is the range maximum 

segment sum that we presented. 

In the third scenario, the scheduler manages two resources: frequency numbers and time. For 

each pair (i,j), the available bandwidth Bi,j for frequency i during time slot j is known. Clients need 

to send as much data as possible during a fixed time slot interval [s1,s2] and using a fixed interval of 

frequency numbers [f1,f2]. The total amount of data that can be sent is ∑∑
= =

⋅
2

1

2

1

, _
s

si

f

fj

ji durationslotB , where 

slot_duration is the duration of a time slot. A client may want to query several time and frequency 

intervals until it finds enough available bandwidth. Occasionally, the values Bi,j need to be updated. 

This problem can be handled efficiently by a multidimensional data structure. 
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4.6. Scheduling Non-Preemptive Data Transfer Requests in Tree 
Networks 

In this section we consider the problem of scheduling data transfers in real-time in a tree 

network. We present algorithmic techniques for this problem, some of which can be implemented in 

a centralized data transfer scheduling framework which has full control over the network. We 

consider only non-preemptive data transfers in this section. 

Trees are some of the simplest non-trivial topologies which appear in real-life situations. 

Many of the existing networks have a hierarchical structure (a tree or tree-like graph), with user 

devices at the edge of the network and router backbones at its core. Furthermore, many graph 

topologies can be reduced to tree topologies, by choosing a spanning tree or by covering the graph’s 

edges with edge disjoint spanning trees [Roskind and Tarjan, 1985]. In a tree network, there exists a 

unique path between every two nodes. Thus, the scheduling techniques do not need to compute an 

optimal path (as there is only one). In the case of multicast transfers (e.g. multimedia live streaming 

to many clients), the multicast tree is a subtree of the tree network and is uniquely defined by the 

source node and the destination nodes. Under these conditions, only time scheduling techniques are 

employed.  

4.6.1. The Real-Time Data Transfer Scheduling Model 

A (centralized) scheduler has full control over the communication network (i.e. the 

background traffic is non-existent or very low compared to the bandwidth of the links). The 

communication topology is a tree with n nodes; each node can issue data transfer requests to the 

scheduler, containing several parameters, like: source node, destination node(s), earliest start time, 

latest finish time, duration and minimum required bandwidth (in the case of non-preemptive data 

transfers), total size of the transferred data (in the case of preemptive data transfers), profit 

(obtained if the request is scheduled and all its constraints are satisfied). The scheduler handles 

these requests in batches of at most R≥1 requests at a time (i.e. the requests are not necessarily 

handled immediately – the scheduler waits until m=R requests are received or until a short time 

limit is exceeded, if m<R). Once a batch of requests is constructed, the scheduler runs an 

optimization algorithm, considering the m≤R requests in the batch, as well as the previously 

scheduled data transfers. Note that the case R=1 means that the scheduler handles the requests one 

at a time and corresponds to the usual meaning of real-time processing. 

When scheduling the new batch of requests, the scheduler may choose to interrupt some of 

the previously scheduled data transfers and resume them later or modify their parameters (e.g. 

allotted bandwidth), if such actions are permitted. We consider two types of scheduling behavior for 

the requests in the current batch. The most general type consists of choosing the starting time (as 

soon as possible or some time in the future) of each request in the batch or rejecting it (for good). 

The second type is applicable only when the requests do not have an earliest start time 

parameter (i.e. they can be started any time after they are submitted). The scheduler divides the time 

into T equal time slots (note that time may also be divided into time slots in the case of the first 

type) and data transfers are started only at the beginning of a time slot. The scheduler maintains the 

value of the next time slot during which requests can be started. Then, the scheduler chooses a 

subset of requests from the current batch which will be started at the beginning of the next time slot. 

The other requests are either rejected or delayed until the next batch. After the batch is processed, 

the value of the next time slot when transfers can be started is increased. If a request is delayed for 

more than an upper limit of UB batches (or if it is not scheduled until its deadline is exceeded), then 

it will be rejected. 

4.6.2. Non-Preemptive Data Transfers with Unit Durations and Full Link Usage 

We will consider that the time horizon is divided into T equally-sized time slots and that 

every data transfer request has the same duration, equal to one time slot (unit duration). We 

consider first that the requests do not have an earliest start time (i.e. they can start immediately after 
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the request is submitted to the scheduler), but they may have a deadline (latest finish time). The 

case where an earliest start time is also given could be easily handled by assigning a priority to each 

request in the batch, sort them according to the priority and then consider the requests in this order, 

one at a time, as if the size of the batch was equal to one request. Moreover, every transfer requires 

the full bandwidth of the links on its path (subtree). 

The starting times of the data transfers correspond to the beginning of the time slots and the 

requests in each batch are scheduled to start later than the requests in the previous batches. Because 

each data transfers lasts for only one time slot, the requests in each batch can be scheduled without 

considering the requests in the previous batches (because those data transfers will already be 

finished when the scheduled requests from the current batch will start). Thus, the optimization 

algorithm only needs to take care of “conflicts” among the requests in the same batch. 

4.6.2.1. Edge- and Vertex-Disjoint Data Transfers 
A request may correspond to a unicast or multicast data transfer. Since the communication 

topology is a tree, a unicast transfer corresponds to a unique path in the tree (from the source to the 

destination) and a multicast transfer corresponds to a unique subtree spanning the source node and 

all the destination nodes. The unicast path (multicast subtree) will be called the subgraph of the 

request. Because of the full bandwidth requirements, the scheduled requests must have edge-disjoint 

subgraphs. If, moreover, the requests require the full processing power of the nodes in their 

subgraphs, then the subgraphs of the scheduled requests must be vertex-disjoint (which also implies 

edge-disjointness in tree networks). If the subgraphs of two requests r1 and r2 are not (edge-) vertex-

disjoint, we say that r1 and r2 are incompatible (they mutually exclude each other). Using the 

incompatibility relations, we can construct a mutual exclusion graph, consisting of the requests as 

vertices and every pair of vertices connected by an edge correspond to a pair of incompatible 

requests. 

We will first consider the case of vertex-disjoint data transfers. It is well known that the 

vertex intersection graph of subtrees of a tree is a chordal graph. In our case, the mutual exclusion 

graph of the requests is chordal. We will use the following notations: V=the number of vertices of 

the mutual exclusion graph (V=m, the number of requests in the batch) and E=the number of edges 

of the mutual exclusion graph (E=O(V
2
)). 

If we are interested in maximizing the total profit of the scheduled requests (from the current 

batch), then we need to find a maximum weighted independent set in the chordal mutual exclusion 

graph, where the weight of a vertex j (w(j)) is the profit of the corresponding request (we will 

consider the graph to be connected; otherwise, we run the algorithm for each of its connected 

components). We will present here a new algorithm, based on dynamic programming on the clique 

tree of the chordal graph. Every chordal graph has a perfect elimination ordering (PEO), based on 

which the associated clique tree (tree of maximal cliques) can be computed. A clique tree has O(V) 

vertices. Both the PEO and the clique tree can be computed in linear time (O(V+E)) [Galinier, 

Habib and Paul, 1995]. We will root the clique tree at an arbitrary clique Cr and then perform a 

bottom-up dynamic programming algorithm. 

For each clique Ci, we will compute the value Wmax(i,j)=the maximum weight of an 

independent set in the subset of graph vertices contained in Ci and all of its descendants, such that j 

is a vertex contained in the set (if j=0, we consider that no vertex of Ci is part of the set). Obviously, 

since Ci is a clique, at most one vertex of Ci can be part of the independent set. We can compute 

Wmax in the following way: 
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A trivial implementation takes O(V
3
) time. By computing for each clique Ck the value 
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Wexcl(k)= max{Wmax(k,0), Wmax(k,p) with p in Ck, but not in its parent Ci}, we can reduce the time 

complexity to O(V
2
) (Wexcl(k) can be computed in O(V) time, by considering every graph vertex in 

Ck and testing in O(1) time whether it also belongs to Ck’s parent Ci). 

In the case of edge-disjoint data transfers, we were not able to find useful properties of the 

mutual exclusion graph. Edge intersection graphs of paths in a tree (corresponding to unicast data 

transfers) were studied in [Golumbic, Lipshteyn and Stern, 2005]. For this case, we suggest using 

some of the approximation algorithms for the maximum weight independent set presented in the 

literature (e.g. [Kako, Ono, Hirata and Haldorsson, 2005]), where the weights of the vertices are the 

profits of the corresponding transfers. 

4.6.2.2. Batches of Size One (one request) 
Setting the batch size to one request makes things easier, because no conflicts need to be 

considered. In this case, we can allow the requests to have an earliest start time, too. We would like 

to find for each request a time slot in which all the links in the request’s subgraph are available. We 

could consider the data structures presented in [Andreica and Ţăpuş, 2008f] and assign such a data 

structure (enhanced time slot array, segment tree or block partition) to every link of the tree. Then, 

for each time slot in the [earliest start time, latest finish time] range, we would query every link in 

the request’s subtree to check if it is available. 

When all the data transfers are unicast, we can use a multi-dimensional data structure 

[Andreica and Ţăpuş, 2008f], together with a heavy path decomposition of the tree network, which 

splits the tree into paths, based on light and heavy edges. This decomposition has the property that 

there are O(log(n)) edges to be traversed between any two paths of the decomposition. We can 

associate a multi-dimensional segment tree (or block partition) to each path in the decomposition. 

Then, when a request’s path spans multiple paths of the decomposition, we will query/update all of 

them appropriately. The request path spans O(log(n)) such paths, thus there is only an O(log(n)) 

performance loss over the path network case (which was considered in [Andreica and Ţăpuş, 
2008f]). The update and query operations which need to be supported by the data structure are 

range addition update (set a range of values to 1; the values were previously equal to 0) and range 

sum query (count the number of 1 entries in a multi-dimensional range). As it turns out, this pair of 

operations (range addition update, range sum query) is one of the few combinations which can be 

supported efficiently by multi-dimensional segment trees or block partitions. With such a data 

structure, we can verify in O(log(n)·log(T)) time if a time slot t is available for every link of a path. 

4.6.2.3. A Model for Rescheduling Data Transfers 
So far, we have not considered the possibility of rescheduling some of the data transfers. 

Once a data transfer was scheduled, the scheduling parameters (e.g. start time, finish time) would 

remain fixed for that data transfer. We propose here a model for the case when no earliest start 

times are given, together with an algorithmic technique which supports the model. 

Let’s consider all the requests in the current batch r1, r2, …, rm, sorted according to their 

deadlines (latest finish times), i.e. LF1≤LF2≤…≤LFm. Since the time is divided into time slots, the 

latest finish times are integer numbers. We will construct a bipartite graph with all the requests on 

one side and all the nt=LFm-LF1+1 candidate time slots tj on the other side (t1=LF1, t2=t1+1, …, 

ti=ti-1+1, tnt=LFm). A request ri will be connected by an edge to every time slot tj≤LFi. This graph is 

a special type of bipartite graph, called chain bipartite graph, because the neighboring vertices of a 

vertex ri are a superset of the neighbors of ri-1. The restricted situation we consider is when the 

mutual exclusion graph of the requests rm is a clique (i.e. a complete graph). Each vertex ri has a 

weight pi, representing the profit of the corresponding request. Each edge (ri, tj) has a cost ci,j=pi 

minus the sum of the profits of the requests scheduled during time slot tj, whose subgraphs intersect 

the subgraph of ri. Since the mutual exclusion graph is a clique, at most one request ri can be 

scheduled during one of the time slots tj. Thus, a maximum (edge-)cost matching in the graph we 

have previously introduced represents an optimal way of scheduling some of the requests in the 

current batch.  
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Pseudocode 4-21. Maximum Cost Matching Algorithm. 

A maximum (edge-)cost matching in a bipartite graph can be obtained by modifying one of 

the well-known minimum cost maximum matching algorithms. At every iteration, a maximum cost 

path (from a virtual source to a virtual sink) is computed in the residual graph (which may have 

both positive and negative weights on its edges, but does not contain any positive cycles). There are 

standard algorithms for this path computation, like Bellman-Ford-Moore (which takes O((m+nt)
3
) 

time). When the maximum cost of a path is negative, we stop the algorithm. 

The number of iterations of the algorithm described in the previous paragraph is 

O(min{m,nt}), leading to an O((m+nt)
4
) overall time complexity, which is too large to be used in a 

real-time systems. Instead, we propose a different model, which is less accurate. Each vertex tj has 

an estimated weight wj, which is computed based on the requests scheduled during the time slot tj 

and the requests in the current batch (e.g. it could be equal to the sum of the profits of the requests 

scheduled during time slot tj which intersect every request in the current batch, but some more 

interesting and relevant functions can be defined). We will now define the cost of each edge (ri, tj) 

as ci,j=pi-wj. Of course, we could use the same maximum cost matching algorithm as before, but due 

to the particular nature of the edge-cost function and the structure of the bipartite graph, we can do 

better. For each request ri, we compute tlast(i)=j, if tj=LFi (we consider tlast(0)=0). 

We will traverse the request vertices from r1 to rm and maintain a min-heap (priority queue) 

HRmatch of the matched requests, a min-heap HTunm of the unmatched time slots and a max-heap 

HTmatch of the matched time slots. The maximum cost of a matching will be maintained in the 

variable max_cost. A maximum cost solution has the property that the minimum profit of a matched 

request is larger than the maximum weight of a matched time slot. The algorithm is sketched in 

Pseudocode 4-21. 

The time complexity of this algorithm is O((m+nt)·log(m+nt)), which is a great 

improvement upon the standard maximum cost matching algorithm. If all the requests or all the 

time slots have equal weights, we can use a normal queue (or a stack) instead of a priority queue 

(heap) and obtain an O(m+nt) algorithm. 

MaxCostMatching(): 
HRmatch={}; HTunm={}; HTmatch={} 

max_cost = 0 ; tlast(0)=0 

for i=1 to m do tlast(i)=LFi-LF1+1 

for i=1 to m do { 

  for j=tlast(i-1)+1 to tlast(i) do HTunm.insert((wts=wj, ts=j)) 

  if (HTunm.size()>0) then { 

    (wts, ts)=HTunm.getMin() 

    max_cost=max_cost+pi-wts 

    HTunm.deleteMin() 

    HTmatch.insert((wts, ts)) 

    HRmatch.insert((wr=pi, r=i)) 

    while (HRmatch.getMin().wr≤HTmatch.getMax().wts) do { 

      max_cost=max_cost-HRmatch.getMin().wr+HTmatch.getMax().wts 

      HRmatch.deleteMin() 

      HTmatch.deleteMax() 

    } 
  } else // HTunm.size()=0 

} 
if (HRmatch.getMin().wr<pi) then { 

  max_cost=max_cost+pi-HRmatch.getMin().wr 

  HRmatch.deleteMin() 

HRmatch.insert((wr=pi, r=i)) 

} 
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4.6.2.4. A (Simplified) Model for Matching Requests to Time Slots 
We consider in this subsection another restricted model for scheduling requests which do 

not have an earliest start time and which have the same latest finish time (if they do not have the 

same latest finish time, they can be split into several groups which are processed independently, 

such that all the requests in a group have the same latest finish time). Furthermore, the subgraphs of 

all the vertices are the same (e.g., they could be data transfers from the same source vertex to the 

same destination). Every request ri has a minimum bandwidth requirement Bi. However, two 

requests cannot share the same link at the same time (because every data transfer is capable of using 

up all of the extra bandwidth available along the path, leading to bandwidth conflicts). Every 

request ri has an associated profit function, which is similar for all the requests: if the available 

bandwidth along the path is larger than Bi, then the obtained profit is p1; if the available bandwidth 

along the path is equal to Bi, the obtained profit is p2 (p2≤p1). If the request is not scheduled, we 

need to pay a sum equal to p3 (-p3≤p2). p1 and p2 are non-negative numbers (obviously). 

In this case, we can model the situation as a bipartite graph containing all the requests on the 

left side and all the candidate time slots (from the current time slot to the latest finish time) on the 

right side. Each request ri has an associated required bandwidth Bi and each time slot tj has an 

associate available bandwidth ABj. At first, we will make the number of requests and the number of 

time slots equal. If there are more time slots than requests, we can drop the time slots with the 

lowest amounts of available bandwidth. If we have more requests than time slots, we can drop the 

requests with the largest amounts of required bandwidth (and consider them rejected). 

Thus, we will assume that we have m requests and m time slots. We have an edge for each 

pair (ri, tj) and its cost c(i,j) is equal to the (positive) profit or (negative) penalty obtained if request 

ri is scheduled during time slot tj: p1, if ABj>Bi; p2, if ABj=Bi; -p3, if ABj<Bi (if ABj<Bi, then request 

ri is, in fact, rejected). We want to find a maximum-cost matching in this bipartite graph. Of course, 

we can use a standard maximum-cost matching algorithm (as discussed in the previous subsection), 

but, due to the special nature of the edge costs, we can do better. We will now present a dynamic 

programming algorithm with time complexity O(m
2
). 

We will consider the requests sorted, such that B1≥B2≥…≥Bm; similarly, the time slots are 

sorted such that AB1≤AB2≤…≤ABm. We will compute a table Cmax(i,j)=the maximum profit obtained 

if we considered the requests r1, r2, …, ri-1 and the requests rj+1, rj+2, …, rm. The strategy is to 

consider the time slots in order and, for each time slot, decide which request will be matched to that 

time slot. We have Cmax(1,m)=0. When computing Cmax(i,j), we have already considered the first (i-

1)+(m-j) time slots and, thus, we are interested in time slot tk, where k=i+m-j. We can match the 

requests ri or rj to time slot tk.  We have  

Cmax(i,j)=max{c(i,k)+Cmax(i+1,j), c(j,k)+Cmax(i, j-1)}. 

By computing the values Cmax(i,j) in increasing order of (j-i+1), we obtain an O(m
2
) time 

complexity. The pseudocode is described below: 

 
Pseudocode 4-22. A Simplified Request Matching Algorithm. 

There exists another solution, based on a greedy strategy, having the same time complexity. 

We consider the requests and time slots ordered as before. Then, we consider every circular cp 

permutation of the requests rcp(1), rcp(2), …, rcp(m) and, for each such permutation, we match each 

request rcp(i) to time slot ti and compute the total profit. The maximum profit is the best profit 

obtained for one of the circular permutations. 

DPMatching(): 
for q=1 to m do { // q=1,2,…,m 

  for i=1 to m-q+1 do { // i=1,2,…,m-q+1 

    compute Cmax(i, i+q-1) 

} 
} 
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4.6.3. Non-Preemptive Data Transfers with Multi-Unit Durations and Full Link 
Usage 

We will handle the case of non-preemptive data transfers with multi-unit durations and full 

link usage by reducing it to the unit-duration case. We will consider first the situation when there 

are no earliest start times given (i.e. every data transfer can be started at any time after the request is 

submitted). The supplementary problem that arises when scheduling a batch is that some other data 

transfers may already take place. If we are not allowed to cancel data transfers and restart them later, 

then we will remove all the requests from the current batch which are in conflict with some data 

transfers which are already taking place and then schedule them using some of the techniques 

presented in the previous section. 

However, if we are allowed to cancel and restart (not resume) the data transfers, we could 

choose to add some of the previously started data transfers to the batch (and remove those requests 

from the batch which are in conflict with previously started data transfers not added to the batch). 

With this extended batch, we will again use one of the scheduling techniques from the previous 

section. If a data transfer which was already taking place is scheduled, then it will continue to run 

normally; otherwise, it will be cancelled and reconsidered later (when it will have to be restarted). 

When a request has an earliest start time ES and the time interval between ES and the latest 

finish time LF is equal to the transfer’s duration (i.e. the transfer can be scheduled only during a 

fixed time interval), we consider only unit size batches and all the data transfers are unicast, then we 

can use the same multi-dimensional data structures as in subsection 4.4, obtaining a squared 

logarithmic time for checking if the request can be granted (if the data transfers can also be 

multicasts, then we can use a 1D data structure for every network link, but the time complexity 

increases). 

4.6.4. Non-Preemptive Data Transfers with Unit Durations and Partial Link 
Usage 

When each data transfer requires a minimum bandwidth (part of a link), we obtain an even 

more difficult problem. In the restricted case of a network composed of two nodes and a single link, 

this problem is equivalent to the well-known knapsack problem (if we ignore the requests’ 

deadlines in the decision process). Thus, efficient algorithms are difficult to find in the general case. 

For the case when earliest start times are not given, we consider the following simple approach: we 

will assign to each data transfer in the batch a priority, then sort the data transfers according to their 

priorities and add them to the network in this order; if a data transfer does not have enough 

bandwidth on (at least) one of the links of its path (or subtree, for multicast requests), then it will 

not be scheduled immediately (it will be delayed or rejected). The priority function can be 

customized and can take into consideration such parameters like the profit of the request, the 

minimum required bandwidth, the number of links of the transfer’s path (subtree), available 

bandwidth on those links and so on. 

Another approach which is feasible when each transfer requests a large fraction of the links 

of its subgraph and the requests’ profits are equal is to compute a mutual exclusion hypergraph and 

find a large independent set in it. The vertices of the hypergraph are the requests in the batch and an 

edge is a subset of requests which cannot all be scheduled at the same time (it is desirable that every 

edge is a small subset). Then, we can use the following greedy heuristic for finding a maximum 

independent set in a hypergraph: We will maintain a max-heap H containing all the vertices of the 

hypergraph, together with their degree (the number of edges they belong to). Then, we repeatedly 

remove the vertex i with the maximum degree and decrease correspondingly the degrees of all of its 

neighbors j. The time complexity of this algorithm is O((m+E)·log(m)), due to the heap operations 

(E=the number of edges in the hypergraph). The pseudocode is shown in Pseudocode 4-23. 

The non-removed vertices form an independent set. This heuristic can be used even when the 

request have different profits. In this case, each vertex will be assigned a weight, based on its profit, 

degree and possibly other factors. We then remove the vertices from the hypergraph in decreasing 

order of their weights. When earliest start (ES) and latest finish (LF) times are given and we 
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consider only unit size batches, we can maintain a time slot array for every link and easily verify for 

every time slot t in the range [ES, LF] if every link of the request’s subgraph has enough available 

bandwidth during time slot t. 

 
Pseudocode 4-23. The Hyper-Graph Repeated Vertex Removal Algorithm. 

4.6.5. Non-Preemptive Data Transfers with Multi-Unit Durations and Partial 
Link Usage 

We want to handle the case of non-preemptive data transfers by reducing it to the unit 

duration case. However, when earliest start times are not given, we will need to consider more 

sophisticated priority functions. For instance, these functions will need to also consider the duration 

of the data transfer (some simple examples could be: profit/(required bandwidth x duration) or 

profit/duration). If the requests have a fixed time interval during which they can be executed (i.e. 

fixed starting and finish times are given) and we use unit size batches, then we can assign a segment 

tree (or block partition) data structure [Andreica and Ţăpuş, 2008f] to every link to enhance the 

speed of the procedure which verifies if a request can be granted or not. 

4.7. Real-Time Scheduling of Fixed-Data Fixed-Duration (Deadline-
Constrained) Out-of-Order Data Transfer Requests 

In this section we will consider fixed-data fixed-duration requests (also called deadline-

constrained) requests. The parameters of a request are: t1 (the earliest time moment at which the 

data transfer may start; the request may be submitted at the time moment t1 or earlier), t2 (deadline), 

s (the identifier of the source node), d (the identifier of the destination node), TD (total data to be 

transferred), dataid (identifier of the data on the source node - e.g. file name, file location, and 

offset within the file). The request may optionally be assigned a weight w, representing its priority 

(e.g. it could be proportional to the revenue of the data transfer service provider obtained if the 

request is satisfied, and/or proportional to TD). 

In the case of a reliable data transfer, a request is satisfied if all of its data arrives at the 

destination by the time moment t2. If there is even one piece of data which has not reached the 

destination by the time moment t2, then the request is not satisfied (and all the network resources 

consumed for transferring pieces of data for this request can be considered wasted). In the case of 

unreliable data transfers, the intent is that most of the data to be transferred should reach the 

destination by its deadline; thus, a request can be partially satisfied (depending on the amount of 

HyperGraph-VertexRemoval(): 
H=empty 

for each vertex i do { 

deg(i)=0 

  removed(i)=false 

for each edge e, such that i∈e, do deg(i)=deg(i)+1 

if (deg(i)>0) then H.insert((value=deg(i), vertex=i)) 

} 
while (H.size()>0) do { 

  (value=deg(i), vertex=i)=H.extractMin(); removed(i)=true 

  for each edge e, such that i∈e, do { 

    for each vertex j≠i, s.t. ((j∈e) and (not removed(j))), do { 

      H.remove((deg(j), j)) 

      deg(j)=deg(j)-1 

      if (deg(j)>0) then H.insert((value=deg(j), vertex=j)) 

    } 
} 

} 



 100 

data which reached the destination in time). 

We consider two methods of handling the requests. The first one assumes the existence of a 

central scheduler which is aware of the entire network topology (and its parameters). The scheduler 

decides how to split the data into packets and how to route these packets through the network, such 

that every packet arrives at the destination by the specified deadline. Of course, the scheduler could 

decide that the request cannot be satisfied (e.g. in the case of reliable data transfers) and, thus, could 

reject the request. 

The second method considered is a fully decentralized one. The purpose of also considering 

decentralized approaches here is that of providing a comparison reference for the centralized 

approach. A request is passed by the user application to the source node of the request. The source 

node splits the data into packets (however it sees fit) and then forwards the packets to its neighbors. 

Whenever a neighbor receives a packet, it checks if it is the packet’s final destination. If the packet 

must be forwarded further, the node decides whether to split the packet further and, for each newly 

generated packet (possibly only one packet - the same packet that was received), it decides the 

neighbor to which the packet should be sent further (or delays the decision until a later time). 

Deadline information is encoded within each packet. Thus, the decisions made by each node 

regarding the routing of a packet must consider this information. 

Both approaches handle the requests online (i.e. one at a time, as soon as they are submitted; 

if multiple requests are submitted at the same time, they are handled sequentially in a first come-

first served order). For simplicity, we will consider that the data to be transferred is already split 

into a given number of (fixed size) packets, which could not be split further; thus, size differences 

between the data of two different requests are expressed only as possibly different numbers of 

packets. As before, we consider that time is divided into equally-sized time slots. 

The bandwidth of a (directed) connection from a vertex i to a vertex j is a function B(i,j,t)≥1 

and has the meaning that B(i,j,t) packets can be transferred from the time moment t (beginning of 

the time slot t) to the time moment t+1 (beginning of the time slot t+1), from vertex i to vertex j 

along the connection. B(i,j,t) is a natural number. We consider that the size of a packet is 

sufficiently small such that a packet never needs more than 1 time unit for being transferred along a 

connection (excluding queuing delays, of course). Note that we implicitly assumed that the latency 

of each connection is 1 time unit. A more general model assumes that a packet sent along the 

connection i->j at time moment t takes lat(i,j,t) time units to reach vertex j (in this case, B(i,j,t) is 

the maximum number of packets that can be sent during the time unit t on the connection i->j). 

The centralized and decentralized techniques were tested using a simulation study. The 

simulation was run for a number of Tsim time steps. During every time step t, we performed the 

following actions, in order: 

1. for every connection i->j, the first min{qsize(i,j), B(i,j,t-1)} packets from the head of the 

queue associated to connection i->j are delivered to peer j (where qsize(i,j)=the number of 

packets located in the queue of the connection i->j at the beginning of the current time step 

and B(i,j,-1)=0); 

2. a request generator generates a list of requests to be submitted during the current time step; 

3. if we use the centralized method, then each newly generated request is submitted to the 

central scheduler, which will make decisions regarding its acceptance or rejection and, if 

accepted, the request will be submitted to its source node; 

4. if we use the decentralized method, then every newly generated request is submitted to its 

source node (in this case, t1=the submission time moment); 

5. every peer P makes decisions regarding the packets received from its adjacent connections 

and the packets composing newly generated received requests whose source node is P; the 

decision for a packet consists of whether to forward it to one of P’s neighbors (along the 

corresponding connection) or to store it until the next time step, when a decision for the 

packet will be made again. 
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4.7.1. The Centralized Approach 

For the centralized approach we considered the following algorithms. The central scheduler 

constructs a time-expanded graph TEG of the network. A vertex of a time-expanded graph is a pair 

(v,t), where v is a vertex of the graph and t is a time moment (0≤t≤Tsim). For every directed 

connection i->j we add the following edges in the time-expanded graph: (i,t)->(j,t+1) with capacity 

B(i,j,t) (0≤t≤Tsim-1). The meaning is obvious: at most B(i,j,t) packets which are located at vertex i 

at time moment t can arrive at vertex j at time moment t+1. We also add the edges (v,t)->(v,t+1) 

with capacity bufsize(v,t), for every vertex v and every time moment t (0≤t≤Tsim-1). bufsize(v,t) is a 

limit on the buffer size of the vertex v, representing the maximum number of packets which can be 

stored at vertex v from time moment t to the next time moment t+1. In our experiments, we always 

used bufsize(v,*)=+∞. 

In the more general case, in which every connection i->j had a latency lat(i,j,t), then TEG 

would consist of the edges (v,t)->(u,t+lat(v,u,t)), with capacity B(v,u,t), and for which 

0≤t≤t+lat(v,u,t)≤Tsim (for every connection v->u); then, we would also add the same edges (v,t)-

>(v,t+1) as before. However, we can always reduce this more general case to the unit duration case. 

For every connection v->u and every time moment t such that lat(v,u,t)>1, we create the vertices 

(w{v,u,t,i}, t+i) (1≤i≤lat(v,u,t)-1); then, we add the directed edges (v,t)->(w{v,u,t,1}, t+1), (w{v,u,t,i}, t+i)-

>(w{v,u,t,i+1}, t+i+1) (for 1≤i≤lat(v,u,t)-2), and (w{v,u,t,lat(v,u,t)-1}, t+lat(v,u,t)-1)->(u,t+lat(v,u,t)), each 

of them having capacity B(v,u,t). The extra vertices w{v,u,t,i} are fictitious vertices. These vertices do 

not make packet routing decisions; however, they do check if they have a matching reservation for 

every received packet, or drop the packet otherwise. We will discuss about reservations later in this 

section. Every edge of TEG also has a flow value, which is initially 0. 

When the central scheduler receives a request with identifier rid with the relevant 

parameters: s (source node identifier), d (destination node identifier), np (number of packets), t1 

(earliest time moment at which the transfer may start) and t2 (the deadline), it performs the 

following actions. The central scheduler will compute a flow of value at most np in the time-

expanded graph from the vertex (s,t1) to the vertex (d,t2) (if possible), optionally considering a load 

balancing criterion. We considered three load balancing criteria: 

• the maximum extra flow on each edge of the time-expanded graph is minimum. 

• the maximum flow on each edge of the time-expanded graph is minimum. 

• the minimum available capacity on every edge of the time-expanded graph is maximum. 

 

The scheduler constructs the following modified version TEG' of the time-expanded graph, 

which contains all the vertices (v,tm) of TEG, with t1≤tm≤t2, together with all the edges between 

them. It adds a virtual source node vs with an outgoing edge of capacity np to the node (s,t1). Let's 

assume that cap(a,b,c,d) (t1≤b<d≤t2) is the capacity of the edge (a,b)->(c,d) in the original time-

expanded graph and flow(a,b,c,d) is the current flow on the same edge. The capacity of an edge 

(a,b)->(c,d) in the modified version of the time-expanded graph will be cap(a,b,c,d)-flow(a,b,c,d) 

(when no load balancing criterion is used). 

In order to enforce any of the three load balancing criteria, we can use binary search, 

combined with a slightly modified maximum network flow algorithm. The capacity of an edge 

(a,b)->(c,d) in the modified version TEG’ of the time-expanded graph will be the minimum value 

between: (cap(a,b,c,d)-flow(a,b,c,d)) and: 

• in the case of criterion 1: X 

• in the case of criterion 2: max{X-flow(a,b,c,d),0} 

• in the case of criterion 3: max{cap(a,b,c,d)-X-flow(a,b,c,d), 0} 

 

X is the value which is binary searched. For criteria 1 and 2 (3), we will find the minimum 

(maximum) value of X such that the maximum flow (in TEG’) from vs to the set of sinks (d,tm) 

(t1≤tm≤t2) is the same as in the case X=+∞ (X=0). Thus, we first compute the maximum flow for 

X=+∞ (X=0) and then we compute it for every value of X chosen by the binary search. For a fixed 

value of X, the maximum flow is computed using the Edmonds-Karp maximum flow algorithm.  
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When no load balancing criterion is used, we compute the maximum flow once in TEG’. 

When one of the load balancing criteria is used, we perform O(log(max(cap(*,*,*,*)))) maximum 

flow computations in TEG’ (with possibly different edge capacities each time). 

The Edmonds-Karp algorithm is based on iteratively finding a path from the source vs to one 

of the sinks (d,tm) and increasing the flow on that path (initially, the flow on every edge of TEG’ is 

0). We implemented every iteration of the algorithm as follows. We perform a BFS traversal of (the 

residual graph of) TEG', considering the flow values from the previous iterations. Then, we choose 

the minimum value of tm (t1≤tm≤t2) such that (d,tm) is reachable from vs (meaning that there is a 

path from vs to (d,tm) on which the flow can be increased) - if no such vertex is reachable from vs, 

then the algorithm stops. We increase the flow on the path found by BFS from vs to (d,tm). This 

way, although the deadline is t2, we try to complete the data transfer as soon as possible. 

Alternatively, we could have chosen the k
th

 (k≥1) smallest (or largest) value of tm (t1≤tm≤t2) such 

that (d,tm) was reachable from vs. 

After computing the maximum flow F (for the value of X found by the binary search, in the 

case of using a load balancing criterion; or simply in TEG’, when no load balancing criterion is 

used), if the request was for a reliable data transfer and F=np, then the request is accepted; 

otherwise it is rejected. If the requested data transfer was unreliable, the request is accepted as it is 

(meaning that only F of the np packets would reach the destination, and the others would not even 

be sent at all). If the request is accepted, we traverse all the edges of the modified time-expanded 

graph (except for vs->(s,t1)). Let's assume that we had a computed flow value flow’(a,b,c,d)>0 on 

the edge (a,b)->(c,d) of this graph. Then, we increase flow(a,b,c,d) (the flow on the edge (a,b)-

>(c,d) in TEG) by flow’(a,b,c,d) and then, if a≠c, we make a reservation at node a with the 

following meaning: at time moment b, flow’(a,b,c,d) packets of the request rid which are then at 

vertex a will be sent along the connection a->c to vertex c. 

4.7.2. The Decentralized Approach 

Decentralized processing is performed even when a centralized scheduler is used. In this 

case, at every time step t, every peer q analyzes the set of packets pkt(q,t) composed of all the 

packets that were just received, were just submitted (as part of a new request during the current time 

step), or were stored from previous time steps. For each such packet (belonging to a request rid), the 

peer considers all of its neighbors p and verifies if any reservation was made for the request rid, the 

current time moment, and the neighbor p as the next node for the packet. If it finds such a 

reservation for np>0 packets, it decreases np by 1 (in the reservation) and then sends the packet on 

the connection to peer p (and no further neighbors are considered); otherwise, we just proceed to the 

next neighbor. If the packet is not sent to any neighbor (because no matching reservation was found 

or because all the matching reservations were completely used for sending other packets considered 

before the current packet), then the packet is stored until the next time step, when it will be 

considered again, or is dropped if its deadline will be expired by the next time step. 

Sending a packet from a peer q to a neighbor p means placing the packet at the end of the 

queue of the connection q->p. At the beginning of each time step t, the first B(i,j,t-1) packets (or 

less if there aren’t that many packets) are removed from the head of the queue of every connection 

i->j and delivered to peer j. 

If we do not use a centralized scheduler, then at every time step, every peer must decide 

what to do with the packets mentioned in the previous paragraph (previously, it only looked for 

matching reservations; now, it has to make a decision). Any decentralized decision making method 

is vulnerable mostly due to the lack of information. Because of this, we tried to offer as much 

information as possible to every node. First, we considered the data transfer duration dtd(i,j) of a 

packet along any directed connection i->j (in our case, it is always 1). It is well-known that, using 

gossiping protocols, every peer i can compute the shortest path from itself to every other peer j in 

the network. 

Such a protocol works in rounds. Initially, every peer i maintains an estimation 

shp(i,j)=dtd(i,j) for every neighbor j (for which a directed connection i->j exists), plus the 
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estimation shp(i,i)=0. Then, at every gossiping round, every peer i sends all of its estimations 

shp(i,*) to all of its neighbors j (for which a connection i->j exists). Thus, peer i receives all the 

estimations shp(j,k) that every neighbor j of i has. If peer i had no previous estimation shp(i,k), then 

it sets shp(i,k)=dtd(i,j)+shp(j,k); otherwise, it sets shp(i,k)=min{shp(i,k), dtd(i,j)+shp(j,k)}. After a 

number of rounds proportional to the diameter of the network, the estimations shp(i,*) of every peer 

i converge to the shortest path values. Since the network does not change in time, we can assume 

that the peers performed the total number of rounds of gossiping required for the estimations to be 

final before the first data transfer request is submitted. We made the implicit assumption that the 

total number of nodes in the network is not too large and, as such, every peer can learn about every 

other peer.  

Note that gossiping is a very useful method of exchanging information, particularly in a 

network whose structure does not change. Through gossiping, every peer could build its own view 

of the entire network. Initially, the network view of every peer i consists of itself, its neighbors and 

the directed connections i->j to its neighbors j. At every gossiping round, every peer i sends its 

network view to all of its neighbors. Then, after peer i receives the network view of a neighboring 

peer j, it will add the network view of j to its own view: it will add all the new peers and edges that 

were not in the network view of vertex i before this. Thus, we will assume that every peer has a 

perfect view of the entire network in which it is located and it is able to obtain this view before the 

first request is submitted. At this point, every peer has all the static information that is available in 

the network. 

We considered several simple decision making procedures. The first one (DDM1) sorts all 

the packets from pkt(q,t) in increasing order of their deadlines (excluding those packets with missed 

deadlines). Then, it considers every packet in this order (at the current time step t) and tries to send 

it randomly to one of the neighbors p whose distance to the destination is the smallest (only if the 

packet's deadline would not be exceeded by the time it reached its destination, in which case, the 

packet is dropped). If the connection towards every such neighbor p already has B(q,p,t) packets 

waiting to be sent in its queue, then the packet is stored until the next time moment. 

The second procedure (DDM2) considers that every peer has a self-generated identifier 

(possibly a point in a multidimensional space; see, for instance, section 3.1). We sort the packets 

like before and, for each packet, we consider the set of neighbors p whose identifiers are closer 

(using an appropriate distance function) to the destination ID than the ID of the current peer q and, 

if we sent the packet to p and then on the shortest path from p to the destination, the packet’s 

deadline would not be missed, and such that fewer than B(q,p,t) packets are already in the queue of 

the connection q->p. From this set, a peer p to which the packet is sent is chosen randomly. If the 

set is empty, the packet is stored until the next time moment. 

The third approach (DDM3) is the following. When a source peer receives a request, it 

computes a deadline-constrained flow from the source to the destination, considering that all the 

network connections are available (i.e. there are no other packets in the network). The flow is 

computed by considering the same (modified) time-expanded graph that was used in the case of the 

central scheduler, except that the capacity of an edge (i,t)->(j,t+1) is always equal to B(i,j,t). This is 

possible because, as we said earlier, every peer can find, through gossiping, the structure of the 

entire network. 

In the case of reliable requests, the flow must be equal to the number of packets of the 

request; otherwise, the request is rejected. In case of unreliable data transfer requests, the request is 

accepted no matter what. If the request is accepted, the computed flow is decomposed into several 

(not necessarily disjoint) paths. On each path, a certain amount of packets can be sent. Let the 

vertices of the path be (v(1),t(1)), ..., (v(k),t(k)) (v(1)=the source) in the order in which they occur on 

the path from the source to the destination. We compute the sequence v’(1), ..., v’(k’) consisting of 

the sequence of vertices v(1), ..., v(k), from which multiple consecutive occurrences of the same 

node were replaced by just one occurrence. Let np’ be the number of packets that could be sent on 

the path. We assign to np’ packets of the request the sequence v’(2), ..., v’(k’), representing the path 

on which the packet has to be routed (from which we excluded the source node). Then, these 
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packets are considered for routing during the current time step by the source node. This procedure is 

called source routing. 

At every time step t, every peer q sorts the packets in pkt(q,t) in increasing order of their 

deadlines and considers them in this order. For every packet p, if q is the destination of the packet 

(i.e. packet p’s sequence of vertices is empty), then it sends the packet to the upper layer application. 

Otherwise, if t plus the number of vertices in packet p’s sequence is greater than p’s deadline, then p 

is dropped; otherwise, p is sent to the neighbor v which is at the head of packet p’s sequence of 

vertices (only if the queue of the connection towards v does not already contain B(q,v,t) packets; if 

it does, then the packet is stored until the next time moment); if the peer decides to send the packet, 

then the vertex v is removed from packet p’s sequence of vertices. 

4.7.3. Simulation Results 

We developed a simulation framework in the Python programming language. No load 

balancing criteria were used in the simulation, because of the long duration of the simulation in this 

case. 

We first ran 5 tests for reliable data transfers. Each simulation test was run for 99 time steps 

and 1000 requests of 500 packets each were generated, using several distributions. We considered 

the Uniform, Gauss, Cauchy, Pareto and Weibull distributions. Requests were generated on the 

interval of time steps [0,Tmax] only (Tmax=84); the t1 parameter of each request was always equal 

to its submission time moment. Each request had a deadline which was equal to 15 time steps after 

the submission time moment. The network was generated randomly and consisted of 50 vertices 

and 250 connections between them (actually, each connection between two vertices i and j 

consisted of 2 directed connections, in both directions); the network was connected. The bandwidth 

of each connection was a randomly generated integer number between 1 and 25. The two directed 

connections between the same pair of vertices had the same bandwidth. 

The only difference between the 5 distributions consisted in the number of requests 

generated during each time step t (0≤t≤Tmax). The number of requests generated at each time step 

for every distribution (except Pareto) are shown in Fig. 4-2. The Pareto distribution generated 428 

requests during each of the first 2 time steps, and then the number of requests decreased 

progressively until t=11, after which no more requests were generated. The exact distribution 

parameters used were: Gauss(average=Tmax/2, standard deviation=Tmax/6), Cauchy(x0=Tmax/2, 

gamma=0.6·x0), Pareto(xm=1, α=1.5), and Weibull(k=2, λ=0.36·Tmax). Fig. 4-3 shows the number 

of requests which were satisfied in each case. 

Then, we used the same tests, except that the requests asked for unreliable data transfers. In 

these cases, we counted the number of packets which reached their destination on time (before or 

exactly at the deadline): these numbers are shown in Fig. 4-4. 

As can be noticed, the centralized approach outperformed the decentralized techniques in the 

case of reliable data transfer requests. In the case of unreliable data transfer requests, the difference 

between the centralized and decentralized methods was not as great, but the centralized approach 

was still better. 

 

 
Fig. 4-2. Number of Requests generated at each Time Steps. 
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Fig. 4-3. Test Results – Reliable Data Transfers. 

 
Fig. 4-4. Test Results – Unreliable Data Transfers. 

4.8. An Event-Based Real-Time Data Transfer Scheduling Framework 

In this section we propose an architecture for a data transfer scheduling framework, which is 

similar in nature to the one presented in [Cîrstoiu, 2008]. The framework consists of several 

components: 

• the  Communication  Flow  Scheduling  and Optimization Component  

• the Data and Information Management Component 

• the Communication Flow Management Component 

• the User and Application Interface 

• Interface to a Monitoring System (e.g. MonALISA [Legrand et al., 2004]) 

• the Prediction and Pattern Detection Component 

• the Simulation Component 

• the (Self-) Monitoring and (Self-) Evaluation Component 

• the (Self-) Reconfiguration Component.  

 
Fig. 4-5. Architecture of the Data Transfer Scheduling Framework. 

Fig. 4-5 presents all the components, together with the directions of the command and data 

flows between them. We intend to use the MonALISA monitoring system [Legrand et al., 2004] to 

provide monitoring data to the scheduling framework (i.e. information about the relevant network 
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parameters and about the status of the running data transfers). The core of the framework is the 

Communication Flow Scheduling and Optimization Component, which runs the optimization 

algorithms and makes the scheduling decisions. This component may use simulations (the 

Simulation Component) or pattern detection and data transfer request prediction techniques (the 

Prediction and Pattern Detection Component) in order to make improved scheduling decisions. 

The decisions of this component are transformed into commands for the network nodes by 

the Communication Flow Management Component. The Data and Information Management 

Component stores all the data of the framework and, as such, it is connected to all the other 

components. The (Self-) Monitoring and (Self-) Evaluation Component monitors the quality of the 

decisions made by the scheduling component. If they are not of sufficient quality, it may use the 

services of the (Self-) Reconfiguration Component in order to reconfigure the Communication Flow 

Scheduling and Optimization Component (e.g. change the scheduling algorithm, switch from a 

time-slot based to an event-based time interpretation). 

The Communication Flow Scheduling and Optimization component also contains a 

rescheduling submodule, which takes care of data transfers which either do not use the requested 

bandwidth or take more than the allotted time interval. There are two main choices for this 

component’s rescheduling strategy. The first one is to terminate the transfers which take longer than 

the allotted time interval. However, if transfer preemption is not allowed, then a terminated transfer 

would need to be restarted and the network resources consumed so far would be wasted. The second 

choice would be to extend the time interval of the transfers which are taking too long and 

reschedule all the transfers which have not already been started. This might require a lot of work on 

the scheduler’s part, as there may be many transfers that need to be rescheduled. 

In the rest of this section we will present an event-based scheduling algorithm for fixed-

bandwidth fixed-duration data transfer requests (the algorithm works on a very different principle 

than the time slot-based algorithms and data structures presented earlier in this chapter). Then, we 

will discuss an implementation of the proposed data transfer scheduling framework as a simulation 

framework. 

4.8.1. An Event-Based Scheduling Algorithm 

 In this section we will present an algorithm for the case when only fixed bandwidth-fixed 

duration requests are considered. The algorithm is based on events (as opposed to time-slot based 

algorithms). For each event, the time moment and the value by which the bandwidth is modified (a 

positive or negative value) are stored, i.e. a pair (t,dB). For each network link (and direction), a list 

of events is maintained. The time moment of an event in the event list of a network link is 

represented by the start or finish time of a data transfer. 

The algorithm starts by generating several candidate paths from s to f, which satisfy the sum 

of latencies constraints. Then, for each path, we verify if we can schedule the data transfer request 

on that path in order to satisfy all the other constraints. We consider a family of greedy algorithms 

for this case: First-Fit, Last-Fit, Best-Fit and Worst-Fit. All the events on all the (directed) network 

links along the candidate path are initially sorted. Also, for each (original) event (t,dB) on a link l, 

an event (t+D,0) on the same link is added, where D is the duration requested for the data transfer. 

These events are sorted together with the other events. Then, the sorted events are traversed. 

During the traversal we maintain for each network link l a deque DQ(l) and the current 

available bandwidth cb(l) of the link (cb(l) is initially the total bandwidth of the link). The deque 

maintains sorted (tm=time moment, ab=available bandwidth) pairs, similar to the deque presented 

for the Time Slot Groups data structure in section 4.3.5. Let’s assume that we reached an event 

(t,dB) on a link l. First, we consider every link l’ and: 

1. while DQ(l’) contains at least 1 pair and the last pair lp from DQ(l’) has lp.ab≥cb(l’), we 

remove lp from DQ(l’); 

2. we insert the pair (t,cb(l’)) at the end of DQ(l’); 

3. while the first pair fp of DQ(l’) has fp.tm≤t-D, we remove fp from DQ(l’); then, we 

increment cb(l) by dB.  
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After all these, the first pair fp of DQ(l’) of each link l’ contains the minimum available 

bandwidth AB(l’)=fp.ab of that link on the interval [t-D,t]. If AB(l’) is greater than or equal to the 

required bandwidth B for every network link l’ on the candidate path and the interval [t-D,t] is 

included in [t1,t2] (given by the request), then a match is found and we perform the following 

actions. In the case of the First-Fit algorithm, we return the interval [t-D,t] as the solution (the 

request can be scheduled on the path). For the Last-Fit Algorithm we just store t into tfin. For the 

Best-Fit and Worst-Fit algorithms we compute MAB=min{AB(l’)|l’ is a link on the candidate path}. 

These two algorithms will maintain a bandwidth value MB, initially equal to +∞ for Best-Fit and -∞ 

for Worst-Fit. If MAB<MB for Best-Fit (MAB>MB for Worst-Fit) we set MB=MAB and tfin=t 

(note that MAB≥B, because otherwise we wouldn’t have performed these actions). Then, at the end, 

if anything was stored in tfin (in the case of the Last-Fit, Best-Fit and Worst-Fit algorithms), we 

return the interval [tfin-D,tfin]; otherwise, no solution is found. 

If we schedule a request on a path between time moments ts and ts+D, we insert the events 

(ts,-B) and (ts+D,+B) in the event list of every link l on the path (for the correct direction). The 

sorting stage of the events can be performed by maintaining a balanced tree, which contains the 

next event to occur for each network link. At each step, the event occurring at the earliest time is 

extracted from the balanced tree (and replaced by the next event on its link). The algorithm stops as 

soon as the latest finish time of the request is passed by. The overall time complexity is 

O(E·(log(NL)+NL)), where E=the total number of events and NL=the total number of links on the 

candidate path. 

4.8.2. The Data Transfer Scheduling Framework Simulator 

 In order to easily test the performance and behavior of the scheduling algorithms and of the 

whole framework under controlled test conditions, we developed a simulator for the data transfer 

scheduling framework. The simulator controls all the actions in the system with a given time step 

granularity. The simulator was implemented in the Java programming language and follows closely 

the architecture of the framework. The main modules of the simulator are: 

• Graph Manager 

• Data Transfer Scheduler 

• Simulator Engine 

• Testing Framework 

4.8.2.1. The Graph Manager 
 The Graph Manager module contains classes for representing network nodes, network links 

and network paths. The nodes and links have an associated probability to fail at each time step. The 

Graph Manager maintains the state of the network and computes shortest paths, using the Bellman-

Ford-Moore algorithm. 

4.8.2.2. The Data Transfer Scheduler 
 The Data Transfer Scheduler accepts data transfer requests at each time step. The requests 

can be given one by one or in batch mode (multiple requests at a time). For the single request mode, 

the First Fit scheduling algorithm is run and the request is either scheduled or rejected (if the 

request’s constraints cannot be satisfied). For batch submissions, an exponential algorithm is used. 

The algorithm tries all the permutation orderings of the requests and calls the First Fit algorithm for 

each request, in the order given by the permutation. Each request also has an associated profit value 

(which could be its priority). The ordering which maximizes the total profit of the scheduled 

requests (those that are not rejected) represents an optimal ordering. Although the algorithm is 

exponential, it is useful for comparing the performance of other scheduling algorithms against the 

optimal solution. 
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4.8.2.3. The Simulator Engine 
 The simulator engine controls the entire simulation. It increments the time step and calls the 

callback functions of the simulated entities. All the simulation takes place in a single thread. The 

simulator engine was designed this way in order to have everything under control. There are many 

realistic existing simulators (e.g. [Dobre and Stratan, 2004], [ns2]), but our purpose was not to 

develop an all-purpose simulator, but rather a very specific one, for the problem at hand. 

4.8.2.4. The Testing Framework 
 The testing framework consists of test scenarios and request submitters. The test scenarios 

define the network nodes, links and their parameters (latency, bandwidth, failure probability). The 

request submitters define the parameters of the requests to be submitted (earliest start time, latest 

finish time, duration, required bandwidth, start and finish nodes, profit/priority, bandwidth usage 

distribution) and decide if the requests will be submitted one by one or as a batch. 

4.8.2.5. Simulation Results 
 We used the simulator for comparing the online submission of requests to the batch 

submission, when the First Fit Algorithm is used. The batch case was handled as follows. Every 

possible permutation P of the requests in the batch was generated. Then, the First-Fit algorithm was 

used, as if the requests were submitted online in the order given by the permutation. Each request 

had an associated profit. The sum of the profits of the accepted requests for a given permutation P is 

denoted by Psum(P). The permutation Popt with the largest value Psum(Popt) was chosen and the 

requests were scheduled by using the First-Fit algorithm and the (online) order of requests given by 

Popt. 

When only the First-Fit algorithm was used, the same requests submitted in the batch case 

were also submitted now, but online, in some arbitrary order. We computed the sum of the profits of 

the accepted requests. 

We found situations in which the First Fit algorithm (in the online case) produces schedules 

which are significantly worse than in the batch case. This was to be expected, as First Fit is a simple 

algorithm and there exist request orderings for which its performance is very poor. However, the 

advantage of the algorithm is that it is quite fast and has a good response time. 

4.9. Scheduling of Data Transfer Requests with Earliest Start Time, 
Latest Finish Time and a Tree Mutual Exclusion Graph 

 We are given a time horizon H, n requests and pairs of incompatible requests forming a tree 

mutual exclusion graph. For each request i, the duration di and the profit pi (obtained if the request 

is scheduled) are known. Furthermore, each request has an earliest start time ESi and a latest finish 

time LFi. This means that request i should be scheduled within an interval [t,t+di] fully included in 

[ESi,LFi]. We will provide a pseudopolynomial dynamic programming algorithm for this problem, 

for the case when all the time values are integers. We consider that the tree mutual exclusion graph 

is rooted at an arbitrary vertex r. For each tree vertex i, we will compute two arrays: 

• Si(t)=the maximum profit that can be obtained if the time interval available for scheduling 

vertex i is [0,t] 

• Fi(t)=the maximum profit that can be obtained if the time interval available for scheduling 

vertex i is [t,H] 

For each vertex i we have: 

• Si(0)=Fi(H)= ∑
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The maximum profit that can be obtained is Sr(H). The time complexity of an algorithm 

which implements these equations is O(n·H); the tree is traversed from the leaves towards the root. 

For each vertex i we compute the values Si(t) in increasing order of t, and the values Fi(t) in 

decreasing order of t. We can extend these results to the case when the mutual exclusion graph is a 

forest. We run the algorithm for each connected component of the mutual exclusion graph (rooted at 

any vertex in it); the maximum total profit that can be obtained is the sum of the maximum profits 

that can be obtained for each connected component of the forest mutual exclusion graph. 

4.10. Scheduling File Transfers with a Mutual Exclusion Graph – M 
Intersecting Cliques 

We consider n file transfer requests. Each of them has a pre-assigned source, destination(s) 

and network path (multicast tree) on which the transfer must be performed. For each request i, the 

transfer duration di and profit pi are also known. The transfers must be scheduled non-preemptively, 

i.e. during a continuous time interval, without interruptions. Because the network paths (trees) of 

some pairs of transfers may cross, the two transfers must not be scheduled during overlapping time 

intervals. 

We define the mutual exclusion graph as a graph containing the file transfer requests as 

vertices and there is an edge between two vertices i and j if the corresponding requests are in 

conflict. Given a deadline T, we want to schedule a subset of requests whose total profit is 

maximum, such that no two conflicting requests are scheduled at the same time. The mutual 

exclusion scheduling is an NP-hard problem and polynomial time algorithms are known only for 

some particular situations of the mutual exclusion graph. In this section we consider the case when 

the mutual exclusion graph consists of M≥2 intersecting cliques (complete subgraphs) and the 

durations are integer numbers. Any pair of cliques (Ca,Cb) has the same common intersection CI. 

We define Xj=Cj\CI.  

When |CI| is bounded by a constant ct, we present a pseudo-polynomial dynamic 

programming algorithm, using ideas borrowed from the well-known knapsack problem. Let’s 

assume that |CI|=k and that a vertex i in CI also has an associated earliest start time ES(i) and latest 

finish time LF(i), i.e. the file transfer corresponding to request i cannot start before ES(i) and cannot 

finish after LF(i). This problem is equivalent to a multiple knapsack problem. 

The states S of the problem are defined by a sequence of non-decreasing 2·k numbers: S=(t1, 

t2, …, t2·k). These numbers represent k time intervals: [t1,t2], [t3,t4], …, [t2·k-1,t2·k]; the meaning of 

these intervals is that no request has been scheduled within any of the intervals. We will compute 

PMj(i,S)=the maximum profit of a subset of the first i requests from the set Xj (considering some 

arbitrary order Xj(1), Xj(2), …, Xj(i), …), scheduled outside the time intervals defined by the state S. 

By excluding the k intervals defined by a state S from the interval [0,T], we obtain (k+1) intervals 

into which a request from Xj can be scheduled. We will consider the request to be scheduled either 

to the left of t1, t3, t5, … t2·k-1 or to the right of t2, t4, …, t2·k. Initially, we have PMj(0,S)=0, for all the 

states S. For i>0, we have: 
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After computing the tables PMj (1≤j≤M), we will consider every subset SCI of CI and for all 

the vertices in SCI, we will consider all of their permutations. For each permutation pe with q 
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elements (pe(1), pe(2), …, pe(q)), we consider every subset Spe of q elements of the set {1, 2, …, k} 

and denote its elements by Spe(1), …, Spe(q), such that Spe(1)<Spe(2)<…<Spe(q). For each such 

permutation pe and subset Spe, we will consider every state S=(t1, t2, …, t2·k). 

A state S is consistent with a (permutation pe, subset Spe) pair if every vertex pe(i) can be 

scheduled within the interval [t2·Spe(i)-1, t2·Spe(i)]. The profit of this subset-permutation-subset-state 

tuple is equal to PM1(|X1|, S) + PM2(|X2|, S) + … + PMM(|XM|, S) + ppe(1) + ppe(2) + … + ppe(q). The 

maximum profit scheduling corresponds to the maximum subset-permutation-subset-state tuple. 

The time complexity of this method is very large and can only be used for cliques whose 

intersection contains a very small number of vertices. We implemented the method for |CI|=k=1, 

for which the time complexity becomes O(n·T
2
), which is quite reasonable. 

4.11. Maximum Profit Scheduling of Data Transfer Requests using 
Conflict Graphs 

We consider here the following scheduling problem. We have N (multicast or point-to-point) 

data transfer scheduling requests. The time horizon over which the data transfers can be scheduled 

is divided into T time slots (numbered from 1 to T). A request i asks for exclusive access to a 

specific set of network links during a given interval of time slots [ts(i), tf(i)] and, if accepted, it 

brings a profit of p(i). Two requests whose time slot intervals overlap may be in conflict if they ask 

for exclusive access to at least one common network link. We will model these conflicts by using a 

conflict graph CG in which we have a vertex for every request i (1≤i≤N) and an edge between two 

requests i and j if their intervals overlap and they are in conflict. 

Using this model, we want to find an independent set IS within the conflict graph (i.e. there 

is no edge between any two requests a and b from IS), such that the sum of the profits of the 

requests in IS is maximum. All the requests in IS will be accepted and all the other requests will be 

rejected. The problem of computing a maximum weight independent set in an arbitrary graph is an 

NP-hard problem. We will present here a solution for a restricted case. We maintain two lists of 

events for each time slot t: a list LAE(t) with activation events (when a new request becomes active) 

and a list LDE(t) with deactivation events (when a request becomes inactive). An activation event 

for a request i is added to the list LAE(ts(i)) and the deactivation event is added to the list 

LDE(tf(i)+1). We will traverse the time slots in increasing order and, during the traversal, we will 

maintain a set S of subsets of requests: S(0), …, S(k-1) (k=|S|). S(0) will always exist and will 

always be void (empty). 

For each time slot t (1≤t≤T), in increasing order, we will handle all the events in LDE(t) first, 

followed by all the events in LAE(t). For each deactivation event for a request i, we find the set S(j) 

which contains the request i and remove i from S(j); if S(j) becomes void, we will remove S(j) from 

S. For each activation event for a request i, we will consider all the requests j such that there exists 

an edge (i,j) in the conflict graph. Let S(jj(1)), …, S(jj(q)) be the subsets which contain all the 

requests j which are i’s neighbors in CG (some of these neighbors may not belong to any subset 

S(x), because their activation events have not been handled, yet; these neighbors will be ignored). 

We will construct a set SQ from the union of S(jj(1)), …, S(jj(q)), and then remove all these subsets 

from S. Afterwards, we will add i to SQ and we will insert SQ into S. We will present an algorithm 

which will use the subsets S(*) and which is efficient in the following case: at any moment during 

the execution of the algorithm, the cardinality |S(j)| of any subset S(j) is at most CMAX, where 

CMAX is a small constant value (i.e. the cardinality is bounded by a constant).  

Let the vertices of a subset S(j) be v(j,1), …, v(j,|S(j)|). For each subset S(j) we will maintain 

a table Tj(state), where state is a tuple with |S(j)| binary values (i.e. 0 or 1); we denote the i
th

 of 

these values by state(i). If state(i)=1, then we consider that v(j,i) belongs to IS; otherwise, v(j,i) 

does not belong to IS. There are 2
|S(j)|

 such states. Every vertex x of CG can be assigned a label 

label(x)=p which means that the activation event of vertex x was/will be the p
th

 such event 

processed during the algorithm (p≥1). The value Tj(state) is equal to the maximum profit which can 

be achieved if the vertices v(j,*) are in the state defined by state, and we have already considered all 

the vertices x with label(x)<min{label(v(j,*))|1≤j≤|S(j)|} which are in the same connected 
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component of CG as the vertices v(j,*). If S(j) contains no vertices, then we have only one possible 

state, which is the empty tuple {}. If we traverse the time slots all the way to T+1, then we will 

eventually process all the deactivation events and, in the end, the only remaining subset in S will be 

the empty set, S(0). T0({}) will be the maximum weight of an independent set IS of CG. 

We will now describe how the values Tj(*) are maintained by the algorithm after processing 

every activation and deactivation event. Initially, we only have the set S(0), with T0({})=0. When 

the algorithm processes the deactivation event of a request i, it finds the set S(j) which contains the 

request i. Let’s assume, w.l.o.g., that, within the set S(j), we have v(j,|S(j)|)=i (we can change the 

order of the vertices in S(j) such that i is the last vertex). We will now consider every state s with 

|S(j)|-1 binary values and we will compute a new table Tnew,j(*), where Tnew,j(s)=max{Tj(s(0), …, 

s(|S(j)|-1), 0), Tj(s(0), …, s(|S(j)|-1), 1)}. Afterwards, we remove vertex i from S(j) and we replace 

Tj by Tnew,j (i.e. we set Tj=Tnew,j). If S(j) contains no more vertices, then we add Tj({}) to T0({}) and, 

afterwards, we remove S(j) from S. 

When the algorithm processes an activation event for a request i, it proceeds as follows. It 

finds the sets S(jj(1)), …, S(jj(q)) which contain all the neighbors j of i with label(j)<label(i). Then, 

it constructs the set SQ as the union of these sets. We will consider that the vertices of SQ are 

ordered as follows: v(jj(1),1), …, v(jj(1),|S(jj(1))|), v(jj(2), 1), …, v(jj(2), |S(jj(2))|), …, v(jj(q),1), …, 

v(jj(q), |S(jj(q))|). 

Then, we will compute a table Taux. We consider every combination of states st(jj(1)), …, 

st(jj(q)), corresponding to the sets S(jj(1)), …, S(jj(q)) and we set Taux(st(jj(1),1), …, st(jj(1), 

|S(jj(1))|), st(jj(2), 1), …, st(jj(2), |S(jj(2))|), …, st(jj(q), 1), …, st(jj(q), |S(jj(q))|))= 

Tjj(1)(st(jj(1)))+…+ Tjj(q)(st(jj(q))). 

If the set SQ is empty, then the table Taux contains only one entry, corresponding to the 

empty tuple: Taux({})=0. Afterwards, we will construct the set SQ’, as the union of SQ and {i} (i 

will be the last vertex in SQ’) and we will compute a table Taux2. For every state stq for which an 

entry exists in Taux, we set Taux2(stq(1), …, stq(|SQ|), 0)=Taux(stq). Then, for each such state stq, 

let’s consider the positions pos corresponding to the neighbors j of i with label(j)<label(i). If 

stq(pos)=0 for every such position, we set Taux2(stq(1), …, stq(|SQ|), 1)=Taux(stq)+p(i); otherwise, 

we set Taux2(stq(1), …, stq(|SQ|), 1)=-∞. Then, we add the set SQ’ to S (after removing from S all 

the sets S(jj(1)), …, S(jj(q))). If SQ’ is assigned the index p (i.e. SQ’=S(p)), then we set Tp=Taux2. 

The time complexity of the algorithm is O(T+N·2
CMAX

). By maintaining the tables Tj(*) after 

each processed event, we can compute the actual solution (which requests are accepted) and not just 

the maximum profit. We mention that the algorithm also works without dividing the time into time 

slots. In this case, every request has a time interval [ts(i), tf(i)) and we construct an activation event 

(time=ts(i), type=+1, request=i) and a deactivation event (time=tf(i), type=-1, request=i). We then 

sort these requests, first in increasing order of the time moment and, for equal time moments, we 

place the deactivation events before the activation events occurring at the same time moment. In 

this case, the complexity is O(N·log(N)+N·2
CMAX

). 

4.12. Scheduling Data Transfer Requests with a Common Deadline and 
a Tree Mutual Exclusion Graph 

This problem can be stated as follows: Given is a deadline T and n data transfer requests. 

For each request, its duration di and a profit pi are known. Each request must be scheduled on some 

interval [t,t+di], included in [0,T]. Some pairs of requests are incompatible, i.e. their assigned time 

intervals cannot overlap. Incompatibilities are due to using common network resources (links or 

paths). The mutual exclusion graph defined by the requests as vertices and by the incompatible pairs 

as edges forms a tree. We are trying to schedule some of the requests (and reject the others) in such 

a way that the total profit of the scheduler requests is maximum. 

We will provide an O(n) dynamic programming algorithm for this problem. First, we will 

choose a root for the tree, which will the define parent-son relationships between the vertices of the 

tree. For each vertex i, we wil compute two values: 

• A(i)=the maximum profit obtained by scheduling some of the requests in i’s subtree and 
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letting vertex i be one of the scheduled requests 

• B(i)=the maximum profit obtained by scheduling some of the requests in i’s subtree and 

vertex i is not scheduled 

We will assume that di is at most T for all the vertices i; otherwise, vertex i cannot be 

scheduled under any circumstance (A(i) will be set to -∞). For each leaf i of the tree, we have 

A(i)=pi and B(i)=0. For a vertex i which is not a leaf, we have: 
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For the case of B(i), the equation is obvious. If we do not schedule B(i), then there is no 

restriction for the choices we can make for each son of i. If we choose to schedule i, then the chosen 

time interval will be [0,di]. For each son j of i, we may choose not to schedule it, in which case 

vertex i will not influence any vertex in j’s subtree. If we do choose to schedule it, however, we 

only have at our disposal the interval [di, T]. But when we computed A(j), we considered that j 

would be scheduled in the interval [0,dj], which is obviously not possible now. What we have to do 

is to realize that the time moments 0 and T are equivalent, so the interval [0,dj] is equivalent to the 

interval [T-dj,T]. Thus, we can use the value of A(j), considering that j would be scheduled at the 

other end of the time horizon, i.e. in the interval [T-dj,T]. 

4.13. Semi-Dynamic Maximum Capacity Path Queries 

 In [Andreica and Ţăpuş, 2009c] we considered the problem of answering maximum capacity 

path queries in a static undirected graph. Every edge e has a capacity cap(e) and we want to answer 

efficiently queries of the form: Q(u,v)=the maximum possible value of the minimum capacity of an 

edge on a path from u to v. The answers to these queries are based on using the disjoint sets data 

structure. We compute the lowest common ancestor LCA(u,v) of u and v in the tree obtained as a 

result of the Union disjoint sets operations called with arguments (x,y) for every edge e connecting 

two vertices x and y, in non-increasing order of the edge capacities. 

In this section we extend the results from [Andreica and Ţăpuş, 2009c] to the following 

semi-dynamic situation. Initially, we have a graph with n vertices and 0 edges. Then, we consider a 

sequence of operations of two types: 1) insert an edge e between u and v with capacity cap(e) ; and 

2) answer Q(u,v) considering the current structure of the graph. The constraint is that the edges are 

inserted in non-increasing order of their capacities. When an edge e between u and v is inserted 

(encountered), we perform the same Union steps as in [Andreica and Ţăpuş, 2009c]. In order to 

answer a query Q(u,v), we need to find the lowest common ancestor of u and v in the current 

disjoint sets tree representation. In order to do this, we start at vertex u and mark u and all of its 

ancestors (initially, no vertex is marked). Then, we start at v and move up the tree (from a vertex to 

its parent), until we reach a vertex a which is marked. Then, LCA(u,v)=a and the time complexity 

of finding a is O(log(n)) (as the height of the tree is O(log(n))). The answer to the query is the 

minimum weight of a tree edge on the paths from u to a, or from v to a. Then, we unmark all the 

previously marked vertices (i.e. all the ancestors of u, including u). 
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Chapter 5 – Offline Optimal Scheduling of Constrained Point-
to-Point Communication Flows 
 

 

 

 In this chapter we consider several offline scheduling problems for constrained 

communication flows, for which we provide novel algorithmic solutions. The results presented in 

this chapter were published in [Andreica, Pârgaru, Ionescu and Andreica, 2009], [Andreica and 

Ţăpuş, 2009a], [Andreica and Ţăpuş, 2009c], [Andreica, Andreica and Andreica, 2009], [Andreica 

and Ţăpuş, 2008c], [Andreica and Ţăpuş, 2008g], [Andreica and Ţăpuş, 2008j], [Andreica, 

Andreica and Andreica, 2008] and [Andreica, Grigorean and Ţăpuş, 2009]. 

5.1. High Multiplicity Scheduling of File Transfers with Divisible Sizes on 
Multiple Classes of Paths 

We consider C different file types: for each type, the size of the file (szi) and the number of 

files (nfi) are given. We consider the file types sorted in decreasing order of their sizes: 

sz1>sz2>…>szC. The sizes further satisfy the condition that szC|szC-1|...|sz1, i.e. szi is a multiple of 

szi+1, 1≤i<C. We are concerned with scheduling the transfer of all the files using P classes of 

disjoint paths, subject to minimizing the maximum completion time (makespan). For each class, the 

number of paths in the class (npi) and their slowdown factor (sdi) are given. The transfer of a file of 

type j on a path of type i will take sdi·szj time units to complete. We consider the path classes sorted 

in non-decreasing order of their slowdown factor: sd1<sd2<...<sdP. On each path, only one file can 

be transferred at one time. We consider file transfers to be non-preemptive. 

We will present a polynomial-time algorithm for the makespan minimization problem, 

having a time complexity of O(P·C·log(Tmax)), where Tmax is an upper bound for the value of the 

makespan. In order to minimize the makespan, we will use binary search between Tmin=sd1·sz1 and  

∑
=

⋅⋅=
C

1i

ii1 nfszsdTmax  
(5-1) 

where a potential value T for the makespan will be selected. Then, the algorithm will perform a 

feasibility test, checking if all the transfers can be scheduled and completed on the P classes of 

paths within time T. If the values of the file sizes and slowdown factors are integers, then this 

algorithm finds an exact solution. If they are real numbers, then it will find a solution which is 

arbitrarily close to the optimum. In the rest of the section we will consider that all the values are 

integers, particularly because an improved version of the algorithm we will present later only works 

for integer values. We denote by A div B the integer division of A and B and by A mod B the 

remainder of the division of A and B. The function that tests if T is a feasible value for the 

makespan is based on a greedy strategy; its pseudocode is shown below: 

For every path class i and file type j, we compute the values qi,j and ri,j, defined like in the 

pseudocode above. It is obvious that qi,1 represents the maximum number of type 1 files that can be 

transferred on a path of class i within the time T. In general, qi,j represents the maximum number of 

files of type j that can be transferred on a path of type i, considering that qi,j’ files of each type j’<j 

have already been transferred on that path. With these values, we will iteratively compute another 

set of values, maxperiodsj, representing the maximum number of time periods into which files of 

type j can be scheduled, considering that all the files of type j’<j have already been scheduled on 

some paths. For each file type j, maxperiodsj needs to be at least equal to nfj. 

The running time of the algorithm ChkT is obviously O(P·C). The algorithm can be 

implemented such that it uses only O(P+C) memory, because the qi,j and ri,j values do not need to 

be stored after moving to the next class of paths i+1. 

We will now present an improved feasibility test for the case C=1 when the sdi values form 

an arithmetic or geometric progression, i.e. sdi=sdi-1+K or sdi=sdi-1·K, for 1<i≤C and some known 
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constant K. 

 
Pseudocode 5-1. Greedy Feasibility Test. 

 
Pseudocode 5-2. Optimized Greedy Feasibility Test for C=1. 

In this case, only the values qi,1 will be computed. The P classes of paths can be split into G 

groups, such that: 1) group 1 contains the classes 1,…,nc1, group i (1<i≤C) contains the classes nci-

1+1,...,nci; 2) ncG=P ; 3) for any two classes of paths i and j in the same group, we have qi,1=qj,1; 4) 

for any two classes of paths i and j in different groups, we have qi,1≠qj,1. G can be at most 2·sqrt(T) 

(where sqrt(T) denotes the square root of T), because: there are at most sqrt(T) classes i for which 

(sdi·sz1) is at most sqrt(T) and each of these classes can form a group all by itself; all the other 

classes have (sdi·sz1)>sqrt(T) and for each such class i, the value qi,1 is less than sqrt(T), so there 

can only exist sqrt(T) different possible values for qi,1, thus forming at most sqrt(T) groups. We also 

compute the values: 

ChkTC1(T,C=1,sz1,nf1,P,sd1,…,sdP,np1,…,npP,K): 
  G=0; firstCls=1; qtotal1=0; sumnp0=0 

  for i=1 to P do sumnpi=sumnpi-1+npi 

  while (firstCls≤P) do { 

    q=T div (sdfirstCls·sz1) 

    if (q=0) then break 

    r=T mod (sdfirstCls·sz1) 

    dif=(r div q) div sz1 
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    qtotal1=qtotal1+(sumnpfirstCls+extraCls - sumnpfirstCls-1)·q 

    firstCls=firstCls+extraCls+1 

} 
if (qtotal1<nf1) then return “no” 

  else return “yes” 

ChkT(T,C,sz1,...,szC,nf1,...,nfC,P,sd1,...,sdP,np1,…,npP): 
for j=1 to C do qtotalj=0 

for i=1 to P do { 

  qi,1=T div (sdi·sz1) 

  ri,1=T mod (sdi·sz1) 

  qtotal1 = qtotal1 + npi·qi,1 

  for j=2 to C do { 

    qi,j=ri,j-1 div (sdi·szj) 

    ri,j=ri,j-1 mod (sdi·szj) 

    qtotalj = qtotalj + npi·qi,j 

} 
} 
maxperiods1=qtotal1 
for j=1 to C do { 

  if (maxperiodsj<nfj) then return "no" 

  if (j<C) then maxperiodsj+1=(maxperiodsj-nfj)·szj/szj+1+qtotalj+1 

} 
return "yes" 
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The feasibility test presented (and described in Pseudocode 5-2) above has O(sqrt(T)) time 

complexity. If the sdi values of the paths do not form an arithmetic or geometric progression, the 

algorithm can be changed so that it computes the value of extraCls by using a binary search (finding 

the largest class of paths i for which sdi is not larger than sdfirstCls+dif), reaching a time complexity 

of O(sqrt(T)·log(P)) for the test. There seems to be possible to extend the algorithm to the case C>1, 

but with rapid performance degradation ( )( 2

1
...

4

1

2

1
C

TO
+++

 time complexity for the feasibility test). 

5.2. High Multiplicity Scheduling of Two Communication Flows on 
Multiple Disjoint Packet-Type-Aware Paths 

Communication performance in distributed systems may be rather poor when multiple 

communication flows use the network simultaneously. Because they are not aware of each other, 

they end up trying to use the same bottleneck resources, although other resources may be available 

in other places or at other times. The solution to this problem consists of scheduling the 

communication flows in such a way that a performance metric is optimized. In this section we are 

interested in optimally scheduling two communication flows from a sender to a receiver, using 

multiple disjoint paths. Each communication flow i is composed of a number of packets which need 

to be sent sequentially and have the same type i (i=1,2). The paths have different transmission times 

for the two packet types. This kind of situation may occur when the two communication flows 

belong to two distinct traffic classes, like, for instance, multimedia and normal web traffic. 

Moreover, some of the paths may be more suitable for one of the two traffic types. 

We will present an algorithm for minimizing the makespan of the schedule, considering that 

the packet transmission is non-preemptive and that two packets cannot be in transit at the same time 

on the same path. The problem is given as a high multiplicity problem, but the algorithm is not 

necessarily polynomial in the input size. We will offer more details about this later. 

5.2.1. Problem Statement 

We consider 2 communication flows, composed of np(i) identical packets (i=1,2). The 

packets of the communication flow i are of type i and are identified by a pair of numbers (i,j), 

1≤j≤np(i). The packets of the same type must be sent to the destination sequentially, using P 

disjoint paths. Each path q (1≤q≤P) has 2 transmission times, ts(q,1) and ts(q,2). ts(q, i) (i=1,2) is 

the time taken by a packet of type i to reach the destination using path q. A schedule consists of 

assigning to each packet (i,j) a pair (path(i,j), tstart(i,j)), meaning that the packet is scheduled to be 

sent on path path(i,j), starting from time tstart(i,j). Based on this pair, we also associate with each 

packet (i,j) a time interval [tstart(i,j), tfinish(i,j)), where tfinish(i,j)=tstart(i,j)+ ts(path(i,j),i). 

During this interval, the packet (i,j) is in transit on path(i,j), so we will call it transit interval. 

A schedule is valid if for any two packets (i,j(1)) and (i,j(2)), j(1)<j(2), we have 

tfinish(i,j(1))≤tstart(i,j(2)), and if any two packets scheduled on the same path (disregarding their 

type) are assigned disjoint transit intervals. The first condition makes sure that each flow’s packets 

are sent sequentially (in the order given by the starting time of the packets’ transit intervals) and the 

second one makes sure that the packets scheduled on the same path are sent one at a time. The 

makespan Cmax of the schedule is the maximum time at which a packet’s transmission ends and we 

want to find a schedule which minimizes Cmax: 

))}(,({max
2,1

max inpitfinishC
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We are interested in finding the schedule with the minimum makespan. The problem is a 

high multiplicity problem, because it has a very compact input, which makes it difficult to develop a 

polynomial time algorithm. For instance, an algorithm with time complexity O(npi) (i=1,2) would 
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be considered exponential. Unfortunately, the algorithm we will present has time complexity O(npi). 

Although the algorithm is quite efficient and developing it required many non-trivial proofs, it is not 

considered polynomial in the input size of the problem. 

5.2.2. The Characteristics of Optimal Schedules 

In this section we show that an optimal schedule (which minimizes the makespan) must 
have a particular structure, chosen from a small set of such structures. As a first step, we show that 
in an optimal schedule, each flow’s packets are scheduled on at most 3 distinct paths. In order to do 
this, we will present and prove several theorems. The main technique lying at the basis of all the 
proofs is choosing an arbitrary valid schedule and changing it into a schedule which is not worse, 
but has all the properties mentioned by the theorem. For each flow i, we define an ordering of the 
paths: po(i,1), po(i,2), …, po(i,P), such that ts(po(i,1),i)≤ ts(po(i,2),i)≤…≤ts(po(i,P),i). In the proofs 
of the following theorems we will frequently reassign a packet from a path po(i,q(1)) to a path 
po(i,q(2)), with q(2)<q(1). Such a reassignment does not change the starting time of the packet, but 
may decrease its ending time. The makespan of the schedule will not increase as a result of these 
operations. 

Theorem 1. Let k be the first position where the path orderings of the two flows differ, i.e. 
po(1,q)=po(2,q), for 1≤q<k and po(1,k)≠po(2,k). If such a position exists, then in an optimal 
schedule, no packets are sent on any of the paths po(i,q) (i=1,2), with q>k. 

Proof. We will choose an arbitrary valid schedule. All the packets (i,j) which are assigned to paths 
path(i,j) such that path(i,j)=po(i,q), q>k, will be reassigned to path po(i,k). After this reassignment, 
we obtain a new schedule. We will analyze the validity of this new schedule. The reassignment does 
not change the starting time of any packet, only the finish time, which may decrease. Therefore, the 
transit intervals of packets of the same type do not overlap. Let’s see if the transit intervals of two 
packets scheduled on the same path might intersect. If the two packets are of the same type, we 
showed previously that this cannot happen, because their transit intervals are disjoint. 

Let’s assume that the transit intervals of two packets of different types, (1,j(1)) and (2,j(2)), 
scheduled on the same path p, intersect. This path cannot be one of the first k-1 paths (for any of the 
two flows), because no packet was reassigned to such a path. So path p must be the k

th
 path of one 

of the flows. W.l.o.g., we will assume that p=po(1,k). But no type 2 packet is assigned to path 
po(1,k), thus invalidating our initial assumption. In conclusion, the new schedule is valid and this 
holds for any valid schedule, including the optimal one. 

Theorem 2. In an optimal schedule, no packet (i,j) is sent on a path po(i,q), with q>4. 

Proof. We will choose an arbitrary valid schedule, where at least one packet (i(1),j) is scheduled on 
a path po(i(1),q), with q>4 (using Theorem 1, we also have q≤k, if k exists). The packets of the 
other type i(2) can be classified into 3 categories, according to the relationship between their transit 
interval and packet (i(1),j)’s transit interval: 

• category 1: their transit interval is included inside [tstart(i(1),j), tfinish(i(1),j)). 

• category 2: their transit interval intersects [tstart(i(1),j), tfinish(i(1),j)), but is not included in 
it. 

• category 3: their transit interval does not intersect [tstart(i(1),j), tfinish(i(1),j)). 
 
All the category 1 packets can be reassigned to path po(i(2),1), because no other packet of 

type i(1) is scheduled on that path during the interval [tstart(i(1),j), tfinish(i(1),j)). The transit 
intervals of these packets do not increase. Category 2 packets cannot be reassigned to a different 
path, because they might be in conflict with other type i(1) packets. However, it is easy to see that 
there can be at most two packets belonging to category 2. One of the packets may cross 
[tstart(i(1),j), tfinish(i(1),j)) at the left end and the other one at the right end. Category 3 packets are 
of no interest. After performing the reassignment of category 1 packets, the packet (i(1),j)’s transit 
interval intersects with the transit intervals of packets scheduled on at most three distinct paths. So 
the packet (i(1),j) can be reassigned to at least one of the paths po(i(1),1), …, po(i(1),4), without 
increasing the makespan and without breaking the validity of the schedule. By using this 
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reassignment method repeatedly, all the packets (i(1),j) assigned to some path po(i(1),q), q>4, will 
be reassigned to some path po(i(1), q(1)), 1≤q(1)≤4. Thus, any valid schedule can be turned into 
another schedule, where no packet is assigned to a path po(i,q), q>4. This holds for an optimal 
schedule, too. 

Theorem 3. In an optimal schedule, no packet (i,j) is sent on a path po(i,q), with q>3. 

Proof. We will choose an arbitrary valid schedule. We first use Theorem 2 in order to obtain a valid 
schedule with a makespan which is not worse that the initial schedule and in which no packet is sent 
on a path po(i,q), with q>4. Let’s assume that a packet (i(1),j) is assigned to the path po(i(1), 4). 
From Theorem 1, we must have k≥4. We will classify the type i(2)(≠i(1)) packets in the same three 
categories as in Theorem 2’s proof and perform the same reassignments. If there are less than two 
packets in category 2 or if the two packets in category 2 are assigned to the same path or if one of 
them is assigned to path po(i(2),1) or to path po(i(2),4) then packet (i(1),j)’s transit interval 
intersects the transit intervals of packets scheduled on at most two distinct paths from the set 
{po(i(1),1), po(i(1),2), po(i(1),3)}, which allows us to reassign packet (i(1),j) to one of the paths in 
the set. 

The more difficult case occurs when there are two packets belonging to category 2, one of 
them assigned to the path po(i(2),2) and the other one to the path po(i(2),3) (see Fig. 5-1). In Fig. 5-
1, w.l.o.g., we chose to place the type i(2) packet assigned to path po(i(2),2) on the left. Because 
each flow’s schedule begins at time 0 and ends at time Cmax, we can always choose to interpret time 
as moving from Cmax towards 0, so left and right are interchangeable. We will name (i(2),j(2)) and 
(i(2),j(3)) the two type i(2) packets assigned to paths po(i(2),2) and po(i(2),3). All the type i(1) 
packets whose transit intervals start after the finish time of packet (i(1),j) and finish before the 
finish time of (i(2),j(3)), or finish before the starting time of (i(1),j) and start after the starting time 
of (i(2),j(2)) can be reassigned to path po(i(1), 1). Packet (i(2),j(3))’s transit interval must intersect 
with that of a packet of type i(1) assigned to path po(i(1),2); otherwise, packet (i(2),j(3)) could be 
reassigned to path po(i(2),2) and then packet (i(1),j) could be reassigned to path po(i(1),3). 

We define the interval [t1,t2), where t1 is the starting time of the first type i(1) packet 
(re)assigned to path po(i(1),1) whose transit interval is fully included inside that of packet (i(2),j(2)) 
(or, if no such interval exists, the starting time of packet (i(1),j)) and t2 is the starting time of the 
first type i(1) packet assigned to po(i(1),2) whose transit interval intersects that of the packet 
(i(2),j(3)). We also define t3 as the finish time of the transit interval of packet (i(2), j(3)). We define 
l(i(1),1) the total length of the transit intervals included in   [t1,t2) of all the type i(1) packets 
(re)assigned to path po(i(1),1) and l(i(1),4) the length of the transit interval of the packet (i(1),j). 
Similarly, we define l(i(2),1) the total length of the transit intervals included in [t1,t2) of all the type 
i(2) packets (re)assigned to path po(i(2),1), l(i(2),2) the length of the transit interval of the packet 
(i(2),j(2)) and l(i(2),3) the length of the transit interval of the packet (i(2),j(3)). All the packets 
whose transit intervals are included inside [t1,t2) will be rearranged in such a way that the makespan 
will not increase and that it will be possible to reassign packet (i(1),j) to one of the paths 
po(i(1),1),…,po(i(1),3). 
 

 
Fig. 5-1. Type i(1) Packets (First Row) and Type i(2) Packets (Second Row). The Left and Right Sides of the 
Packets are Aligned with Their Starting and Finish Time. The Numbers inside the Packets are the Positions 

of the Assigned Paths in the Corresponding Path Ordering. 
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Fig. 5-2. The Case l(i(2),3)+l(i(2),1)≤t3-t2+l(i(1),4). The Rearrangement of Packets. No Path Reassignment has 

Been Performed, yet. 

 
Fig. 5-3. The New Schedule in the Case l(i(2),3)+l(i(2),1)≤t3-t2+l(i(1),4). The Schedule is Valid and the 

Makespan did not Increase. 

 
Fig. 5-4. The Case l(i(2),1)+l(i(2),3)>t3-t2+l(i(1),4). The Rearrangement of Packets. No Path Reassignment has 

been Performed, yet. 

 
Fig. 5-5. Rearrangement of Packets for the Case k=2, P≥2. 

 
Fig. 5-6. The Case k=3, P≥4. Packet Rearrangement when l1,1+l1,2≤l2,2+l2,3. No Path Reassignment has Been 

Performed, yet. 

If l(i(2),3)+l(i(2),1)≤t3-t2+l(i(1),4), then the packets can be rearranged like in Fig. 5-2. 
Packet (i(1),j) is placed such that its finish time is equal to t2. Then, all the other type i(1) packets 
whose transit intervals were included in [t1,t2) will be placed somewhere inside the interval [t1,t2-
l(i(1),4)). This is obviously possible, because l(i(1),1)≤t2-t1-l(i(1),4). After that, the packet (i(2),j(3)) 
will be reassigned to path po(i(2), 1). This is now possible, because the only two packets whose 
transit intervals intersect the transit interval of packet (i(2),j(3)) are assigned to the paths po(i(1),2) 
and po(i(1),4). After packet (i(2),j(3)) is reassigned to path po(i(1),1), packet (i(1),j) can be 
reassigned to path po(i(1),3). The final arrangement is shown in Fig. 5-3. 

The case l(i(2),3)+l(i(2),1)>t3-t2+l(i(1),4) is handled in a similar manner. The type i(1) 
packets whose transit interval is included inside [t1,t2) are placed like in the previous case. The type 
i(2) packets (re)assigned to path po(i(1),1) whose transit intervals are included inside [t1,t2) are 
rescheduled consecutively, such that the last one finishes at time t3. Because l(i(2),1)<l(i(1),4) 
(initially, all of these packets’ intervals were included inside packet (i(1),j)’s transit interval), the 
new starting time of the first of these packets, tnewstart=t3-l(i(2),1), will be greater than the new 
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starting time of the packet (i(1),j). The packet (i(2),j(3)) will be rescheduled such that its finish time 
is equal to tnewstart. Because l(i(2),1)+l(i(2),3)>t3-t2+l(i(1),4), the starting time of the packet 
(i(2),j(3)) will be smaller than the starting time of packet (i(1),j). Fig. 5-4 shows the new 
arrangement. 

The new transit interval of packet (i(1),j) intersects only type i(2) packets assigned to the 
paths po(i(2),1) and po(i(2),3), so packet (i(1),j) can be reassigned to path po(i(1),2). This was the 
last case to be considered. In every case, packet (i(1),j) could be reassigned to a path po(i(1),q(1)), 
with 1≤q(1)≤3, without assigning any packet to a path located on a larger position in the 
corresponding path ordering and without increasing the makespan. Thus, any valid schedule 
(including an optimal one) can be changed into another valid schedule where no packet is assigned 
to a path po(i,q), q>3. 

We will characterize next all the cases of interest that may occur, according to the total 

number of paths P and the parameter k defined in Theorem 1. We will use A div B to denote the 

integer division of A and B, i.e. the integer number C, such that C·B≤A<(C+1)·B. A and B do not 

necessarily have to be integer numbers. 

5.2.2.1. k=1, P≥1 
If po(1,1)≠po(2,1), then all the type 1 packets will be scheduled on path po(1,1) and all the 

type 2 packets on the path po(2,1). The makespan will be: 

)}2),1,2(()2(),1),1,1(()1(max{max potsnppotsnpC ⋅⋅= .                    (5-4) 

5.2.2.2. k does not exist, P=1 
If P=1 and po(1,1)=po(2,1), then all the packets of both types will be scheduled on the first 

(and only) path. The makespan will be 

)2,1()2()1,1()1(max tsnptsnpC ⋅+⋅= .                                (5-5) 

5.2.2.3. k=2, P ≥2 
We choose an arbitrary valid schedule and denote its makespan by C. We denote by li,j the 

total length of the transit intervals of type i packets scheduled on path po(i,j) (1≤j≤2) and by twi the 
total waiting time twi=C-li,1-li,2. 

We have that l1,1≤l2,2+tw2, because each transit interval of a type 1 packet scheduled on the 
path po(1,1) overlaps some part of a type 2 packet scheduled on path po(2,2) or some part of the 
waiting time tw2. Because of this, the schedule can be changed such that all the type 1 packets 
assigned to path po(1,1) are scheduled first, followed by the waiting time tw1 and then by all the 
type 1 packets scheduled on path po(1,2). For the 2

nd
 flow, all the packets assigned to path po(2,2) 

are scheduled first, followed by the waiting time tw2 and by the packets assigned to path po(2,1). 
Fig. 5-5 presents the transformed schedule. 

No transit interval of a type 1 packet scheduled on path po(1,1) overlaps with the transit 
interval of a type 2 packet scheduled on path po(2,1). The schedule can be further refined by 
moving part of the waiting time tw2 at the end and moving the type 2 packets assigned to path 
po(2,1) forward, so that their starting time is max{l1,1, l2,2}. Similarly, part of tw1 can be moved at 
the end, so that type 1 packets assigned to path po(1,2) are sent starting from max{l1,1, l2,2}. 
Obviously, the new schedule is valid and its makespan is not larger than that of the original 
schedule. 

An optimal schedule is properly defined by the number u of type 1 packets assigned to path 
po(1,1). For the type 1 packets, the schedule can be written as 1

u
,2

np(1)-u
, meaning that the first u 

packets are assigned to path po(1,1) and the last np(1)-u packets are assigned to path po(1,2) (a term 
of the form a

b
 in the schedule of flow i represents b consecutive type i packets sent on path po(i,a)). 

If the number u of packets is fixed, the schedule for the type 2 packets has one of the following two 
forms: 

• 2
v
,tw,1

np(2)-v
, where v=min{(l1,1 div ts(po(2,2),2)), np(2)} and tw=l1,1-v·ts(po(2,2),2). This means 

that the first v packets of type 2 are sent consecutively on the path po(2,2), then a waiting time 
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tw follows and then the last np(2)-v type 2 packets are sent on the path po(2,1). 

• 2
v
,1

np(2)-v
, where v=min{np(2),(l1,1 div ts(po(2,2),2))+1} 

In order to find the optimal schedule, we need to find the value of u which minimizes the 

makespan. 

5.2.2.4. k does not exist, P=2 
This case is similar to the previous one. We will use the same notations as before. We have 

that l1,1≤l2,2+tw2 and  l2,2≤l1,1+tw1 (by the same argument). Therefore, the schedule shown in Fig. 5-

5 is valid in this case, too. Like in the previous case, an optimal schedule is properly defined by the 

number u of type 1 packets assigned to path po(1,1). These packets will be sent first. In parallel, we 

will send as many type 2 packets as possible on path po(2,2); we have two choices: 

• send v=min{(l1,1 div ts(po(2,2),2)),np(2)} type 2 packets on path po(2,2), then wait a duration 
tw=l1,1-v·ts(po(2,2),2) and then send the remaining type 2 packets on path po(2,1). The type 1 
packets assigned to path po(1,2) will be sent starting from time l1,1. The schedule for the type 1 
packets is 1

u
,2

np(1)-u
 and the schedule for type 2 packets is 2

v
,tw,1

np(2)-v
. 

• send v=min{(l1,1 div ts(po(2,2),2))+1,np(2)} type 2 packets on path po(2,2), then send 
immediately the remaining type 2 packets on path po(2,1). The type 1 packets assigned to path 
po(1,2) will have to wait a duration tw=max{v·ts(po(2,2),2)-l1,1,0} before starting to send them. 
The schedule for the type 1 packets is 1

u
,tw,2

np(1)-u
 and the one for type 2 packets is 2

v
,1

np(2)-v
. In 

this case, it would be better to choose the value of v and derive the value of u based on v. 
Like in the previous case, finding the optimal schedule means finding the value of u which 

minimizes the makespan. 

5.2.2.5. k=3, P≥4 
If no packet (i,j) is assigned to the path po(i,3), then this case is identical to the previous one. 

So we will restrict our attention to the case in which at least one packet (i,j) is assigned to the path 
po(i,3). We will choose an arbitrary valid schedule with makespan C. We will define l1,1, l1,2, l2,1, l2,2 
as before. Furthermore, we define li,3 the total length of the transit intervals of the type i packets 
assigned to path po(i,3) (1≤i≤2). The waiting times are now equal to twi=C-li,1-li,2-li,3. If 
l1,1+l1,2≤l2,2+l2,3, the packets can be rearranged like in Fig. 5-6 (temporarily, packets of both types 
sent on the path po(1,2)=po(2,2) may intersect). All type 1 packets assigned to path po(1,1) will be 
sent first, followed by all the type 1 packets assigned to path po(1,2) and by all the type 1 packets 
assigned to path po(1,3). In parallel, we will send all the type 2 packets assigned to path po(2,2), 
followed by all the type 2 packets assigned to path po(2,3) and then followed by those assigned to 
path po(2,1). The waiting times are moved at the end of the schedule. 

The type 1 packets assigned to path po(1,2) will be reassigned to path po(1,1). The type 2 
packets assigned to path po(2,3) will be reassigned to path po(2,2). At this point, the type 1 packets 
are assigned only to the paths po(1,1) and po(1,3) and the type 2 packets are assigned only to the 
paths po(2,1) and po(2,2). However, more reassignments are possible. All type 1 packets assigned 
to path po(1,3) whose finish time is smaller than or equal to l2,2+l2,3 can be reassigned to path 
po(1,1). All type 1 packets assigned to path po(1,3) whose starting time is greater than or equal to 
l2,2+l2,3 can be reassigned to path po(1,2). All these reassignments do not increase the lengths of the 
transit intervals, so they do not increase the makespan. In the end, there will be at most one type 1 
packet assigned to path po(1,3) and no type 2 packet assigned to path po(2,3). The schedule for the 
type 1 packets has the form 1

u
,3

1
,2

np(1)-u-1
 and the one for type 2 packets has the form 2

v
,1

np(2)-v
. 

If l1,1+l1,2>l2,2+l2,3 and l1,1≥l2,2+l2,3, we can change the schedule in a similar manner. We will 
send the first type 1 packets assigned to path po(1,1), followed by the type 1 packets assigned to 
path po(1,2) and then po(1,3). In parallel, the type 2 packets assigned to path po(2,2) will be sent, 
followed immediately by the packets assigned to path po(2,3). Because we have l1,1≤l2,2+l2,3+tw2 
(since any transit interval of a type 1 packet assigned to path po(1,1) overlaps parts of transit 
intervals of type 2 packets assigned to paths po(2,2) or po(2,3), or parts of tw2), we can insert the 
waiting time tw2 before sending the type 2 packets assigned to path po(2,1). This way, the 
makespan does not increase and the schedule remains valid. Further reassignments are possible. All 
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type 2 packets assigned to path po(2,3) will be reassigned to path po(2,2) and all type 1 packets 
assigned to path po(1,3) will be reassigned to path po(1,2). This way, no packet (i,j) remains 
assigned to the path po(i,3), so we are in the case presented in the previous subsection. If 
l1,1+l1,2>l2,2+l2,3 and l1,1<l2,2+l2,3, we need to make a difference between the following subcases: 
l1,1≥l2,2 and l1,1<l2,2. 

Subcase 1: l1,1≥l2,2. The packets will be rearranged the same way as before: for type 1 - the packets 
assigned to the path po(1,1), then those assigned to path po(1,2) and then those assigned to path 
po(1,3); for type 2 - the packets assigned to path po(2,2), then those assigned to path po(2,3) and 
then those assigned to path po(2,1). Because l1,1≥l2,2, the transit interval of no type 1 packet 
assigned to paths po(1,2) or po(1,3) overlaps the transit interval of a type 2 packet assigned to path 
po(2,2). Thus, all the type 1 packets assigned to path po(1,3) can be reassigned to path po(1,2) and 
the schedule is valid. The type 2 packets assigned to path po(2,3) whose finish time is smaller than 
or equal to l1,1 will be reassigned to path po(2,2) and those whose starting time is greater than or 
equal to l1,1, will be reassigned to path po(2,1). This leaves at most one type 2 packet still assigned 
to path po(2,3). The schedule for the type 1 packets has the form 1

u
,2

np(1)-u
 and the one for type 2 

packets has the form 2
v
,3

1
,1

np(2)-v-1
. 

Subcase 2: l1,1<l2,2. The type 2 packets will be rearranged just like in the previous subcase. 

Furthermore, all the type 2 packets assigned to path po(2,3) will be reassigned to path po(2,1). The 

type 1 packets assigned to path po(1,1) will be sent first, followed by the type 1 packets assigned to 

path po(1,3). Because l1,1+l1,3+tw1≥l2,2, we can insert the waiting time tw1 before sending the type 1 

packets assigned to path po(1,2). After the reassignments, the schedule is valid and its makespan did 

not increase. Furthermore, the type 1 packets assigned to path po(1,3) whose finish time is smaller 

than or equal to l2,2 will be reassigned to path po(1,1) and those whose starting time is greater than 

or equal to l2,2 will be reassigned to path po(1,2), leaving at most one type 1 packet still assigned to 

path po(1,3). The schedule for the type 1 packets has the form 1
u
,3

1
,2

np(1)-u
 or 1

u
,tw,2

np(1)-u
 and the 

one for type 2 packets has the form 2
v
,1

np(2)-v
. 

5.2.2.6. k does not exist, P=3 
Any valid schedule for this case is also a valid schedule for the previous one. Therefore, we 

can use the same arguments and transformations. The only problem we might encounter is that the 

schedule obtained after performing the transformations of the previous case might contain two 

packets (1,j(1)) and (2,j(2)), with overlapping transit intervals and assigned to the same path 

po(1,3)=po(2,3). However, we can see that this is not the case, because any schedule obtained in the 

previous case contains at most one packet (i,j) assigned to a path po(i,3) (either po(1,3) or po(2,3)). 

5.2.2.7. k>3 or non-existent, P>3 
According to Theorem 3, no packet (i,j) is sent on a path po(i,q), q>3. Thus, we can limit the 

value of P to 3 and the case becomes identical to the previous one. 

In this section we characterized the structure of optimal schedules. There are five kinds of 
non-trivial structures: 

• 1
u
,2

np(1)-u
 for flow 1 and 2

v
,tw,1

np(2)-v
 for flow 2, where v=min{np(2), ((ts(po(1,1),1)·u) div 

ts(po(2,2),2))} and tw=u·ts(po(1,1),1)-v·ts(po(2,2),2). 

• 1
u
,tw,2

np(1)-u
 for flow 1 and 2

v
,1

np(2)-v
 for flow 2, where u=min{np(1), ((ts(po(2,2),2)·v) div 

ts(po(1,1),1))} and tw=v·ts(po(2,2),2)-u·ts(po(1,1),1). 

• 1
u
,2

np(1)-u
 for flow 1 and 2

v+1
,1

np(2)-v-1
 for flow 2, where v=min{np(2)-1, ((ts(po(1,1),1)·u) div 

ts(po(2,2),2))}. 

• 1
u
,2

np(1)-u
 for flow 1 and 2

v
,3

1
,1

np(2)-v-1
 for flow 2, where v=min{np(2)-1,((ts(po(1,1),1)·u) div 

ts(po(2,2),2))}. 

• 1
u
,3

1
,2

np(1)-u-1
 for flow 1 and 2

v
,1

np(2)-v
 for flow 2, where u=min{np(1)-1,((ts(po(2,2),2)·v) div 

ts(po(1,1),1))}. 
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5.2.3. An O(npi) Scheduling Algorithm 

We will present an algorithm with time complexity O(np(i)) which determines the optimal 

schedule for any of the five kinds of non-trivial structures presented in the previous section. The 

algorithm has time complexity O(log(np(i))) on three of the schedule structures, but two structures 

are more difficult and we were unable to develop an equally efficient algorithm for them. We will 

not include in this section the trivial cases k=1 and P=1, which can easily be solved in O(1) time 

using equations (2) and (3). 

5.2.3.1. Case 1: 1u,2np(1)-u and 2v,31,1np(2)-v-1 
We chose to handle first the case 1

u
,2

np(1)-u
 and 2

v
,3

1
,1

np(2)-v-1
, because it is easier to solve 

than the cases where waiting times are involved. We will define two functions, C1(u) and C2(u) 

representing the completion time of flow 1 and flow 2, respectively, if there are u packets of type 1 

assigned to the path po(1,1). Their definitions are: 

C1(u)=u·ts(po(1,1),1)+(np(1)-u)·ts(po(1,2),1)  (5-6) 
C2(u)=v·ts(po(2,2),2)+ts(po(2,3),2)+(np(2)-v-1)· ts(po(2,1),2) , with 

                            v=min{(ts(po(1,1),1)·u) div ts(po(2,2),2) , np(2)-1} 

(5-7) 

The first function is decreasing for )]1(,0[ npu ∈ . The difference C1(x+1)-

C1(x)=ts(po(1,1),1)-ts(po(1,2),1) is constant. The values of the second function are increasing, but 
not necessarily strictly increasing. This is easily noticeable, because as u increases, so does v. 
Whenever v increases, the number of packets assigned to path po(2,2) increases and the number of 
packets assigned to path po(2,1) decreases, so the overall value increases. In order to find the value 

)]1(,0[ npuopt ∈  for which max{C1(uopt), C2(uopt)} is minimum we have the following three subcases: 

• Subcase 1: C1(0)≤C2(0). In this case, max{C1(u), C2(u)}=C2(u) and the minimum value of C2(u) 
is C2(0). So uopt=0. 

• Subcase 2: C1(np(1))≥C2(np(1)). In this case, max{C1(u), C2(u)}=C1(u) and the minimum value 
of C1(u) is C1(np(1)). So uopt=np(1). 

• Subcase 3: C1(w)≥C2(w), for 0≤w≤wm and C1(w)<C2(w) for wm<w≤np(1). We can find the value 
of wm using binary search. The value of uopt is either wm or wm+1. 

 

The time complexity of the algorithm is O(log(npi)). The cases ((1
u
,3

1
,2

np(1)-u-1
), (2

v
,1

np(2)-v
)) 

and ((1
u
,2

np(1)-u
), (2

v+1
,1

np(2)-v-1
)) are similar. We define the two functions C1(v) and C2(v) having the 

same meaning, which are decreasing, respectively strictly increasing. We have the same three 

situations and use binary search to find the optimal value uopt in the third situation. 

5.2.3.2. Case 2: 1u,2np(1)-u and 2v,tw,1np(2)-v 
We will define the two functions C1(u) and C2(u), representing the completion time of the 

first, respectively, second flow, if u packets of type 1 are assigned to path po(1,1). C1 is defined as 
before, while C2’s definition is: 

C2(u)=u·ts(po(1,1),1)+(np(2)-v)·ts(po(2,1),2) , with  

v=min{(ts(po(1,1),1)·u) div ts(po(2,2),2), np(2)} 
(5-8) 

This case is more difficult, because although C1 is strictly decreasing, C2’s values are not 

increasing. The only algorithm we could find was to try out all the np(1) possible values of u and 

choose the one which minimizes the makespan. A similar situation occurs for the case ((1
u
,tw,2

np(1)-

u
) , (2

v
,1

np(2)-v
)). 

5.3. Minimum Weighted Sum of Completion Times and Minimum 
Makespan Scheduling of Two Communication Flows with Packet 
Ordering Constraints 

In this section we consider two communication flows, which need to send np(1) and, 

respectively, np(2) packets from the same source to the same destination using some of the P 
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disjoint paths available. The packets are not necessarily identical and their order within the same 

flow is fixed. For each packet (i,j), the path on which it must be sent is already defined. We will 

present dynamic programming algorithms for minimizing the following two objectives: (o1) 

minimum sum of completion times (see eq. (5-9)) and (o2) minimum weighted makespan (see eq. 

(5-10)). Each flow i has a weight w(i) (i=1,2). We will use the same notations as in the previous 

section. What will be different is that we will have ts(q,i,j)=the duration for sending the j
th

 packet of 

flow i on the path q (instead of only ts(q,i) for the case when all the packets of the same flow were 

identical). 

))2(,2()2())1(,1()1( nptfinishwnptfinishwST ⋅+⋅= .                        (5-9) 

))}2(,2()2()),1(,1()1(max{ nptfinishwnptfinishwST ⋅⋅= .                        (5-10) 

The minimum (weighted) sum of completion times is at least equal to: 

∑∑ ==
⋅+⋅=

)2(

1

)1(

1
)2),,2(()2()1),,1(()1(

np

j

np

jlow jpathtswjpathtswST .                 (5-11) 

 
Pseudocode 5-3. Optimization Algorithm – Case 1. 

Min-WST-WMakeSpan-Case1: 
ST=+∞ ; initialize Twm(*,*) 
(o1) compute STlow 
for a=0 to np(1) do { 
  for b=0 to np(2) do { 
    if (Twm(a,b)<+∞) then { 
      a’=a+1 ; b’=b+1 ; tsa’=0 ; tsb’=0 
      while ((a’≤np(1)) and (b’≤np(2))) do { 
        if (path(1,a’)=path(2,b’)) then break 
        if (tsa’+ts(path(1,a’),1,a’)<tsb’+ts(path(2,b’),2,b’)) then { 
          tsa’= tsa’+ts(path(1,a’),1,a’) ; a’=a’+1 
        } else if (tsa’+ts(path(1,a’),1,a’)>tsb’+ts(path(2,b’),2,b’)) then { 
          tsb’=tsb’+ts(path(2,b’),2,b’) ; b’=b’+1 
        } else { 
          tsa’= tsa’+ts(path(1,a’),1,a’) ; a’=a’+1 
          tsb’=tsb’+ts(path(2,b’),2,b’) ; b’=b’+1 
        } 
      } 
      if ((a’>np(1)) or (b’>np(2))) then { 
        while (a’≤np(1)) do { 
          tsa’= tsa’+ts(path(1,a’),1,a’) 
          a’=a’+1 
        } 
        while (b’≤np(2)) do { 
          tsb’=tsb’+ts(path(2,b’),2,b’) 
          b’=b’+1 
        } 
        (o1) ST=min{ST,STlow+Twm(a,b)} 
        (o2) ST=min{ST, max{w(1)·(Twm(a,b)+tsa’), w(2)·(Twm(a,b)+tsb’)}} 
      } else { 
        (o1) Twm(a’-1,b’)=min{ Twm(a’-1,b’), Twm(a,b)+w(1)·(tsb’+ts(path(2,b’),2,b’)-tsa’)} 
        (o1) Twm(a’,b’-1)=min{ Twm(a’,b’-1), Twm(a,b)+w(2)·(tsa’+ts(path(1,a’),1,a’)-tsb’)} 
        (o2) Twm(a’-1,b’)=min{ Twm(a’-1,b’), Twm(a,b)+(tsb’+ts(path(2,b’),2,b’)} 
        (o2) Twm(a’,b’-1)=min{ Twm(a’,b’-1), Twm(a,b)+tsa’+ts(path(1,a’),1,a’)} 
      } 
    } 

} 
} 
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In this case, all we need to do is minimize the total weighted waiting time of the packets - 
caused by pairs of packets (1,j(1)) and (2,j(2)) scheduled on the same path and whose transit 
intervals might overlap. We will compute a table Twm(a,b)=the minimum total weighted waiting 
time required for sending the first a packets of the first flow, the first b packets of the second flow 
and the packets (1,a+1) and (2,b+1) are scheduled to be sent at the same time moment. Initially, we 
have Twm(0,0)=0 and Twm(a,b)=+∞ (for a>0 or b>0). We will use a forward type of dynamic 
programming. The pairs (a,b) (0≤a≤np(1), 0≤b≤np(2)) will be traversed in lexicographic order. If 
Twm(a,b)<+∞, then we will perform the following actions: we will advance forward in time, until all 
the packets of one of the two flows are sent or until a conflict occurs (packets a’>a and b’>b are 
scheduled on the same path and during overlapping time intervals). In the first situation, we will 
consider updating the minimum weighted sum of completion times by the value STlow+Twait(a,b). In 
the second case, we will update the values Twm(a’-1,b’) and Twm(a’,b’-1). 

In the minimum weighted makespan case, we will compute a similar dynamic programming 
table: Twm(a,b)=the minimum time duration required for the packets (1,a+1) and (2,b+1) to be 
scheduled for being sent at the same time moment. Twm(*,*) is initialized like in the previous case. 

In Pseudocode 5-3 and 5-4, the lines prefixed with (o1) are executed only when the objective 
is the minimum sum of weighted completion times, while those with (o2) are executed only when 
the objective is the minimum weighted makespan. 

The time complexity of the algorithm in Pseudocode 5-3 is O(np(1)·np(2)·(np(1)+np(2))). 
Note that in this case we only need the ts(*,*,*) values for the tuples (path(i,j), i, j) (i.e. only 
np(1)+np(2) values). In fact, the values ts(path(i,j), i, j) can be replaced by the ts’(i,j) values. 

We will now consider the case when only the packets of the first flow have fixed paths, but 

we are free to choose the paths on which the packets of the second flow should be sent. The 

ordering constraints still need to be obeyed. We will use dynamic programming in a similar manner 

to the previous case and compute a table Tmin(a,b)=the minimum total weighted time (or simply 

time in the case of the weighted makespan) required for sending all the packets of the first flow, the 

first b packets of the second flow and the packets (1,a+1) and (2,b+1) are scheduled to be sent at 

the same time. We have: 

     Tmin(0,0)=w(1)·(ts(path(1,1),1,1)+ts(path(1,2),1,2)+…+ts(path(1,np(1)),1,np(1)))   (5-12) 

for the weighted sum case and Tmin(0,0)=0 for the weighted makespan case. For the other pairs (a,b), 

we initially have Tmin(a,b)=+∞. For each pair (a,b) with Tmin(a,b)<+∞, in lexicographic order, we 

will generate the longest possible schedule (up to (a’,b’), a’≥a, b’≥b), by scheduling the next type 2 

packet on the fastest path which does not generate any conflicts. At each step, we also consider 

scheduling the type 2 packets on faster paths, thus obtaining conflicts – in this case, we try to update 

values like Tmin(a’’,b’-1) and Tmin(a’’-1,b’), a’’≥a’. We will denote by po(2,k,j) the path q for which 

ts(q,2,j) is the k
th

 smallest among all the values ts(*,2,j) (i.e. for each pair (2,j) we sort the paths q in 

increasing order of their ts(q,2,j) values). The algorithm is presented in Pseudocode 5-4. 
The time complexity of the algorithm (Pseudocode 5-4) is 

O(np(1)·np(2)·(np(1)+np(2))·Pmax·np(1)). Running the algorithm with Pmax=P is correct, but, for 
the case when all the packets are identical (i.e. ts(q,i,*)=ts(q,i)), we conjecture that we can run it 
with Pmax=min{P, 4} and it will still always compute an optimal solution. 

5.4. Minimum Makespan Packet Scheduling over Multiple Disjoint Paths 
with Connection Initiation Times 

We consider a communication flow which consists of N identical packets (which do not 

necessarily have to be sent in order). The packets must be sent from the source to the destination, 

using some of the P disjoint paths available. Each path i (1≤i≤P) has three parameters: a connection 

initiation time CI(i)≥0, a packet sending time PS(i)≥0 and the maximum number of packets 

pmax(i)≥1 that can be sent along the path. If we want to send k (1≤k≤pmax(i)) packets on path i, this 

will take CI(i)+k·PS(i) time units (for k=0, it takes 0 time units). We want to distribute the packets 

over the P paths, such that the maximum time moment at which a packet arrives at the destination is 

minimum (i.e. we want to minimize the makespan of the packet distribution strategy). 
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Pseudocode 5-4. Optimization Algorithm – Case 2. 

We will first present a solution with O(N·log(P)) time complexity. We will maintain a min-

Min-WST-WMakespan-Case2(Pmax(≤P)): 
ST=+∞;  

(o1) Tmin(0,0)=w(1)·(ts(path(1,1),1,1)+...+ts(path(1,np(1)),1,np(1))) 

(o2) Tmin(0,0)=0 

for a=0 to np(1) do { 

for b=0 to np(2) do { 

  if (Tmin(a,b)<+ ∞) then { 

    a’=a+1 ; b’=b+1 ; tsa’=0 ; tsb’=0 

      while ((a’≤np(1)) and (b’≤np(2))) do { 
        bestp=uninitialized  

        for pa=1 to Pmax do { 

          a’’=a’; tsa’’=tsa’; noconflict=true 

          while ((a’’≤np(1)) and (tsa’’<tsb’+ts(po(2,pa,b’),2,b’)) do { 

            if (path(1,a’’)=pa) then { 

              (o1) Tmin(a’’,b’-1)=min{Tmin(a’’,b’-1), Tmin(a,b)+w(2)·(tsa’’+ts(path(1,a’’),1,a’’))} 

              (o1) Tmin(a’’-1,b’)=min{Tmin(a’’-1,b’), Tmin(a,b)+w(1)· 

                                      (tsb’+ts(po(2,pa,b’),2,b’)-tsa’’)+w(2)·(tsb’+ts(po(2,pa,b’),2,b’))} 

              (o2) Tmin(a’’,b’-1)=min{Tmin(a’’,b’-1), Tmin(a,b)+tsa’’+ts(path(1,a’’),1,a’’)} 

              (o2) Tmin(a’’-1,b’)=min{Tmin(a’’-1,b’), Tmin(a,b)+tsb’+ts(po(2,pa,b’),2,b’)} 

              noconflict=false; break 
            } else { 
              tsa’’=tsa’’+ts(path(1,a’’),1,a’’) ; a’’=a’’+1 

            } 
          } 
          if ((bestp=uninitialized) and (noconflict=true)) then bestp=pa 

        } 
        if (bestp≠unintialized) then { 

          tsb’=tsb’+ts(po(2,bestp,b’),2,b’) ; b’=b’+1 

          while ((a’≤np(1)) and (tsa’+ts(path(1,a’),1,a’)≤tsb’)) do { 

            tsa’=tsa’+ts(path(1,a’),1,a’) ; a’=a’+1 

          } 

        } else break  
      } 
      if (b’>np(2)) then { 
        while (a’≤np(1)) do { 
          tsa’= tsa’+ts(path(1,a’),1,a’) ; a’=a’+1 
        } 
      } 
      if (a’>np(1)) then { 
        while (b’≤np(2)) do { 
          tsb’=tsb’+ts(po(2,1,b’),2,b’) ; b’=b’+1 
        } 
      } 
      if (a’>np(1)) then { 

        (o1) ST=min{ST, Tmin(a,b)+w(2)·tsb’} 
        (o2) ST=min{ST, max{w(1)·(Tmin(a,b)+tsa’), w(2)·(Tmin(a,b)+tsb’)}} 

      } 
    } 

} 
} 
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heap H in which we insert every path i, with an initial key Key(i)=CI(i). We will also maintain a 

counter pkt(i) for every path i (initially, pkt(i)=0 for every path 1≤i≤P). We will repeatedly extract 

from H the minimum key N times. Let’s assume that we extracted the value Key(i), assigned to path 

i. We will send a packet on path i at time moment Key(i), which will reach the destination at time 

Key(i)+PS(i). Then, we remove Key(i) from H, set Key(i)=Key(i)+PS(i) and increment pkt(i) by 1. 

If pkt(i)<pmax(i) then we will re-insert Key(i) (the new value) into H (after every insertion, we also 

maintain the path i associated to every value Key(i)). 

We now consider the restriction that only at most Q of the P available paths can be used for 

sending the packets. This case is identical to the previous one when Q=P. We will present a 

solution with O(sort(P)·log(TMAX)) time complexity, where TMAX is the maximum possible value 

of the makespan and sort(P) is the time complexity to sort P numbers. We will binary search the 

makespan. Let’s assume that we selected a value T within the binary search. For each path i (1≤i≤P) 

we will compute a value np(i)=the number of packets which can be sent on path i using at most T 

time units: if CI(i)>T then np(i)=0; otherwise, np(i)=min{(T-CI(i)) div PS(i), pmax(i)} (A div B 

denotes the integer division of A at B). We then sort the paths such that 

np(path(1))≥np(path(2))≥…≥np(path(P)), where path(1), …, path(P) is a permutation of the P paths. 

Out of these, we will select the first Q paths and compute sumnp=np(path(1))+…+np(path(Q)). If 

sumnp≥N then T is a feasible value for the makespan and, thus, we will test a smaller value next in 

the binary search; if, however, sumnp<N, then T is too small and we need to test a larger value next 

in the binary search. sort(P) may be O(P·log(P)), or, if the values np(i) are small integer numbers, 

then sort(P) may be O(P+VMAX), where VMAX is the largest possible value of np(i) (we can sort 

these values by using a procedure similar to count sort). 

5.5. Optimal Offline TCP Sender Buffer Management Strategy 

TCP uses a sliding window mechanism in order to enforce flow control and not overwhelm 

the receiver with too much data. This mechanism is particularly useful when a fast, powerful sender 

communicates with a slow receiver or with one having limited resources (small amounts of buffer 

space). However, these situations are rather stressful for the sender, which needs to bring data from 

application buffers into TCP buffers many times. If the sender is loaded by many applications 

performing different tasks, copying data between buffers might not always take the same amount of 

time. Because of this, it might happen that the sender becomes a performance bottleneck, too, not 

only the receiver, as we would have expected. 

In this section we propose a model for characterizing the sender’s behavior throughout the 

life time of a TCP connection. Based on this model, we developed an O(n·log
2
(n)) algorithm for 

computing the minimum total processing time for the sender when the window sizes advertised by 

the receiver and the system load of the sender are known in advance. The algorithm can only be 

used offline, either when accurate estimates of the required parameters are known, or after a TCP 

conversation took place, in order to find out what the minimum processing time could have been. 

5.5.1. TCP Sender Behavior Model 

After the initial three-way handshake, the TCP sender will attempt to send as much data as 

the last window size advertised by the receiver. We will assume that throughout the TCP 

conversation, the receiver advertised his window size n times. The window size at the i
th

 

advertisement is wi. After each advertisement i is received, the sender transmits the next wi bytes of 

data to the receiver and waits for the next window size advertisement. We will assume that the total 

amount of transmitted bytes TB is equal to the sum of the windows sizes: 

∑
=

=
n

i

iwTB
1

 
(5-13) 

When receiving the i
th

 advertisement, the sender already has in its TCP buffer the next bbi 

bytes to be sent. If bbi<wi, the sender will copy cbi bytes (wi-bbi≤cbi) into its TCP buffer and then 

send wi bytes to the receiver. The sender may choose to copy some bytes into the TCP buffer even 
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when bbi≥wi. The time needed to copy x bytes into its TCP buffer at the time of the i
th

 advertisement 

is 

tcopy,i(x)=tsetup,i + tbyte,i·x . (5-14) 
There are two components comprised in the copy time. The first one (tsetup,i) is the setup time 

needed to initiate the byte transfer. The second one (tbyte,i) is the time required for transferring a byte 

from the application buffer into the TCP buffer. If no byte is copied at the time of the i
th

 

advertisement, then the copy time is 0. The two time parameters (tsetup,i and tbyte,i) depend on the 

system load and may change at any time. We will call the moment that a window size advertisement 

is received a time step. Given the values wi, tsetup,i and tbyte,i for each of the n time steps, the 

processing time depends on the number of bytes cbi copied between the application buffer and the 

TCP buffer during each step. 

In our model, we will assume that the TCP buffer capacity is very large (infinite) compared 

to the total number of bytes transferred. That is, it would be possible for the sender to copy all the 

bytes in the TCP buffer during the first time step, if such a strategy is considered the most 

convenient. Although buffer space may be large enough for the data transferred on a single TCP 

connection, we must consider the fact that this buffer might be shared by several connections. 

We will take this into consideration by adding another parameter sci to every time step. This 

parameter represents the cost of storing one byte in the TCP buffer from time step i to time step i+1. 

This parameter will also be expressed in time units, because using up one byte of the TCP buffer 

increases the processing times of other TCP connections, which will have less buffer space at their 

disposal. Thus, this parameter represents the amount by which the processing times of other TCP 

conversations increases if one byte is stored in the TCP buffer from one time step i to the next. 

Under these conditions, the total processing time of the sender is 

∑∑
==

⋅+=
n

i

ii

n

i

iicopy scbcbtTPT
21

, )(  . 
(5-15) 

Given the values of all the parameters at each time step, the total processing time depends 

only on the number of bytes cbi copied during each time step i. The values cbi for which the value 

of TPT is minimum define an optimal sender buffer management strategy. It is interesting that, with 

other interpretations given to the problem parameters, this problem is equivalent to the economic lot 

sizing problem, for which optimal O(n·log(n)) algorithms are known. In the following section we 

will present a novel O(n·log
2
(n)) algorithm which, although it does not have an optimal complexity, 

it has the advantage of not being difficult to implement. 

5.5.2. An Efficient Algorithm For the Minimum Total Processing Time 

The algorithm uses a dynamic programming approach and a geometric data structure called 

segment tree. The segment tree is used in a novel way, for dynamically maintaining half-lines 

having different slopes and for computing the half-line having the smallest y-coordinate for a given 

x-coordinate. 

Solving the problem starts with an observation which is not necessarily obvious. Let’s 

assume that at time step j, the TCP buffer contains X bytes, after copying the cbj bytes planned for 

that time step (X=bj+cbj). Let’s also assume that among these X bytes, X1 (X1>0) were copied in the 

buffer at time step i1 and X2 (X2>0) were copied in the buffer at time step i2. The processing time 

incurred so far by the X1 (X2) bytes is: 

PT1=tsetup,i2+tbyte,i1·X1+(sci1 + sci1+1+...+scj-1)·X1=A1+B1·X1, A1>0, B1>0             (5-16) 
PT2=tsetup,i2 + tbyte,i2·X2+(sci2+sci2+1+…+scj-1)·X2=A2·X2+B2, A2>0, B2>0             (5-17) 

The processing time incurred by the X1+X2 bytes is PT12=PT1+PT2. If all the X1+X2 bytes 

had been copied in the TCP buffer at time step i1, the processing time would have been 

PTA=A1+B1·(X1+X2).                                                     (5-18) 
Similarly, if all the X1+X2 bytes had been copied in the TCP buffer at time step i2, the 

processing time would have been 

PTB=A2+B2·(X1+X2).                                                    (5-19) 
We will show that either PTA or PTB must be less than or equal to PT12. We have 
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PTA-PT12=B1·X2-B2·X2-A2=(B1-B2)·X2-A2.                              (5-20) 
In a similar manner, 

PTB-PT12=(B2-B1)·X1-A1.                                              (5-21) 
It is obvious that either B1-B2≤0 or B2-B1≤0. If the first one is true, then we have PTA≤PT12. 

If the second one is true, then we have PTB≤PT12. Thus, in an optimal solution, the time steps 1, …, 

n can be split in a number K of intervals [1=l1,r1], [l2=r1+1, r2], …, [lK=rK-1+1, rK=N], such that at 

every time step li, the number of bytes copied in the TCP buffer is: 

∑
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=
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r

lj

jl wcb  
(5-22) 

At the time steps j which are not the first time steps of some interval, no bytes will be copied 

in the TCP buffer and the required bytes will already be there. We will present three dynamic 

programming solutions for the problems, each one improving upon the previous one. The last 

solution is the O(n·log
2
n) algorithm we mentioned. 

5.5.2.1. An O(n
3
) Dynamic Programming Algorithm 

We will compute an array mintpt, where minpt[i] is the minimum total processing time if i 

were the last time step. The pseudocode is given below: 

 
Pseudocode 5-5. An O(n

3
) Dynamic Programming Algorithm. 

The algorithm is straightforward. For each time step i, considering that i is the last time step, 

all possible time steps j are considered, such that j is the first time step of the interval ending at i. 

For each value of j, the total processing time is computed and the minimum value is maintained. 

5.5.2.2. An O(n
2
) Dynamic Programming Algorithm 

 
Pseudocode 5-6. An O(n

2
) Dynamic Programming Algorithm. 

mintpt[0]=0 

for i=1 to n do { 

  mintpt[i]=+∞ 

  wtotal=0 

  storagept=0 

  for j=i down to 1 do { 

    storagept=storagept+scj·wtotal 

    wtotal=wtotal+wj 

    totalpt=tsetup,j+tbyte,j·wtotal+mintpt[j-1]+storagept 

    if (totalpt<mintpt[i]) then mintpt[i]=totalpt 

}} 

mintpt[0]=0 

for i=1 to n do { 

  mintpt[i]=+∞ 

  for j=1 to i do { 

    totalpt=mintpt[j-1]+tsetup,j+tbyte,j·wj 

    storagept=scj 

    for k=j+1 to i do { 

      totalpt=totalpt+(tbyte,j+storagept)·wk 

      storagept=storagept+sck 

    } 
    if (totalpt<mintpt[i]) then mintpt[i]=totalpt 

} 
} 
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The algorithm presented in the previous section can easily be optimized such that its time 

complexity becomes O(n
2
) (see Pseudocode 5-6). The optimization consists of maintaining the 

processing time incurred by storing bytes (storagept) from one value of j to another and modifying 

it locally. Furthermore, the values of j are considered in reverse order. 

5.5.2.3. An O(n·log
2
n) Dynamic Programming Algorithm 

This solution is based on a data structured, called segment tree, and on several particularities 

of the problem. Basically, we want to compute the same thing as before, an array mintpt, where 

mintpt[i] has the same meaning. When computing mintpt[i], we can choose the time step j, which is 

the beginning of the time step interval ending at i, from the set {1,2,…,i}. We will define the family 

of functions fj(x), representing the minimum total processing time for the first x time steps, if x is 

considered the last time step and j is the first time step in the interval ending at x. For each i, we will 

have to find the function fj whose fj(i) value is minimum. 

Before going further, we will define two new arrays, scp and wp, representing the prefix 

sums of the arrays sc and w: 

scpi=scp[i]=sc1 + … + sci                                             (5-23) 
wpi=wp[i]=w1+…+wi                                                (5-24) 

We will now define the functions fj in more detail. A function fj is defined on the interval [j-

1,n]. The first value, fj(j-1) does not have a practical meaning, because a function fj is considered 

only at the time steps j, ..., n. It is introduced in order to simplify the analysis. We have: 

fj(j-1)=mintpt[j-1]+tsetup,j                                      (5-25) 
fj(j)=mintpt[j-1] + tsetup,j + tbyte,j·wj = fj(j-1) + tbyte,j·wj                        (5-26) 

The difference between two consecutive values of fj is: 

dfj(x) = fj(x) – fj(x-1) = tbyte,j·wx + (scj + scj+1 + ... + sci-1)·wi , x≥j        (5-27) 
This difference contains the processing time of copying wx bytes in the TCP buffer at time 

step j and the sum of processing times incurred by storing the wx bytes in the TCP buffer until time 

step x. Using the prefix sum arrays introduced earlier, the difference can be rewritten as follows: 

dfj(x)=tbyte,j·wx + (scpx-1 – scpj-1)·wx = scpx-1·wx + (tbyte,j – scpj-1)·wx.                 (5-28) 
The difference is now composed of two terms: the term scpx-1·wx, which depends only on the 

point at which the function is evaluated and a term which is composed of two factors, one of which 

is contant for a given function fj and the other one depends only on the point where the function is 

evaluated. The factor which is constant (but possibly different for each function fj) will be denoted 

by  

pj=tbyte,j-scpj-1.                                                     (5-29) 
We will now change the definitions of the functions slightly and remove the term scpx-1·wx|. 

This term does not influence the relative ordering of the values of the functions fj. After computing 

mintpt[n] using the new definitions of the functions, we will add at the end the sum of all the 

excluded terms: 

∑
=

− ⋅=
n

i

iiterms wscpS
1

1  
(5-30) 

 With the new definitions of the functions, the equations for the differences of two 

consecutive values become dfj(x) = fj(x)-fj(x-1)=pj·wx. The initial values fj(j-1) do not change.  If we 

associate to each time i step an x-coordinate wp[i], we can change the definitions of the functions 

further and obtain some new functions gj, defined on the interval [wpj-1,wpn] and gj(x)=gj(wpj-

1)+pj·(x-wpj-1), where gj(wpj-1)=fj(j-1). It is easy to see that the relationship between the functions gj 

and fj is: 

gj(wp[x])=fj(x)                                                    (5-31) 
The nice thing about the gj functions is that they are half lines and, thus, have the following 

useful property: each function gj has the minimum value among all the functions either on an 

interval of x-coordinates [lj, rj] or none of its values is a minimum value. The proof is quite easy. 

Let’s assume that the function gj has minimum values on two disjoint intervals [lj1, rj1] and [lj2, rj2], 

with lj2>rj1. There are two possibilities now. The first one is that there exists some function gk, such 
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that gk(x)>gj(x), for x≤rj1-ε and gk(x)<gj(x) for x≥rj1. In order for this to happen, the function gk must 

have a slope pk which is smaller than the slope pj of the function gj. But if this is the case, then 

gk(x)<gj(x), for any x≥rj1, so the function gj can never become minimum again, on the interval [lj2, 

rj2]. The second possibility is that a function gk “started” at x=rj1 (that is, rj1 is the first point on its 

domain of definition). But, from the way the functions are defined, the first value of a function gk is 

equal to the minimum value of the functions gp (p<k), plus tsetup,j, which is a positive quantity. So in 

this case, the function gk couldn’t have caused the function gj to not be the function with the 

smallest value at x=rj1. 

With the observation that each function has minimum values on at most one interval, we can 

use a segment tree for storing half lines. The nodes on the last level of the segment tree correspond 

to the coordinates wp[1], wp[2], …, wp[n], because these are the only points of interest. The 

pseudocode of the algorithm is the following: 

 
Pseudocode 5-7. An O(n·log

2
(n)) Dynamic Programming Algorithm. 

The functions find_interval, update and get_min make use of the segment tree data structure. 

The update and get_min functions have O(log(n)) time complexity, while find_interval takes 

O(log
2
(n)) time. Each node of the segment tree stores the index j of a half line whose interval [li,ri], 

at the moment the interval was computed, contained the interval [leftx, rightx] completely, where 

leftx and rightx are the left and right endpoints of the interval corresponding to node x.  Each node x 

of the tree has a pointer to its  parent (parent[x]). This pointer is undefined for the root of the tree. 

The pseudocodes of the update and get_min functions are shown in Pseudocode 5-8 and 5-9. 

The find_interval function is more complex than the other two. In this function we binary 

search for the first time step li (between i and n) where the value gi(wp[li]) is the smallest value 

among all the functions’ values. In a similar manner, the last time step ri is binary searched, too. In 

order to find li, we first need to observe how the function gi’s values change relative to the 

minimum value of the other functions. In general (excluding particular cases), gi(wp[i-1]) is larger 

than the minimum value. Then the difference between gi(x) and the minimum value at point x 

decreases, until gi(x) becomes smaller than the former minimum value at point x. The function gi is 

minimum until x=ri, after which the difference between gi(x) and the minimum value at point x 

increases, for x>ri. This type of behavior suggests that a binary search on the differences between 

two consecutive values of the function h(x)=gi(x)-get_min(x) is appropriate. At the end of a 

// compute the arrays scp and wp 

scp[0]=0; wp[0]=0 

for i=1 to n do { 

  scp[i]=scp[i-1]+sci 

  wp[i]=wp[i-1]+wi 

} 
 

// compute the array mintp 

mintpt[0]=0 

for i=1 to n do { 

  ginit[i]=mintpt[i-1]+tsetup,i 

  p[i]=tbyte,i-scp[i-1] 

  // find the interval of normalized x coordinates [li,ri] on which the function gi is minimum 

  [li,ri]=find_interval(i) 
  if ([li, ri] is not void) then update(li, ri, i, segment_tree_root) 

  // find the minimum value among all the functions g1,…,gi 

mintpt[i]=get_min(i) 

} 
 

sum=0 

for i=1 to n do sum=sum+scp[i-1]·wi 

return mintpt[n]+sum 



 131 

find_interval(i) call, li contains the left endpoint of the interval in which gi is minimum (or li=n+1 if 

such an interval does not exist). The value of ri is computed in a similar manner. 

 
Pseudocode 5-8. The update Function. 

 
Pseudocode 5-9. The get_min Function. 

 
Pseudocode 5-10. The find_interval Function. 

find_interval(i): 
left=i; right=n; li=n+1 

while (left≤right) do { 

  mid = (left+right) div 2 

  // compute gi[wp[mid+1]] 

  gi_mid_1 = ginit[i]+(wp[mid+1]-wp[i-1])·p[i]  

  // compute gi[wp[mid]] 

  gi_mid_2 = ginit[i]+(wp[mid]-wp[i-1])*p[i] 

  // compute get_min(mid+1) 

  fmin1=get_min(mid+1) 

  // compute get_min(mid) 

  fmin2=get_min(mid) 

  dg=gi_mid_1-gi_mid_2 

  dmin=fmin1-fmin2 

  if (dg<dmin) then { 

    li=mid 

    right=mid-1 

} else 
    left=mid+1 

} 

get_min(i): 
node = the node in the segment tree corresponding to the interval [i,i] 

val_min=+∞ 

while (node≠undefined) do { 

  k=index[nod] 

  gki=finit[k]+(wp[i]-wp[k-1])·p[k] 

  if (gki<val_min) then val_min=gki 

nod=tata[nod] 

} 
return val_min 

update(li, ri, i, node): 
if ([leftnode, rightnode]=[li, ri]) then { 

  index[node]=i 

} else { 
  lson = the left son of node 

  rson = the right son of node 

  if (rson.left>ri) then update(li,ri,i,lson) 

  else if (lson.right<li) then update(li,ri,i,rson) 
  else { 
    update(li, lson.right, i, lson) 

    update(rson.left, ri, i, rson) 

} 
} 
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5.5.3. Possible Extensions 

 Several extensions and special cases of problems which are similar to the one considered in 

this section have been described in the literature. In this subsection we will adapt some of these 

extensions (and proposed solutions) to our problem. 

The segment tree is used for maintaining the lower envelope of the gi functions. If the slopes 

of the half-lines gi are descending, then, instead of a segment tree, we can use a stack for storing the 

x-intervals defining the lower envelope. Let’s assume that the stack has top levels. Each level lev 

(1≤lev≤top) of the stack will be assigned an index idx[lev] and an x-value xv[lev]. We will always 

have xv[0]=0 and xv[top+1]=+∞ (i.e. a sufficiently large value – in our case, we can use 

xv[top+1]=wpn+ε, for any ε>0), unless we specifically set xv[top+1] at a different value. The x-

intervals of the lower envelope will be [xv(i),xv(i+1)] and the function with the minimum value on 

this interval will be gidx[i]. The slopes of the functions in the stack are descending (i.e. 

p[idx[lev]]>p[idx[lev+1]], for 1≤lev≤top-1). Initially, the stack is empty (i.e. top=0). 

The stack must support the following operation: insert the half-line gi, with slope p[i] and 

which is defined on the interval [xstart(i),+∞]. If we know that the slopes of the half-lines gi are 

sorted descendingly according to the order in which the half-lines are inserted into the stack, then 

we can use the following insertion algorithm. While (top>0) and (xv[top+1]>xstart[i]) and 

(gidx[top](xv[top+1])>gi(xv[top+1])) do: { (1) if (xv[top]≥xstart(i)) then: { (1.1) if 

(gidx[top](xv[top])>gi(xv[top])) then (1.1.1) top=top-1 else: { (1.1.2) compute the x-coordinate xcross 

of the intersection of the half-lines gidx[top] and gi ; (1.1.3) set xv[top+1]=xcross; (1.1.4) break the 

while loop } else: { (1.2) if (gidx[top](xstart(i))>gi(xstart(i))) then: { (1.2.1) set xv[top+1]=xstart(i) ; 

(1.2.2) break the while loop } else: { (1.2.3) compute the x-coordinate xcross of the intersection of 

the half-lines gidx[top] and gi ; (1.2.4) set xv[top+1]=xcross; (1.2.5) break the while loop } }. At the 

end we set top=top+1, idx[top]=i (since the slopes of the half-lines are descending, when inserted, 

the half-line gi will always become part of the lower envelope) and xv[top+1]=+∞. This algorithm 

is very similar to the one for computing the upper envelope of a set of half-lines, presented in 

section 7.4.1. 

Another solution for the case of descending slopes is the following. We will binary search 

the highest level lev such that xv[lev]≤xstart(i). Then, we will binary search the smallest level lev’ 

from the interval of levels [lev,top], such that gidx[lev’](xv[lev’+1])>gi(xv[lev’+1]). If (lev’>lev) then 

we compute the x-coordinate xcross of the intersection of the half-lines gidx[lev’] and gi. We set 

top=lev’+1, xv[top]=xcross, idx[top]=i and xv[top+1]=+∞. If (lev’=lev) and 

(gidx[lev](xstart(i))≥gi(xstart(i))) then we will set top=lev’+1, xv[top]=xstart(i), idx[top]=i and 

xv[top+1]=+∞; otherwise, we proceed as in the case (lev’>lev) (i.e. we compute xcross, and so on). 

The first solution may take O(n) time per insertion, but it will take O(n) time overall (and, 

thus, O(1) amortized time per insertion). The second solution will take O(log(n)) time per insertion. 

In order to find the value of the lower envelope at a coordinate x, we will binary search the 

largest level lev for which xv[lev]≤x. The value is gidx[lev](x). 

With this extension, the algorithm is the following. For each time step i (i=1,...,n), in 

increasing order, we compute the parameters ginit[i] and p[i] which define the function gi (the 

slope of gi is p[i], xstart[i]=wp[i-1] and gi(xstart[i])=ginit[i]) and we insert gi into the stack. Then, 

mintpt[i] is equal to the value of the current lower envelope of the g* functions at the coordinate 

x=wp[i]. Thus, the time complexity is O(n·log(n)). 

Because the values wp[i] are increasing (as i increases), we can improve the time 

complexity as follows. Let’s assume that lev(i-1) is the level in the stack such that (xv[lev(i-

1)]≤wp[i-1]) and (xv[lev(i-1)+1]>wp[i-1]) (at the moment when we want to compute mintpt[i-1]). 

When we want to compute lev(i) (for x=wp[i], i≥2), we can proceed as follows: if (lev(i-1)≥top) 

then lev(i)=top else: { (1) lev(i)=lev(i-1) ; (2) while (xv[lev(i)+1]≤wp[i]) do lev(i)=lev(i)+1 }. The 

stack may change when moving from the time step i-1 to the time step i. We can find lev(1) easily, 

with a linear search (because the stack contains only g1 at i=1). Overall, this algorithm based on a 

linear search takes O(n) time for all the n time steps. Thus, the time complexity of the algorithm is 

now linear (O(n)). 
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 Another extension consists of using a scenario tree, i.e. considering that there may be 

multiple branching possbilities after every time step. Each node i of the scenario tree (except for the 

root r) has a parent parent(i): this means that after the advertisement corresponding to the node 

parent(i), the next advertisement may be i. For each node i we have the same values as before: wi, 

tsetup,i, tbyte,i and sci. Each path from the root r of the tree to a vertex i defines a sequence seq(i) of 

time steps. We would like to compute the minimum total processing time mintpt[i] for every 

sequence of time steps seq(i) (1≤i≤n; n=the number of vertices in the scenario tree). Of course, we 

could run the previously described algorithm for every sequence of time steps, but this would be 

very inefficient. 

Another possibility consists of traversing the tree using DFS. We will maintain a data 

structure DS for storing the lower envelope of the half-lines on the path from the root to the current 

vertex i. When we first enter a vertex i, we proceed as follows. If (i=r) then we set: scp[r]=scr, 

wp[r]=wpr, ginit[r]=tsetup,r and p[r]=tbyte,r. If (i≠r) then we compute: scp[i]=scp[parent(i)]+sci, 

wp[i]=wp[parent(i)]+wi, ginit[i]=mintpt[parent(i)]+tsetup,i and p[i]=tbyte,i-scp[parent(i)]. The 

ginit[i] and p[i] values define the gi function. We have xstart(i≠r)=wp[parent(i)] (and xstart(r)=0). 

Then, we will insert gi into DS. When moving from a vertex i back to its parent parent(i), we 

will remove gi from DS. Data structures for fully dynamic online or offline maintenance of the 

lower envelope of lines exist (note that our case can be considered offline, because the sequence of 

insertions and deletions can be computed before-hand). 

If the slope of gi is smaller than the slope of gparent(i) (for every vertex i), then DS can be a 

stack. When inserting gi into DS, we will use the second solution presented earlier (with O(log(n)) 

time complexity). Before inserting gi into DS, we will store the value of top into oldtop(i). After 

modifying top but before modifying xv[top], xv[top+1] and idx[top], we will set newtop(i)=top, 

oldxv(i)=xv[top], oldxv1(i)=xv[top+1] and oldidx(i)=idx[top]. Then, when moving from the vertex 

i back to parent(i), we will set xv[newtop(i)]=oldxv(i), xv[newtop(i)+1]=oldxv1(i) and 

idx[newtop(i)]=oldidx(i). Afterwards, we will set top=oldtop(i). This way, removing a half-line 

from DS takes O(1) time. 

In order to compute mintpt[i] we just find the value of the current lower envelope (after 

inserting gi into DS) at x=wp[i]. The time complexity of the algorithm for the scenario tree is 

O(n·log(n)) (even if the slopes are not descending along a tree path ; but in this case, the data 

structure DS must be significantly more complicated). 

5.6. Optimal Deadline-Constrained Packet Transfer Strategy 

We consider a directed graph with n vertices and m edges. A packet is sent from the source 

node s at time 0 and must reach the destination node d by time T. Every directed edge e from a 

vertex u to a vertex v has an associated start time tstart(e) and a finish time tfinish(e) 

(tfinish(e)>tstart(e)). The meaning of these parameters is that the packet can be sent along that edge, 

from u to v, starting only at the moment tstart(e) and will only arrive at vertex v at the moment 

tfinish(e). Thus, the edge e corresponds to a reservation in the underlying network. Moreover, out of 

the total packet transmission time (equal to tfinish(e)-tstart(e)), twait(e) is the total time during 

which the packet has to wait in the waiting queues (e.g. it must wait for some data processing task 

or must wait until other packets before it are sent along the edge). The time between the moment 

when the packet arrives at a vertex u and the moment when it is sent to another vertex v (or between 

the moment when it last arrives at vertex d and the moment T) also counts as waiting time. We want 

to find a packet transfer strategy minimizing the total waiting time. 

For every vertex v of the graph we will sort together the incoming and outgoing edges in 

increasing order, according to a weight assigned to every edge. For an incoming edge e from a 

vertex u to vertex v, the weight is w(v,e)=tfinish(e); for an outgoing edge e from vertex v to a vertex 

u, the weight is w(v,e)=tstart(e). If two edges (an incoming and an outgoing one) have the same 

weight, then we will place the incoming edge before the outgoing edge in the sorted order. For 

every edge in the sorted order of a vertex v we will store its type: incoming or outgoing. 
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Let deg(v) be the total number of incoming and outgoing edges adjacent to vertex v. We will 

compute TWmin(v,i)=the minimum total waiting time required for the packet to be located at vertex 

v at the time moment tm(v,i)=the weight of the i
th

 edge in the sorted order for vertex v (1≤i≤deg(v)). 

We will consider TWmin(v,0)=+∞ and tm(v,0)=0 for every vertex v≠s and tm(s,0)=TWmin(s,0)=0. 

We will sort ascendingly all the time moments tm(v,i) (i≥1) in increasing order (e.g. by merging the 

lists of time moments tm(*,*)) and we will store for each moment the associated values v and i. We 

will traverse all the time moments tm(v,i) in increasing order. 

If tm(v,i) corresponds to an incoming edge e (from a vertex u to vertex v), then we will first 

find the index j of the edge e in the sorted order of the edges adjacent to vertex u. We will have 

TWmin(v,i)=min{TWmin(v,i-1)+tm(v,i)-tm(v,i-1), TWmin(u,j)+twait(e)}. If tm(v,i) corresponds to 

an outgoing edge e from vertex v to a vertex u then we set TWmin(v,i)=TWmin(v,i-1)+tm(v,i)-

tm(v,i-1). 

We can find the index j of an edge e in the sorted order of a vertex u by using a hash table 

HT(u). After sorting the edges adjacent to vertex u we traverse these edges: let the edge e’ be the i
th

 

edge in this order - then we insert the pair (key=e’, value=i) in HT(u). Thus, in order to find the 

index j associated to an edge e in the sorted order of a vertex u we just search in HT(u) the value 

associated to the key e. Such a lookup takes O(1) time. 

The overall time complexity is O(m·log(m)). The answer (the minimum total waiting time) is 

min{TWmin(d,i)+T-tm(d,i)|1≤i≤deg(d), tm(d,i)≤T}. If the packet does not have to wait at the vertex 

d until the time moment T (i.e. there is no deadline), then the answer is simply 

min{TWmin(d,i)|1≤i≤deg(d)}. 

If all the time moments are integer and not too large, then we can sort all the O(m) time 

moments tm(*,*) in O(m+TMAX) time, by using a procedure similar to count-sort. TMAX is the 

maximum value of a time moment. We will maintain a list L(tp) for every time moment tp starting 

from 0 and up to TMAX. We will add the information associated to every edge e from u to v both 

into L(tstart(e)) and into L(tfinish(e)). Then, we just concatenate all the lists L(tp) in increasing 

order of tp. Then, by traversing the list of all the sorted edges, we can construct the list of sorted 

edges corresponding to every vertex v (every edge e from u to v is added at the end of the lists of the 

vertices u and v). As a final step, we might need to adjust the lists of sorted edges of the vertices, by 

placing the incoming edges before the outgoing edges with the same weight (using a procedure 

similar to the one we just presented, for each group of edges with the same weight; the two 

categories for each group are incoming and outgoing edges). Thus, we obtain an O(m+TMAX) 

overall time complexity. 

As we can notice, the problem can also be interpreted as a shortest path problem in the graph 

of the pairs (v,i), where the starting pair is (s,0). We have an edge from each pair (v,i-1) to the pair 

(v,i) with cost tm(v,i)-tm(v,i-1) (1≤i≤deg(v)). Moreover, we have an edge from each pair (u,j) to a 

pair (v,i), with cost twait(e), if e is an edge from u to v and is the j
th

 edge in the sorted order of the 

vertex u and the i
th

 edge in the sorted order of the vertex v. With this interpretation, we can compute 

a shortest path from (s,0) to the pairs (d,*), in O(m·log(m)) time (the graph of pairs has O(m) 

vertices and edges). If we denote by TWmin(v,i)=the length of the shortest path from (s,0) to (v,i), 

then the answer is computed the same as before. 

5.7. Optimal Budget-Constrained Packet Transfer Strategy 

We maintain all the assumptions from the previous problem (i.e. the same types of input 

data). Additionally, every edge e also has a cost cost(e)≥0. A packet is available at the source node s 

at the time moment 0 and must reach the destination node d (d≠s). We have no deadline constraints, 

but we have a budget limit B. The total cost of the edges traversed by the packet must not exceed B. 

Moreover, we have the following optimization objective: we want to minimize the maximum 

interval of waiting time. The packet is waiting for a time interval between the moment when it 

reaches a vertex v (different from d) and the moment when it departs to another vertex u. Moreover, 

a packet also waits for several time intervals, whose maximum length is twait(e) if it sent along the 
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edge e; none of the waiting intervals along an edge e contains the time moments tstart(e) and 

tfinish(e). 

The proposed solution is based on binary searching the maximum length of an interval of 

waiting time. Let's assume that we choose within the binary search a value X. We will then compute 

the minimum cost path from s to d which contains no waiting time interval of length larger than X. 

Let C be the total cost of this path. If C≥B then X is a feasible value and we will consider smaller 

values in the binary search next; if C>B then X is not feasible and we will consider larger values 

within the binary search next. The smallest feasible value of X is the minimum maximum delay of a 

path from s to d whose total cost does not exceed B. We will now focus on testing the feasibility of 

a value X. 

For every vertex v we will sort all of its outgoing edges e (from v to another vertex u) in 

increasing order of their tstart(e) values. Let out(v,i) be the i
th

 outgoing edge in this order 

(1≤i≤outdeg(v), where outdeg(v)=the number of outgoing edges adjacent to vertex v). Similarly, we 

sort all the incoming edges e (from another vertex u to the vertex v) adjacent to vertex v in 

increasing order of their tfinish(e) values. Let in(v,i) be the i
th

 incoming edge in this order 

(1≤i≤indeg(v); indeg(v)=the number of incoming edges adjacent to vertex v). 

We will now sort all the incoming and outgoing edges of all the vertices together, according 

to their weight: the weight of an incoming edge e is tfinish(e) and that of an outgoing edge e is 

tstart(e). An edge e will occur two times in this order: as an incoming edge to a vertex v and as an 

outgoing edge from a vertex u. We obtain this sorted order by merging correctly all the lists out(*) 

and in(*) of all the n vertices. The overall time complexity so far is O(n+m·log(m)). These steps are 

performed before running any feasibility test. 

If the time moments tstart(*) and tfinish(*) are not too large, then we can sort all the edges 

in O(m+TMAX) time, where TMAX is the largest time moment. Based on sorting all the edges, we 

can construct in O(n+m) overall time all the lists out(*) and in(*). 

Let's assume now that we want to compute the minimum cost path from s to d, such that the 

length of the maximum waiting time interval is at most X. We will compute the values Cminout(v,i) 

for every vertex v and 1≤i≤outdeg(v), meaning the minimum total cost for leaving vertex v through 

the edge out(v,i) and without exceeding the maximum waiting time limit, and Cminin(v,i) for every 

vertex v and 1≤i≤indeg(v), meaning the minimum total cost for reaching vertex v through the edge 

in(v,i). We will now traverse all the incoming and outgoing edges in the order computed earlier. For 

every vertex v we will maintain a deque DQin(v) for the incoming edges and the index lastin(v) in 

the corresponding sorted order of the last edge inserted in the deque (initially, lastin(v)=0). The 

deques will store (time,value) pairs, sorted increasingly according to both elements of the pair. The 

functions getFirst() and getLast() will return the first and the last pair of a deque. 

Let's assume that we reached an outgoing edge e, such that out(v,i)=e. While 

(lastin(v)+1≤indeg(v)) and (tfinish(in(v,lastin(v)+1))≤tstart(out(v,i))) we perform the following 

actions: (1) we increment lastin(v) by 1; (2) while (DQin(v) is not empty) and 

(DQin(v).getLast().value≥Cminin(v,lastin(v))) we remove the last pair from DQin(v); (3) we add at the 

end of DQin(v) the pair (time=tfinish(in(v,lastin(v))), value=Cminin(v,lastin(v))). 

After this, as long as DQin(v) is not empty and (DQin(v).getFirst().time+X<tstart(e)) we 

remove the first pair from DQin(v). 

If (v=s) and (tstart(e)≤X) then we set Cminout(v,i)=0. Otherwise, if DQin(v) is empty, then 

Cminout(v,i)=+∞; if DQin(v) is not empty, then Cminout(v,i)=DQin.getFirst().value. 

Let's assume now that we reached an incoming edge e, such that in(v,i)=e. Let j be the index 

such that out(u,j)=e (where e is an edge directed from u to v). We can find the indices i and j like in 

the previous problem, by using a hash table HTout(p) for the outgoing edges of every vertex p and a 

hash table HTin(q) for the incoming edges of every vertex q. 

If (twait(e)>X) then Cminin(v,i)=+∞; otherwise, Cminin(v,i)=Cminout(u,j)+cost(e). 

The minimum cost of a path whose maximum waiting time interval has length at most X is 

min{Cminin(d,i)|1≤i≤indeg(d)}. If the packet must wait at the vertex d until a fixed time moment T, 

like in the previous problem, we will set Cminin(d,i)=+∞ if (tfinish(in(d,i))+X<T). Then, the 
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minimum cost of the path will be min{Cminin(d,i)|1≤i≤indeg(d), T-X≤tfinish(in(d,i))≤T}. The time 

complexity of the feasibility test is O((n+m)·log(max(tfinish(*)))). 

If we have p≥1 agents working in parallel, then we can replace the binary search by a (p+1)-

ary search. We start with an interval [0,XMAX] in which the searched value of X is located. Then, 

let’s assume that the current interval of feasible values is [a,b]. We choose p values within this 

interval, e.g. xi=a+i·(b-a)/(p+1) (1≤i≤p). Then, every agent i runs a feasibility test for the value xi. 

Afterwards, we find the smallest feasible value xj (based on the decisions of the algorithm) and we 

set [a,b]=[xj-1,xj]; if no feasible value is found, we set [a,b]=[xp,b]. The search stops when the 

length of the interval [a,b] is smaller than a threshold ε>0. 

5.8. Minimum Cost Path Reservations in Trees 

We consider a rooted tree with n vertices (numbered from 1 to n). The root of the tree is the 

vertex r. Every vertex i (except r) has a parent in the tree: parent(i). Every vertex i has the same 

amount of buffer space. The buffers of some vertices i are full of data (i.e. full(i)=true), while those 

of other vertices j are empty (full(j)=false). We want to establish a reservation from a vertex x to the 

root r, such that the buffer of every vertex on the unique path from x to r is empty. 

In order to accomplish this, we can perform a sequence of the following type of moves: 

choose a vertex p whose buffer is full and a son q of the vertex p, whose buffer is empty; then, 

transfer the data from p’s buffer to q’s buffer (thus, after the move, p’s buffer becomes empty, while 

q’s buffer becomes full); the cost of such a move is c(p,q). We are interested in finding a sequence 

of moves with minimum total cost which frees the buffers of all the vertices on the path from x to r 

(including the endpoints of the path). We will provide an O(n·log(n)) time algorithm. 

First, we construct the path path(1)=x, path(2)=parent(x), ..., path(k)=r, where 

path(i)=parent(path(i-1)) for 2≤i≤k. Then, we compute the „prefix” sums: spath(1)=0 and 

spath(2≤i≤k)=spath(i-1)+c(path(i),path(i-1)). Afterwards, we traverse the path nodes path(i) in 

ascending order of the index i, from i=1 up to i=k. Let’s assume that we reached the vertex path(i). 

We remove the vertex path(i-1) from the list of sons of the vertex path(i) (if i>1). Then, we will 

perform a DFS traversal in the subtree of the vertex path(i) (consisting of path(i) and all of its 

descendants in the tree, except for path(i-1) and path(i-1)’s descendants - in the case i>1). 

For every vertex j visited during this traversal, we will compute csum(j): we have 

csum(path(i))=0 and csum(j≠path(i))=csum(parent(j))+c(parent(j),j) (where j is a descendant of 

path(i); since path(i-1) was removed from the list of sons of path(i), for 2≤i≤k, the descendants of 

path(i-1) are not considered here). Then, for every such vertex j, if (j≠path(i)) and (full(j)=false), 

we will insert the value cval(j)=(csum(j)-spath(i)) into a min-heap H (which is empty at the 

beginning of the algorithm, i.e. before considering the first vertex on the path, path(1)). After 

finishing the traversal, we check if full(path(i))=true. If it is so, then the data from the buffer of the 

vertex path(i) must be moved somewhere in its subtree or somewhere in the subtree of one of the 

vertices path(j<i). We need to find the vertex p in the subtrees of the vertices path(j≤i), such that 

full(p)=false and the sum of the values of the move costs of the edges on the original tree path from 

path(i) to p is minimum (and p≠path(j) for every 1≤j≤i). 

Then, let path’(1)=p, path’(2)=parent(p), ..., path’(k’)=path(i) (where 

path’(q)=parent(path’(q-1)) for 2≤q≤k’). We can move data from path’(q) to path’(q-1), in 

increasing order of q (2≤q≤k’), with a total cost equal to the sum of the values c(path’(q), path’(q-

1)) (2≤q≤k’). We could find the vertex p in linear time, by considering all the vertices in the 

subtrees of path(j≤i): the cost of the path from a vertex v in the subtree of a vertex path(j≤i) to the 

vertex path(i) is equal to spath(i)+(csum(v)-spath(j)). Note, however, that the minimum such value 

is equal to spath(i) plus the minimum value in the min-heap H. Thus, all we need to do is to extract 

the minimum value val from H and increase the total cost of the strategy (which is 0 at the 

beginning of the algorithm) by (spath(i)+val). 

Thus, if we only need to compute the cost, we can do this in O(n·log(n)) time. If we also 

need to perform the moves, then we can associate to every value val from the heap the vertex p to 

which the value belongs (i.e. cval(p)=val). With this extra information, we can reconstruct the 
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sequence of moves for every vertex path(i) (for which full(path(i)) was originally true) in O(n) time. 

Since we can perform O(n
2
) moves overall, the time complexity in this case becomes O(n

2
). 

Another O(n·log(n)) solution for computing the optimal cost is the following. We traverse 

the tree from top to bottom and we compute for every vertex j the value croot(j): croot(r)=0 and 

croot(j≠r)=croot(parent(j))+c(parent(j),j). Then, we mark all the vertices on the path from x to r 

(i.e. the vertices path(1), ..., path(k)), leaving the other vertices unmarked. Afterwards, we assign 

DFS numbers DFSnum(j) to all the vertices j of the tree and, for each vertex j, we compute 

DFSmax(j)=the maximum DFS number of a vertex in the subtree of the vertex j (including vertex j).  

We construct a segment tree over the sequence of DFS numbers. For each unmarked vertex j, 

we set the value corresponding to the segment tree leaf DFSnum(j) as being equal to croot(j). The 

values corresponding to the leaves DFSnum(j) of the marked vertices j are set to +∞. Then, we 

traverse the vertices path(i) in increasing order of i, from i=1 to i=k. For each vertex path(i), we 

query the segment tree for computing the minimum value val within the interval of leaves 

[DFSnum(path(i)), DFSmax(path(i))]. If val=+∞, then no solution exists. Otherwise, we increase 

the total cost (which is initially 0) by (val-croot(path(i))). We also compute the leaf p whose value 

is equal to val. In the segment tree, we set the value of the leaf p to +∞ (so that the same leaf will 

not be considered for other vertices on the path from x to r). Then, the values of the ancestors of the 

leaf p are modified accordingly (so that we can perform range minimum queries). Since each 

segment tree query and update takes O(log(n)) time, the overall time complexity is O(n·log(n)) 

(because k=O(n)). 

5.9. Resource Processing Problems 

 In this section we consider two resource processing problems. These problems are somewhat 

generic, and not strictly related to the topic of communication flow scheduling. However, since 

scheduling data transfers involves the handling of several types of resources, the two considered 

problems are within the scope of this chapter. 

5.9.1. Optimal Resource Gathering Strategy 

We have n resource containers: each container i stores z(i)≥1 resource units in it (z(i) is an 

integer). We can perform operations consisting of two steps: 

1) Choose a container i (containing z(i) resource units) and remove from it q+1 resource units 

(for any number 0≤q≤z(i)-1) which are distributed into two new containers a and b as 

follows: container a will store 1 resource unit (we set z(a)=1) and container b will store q 

resource units (we set z(b)=q); if q=0 then we do not need the container b. z(i) is 

decremented by q+1. 

2) Choose one (or two) other container(s) u (and v) such that u≠a (and v≠a) and put all their 

contents into the newly created container a, setting z(a)=z(a)+z(u) (z(a)=z(a)+z(u)+z(v)) 

and then z(u)=(z(v)=)0. 

 

We want to gather all the resource units into a single container by performing a minimum 

number of operations. First, it should be obvious that we can gather all the resources into one 

container after n-1 operations. At each operation, in the first step, we choose any container i and 

split its contents fully into two containers a and b (such that container i remains empty); in the 

second step we choose another container j, such that the contents of j and of the newly created 

container b, are placed together in container a. Thus, after every such operation, the containers i and 

j will have 0 resource units in them. 

Nevertheless, we can do a little better. We will sort the containers such that we have 

z(1)≤z(2)≤...≤z(n). We will compute the partial sums sz(i)=z(1)+...+z(i) (sz(0)=0 and 

sz(1≤i≤n)=sz(i-1)+z(i)). We will compute the largest index k for which sz(k)<n-k. During the first 

sz(k) operations we perform the following actions: at operation t (1≤t≤sz(k)) we choose a container 

c(t) in the first step, such that: if (t=1) then c(t)=1; otherwise, if (z(c(t-1))>0) then c(t)=c(t-1) else 

c(t)=c(t-1)+1. We choose q=0, i.e. we place one resource unit from c(t) into the new container a(t). 
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Then, in the second step, we choose the containers k+t+1 and the container g containing the total 

contents from the containers k+1,..., k+t (at t=1, we have g=k+1) and the resources removed during 

the first t-1 operations. Then, we place the contents of the containers k+t+1 and g into a(t) and we 

set g=a(t). 

After this first stage of the algorithm, there are still n’=n-k-sz(k) non-empty containers left 

(including the container g which contains sz(k+sz(k)+1) resource units). The contents of these last 

n’ containers can be gathered into a single container in n’-1 operations, using the strategy 

mentioned earlier. Thus, the total number of required operations is sz(k)+n-k-sz(k)-1=n-k-1. 

5.9.2. Optimal Resource Payment Strategy 

We consider a compact block consisting of n resource units (n is an integer), out of which 

we have to pay 1 resource unit per time unit, as follows. At every time unit we either pay one block 

of one resource unit, or we pay a block of q>1 resource units (for any number q) and we receive 

change as a sum of blocks containing q-1 resource units overall. The change can only be received 

from the blocks paid during the previous time units. 

Before paying during a time unit, we are allowed to break a block of resources, as follows: if 

the block contains q resource units then it is broken into three blocks, containing 1, p, and q-p-1 

resource units respectively (where we can choose the value of the integer number p, 0≤p≤q-1). We 

can perform the breaking operation as many times as we want before paying once. Blocks cannot be 

glued (back) together and no block that was paid once can be broken in order to get the exact 

change back (but, if we get the block back, we can break it later when we have to pay). We want to 

be able to pay the required resources for n time units, and we want to perform the minimum number 

of breaking operations. 

We will compute S(k)=the maximum amount of resource units the initial block may have 

such that we can pay for S(k) time units by performing exactly k breaking operations. In order to 

compute S(k) we will use the following arguments. We will consider that all the breaking operations 

are performed in the beginning. Thus, we obtain k blocks of 1 resource unit and (at most) k+1 

blocks of (possibly) other sizes. During each of the first k time units, we will pay with one block of 

1 resource unit. In the (k+1)
st
 time unit we will pay a block of k+1 resource units, obtaining back all 

the k resource units that were paid during the first k time units. Then, for the next k time units we 

again pay with blocks of 1 resource unit. During the (2·k+2)
nd

 time unit we will pay with a block of 

(2·k+2) resource units, obtaining back all the blocks paid so far, whose total size is (2·k+1) resource 

units. Then, during the next (2·k+1) time units we will use the same strategy as for the first (2·k+1) 

time units, and so on. Thus, S(k)=k+(k+1)+(2·k+2)+(4·k+4)+...+(2
k
·k+2

k
)=2

k+1
·k+2

k+1
-

1=2
k+1

·(k+1)-1. Then, we can binary search the minimum value kmin for which S(kmin)≥n (if 

(S(k)<n) then k<kmin else k≥kmin). kmin is the minimum number of required breaking operations 

in order to be able to pay for n time units according to the rules presented above. 

5.10. Maximum Cost Bipartition of a Graph 

 We consider an undirected graph with n vertices and m edges. Every edge (i,j) has a cost 

c(i,j)>0 (e.g. the bandwidth of a network link). We want to split the vertices into two disjoint 

subsets V1 and V2, such that the sum of the costs c(i,j) with i∈V1 and j∈V2 is as large as possible 

(e.g. the maximum amount of data per time unit that can be transferred form the nodes in V1 to 

those in V2). 

We will present a heuristic solution for this problem. We will start by computing a 

maximum cost spanning tree. Such a tree can be computed by using Prim’s algorithm (in which we 

always choose the maximum cost edge connecting a selected vertex to an unselected vertex) or 

Kruskal’s algorithm (in which we sort the edges in decreasing order of their costs). Let’s consider 

that the computed tree has a root at a vertex r. We will assign the vertices i on odd levels to V1 (we 

set set(i)=1) and the vertices j on even levels to V2 (we set set(j)=2). 

Then, we will try to improve the current solution. We will assign to each vertex i a value v(i), 

which is equal to: the sum of the values c(i,j) (with j a neighbor of i such that set(j)=set(i)) minus 
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the sum of the values c(i,p) (with p a neighbor of i such that set(p)≠set(i)). We will insert the pairs 

(v(i),i) into a max-heap H. Then, we will repeatedly extract from H the pair (v(i),i) with the 

maximum value of v(i). If (v(i)≤0) then the agorithm stops. Otherwise, we move the vertex i from 

the set Vset(i) to the set V3-set(i) (we will set set(i)=3-set(i)). Afterwards, we will recompute the value 

v(i) and the values v(j) of the neighbors j of i. v(i) will be computed from scratch without any 

penalties. The values v(j) of vertex i’s neighbors can be recomputed from scratch, or we can simply 

adjust them: if (set(i)=set(j)) (before changing the value of set(i) the vertices i and j were in 

different sets), then we set v(j)=v(j)+2·c(i,j); if (set(i)≠set(j)) (before changing the value of set(i) the 

vertices i and j were in the same set) then we set v(j)=v(j)-2·c(i,j). After recomputing v(i) and the 

values v(j) of all the neighbors j of the vertex i, we will adjust these values in H, too (e.g. we 

remove the old pairs (v(i),i) and (v(j),j) from H and we insert the pairs with the newly computed 

values v(i) and v(j)). 

If every vertex has at most a constant number of neighbors CN, the time complexity per 

iteration is O(log(n)). The algorithm can be stopped when the number of iterations it performed 

exceeds some threshold. 

5.11. Graceful Labeling of a Cycle 

We consider a cycle containing n vertices. We want to assign to every node on the cycle a 

distinct label, from the set {1, ..., n+1}. After labeling the nodes, we assign to every edge (u,v) on 

the cycle a label equal to the absolute value of the difference of the labels assigned to u and v. We 

want to find a node labeling such that every label from 1 to n occurs on the edges of the cycle (i.e. a 

graceful labeling). This problem has applications in frequency assignment in wireless networks. 

 Since one of the edges of the cycle must have the label n, then the two endpoints of this edge 

must be labeled with 1 and n+1. Let’s consider now the cycle without the edge labeled with n. We 

obtain a path, in which the first node has label 1 and the last node has label n+1. Let’s consider that 

we want the label of the first edge on the path (between the first and second node on the path) to be 

k. Under these conditions, we will first try to assign to the other edges on the path (from the last 

edge towards the second one) the labels n-1, n-2, ..., k+1, k-1, ..., 1. Let’s denote by dif(i) the label 

of the ith edge on the path (when counting from the first node of the path towards the last). 

 We will consider the following algorithm, which will construct the sequence x(i) (x(i)=the 

label of the i
th

 node on the path. We set x(n)=n+1 and used(n+1)=true (and used(1≤i≤n)=false). 

Then, for i=n-1, n-2, ..., 1, we will perform the following steps: if (x(i+1)+dif(i)≤n) and 

(used(x(i+1)+dif(i))=false), then we set x(i)=x(i+1)+dif(i) and used(x(i))=true; otherwise, if 

(x(i+1)-dif(i)≥1) and (used(x(i+1)-dif(i))=false), then we set x(i)=x(i+1)-dif(i) and used(x(i))=true; 

otherwise, no solution is found using this procedure (when dif(1)=k). If all the nodes were labeled 

and (x(1)=1), then we found a solution with dif(1)=k. 

We can then try a second option, as follows: we set dif(1)=k, and dif(2), ..., dif(n) will be 

equal to n-1, n-2, ..., k+1, k-1, ..., 1. We will start with x(1)=1 and used(1)=true (and 

used(2≤i≤n+1)=false). Then we will compute, in order, from i=2 to n, the values x(i). If (x(i-

1)+dif(i-1)≤n) and (used(x(i-1)+dif(i-1))=false) then we set x(i)=x(i-1)+dif(i-1); otherwise, if (x(i-

1)-dif(i-1)≥1) and (used(x(i-1)-dif(i-1))=false) then we set x(i)=x(i-1)-dif(i-1); otherwise, no 

solution can be found with this procedure (when dif(1)=k). If all the nodes were labeled and 

(x(n)=n+1) then we found a solution. 

 If we consider all the possible values of k and, for each of them, we use the procedures 

described above, we will certainly find a solution (if it exists). This wat, we obtained an algorithm 

with an O(n
2
) time complexity. If we run this algorithm for moderate values of n, we notice that, if a 

solution exists, then the value of k is close to n/2. Thus, it is sufficient to consider only a small 

number of values for k, around the number n/2 (e.g., the natual numbers from the interval [n/2-d, 

n/2+d], where d is a small value; d=5 is a good choice, but a detailed analysis can show us that d=1 

is enough). This way we obtained an algorithm with O(n) time complexity. We also notice that 

solutions exist only for those values of n for which (n mod 4) is equal to 0 or 3. By n/2 we denoted 

the integer part of the division of n by 2. 
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Chapter 6 – Multicast Communication Optimization Techniques 
 

 

 

 As mentioned in Chapter 2, there is almost no multicast support in the Internet. Thus, at the 

moment, the only feasible solutions consist of application-level multicast routing techniques. In the 

first part of this chapter we will introduce a novel multicast tree architecture, which maintains a 

small diameter tree with bounded node degrees. The rest of this chapter is dedicated to offline 

multicast communication optimization problems (e.g. computing optimal constrained multicast 

strategies in tree or tree-like networks). The original contributions presented in this chapter were 

published in [Andreica, Tîrşa and Ţăpuş, 2009b], [Andreica and Ţăpuş, 2008d] and [Andreica and 

Ţăpuş, 2008i]. 

6.1. Bounded Degree Small Diameter Multicast Tree 

Maintaining a small-diameter multicast tree over all the peers of a distributed system is a 

desirable feature in several types of applications. For instance, in Internet TV and live streaming 

applications, it is more bandwidth-efficient to use a multicast tree instead of sending multiple 

unicast streams. Moreover, by using a self-organizing multicast tree, there is no need for the content 

source to be aware of all the peers in the group. Some of these content distribution applications 

require that the latency of each path from the source to a destination be as small as possible. In this 

respect, it is desirable for the multicast tree to have a small diameter (diameter=the largest distance 

between any two nodes in the tree). If the tree has a small diameter, then any of the tree nodes can 

become a content producer and distribute its content (or send content search queries) to all the other 

peers in the tree efficiently. 

Another condition for a good multicast tree is for the traffic load on each node of the tree to 

be equitably distributed. We can quantify this request in many ways. In this section we consider a 

simple measure: the degree of every node in the tree must be bounded from above by a (small) fixed 

value K≥2. Although it is possible for every peer to use its own value of K, in this section we will 

consider only the case when all the peers make use of the same value K.  

In this section we present an implementation of the multicast tree based on a peer-to-peer 

topology. The topology maintains bounded degrees for all the nodes, has small diameter and 

supports node arrivals and departures. The neighbouring peers in the topology periodically 

exchange information among each other (gossip), which is particularly useful when a peer joins or 

leaves the topology. We will describe next the gossiping, joining and leaving processes for the peer-

to-peer architecture. 

6.1.1. Gossiping in the Multicast Tree 

Periodically, every peer in the tree sends two types of gossiping messages. The first type is 

sent to the peers at distance (at most) two in the tree and simply broadcasts its existence to these 

peers. Thus, every peer X knows all the peers located at distance one (neighbors) and two (2-

neighbors) from X in the tree. For every 2-neighbor Z, peer X maintains the neighbor Y which is on 

the path between X and Z. Since the degree of every peer is at most K, every peer X is aware of at 

most K+K·(K-1)=K
2
 other peers. Every peer X maintains two estimated values for every tree 

neighbor Y: NumPeers(X,Y) and Dmax(X,Y). NumPeers(X,Y) is an estimate of the total number of 

peers in T(X,Y)=the part of the tree which contains peer Y but does not contain peer X (i.e. if we 

consider the tree rooted at X, then peer Y is a son of peer X and T(X,Y) is the subtree rooted at peer 

Y); see also Fig. 6-1. Dmax(X,Y) is an estimate of the longest path (in terms of peers) from peer Y to 

the farthest peer in T(X,Y). 

The second type of gossiping message is sent by every peer Y to every tree neighbor X and 

contains the new values NumPeers(X,Y) and Dmax(X,Y) that peer X should use. Peer Y computes 
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NumPeers(X,Y) based on its own values NumPeers(Y,*). Let’s denote by SumNumPeers(Y) the sum 

of all the values NumPeers(Y,*) stored by peer Y. Then NumPeers(X,Y)=SumNumPeers(Y)-

NumPeers(Y,X)+1. Let DistMax(Y, j) be the j
th

 largest distance among all the values Dmax(Y,*) and 

let DistMaxNeigh(Y,j) be the neighbor Z  such that Dmax(Y,Z)=DistMax(Y,j) and 

Z≠DistMaxNeigh(p) for all 1≤p≤j-1 (DistMax(Y,j)=0 and DistMaxNeigh(Y,j)=undefined if j is 

larger than the number of neighbors peer Y has). We will compute DistMax(Y,j) and 

DistMaxNeigh(Y,j) only for j=1,2. The value Dmax(X,Y) sent by peer Y to peer X is computed as 

follows: if DistMaxNeigh(Y,1)≠X, then Dmax(X,Y)=1+DistMax(Y,1); otherwise, Dmax(X,Y)= 

1+DistMax(Y,2). 

These values (NumPeers(X,Y) and Dmax(X,Y)) are only estimates of the total number of 

peers in T(X,Y) and of the longest path in T(X,Y) starting at Y, because they are not immediately 

updated whenever a new peer joins the system or an old peer leaves the system. However, we will 

show that, if no peer joins or leaves the system, these values converge to the actual correct values 

after a number of gossiping periods which is proportional to the diameter of the tree. In order to 

present the proof, we will define the concept of layer of leaves. A leaf in the tree is a vertex with 

degree 1. L(1) is the set of all the leaf nodes of the tree. L(i≥2) is the i
th

 layer of leaves, composed of 

those nodes which become leaves in the tree if we remove all the nodes in the sets L(j) (1≤j≤i-1). 

We assume that the tree has LL layers of leaves. It is well-known that the last layer, L(LL), contains 

only one or two adjacent nodes (the center or the bi-center of the tree); LL is equal to (D+1)/2, 

where D is the diameter of the tree (length of the longest path in the tree, expressed in terms of tree 

edges). If L(LL) contains two nodes A and B, we will add an extra layer LL+1 and move one of the 

nodes (A or B) to that extra layer (and then set LL=LL+1). Thus, we will consider that L(LL) 

contains only one node. 

The values NumPeers(*,*) and Dmax(*,*) converge to the corresponding correct values in 

O(D) gossiping periods. We will first show that the values NumPeers(X,Y) and Dmax(X,Y), with X 

located on a layer Q higher than the layer of Y, converge to the correct values in at most Q-1 

gossiping periods. We will prove this by induction on the layer number of the peer X. The 

assumption is true for all the peers X in L(1), because they have no neighbor Y located on a lower 

layer. Let’s assume now that the proposition is true for all the peers on the layers 1,…,i and we will 

prove it for the layer i+1. Peer X from L(i+1) receives the information from a peer Y in L(j) (j≤i). 

The value NumPeers(X,Y) sent by peer Y to peer X is equal to the sum of the values 

NumPeers(Y,W), with W≠X. Due to the properties of any tree graph, peer Y can have only one 

neighbor on a layer of leaves with an index higher than j; this neighbor is X. Thus, all the other 

neighbors W are located on layers which are lower than j and, by the induction hypothesis, the 

values NumPeers(Y,W) become correct in less than i periods. As a consequence, the value 

NumPeers(X,Y) will become correct at the next gossiping period. The same holds for Dmax(X,Y), 

which is equal to 1+max{Dmax(Y,W)| W≠X is a neighbor of peer Y}, because the values Dmax(Y,W) 

become correct in at most i-1 periods.  

After all the values NumPeers(X,Y) and Dmax(X,Y) with peer Y located on a lower layer of 

leaves than peer X become correct, we will prove that all the values Dmax(Y,X) become correct in at 

most LL-j extra periods, where Y belongs to L(j). We will prove this in decreasing order of the 

index of the layer of leaves of the peer Y. For the single peer A in L(LL) this is true, because it has 

no neighbors located on a higher layer. Let’s assume that the proposition is true for all the peers 

located on the layers of leaves LL, LL-1, …, i. We will now show that the values of all the peers on 

the layer i-1 become correct after (at most) LL-i+1 extra periods. Let’s consider a peer X from L(i-

1) and a neighboring peer Y from L(j) (j≥i). Peer X receives the values NumPeers(X,Y) and 

Dmax(X,Y) from peer Y. NumPeers(X,Y) (Dmax(X,Y))is computed based on the values 

NumPeers(Y,W) (Dmax(Y,W)), with W≠X. From the induction hypothesis, all the values 

NumPeers(Y,*) and Dmax(Y,*) are correct after LL-i extra periods. Thus, NumPeers(X,Y) and 

Dmax(X,Y) will be correct at the next gossiping period. This concludes our proof. 
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Fig. 6-1. T(X,Y) and T(Y,X) for 2 Neighbouring Peers X and Y. 

6.1.2. Joining the Multicast Tree 

When a new peer X wants to join the multicast tree, it must know how to contact any other 

peer Y which is already part of the tree (the peer Y can be any peer already in the tree). During the 

joining procedure, peer X will be gradually redirected to other peers until it reaches a peer to which 

it will connect in the tree. Whenever peer X contacts a new peer Y in order to join the tree, it will 

also tell peer Y which other peer Z redirected peer X to peer Y (peer Z will be a neighbor of peer Y). 

At the initial join contact, the previous peer Z will be undefined. Let’s assume that peer X 

contacted a peer Y in order to join the system and was redirected here by peer Z (or by nobody if 

this is the first join attempt, in which case Z is undefined). Peer Y will consider all of its (at most) K 

tree neighbors W, except for W=Z. For each neighbor peer W≠Z, peer Y knows the estimates 

NumPeers(Y,W) and Dmax(Y,W). Then, peer Y computes the maximum number of peers 

MaxNumPeers(Y,W) which can be located in T(Y,W) such that Dmax(Y,W) does not increase. 

MaxNumPeers(Y,W) is equal to 1+(K-1)+(K-1)
2
+…+(K-1)

Dmax(Y,W)-1
. If K=2, then 

MaxNumPeers(Y,W)=Dmax(Y,W); else, MaxNumPeers(Y, W)=((K-1)
Dmax(Y,W)

-1)/(K-2). If 

MaxNumPeers(Y,W)>NumPeers(Y,W), then peer W is a valid neighbor; otherwise, it is not valid. 

Among all of peer Y’s valid neighbors W≠Z, peer Y will choose the peer Wnext as the one 

with the smallest value Dmax(Y,Wnext) (if there are multiple such neighbors, one will be chosen 

arbitrarily). Peer X will be redirected to the peer Wnext. If peer Y has no valid neighbors and peer Y’s 

degree is less than K, then peer Y will connect directly to peer X. Peer X’s degree will now be 1 (it 

will be a leaf in the tree) and peer Y’s degree increases by 1. NumPeers(Y,X) and Dmax(Y,X) will be 

1; Dmax(X,Y) and NumPeers(X,Y) will be sent immediately to peer X (they will be computed as 

described in subsection 2.1). If peer Y has no valid neighbors and its degree is equal to K, then it 

will choose the neighbor Wnext≠Z with the smallest value Dmax(Y,Wnext) (disregarding the values 

NumPeers(Y,Wnext) and MaxNumPeers(Y,Wnext)). Peer X will be redirected to peer Wnext. If peer X 

was redirected to another peer Wnext, at the next join request peer X will contact peer Wnext and will 

tell it that it was redirected there from peer Y. We can see that peer X may be redirected (at most) a 

number of times proportional to the diameter of the tree. 

6.1.3. Leaving the Multicast Tree 

When a peer X leaves the multicast tree (gracefully or suddenly), its tree neighbors will 

detect this event (because every neighbor periodically sends keep-alive and ping messages to both 

its neighbors and its 2-neighbors). Because of the first type of gossiping messages, every neighbor Y 

of peer X knows every other neighbor of peer X. Every neighbor Y will compute the value 

DistMaxNoX(Y,X); if DistMaxNeigh(Y,1)=X, then DistMaxNoX(Y,X)=DistMax(Y, 2); otherwise, 

DistMaxNoX(Y,X)=DistMax(Y,1). Each (former) neighbor Y of peer X will send the value 

DistMaxNoX(Y,X) to every other (former) neighbor of X, as well as a unique, self-generated 

identifier (e.g. the result of a hash function). The (former) neighbor W of peer X with the largest 

value DistMaxNoX(W,X) will be chosen by every other (former) neighbor as their representative (if 

multiple neighbors Z have the same largest DistMaxNoX(Z,X) value, ties will be broken by 

considering the unique identifiers of the peers; e.g. the peer with the smallest or largest identifier 

will be chosen). 

From a practical point of view, each (former) neighbor Y of peer X will wait at most a 

certain amount of time for receiving the corresponding values from any other (former) neighbor Y' 

of peer X. Since 2-neighbors periodically ping each other, peer Y can have a good estimate of the 
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latency lat of the network path to any 2-neighbor Y'; peer Y can wait for the information from Y' for 

at most C·lat time units, where C≥2 is a constant. 

Peer W will send a message to the peer Q for which the path from W to Q in the tree contains 

exactly DistMax(W,1) peers (if DistMax(W,1) has converged to the correct value). Peer W does not 

need to know peer Q before-hand. Peer W will forward the message to its neighbor W'≠X with the 

largest value Dmax(W,W'). Whenever a peer W' receives the message from a peer W'', it will 

forward it to the neighbor W'''≠W'' with the largest value Dmax(W', W'''). Note that the neighbor 

A≠V of a peer B with the largest value Dmax(B,A) can be computed in O(1) time: if 

DistMaxNeigh(B,1)≠V, then A=DistMaxNeigh(B,1); otherwise, A=DistMaxNeigh(B,2). Eventually, 

the message will reach a peer Q which is a leaf in the tree and, thus, cannot forward the message 

further. If all the values Dmax(*,*) have converged to their stable states, then the path from peer W 

to peer Q is the longest path from peer W to any peer in its part of the tree (T(X,W)); otherwise, this 

path is only an approximation of the actual longest path (although we may obtain the longest path 

even if the Dmax(*,*) values have not converged, yet). 

Peer Q will disconnect from its only neighbor in the tree (if the representative peer W had no 

other neighbors except peer X, then Q=W and no disconnection is performed) and will replace peer 

X; that is, peer Q will connect to all the former neighbors of peer X. Thus, after a peer X departs 

from the tree, the tree returns to a correct structure after a number of time steps which is 

proportional to K+D, where D is the diameter of the tree. After connecting to all the former 

neighbors Y of peer X, peer Q receives the values NumPeers(Q,Y) and Dmax(Q,Y) from these 

neighbors. As soon as it receives all of these values, peer Q will send back the values 

NumPeers(Y,Q) and Dmax(Y,Q) to every neighbor Y (all these values are computed the way we 

showed in a previous subsection). 

In order to minimize the period of time during which the tree remains disconnected after the 

departure of a peer X, we can use a proactive approach, instead of the reactive approach presented 

above. Every peer Y periodically computes the values DistMaxNoX(Y,Z) (as described previously) 

and Qfar(Y,Z)=the peer Q which would be chosen by the previously described method, if the 

neighbor Z of peer Y were to leave the tree. Thus, if peer Y is chosen as the representative peer 

among all the neighbors of a departed peer X, then the peer Q which will replace X is Qfar(Y,X). 

Moreover, every 2 neighbors Y and Z of a peer X could periodically exchange between them the 

values DistMaxNoX(Y,X) and DistMaxNoX(Z,X) (together with their identifiers). This way, when a 

peer X leaves the tree, every former neighbor Y of peer X already knows the values 

DistMaxNoX(Z,X) of all the other former neighbors Z of peer X and can immediately select the 

representative (former) neighbor W. With this proactive approach, the tree stays disconnected only 

for a very short time (O(1) time steps) whenever a peer X leaves the tree. 

6.1.4. Experimental Tests 

In order to test the multicast tree peer-to-peer topology, we developed a simulation 

framework, which we implemented in the Python programming language. We performed two types 

of tests. The first tests were incremental tests. 600 peers were added sequentially, at different rates, 

and considering two values of K (3 and 6). The rate was measured as the number of newly added 

peers divided by the number of gossiping periods. We measured the tree's diameter after every peer 

addition. The lowest rate was 1/D, where D was the (current) diameter of the tree; obviously, this 

rate was not constant. At this rate, all the NumPeers(*,*) and Dmax(*,*) values became correct 

before the next peer addition. The consequence was that the diameter of the obtained tree was 

always equal to the theoretical optimum (i.e. the diameter of a perfectly balanced tree with the same 

number of nodes as the multicast tree and with the same upper bound on the node degrees). 

We considered both the case when every peer started its joining process from a random peer 

and the case when all the peers started from the same (first) peer. The same cases were considered 

for other rates: 2/D, 1, 2 and 5. As expected, the higher the rate, the higher the tree's diameter was 

(however, there was no difference in the diameters for the rates 1/D and 2/D). Fig. 6-2 (right) 

presents the diameters obtained for K=3 and different ratios, as a function of the number of peers, 
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when every peer joined the tree starting from another random peer. The results for the case when 

every peer started the joining process from the same peer are similar. Fig. 6-2 (left) shows the 

obtained tree topology for K=3 and 100 peers. 

The tests of the second type were decremental. We started from the tree with 600 peers and 

optimal diameter and repeatedly removed from the tree the peer X whose largest estimate 

Dmax(X,*) was minimum (i.e. the tree's center). The tree recovered gracefully every time and 

maintained the optimal theoretical diameter after every peer removal. A peer was removed only 

after the tree recovered correctly from the previous peer removal. 

 
Fig. 6-2. Left - Multicast Tree with 100 Peers (K=3). Right - Tree Diameter after Every Peer Insertion at 

Different Peer Insertion Ratios. 

6.2. Maximum Reliability K-Hop Multicast Strategy in Tree Networks 

The reliability of network nodes and links is an important aspect which needs to be 

considered when developing fault-tolerant distributed algorithms. Usually, the reliability is only a 

statistical measure, representing the probability that the network node/link will not fail. In this 

section, we consider the reliability of network links in a tree network, in the context of developing a 

multicast content distribution strategy with the highest reliability, subject to restrictions regarding 

the number of intermediate hops. 

The problem is defined as follows. We are given a directed tree T with n nodes, in which the 

root of the tree wants to distribute some content to a set of destinations, which are the leaves of the 

tree. In order to send the content from a node u to a node v located in the subtree of u, the node u 

establishes a direct connection to node v and sends a message with the content on that connection. 

The transmission lasts for a fixed amount of time (one time unit). A node may establish any number 

of simultaneous connections to other nodes in its subtree. 

Each edge (u,v) of the tree has an associated reliability ru,v. The reliability of transmitting a 

message on a direct connection from u to v is equal to the product of the reliabilities of the edges on 

the path from u to v. The reliability of the content distribution strategy is the product of the 

reliabilities of all the message transmissions performed. We are interested in finding a multicast 

strategy having the maximum reliability, subject to the constraint that it should not last for more 

than k≥1 time units. It is obvious that the root of the tree can send the content to every leaf during a 

single time unit, but the reliability of this strategy is 

∏
∈Tvu
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r vu
),(

)(_

,                                                    (6-1) 

where nr_leaves(v) is the number of leaves located in the subtree rooted at v. 

By using intermediate nodes, the reliability of the strategy can be improved. We will now 

define the k-hop multicasting problem. We will build k+1 sets of nodes: S0, S1,...,Sk. The root is the 

only node in S0. In the first time unit, the root sends a message to a subset of nodes S1 such that each 

leaf is a descendant of exactly one node X in S1. During the i
th

 time unit (2≤i≤k-1), each node X in 

Si-1 which is not a leaf, sends a message to a subset Si,X of nodes from its subtree, such that each leaf 

which is a descendant of X either belongs to Si,X or is also a descendant of exactly one node in Si,X. 

The set of nodes Si is the union of the sets Si,X, for each X in Si-1. During the k
th

 time unit, each node 

X in Sk-1 which is not a leaf must send a message to each leaf node which is a descendant of X (the 

leaves receiving the message in the k
th

 time unit form the set Sk). The nodes belonging to the union 

of the sets Si are called intermediate nodes. Every intermediate node (except the root) receives the 
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content from exactly one other intermediate node. Obviously, there can be many multicast strategies 

and we are interested in the one with the maximum reliability. 

By replacing the reliability of each edge (u,v) by cost(u,v)=-log(ru,v), the requirement to 

maximize the reliability becomes equivalent to minimizing the total cost of message transmissions, 

where the cost of sending a message is equal to the sum of the costs of the edges composing the 

connection along which the message is sent.  

6.2.1. An O(k·n3) Dynamic Programming Algorithm 

First, we will transform the directed tree into a binary directed tree. This transformation is 

quite standard. For each node i having q>2 sons s1,s2,...,sq, we keep his first son s1 and insert an 

extra node x as his second son. We make s2,..., sq the sons of x and then recursively repeat the 

procedure for the node x and for the son s1. If q≤2 we call the procedure for each of the sons s1, ..., 

sq. The edge between i and x will have cost 0 (or equivalently, reliability 1). 

With this modified tree, we will compute the following values in a bottom-up fashion: 

C(i,j,p) = the minimum cost of distributing the content to all the leaves in the subtree of node i, 

using at most j (0≤j≤k) time units and considering only the edges in vertex i's subtree when 

computing the cost and: 

• if p>1 then i is on the paths between an intermediate node located above i, and all the p 

intermediate nodes to which that node sends messages directly. 

• if p=1, then either i is an intermediate node or i is on the path between an intermediate node 

located above it and the only node to which that node sends a message directly (located 

below i). 

For all nodes i, we define C(i,-1,p)=+∞. If i is a leaf, then for all 0≤j≤k we have C(i,j,1)=0 

and C(i,j,p)=+∞ (for p>1). If i is not a leaf, then it has either one or two sons. If it has only one son 

s, we have the following equations: 

• 1p p),j,C(s,s)p·cost(i,p)j,C(i, >+=                                                                                       (6-2) 
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The first case is straightforward: i is not an intermediate node, therefore it lies on the paths 

between p intermediate nodes below it and another intermediate node above it. Therefore, i will 

have to forward p messages to the p intermediate nodes on the edge (i,s). In the second case, either i 

is an intermediate node and consumes one time unit and the number of intermediate nodes to which 

i sends a message directly can be any number p1, or i is not an intermediate node, and we find the 

same situation as before. 

If i has two sons s1 and s2, we have the equations: 

• 1pp1)},pj,C(s2,s2)cost(i,p1)(pp1)j,C(s1,s1)cost(i,{p1minp)j,C(i,
pp11

>−+⋅−++⋅=
<≤

           (6-3) 

• p2)}1,jC(s2,s2)cost(i,p2p1)1,jC(s1,s1)cost(i,{p1minj,1)C(i,
np2p1 p2,1 p1,1
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In the first case, i is not an intermediate node, and all the p messages coming from the 

intermediate node closest to i and above it will be forwarded to the p intermediate nodes below it. 

Out of these, p1 intermediate nodes are located in s1's subtree and p-p1 are located in s2's subtree. In 

the second case, either i is an intermediate node and consumes one time unit and there are p1 

intermediate nodes located in s1's subtree and p2 in s2's subtree, to which i will send the message 

directly, or i is not an intermediate node and we are in the same situation as in the first case. 

If i is the root of the tree and has only one son s, then the only entry defined is: 

p1)}1,kC(s,s)cost(root,{p1mink,1)C(root,
np11

−+⋅=
≤≤

.                        (6-4) 

If the root has two sons s1 and s2, then the only entry defined is C(root,k,1). This entry 

represents the minimum cost of the k-hop multicast strategy. In order to actually find the strategy, 

we can trace the way the C(i,j,p) entries were computed and for each intermediate node we can find 

out to which other intermediate nodes it sends a message directly. 

Let's analyze the time complexity of the algorithm. The most complex case is when a node 
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has two sons, which takes O(k·n
2
) time. Thus, the overall complexity is O(k·n

3
). 

6.2.2. An O(k·n2) Dynamic Programming Algorithm 

We will present now a dynamic programming solution with a better time complexity. First, 

we assign a label from 1 to M to each leaf of the tree, where M is the total number of leaves. The j
th

 

leaf visited by a depth-first traversal of the tree (starting from the root) receives the label j. It is 

obvious that the labels of the leaves located in the subtree of a node i (including node i itself) form 

an interval of consecutive values, denoted by [lmin(i), lmax(i)]. This interval can be computed in 

O(n) time for all the nodes, with a simple bottom-up traversal. We will also compute in O(n
2
) time 

the values dist(i,j)=the sum of the costs of the edges on the directed path from i to j. 

We will now compute the values C(i,j,p)=the minimum cost for distributing the content to 

the first p leaves in node i’s subtree (denoted by STi), using at most j time units, with i being an 

intermediate node. The first p leaves are the leaves labeled lmin(i), …, lmin(i)+p-1. If i is a leaf with 

label q, then C(i,j,1)=0 for all the values of j and lmin(i)=lmax(i)=q. If i is not a leaf, then we have: 

•  i) nr_leaves(p1 ,p)C(i,0, ;k j0 0,j,0)C(i, ≤≤+∞=≤≤=                                             (6-5) 

• 
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The last equation considers the following case: node i sends a message to a node x in STi with 

lmax(x) equal to the label of the p
th

 leaf in STi, letting x take care of sending the content further to 

all the leaves in STx, using at most j-1 time units; node i takes care of the lmin(x)-lmin(i) remaining 

leaves (with labels in [lmin(i), lmin(x)-1]), using at most j time units. Each of the O(n) nodes x in 

STi must only be considered for only one of the O(n) values of p, equal to lmax(x)-lmin(i)+1. Thus, 

as a preprocessing step, for each node i, we will compute in O(n) time an array of lists L(i), where 

L(i,p) is a list containing all the nodes x in STi with lmax(x)=lmin(i)+p-1. When computing C(i,j,p), 

only the nodes x in L(i,p) will be considered. This way, we can compute the values C(i,j,p) in O(n) 

time for a given pair (i,j) and all the values of p (and in O(1) amortized time for each tuple (i,j,p), if 

we also do not add to L(i,p) any node x in STi with exactly one son). The time complexity of the 

algorithm is O(k·n
2
) and the minimum cost is C(root,k,M). 

An example of an optimal strategy computed using the previously described algorithms is 

presented in Fig. 6-3. 
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Fig. 6-3. Example of an Optimal K-Hop Multicast Strategy (K=2). 

6.3. Send- and Receive-Constrained Broadcast in Tree Networks 

 In this section we present novel models and algorithmic solutions for several constrained 

broadcast problems in tree networks; we extend the single port broadcast model in trees by adding 

sending and receiving constraints. 
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6.3.1. Minimum Time Broadcast in Trees with Sending Constraints 

We are given a tree network with n vertices (numbered from 1 to n). A source node src 

needs to distribute a piece of content to all the other vertices of the tree. In order to do this, it will 

use a broadcast strategy. At each moment t, the vertices can be partitioned into two sets At and Bt. 

The vertices in the set At have already received the piece of content, while those in Bt did not. Each 

vertex in the set At can send the piece of content to at most one neighboring vertex belonging to the 

set Bt. Transmitting the content takes one time unit. Assuming that the vertices receiving the content 

sent at time t form the set Rt, at time moment t+1, we have: At+1=At ∪ Rt and Bt+1=Bt\Rt. Initially (at 

t=0), A0={src} and B0={1,2,…,n}\{src}. The first time moment T when AT={1,2,…,n} and BT=φ  is 

equal to the duration after which every vertex of the tree receives the piece of content (the broadcast 

time). Obviously, T depends on the sets Rt (t=0,1,…,T-1), chosen by the broadcast strategy. 

We are interested in finding a broadcast strategy with a minimum broadcast time. When 

there are no other constraints, this problem is well-known and an optimal algorithm was provided 

many years ago [Slater, Cockayne and Hedetniemi, 1981]. We will briefly present this algorithm. 

The tree is rooted at the source node src, thus defining parent-son relationships. We compute the 

values Tmin(i) in a bottom-up fashion, for each vertex i, where Tmin(i)=the minimum broadcast time 

for sending the piece of content from vertex i to all the vertices in its subtree. For a leaf i, Tmin(i)=0. 

The optimal broadcast strategy of a vertex i having ns(i)≥1 sons consists of sending the piece of 

content to a different son during each of the first ns(i) time moments. Assuming that the sons are 

s(i,1), s(i,2), …, s(i,ns(i)), in the order in which vertex i sends the content to them, the broadcast 

time is max{1+Tmin(s(i,1)), 2+Tmin(s(i,2)), …, ns(i)+Tmin(s(i,ns(i)))}. The ordering of the sons which 

minimizes the broadcast time has the following property: Tmin(s(i,1)) ≥ Tmin(s(i,2)) ≥ … ≥ 

Tmin(s(i,ns(i))). A straight-forward implementation of this algorithm takes O(n·log(n)) time (because 

of the step where the sons need to be sorted). 

In this section we consider the following extension of the problem. We are given a time 

duration TM and for each vertex i and each time moment t in {0, 1, …, TM-1}, we are given a binary 

value sendb(i,t). If sendb(i,t)=1, then the vertex i is blocked at time moment t, i.e. it cannot send 

anything to any neighboring vertex; if sendb(i,t)=0, then vertex i is not blocked and can send the 

piece of content to a neighboring vertex at time t (if vertex i belongs to the set At). We consider two 

cases:  

(1) at any time moment t≥TM, no vertex is blocked (we have sendb(i,t)=0 for t≥TM);  

(2) sendb(i,t)=sendb(i,t-TM), t≥TM (the constraints are periodical).  

The motivation for this extension is given by several factors. The vertices of the tree may be 

represented by computers which undergo some specific maintenance procedures which temporarily 

disrupt the functionality of the sending interface. When the vertices have asymmetric upload and 

download bandwidths, it is possible that at certain time moments, the entire upload bandwidth is 

used by another application, while enough download bandwidth is still available for receiving the 

content. We will present exact, efficient algorithms for this problem, using dynamic programming 

and greedy techniques. 

6.3.1.1. A Dynamic Programming Algorithm 
We will root the tree at the source vertex src and we will compute a table Tmin(i,t)=the 

minimum time moment when every vertex in vertex i’s subtree has received the content, 
considering that vertex i received the piece of content at time moment t. Tmin(src,0) will represent 
the minimum time duration after which every vertex of the tree receives the content (i.e. the 
minimum duration of the broadcast strategy). We algorithmically compute the table for t<TM. In 
case (1), for t=TM we can compute Tmin(i,TM) using the standard greedy algorithm we described 
(because there are no constraints) and Tmin(i,t>TM)=Tmin(i,TM)+t-TM. In case (2), 
Tmin(i,t≥TM)=Tmin(i,t mod TM)+(t div TM)·TM, where we denote by (A div B) the integer part of the 
division of A by B and by (A mod B) the remainder of the division.  Based on these values, the 
optimal broadcast strategy can be easily obtained. 

We will traverse the tree in a bottom-up fashion (from the leaves towards the root) and 
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compute all the required values for a vertex i. If i is a leaf, then Tmin(i,t)=t. Otherwise, let’s consider 
s(i,1), s(i,2), …, s(i,ns(i)), the ns(i) sons of vertex i. Since there are no receiving constraints, the 
optimal broadcast strategy requires that vertex i sends the content to its sons at the first ns(i) time 
moments when its sending capabilities are not blocked. Assuming that vertex i receives the message 
at time moment t (and we want to compute Tmin(i,t)), we will determine the time moments 
t≤ts(i,t,1)<ts(i,t,2)<…<ts(i,t,ns(i)), such that sendb(i,ts(i,t,j))=0 and sendb(i,t’)=1, for 
ts(i,t,j)<t’<ts(i,t,j+1), 0≤j≤ns(i)-1 (with ts(i,t,0)=t-1). We can easily determine these time moments 
in O(TM+ns(i)) time: by inspecting all the time moments t’’, starting from t and ending when ns(i) 
time moments with sendb(i,t’’)=0 were found, or when t’’≥TM (and ns’(i)<ns(i) moments were 
found) - in case (1), we add the moments TM, …, TM +ns(i)-ns’(i)-1; in case (2), we can obtain 
P·ns’(i) extra moments for any P≥1, by shifting the first ns’(i) moments by a multiple of TM. 

Once the time moments are decided, all we need to do is establish the order in which the 
sons will receive the content from vertex i. We will solve the following problem first: we will 
choose an upper limit Tmax for the value of Tmin(i,t) and verify whether a valid ordering of the sons 
exists, such that Tmin(i,t)≤Tmax. It is obvious that the Tmin(v,*) values of a vertex v are non-decreasing, 
i.e. Tmin(v,t’)≤Tmin(v,t’+1). We will compute for each son s(i,j) of the vertex i the largest time 
moment tl(s(i,j),Tmax), such that Tmin(s(i,j),tl(s(i,j), Tmax)+1)≤Tmax, i.e. tl(s(i,j),Tmax) is the largest time 
moment at which vertex i can send the content to the son s(i,j), such that every vertex in vertex 
s(i,j)’s subtree is still able to receive the piece of content by the time moment Tmax (or 0 if such an 
index does not exist). We can compute tl(s(i,j) ,Tmax) for a son s(i,j) in O(log(TBOUND)) time, 
using a binary search and the afore-mentioned property of the Tmin(v,*) values: (1) 
TBOUND=n+TM-1 ; (2) TBOUND=n·TM-1. We then sort all the sons s(i,j) in non-decreasing order 
of the tl(s(i,j),Tmax) values, i.e. we will have tl(s(i,1),Tmax)≤tl(s(i,2), Tmax)≤…≤tl(s(i,ns(i)),Tmax). 

The order in which the sons will receive the content from vertex i will be exactly this order 
of the tl(s(i,j),Tmax) values. This ordering is valid if tl(s(i,j), Tmax)≥ts(i,t,j), for all the values of j 
(1≤j≤ns(i)). If we first initialize Tmin(i,t) to +∞ and then binary search the smallest value of Tmax 
such that there exists a valid ordering for the sons of the vertex i, we have already obtained an 
algorithm which solves our problem, but its time complexity is too high. We will successively 
improve this algorithm. First, we will improve the part where the values ts(i,t,j) are computed for a 
vertex i and a receiving time moment t. For t=0, we will use the presented approach. As we move 
from the time moment t to t+1, we have the following situations: 

• t<ts(i,t,1): in this case, ts(i,t+1,j)=ts(i,t,j) (1≤j≤ns(i)) and we do not need to perform other 
computations. 

• t=ts(i,t,1): in this case, ts(i,t+1,j)=ts(i,t,j+1) (1≤j≤ns(i)-1) and we just need to search for the 
value ts(i,t+1,ns(i)) – we will inspect all the time moments starting from ts(i,t,ns(i))+1, until we 
find the first time moment t’ such that sendb(i,t’)=0 (we test at most the next TM moments). 

It is easy to notice that we inspect O(TBOUND) time moments overall, for all the values of t. 
Thus, we obtain all the values ts(i,t,j) in O(TBOUND/TM) amortized time for each pair (i,t). The 
time complexity is now O(n·TBOUND)+n·TM·log(TBOUND)·(log(TBOUND)+log(n))). 

The following changes constitute improvements only in some cases. We will replace the 

binary search for the values of Tmin(i,t) with a linear search. When computing Tmin(i,0), we will start 

from Tmax=0 and increase it by 1, until we find a valid ordering. For t>0, we will start the linear 

search from Tmax=Tmin(i,t-1) and increase Tmax until we find a valid ordering. We notice that we only 

perform O(TBOUND) tests for all the O(TM) values of t (and a fixed vertex i). This way, we 

perform an O(TBOUND/TM) amortized number of tests for each pair (i,t). The time complexity 

becomes O(n· TBOUND·(log(TBOUND)+log(n))). 

Once we replaced the binary search for Tmax with a linear search, we can replace the binary 

search for determining the value tl(s(i,j),Tmax) of each son with a linear search, as well. When we 

move from a candidate value Tmax to the next candidate value Tmax+1, we linearly search for the 

values tl(s(i,j),Tmax+1) starting from tl(s(i,j),Tmax). Using the same arguments as before, we obtain 

an O(1) amortized complexity for computing tl(s(i,j),Tmax) for each tuple (i,j,Tmax), thus reaching a 

complexity of O(n·TBOUND·log(n)). We will now sort the sons s(i,j) of a vertex i according to their 

tl(s(i,j),Tmax) values using a variation of countsort. The values tl(s(i,j),Tmax) belong to the interval 

[0,TBOUND]. We could use a linked-list LL(i,t’) for each time moment t’ and insert a son s(i,j) into 
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LL(i, tl(s(i,j), Tmax)). Then, by traversing the linked-lists of all the time moments between t and 

TBOUND (when computing Tmin(i,t)), we can sort the sons linearly in the number of time moments. 

However, this does not really constitute an improvement, because we might need to traverse 

many time moments. Instead, we will compute a list of the time moments in [0,TBOUND] at which 

vertex i can send messages: 0≤tcs(i,1)<tcs(i,2)<…<tcs(i,ntcs(i)), where ntcs(i) is the total number 

of such moments (we can compute and store only ntcs’(i)=O(TM) values of tcs(i), where ntcs’(i)= 

the number of time moments in [0,TM-1] when i can send the content:  

(1) tcs(i,j>ntcs’(i))=TM+(j-1-ntcs’(i)); 

(2) tcs(i,j>ncts’(i))=tcs(i,1+((j-1) mod ntcs’(i))+((j-1) div ntcs’(i))·TM).  

We will redefine the values ts(i,t,j) and the values tl(s(i,j),Tmax) as indices into the tcs(i) list. 

Thus, ts(i,t,j) is an index to the time moment tcs(i,ts(i,t,j)) in the list tcs(i) (thus, we can find 

ts(i,t+1,ns(i)) in O(1) time when moving from t to t+1 and t=ts(i,t,1), as ts(i,t,ns(i))+1). Similarly, 

tl(s(i,j), Tmax) will be the index of the largest time moment in the list tcs(i) such that Tmin(s(i,j), tcs(i, 

tl(s(i,j), Tmax))+1)≤Tmax (or 0 if such an index does not exist). 

We will use a linked-list LL(i, tidx) for each index tidx in the list tcs(i) (plus the index 0) and 

insert each son s(i,j) into LL(i, tl(s(i,j),Tmax)). Then, we will traverse all the linked-lists LL(i,tidx), 

with tidx=ts(i,t,j) (1≤j≤ns(i)) (ts(i,t,j) are consecutive indices in the list tcs(i)). There are ns(i) such 

linked-lists, so we will sort the ns(i) sons in O(ns(i)) time. If some sons were inserted in 

LL(i,tidx>ts(i,t,ns(i))), they will be placed in any order at the end of the list of sorted sons. If some 

sons were inserted in LL(i,tidx<ts(i,t,1)) or the obtained ordering of the sons is not valid, then we 

need to test a larger value of Tmax. The final complexity is O(n· TBOUND). If we use the linear son 

sorting method, we binary search Tmax and tl(s(i,*),Tmax) in the tcs(i) list, and find in O(1) time the 

values ts(i,t+1, ns(i)), we get an O((n+n·TM)·log
2
(TBOUND)) algorithm. 

6.3.1.2. A Greedy Algorithm 
A greedy algorithm also exists for this problem. We will binary search for the minimum 

duration of broadcasting the piece of content from the source vertex src to all the other vertices. 
Let’s assume that we chose a value Tmax. We now need to perform a feasibility test. If Tmax is 
feasible, we will choose a smaller value in the binary search; otherwise, we will choose a larger 
value. The feasibility test consists of computing the following values for each vertex: Tlatest(i)=the 
latest time moment at which vertex i can receive the piece of content such that all the vertices in 
vertex i’s subtree can receive the content by time Tmax. 

We will traverse the tree bottom-up, from the leaves towards the root. For a leaf vertex i, we 
have Tlatest(i)=Tmax. For a non-leaf vertex i, let’s consider its ns(i) sons s(i,1), s(i,2), …, s(i,ns(i)), 
sorted such that: Tlatest(s(i,1))≥Tlatest(s(i,2))≥… ≥Tlatest(s(i,ns(i))). The son s(i,1) will be the last one to 
receive the content from vertex i, the son s(i,2) will be the one before the last and so on. We will 
consider all the time moments from Tlatest(s(i,1))-1 down to 0 and, for each son s(i,j), we will find 
the latest time moment tsend(i,j) at which vertex i can send the content to the son s(i,j). If we cannot 
find such a time moment for every son, then the feasibility test will fail (Tmax is not a feasible value). 
Otherwise, Tlatest(i)=tsend(i,ns(i)).  

The time complexity of the feasibility test is O(n·Tmax), where Tmax is binary searched 

between 0 and TBOUND. If we compute the list tcs(i) of time moments at which vertex i can send 

messages (we also used this list in the dynamic programming algorithm), then we can improve the 

feasibility test. For each son s(i,j) of a vertex i, we can binary search the moment tsend(i,j) in the list 

tcs(i). We will define a function index(i,t) which returns the index k of the largest time moment in 

the list tcs(i), such that tcs(i,k)≤t (the function uses binary search). For s(i,1), tsend(i,1)=tcs(i, 

index(i, Tlatest(s(i,1))-1)). For j>1, tsend(i,j)=tcs(i,index(i, min{Tlatest( s(i,j)),tsend(i,j-1)}-1)) (if some 

call of index(*,*) does not find any appropriate time moment, the feasibility test fails). The time 

complexity of the test is now O(n·log(TBOUND)). The algorithm is presented in Pseudocode 6-1. 

A further improvement consists of computing a function tprev(i,t)=the largest time moment 

t’ such that t’≤t and sendb(i,t’)=0 (for t≥TM, we have: (1) tprev(i,t)=t; (2) 

tprev(i,t)=max{tprev(i,TM-1) + ((t div TM)-1)·TM, tprev(i,t mod TM)+(t div TM)·TM}). We can 

tabulate tprev(*,-1≤t<TM) in O(n·TM) time: tprev(i,-1)=-∞; tprev(i, 0≤t’<TM)=(if (sendb(i,t’)=0) 
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then t’ else tprev(i,t’-1)). The complexity of the feasibility test becomes O(n), because tsend(i,j)=(if 

(j=1) then tprev(i, Tlatest(s(i,1))-1) else tprev(i, min{Tlatest(s(i,j)),tsend(i,j-1)}-1). All the algorithms 

require O(n+n·TM) preprocessing time or O(n·TM) storage. 

 
Pseudocode 6-1. The Greedy Feasibility Test for Minimum Time Broadcast in Trees with Sending Constraints. 

6.3.2. Minimum Time Broadcast in Trees with Sending and Receiving 
Constraints 

In this section we extend the problems discussed in the previous section, by adding receiving 

constraints, i.e. we have a function recvb(i,t), which is 0 if vertex i can receive a message at time 

moment t and 1 if it cannot (i.e. the receiving interface is blocked). We consider the same two cases 

((1) and (2)). We first present a dynamic programming algorithm similar to the one in the previous 

section. 

We will compute the values Tmin(i,t)=the minimum time moment at which all the vertices in 

vertex i’s subtree can receive the content, if vertex i receives the content at time t. We traverse the 

tree bottom-up and, if vertex i is a leaf, then we have Tmin(i,t)=(if (recvb(i,t)=1) then +∞ else t). For 

a non-leaf vertex i, we will determine the list of time moments tcs(i,t), such that 

t≤tcs(i,t,1)<tcs(i,t,2)<…<tcs(i,t,ntcs(i,t)) and sendb(i, tcs(i,t,j))=0 (1≤j≤ntcs(i,t)≤TBOUND). As 

before, when moving from a time moment t to the next time moment t+1, we can update this list in 

O(1) time (if (t<tcs(i,t,1)) then tcs(i,t+1)=tcs(i,t); otherwise, tcs(i,t+1,j)=tcs(i,t,j+1), i.e. we remove 

the first time moment from tcs(i,t) and keep all the other time moments in tcs(i,t+1)). We construct 

a bipartite graph, containing the sons s(i,1), …, s(i,ns(i)) of vertex i on one side and the time 

moments in tcs(i,t) on the other side. There exists an edge between a son s(i,j) and a time moment 

tcs(i,t,k) if recvb(s(i,j), tcs(i,t,k)+1)=0; the edge will have a weight equal to Tmin(s(i,j), tcs(i,t,k)+1). 

We need to find a maximum matching in which the maximum weight of an edge is minimum. This 

weight will be the value of Tmin(i,t). 

We can find such a matching by binary searching the maximum weight W of an edge in the 

GreedyFeasibilityTest(i, Tmax): 
if (ns(i)=0) then {  

Tlatest(i)=Tmax 

return “passed” 

} else { 
  for j=1 to ns(i) do { 

    ret=GreedyFeasibilityTest(s(i,j), Tmax) 

    if (ret=”failed”) then return “failed” 

  } 
  sort the sons s.t. Tlatest(s(i,1))≥...≥ Tlatest(s(i,ns(i))) 

  nextson=1 

  for t=Tlatest(s(i,1))-1 down to 0 do { 

    if ((sendb(i,t)=0) and (t<Tlatest(s(i,nextson)))) then { 

      tsend(i,nextson)=t 

      nextson=nextson+1 

      if (nextson>ns(i)) then break 
    } 
  } 
  if (nextson≤ns(i)) then return “failed” 

  else { 
    Tlatest(i)=tsend(i,ns(i)) 

    return “passed” 

  } 
} 
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matching (and performing a feasibility test for each candidate value). The feasibility test consists of 

removing all the edges with weights larger than W and computing a maximum matching in the 

bipartite graph using only the remaining edges. If the cardinality of this matching is ns(i), then the 

feasibility test is passed and we can test a smaller value of W; otherwise, we need to test a larger 

value of W. The time complexity of the feasibility test is 

O(log(TBOUND)·ns(i)·TBOUND·sqrt(ns(i)+TBOUND)) (if we use the O(E·sqrt(V)) Hopcroft-Karp 

[Hopcroft and Karp, 1973] matching algorithm, where E is the number of edges and V is the 

number of vertices of the graph). The overall time complexity is obtained by multiplying the 

complexity of the feasibility test by O(n·TM).  

We can use the binary search greedy approach here, too. We define  

 

tprecv(i,t) = (if (t≥TM) then { (1) t ; (2) max{tprecv(i,TM-1)+((t div TM)-1)·TM, 

                                                                        tprecv(i,t mod TM)+(t div TM)·TM} } 

                     else if (t<0) then -∞                                                                                                  (6-6) 
                           else if (recvb(i,t)=0) then t 

                                  else tprecv(i,t-1)) (we tabulate the values tprecv(i,t), 0≤t<TM).  

 

For a leaf i, Tlatest(i)=tprecv(i, Tmax); for a non-leaf vertex i, we binary search the maximum 

possible value Tlatest(i) with a candidate value Tcand; we build the same bipartite graph as in the case 

of Tmin(i,Tcand) (with i’s sons and the subset of time moments of {Tcand, …, Tmax} at which vertex i 

can send the message), from which we remove the edge weights and the edges (s(i,j),t), with 

t≥Tlatest(s(i,j)). The feasibility test checks if the maximum matching in this bipartite graph has 

cardinality ns(i) (i.e. Tcand is feasible if the matching’s cardinality is ns(i); if Tcand is feasible, then 

we can try larger values next, otherwise we will try smaller values). If we cannot find a maximum 

matching of cardinality ns(i) for any value of Tcand, then Tmax is not feasible (i.e. we will need to try 

larger values for Tmax next).  

We can also compute Tlatest(i) in a different way (without binary searching it). We will 

construct the bipartite graph BG mentioned before, for the case when Tcand=T’=max{0, 

min{Tlatest(s(i,j))|1≤j≤ns(i)}}. We now compute a maximum matching in this graph. Let C be the 

cardinality of this matching. If C<ns(i) then we will consider every time moment t from T’-1 down 

to 0 such that sendb(i,t)=0. We extend the graph BG by adding the time moment t to it, together 

with the corresponding edges connecting it to vertex i’s sons (these edges (s(i,j),t) obey the same 

constraints mentioned earlier, i.e. we must have t<Tlatest(s(i,j)) and recvb(s(i,j),t+1)=0). 

Then, we will try to extend the previous matching by considering the new vertex t which 

was added to BG. We will try to find an augmenting alternating path in BG starting from t (or a 

flow augmenting path in BG starting from t, if we use a maximum flow algorithm for computing the 

maximum matching). Let C be the cardinality of the newly obtained matching (C may remain 

unmodified if no augmenting path starting from t is found). If C=ns(i) then we stop (we do not 

consider other values for t) and we set Tlatest(i)=t. If C never becomes equal to ns(i) then the current 

value Tmax (which is binary searched) is not feasible (and we will need to consider a larger value). 

Overall, this approach performs at most as many computations as for the case Tcand=0 (from the 

previous approach); thus, it is more efficient by a log(Tmax) factor asymptotically. 

6.3.3. Maximum Weight Content Distribution Strategy in Trees subject to Time 
Limits 

We consider here another variation of the restricted tree content distribution problem. Like 
before, a source vertex src needs to send a piece of content to all the other vertices of the tree. Every 
vertex i has a weight w(i)≥0. We are given a time limit T and we want to distribute the piece of 
content during the time interval [0,T] to a subset S of vertices having a maximum total weight (a 
vertex i belongs to the subset S if it receives the content at a time t≤T). The content is not sent 
further at time moments t≥T and the vertices which did not receive the content until time T will 
remain uninformed. This problem has applications to critical information dissemination, in which 
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there is very limited time for distributing very important information (regarding, for instance, a 
natural disaster or an enemy attack) and we want to maximize the weight (importance) of those who 
receive the information before a critical deadline. 

We will compute the values Wmax(i,t)=the maximum weight of the informed vertices in 
vertex i’s subtree, if vertex i receives the content at time t (0≤t≤T). The value Wmax(src, 0) will 
represent the solution to our problem. Using the Wmax(*,*) values, the optimal content distribution 
strategy can be easily obtained. We will compute these values bottom-up. If i is a leaf vertex, then 
Wmax(i,t)=w(i). For each pair (i,t) (with i being a non-leaf vertex), we will build a bipartite graph 
containing the sons s(i,1), …, s(i,ns(i)) of vertex i on one side and the time moments t, t+1, …, T-1 
on the other side. We have an edge between every son s(i,j) and every time moment t’ such that 
sendb(i,t’)=0 and recvb(s(i,j),t’+1)=0; the weight of this edge is Wmax(s(i,j),t’+1). We are interested 
in finding a maximum weight matching (where the weight of a matching is equal to the sum of the 
weights of the edges composing the matching). For a bipartite graph with V vertices and E edges, 
we can compute such a matching in O(V

2
·E) time. In our case, the time complexity will be 

O((ns(i)+T-t)
2
· ns(i)·(T-t)) for each pair (i,t). The overall time complexity is O(n·T

4
+n

2
·T

3
+n

3
·T

2
). 

6.4. Minimum Cost Spanning Tree with Special Offers 

 In this section we consider a minimum cost spanning tree problem, augmented with special 

offers. We have an undirected graph with n vertices (numbered from 1 to n) and m edges. Each edge 

e connects two different vertices a(e) and b(e), has an owner o(e) and two prices: np(e) and sp(e). 

np(e) is the normal price of the edge e and sp(e) is the special price of the edge e; sp(e)≤np(e).  

There are q owners overall, numbered from 1 to q. Each owner has a special offer: it allows 

us to pay the special prices for any edges we want owned by that owner, with the condition that we 

do not take the special offer of any of the other owners. We want to establish a minimum cost 

spanning tree of the graph, by using at most one special offer of one of the edge owners. 

At first, we will compute the minimum spanning tree of the graph considering normal prices 

for all the edges, in O((m+n)·log(n)) or O(m+n·log(n)) time if we use Prim’s algorithm, or in 

O(sort(m)+m·α(m,n)), if we use Kruskal’s algorithm. sort(m) is the time complexity of sorting the 

m edges in increasing order of their normal cost. sort(m) may be O(m·log(m)), or O(m+CMAX), if 

the costs are bounded by a small maximum value CMAX (in this case we can use a sorting 

procedure similar to count-sort). O(m·α(m,n)) is the time complexity of using the disjoint sets data 

structure. 

Let MSTN be the set of n-1 edges composing the „normal” minimum spanning tree and let 

CMSTN be the cost of the minimum spanning tree considering the normal prices. We will now 

consider every owner i (from 1 to q) and compute the minimum spanning tree in the case when we 

take advantage of owner i’s special offer, i.e. when we consider the special prices for all the edges 

owned by i. We can recompute each such spanning tree in the same time complexity as when we 

computed the first minimum spanning tree, but the overall time complexity would be 

O(q·(m+n)·log(n)) or O(q·(m+n·log(n))), if we use Prim’s algorithm, or O(q·(sort(m)+m·α(m,n))), if 

we use Kruskal’s algorithm. 

If we initially sort all the edges once according to their normal costs and once according to 

their special costs in O(sort(m)) time, then for each owner i we can perform the edge sorting 

procedure (of the Kruskal’s algorithm) as follows. Let SE(i) be the subset of edges owned by i. We 

remove these edges from the ordering of the edges according to their normal prices, obtaining a 

sorted list L1 of m-|SE(i)| edges. Then, we remove from the ordering of the edges according to their 

special prices all the edges not belonging to SE(i), obtaining a sorted list L2 of all the edges from 

SE(i). Then, by merging the lists L1 and L2 in O(m) time, we can obtain the sorted list of all the 

edges, according to their corresponding price (normal or special). Thus, the time complexity in this 

case would be only O(sort(m)+q·(m+m·α(m,n))). Note than any removal of an edge from an edge 

ordering is cancelled when considering the next owner. 

Nevertheless, the time complexity is too large if we use the approach presented in the 

previous paragraphs. Instead, we will proceed as follows. When computing the minimum spanning 

tree for the special offer of the owner i, we will consider only the subset of edges ESE(i) composed 
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of all the edges owned by i (for which we consider their special prices) and all the edges from 

MSTN which are not owned by i, for which we consider their normal price. Then, we will compute 

the minimum spanning tree considering only O(n+|SE(i)|) edges. Note that no other edge except for 

those we just mentioned can be part of this minimum spanning tree. 

Thus, the time complexity for one minimum spanning tree computation is 

O((|SE(i)|+n)·log(n)) or O(|SE(i)|+n·log(n)), if we use Prim’s algorithm, or 

O(sort(|SE(i)|+n)+(|SE(i)|+n)·α(O(|SE(i)|+n),n)), if we use Kruskal’s algorithm. The sum of the 

values (|SE(i)|+n) (1≤i≤q) is at most (m+(n-1)·q). Thus, the overall time complexity will be 

O((m+n·q)·log(n)) or O(m+n·q+n·q·log(n)), if we use Prim’s algorithm, or O(min{sort(m+n·q), 

sort(m)+n·q·log(m)}+(m+n·q)·α(O(m),n)), if we use Kruskal’s algorithm. 

Note that when using Kruskal’s algorithm, we can sort all the O(|SE(i)|+n) edges in 

O(|SE(i)|+n), if we initially sort all the edges once according to their special price, and all the edges 

in MSTN according to their normal price. After performing the initial ordering according to the 

special prices, we construct a list LE(o) of edges for each owner o, as follows. We traverse the 

ordering of the edges and we add each edge at the end of the list of its owner. Thus, in O(m) time 

we obtain all the n sorted lists (after performing a sorting procedure which takes O(sort(m)) time). 

Then, when we consider an owner i, we obtain a list L by removing from the ordering of the edges 

in MSTN those edges which are owned by i. By merging the sorted lists L and LE(i), we obtain the 

sorted list of all the considered edges. With this method, the time complexity when using Kruskal’s 

algorithm becomes O(sort(m)+m+n·q+(m+n·q)·α(O(m),n)). 

The time complexities of using both Prim’s and Kruskal’s algorithm with the second 

approach are much better than that of the trivial algorithm. 

6.5. Minimum Cost Steiner Tree 

 The minimum Steiner tree problem is well-known and we will discuss in this section only 

some optimizations for several special cases. We have an undirected, connected graph with n 

vertices and m edges. Every edge (u,v) has a cost c(u,v)≥0. d of the n vertices of the graph are 

special: x(1), ..., x(d). We want to interconnect these nodes (in a tree-like manner) in such a way that 

the total cost of the used edges is minimum. 

It is easy to notice that a minimum cost Steiner tree contains at most d-2 nodes different 

from the special nodes and whose degrees in the tree are larger than 2. We will start by handling 

some particular cases. If d=1 the tree consists of just one node: x(1). If d=2 then the tree consists of 

the shortest path between x(1) and x(2). If d=3 then we will compute the length of the shortest path 

from every node x(i) (1≤i≤3) to every node in the graph. Let dmin(i,j) be the length of the shortest 

path between the nodes i and j. We will consider every node q of the graph and compute 

Cost(q)=dmin(x(1),q)+dmin(x(2),q)+dmin(x(3),q). We will choose that node q for which Cost(q) is 

minimum and we will connect every node x(i) to q through the shortest path between x(i) and q 

(1≤i≤3). Note that q may also be one of the 3 special nodes. 

For d≥4 we can compute in O(n
3
) time the lengths of the shortest paths dmin(i,j) between 

every pair of vertices (i,j) (e.g. by using the Floyd-Warshall algorithm). We will then consider every 

subset of nodes containing exactly S nodes (0≤S≤min{d-2, n-d}) among the n-d nodes which are not 

special. With the nodes in the subset and the special nodes x(i) (1≤i≤d) we will consider the 

complete graph G(S) which contains only these d+S nodes, and the cost of an edge between two 

vertices a and b in G(S) will be dmin(a,b). We will compute Cost(S)=the cost of a minimum 

spanning tree in G(S). The minimum Steiner tree is the spanning tree with minimum cost obtained 

this way. 

In the particular case d=4 and n≥6 we can simplify things a bit. We can consider every pair 

of nodes (a,b) (nodes a and b may be identical, and any of them may also be a special node). The 

Steiner tree will consist of the shortest path between a and b and will then connect every node x(i) 

to the closest node from the set {a,b}. Thus, the cost of such a tree will be Cost(a,b)=dmin(a,b) plus 

the sum of the values min{dmin(x(i),a), dmin(x(i),b)} (1≤i≤4). Of course, the minimum Steiner tree 

is obtained for the pair (a,b) with the minimum value of Cost(a,b). As we can see, for d=2,3, the 
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time complexity of the solution is O((n+m)·log(n)) (or O(m+n·log(n)), depending on the 

implementation chosen for the shortest path algorithm), and for d≥4, the time complexity is 

O(n
3
+d

2
·n

min{d-2,n-d}
).  

6.6. Minimum Time Broadcast Strategy in a Generalized Version of the 
LogP Model 

 In this section we want to provide an explicit algorithm for computing a minimum time 

broadcast strategy in a slightly generalized version of the LogP model [Karp, Sahay, Santos and 

Schauser, 2003]. Guidelines for developing such an algorithm have been provided in [Karp, Sahay, 

Santos and Schauser, 2003]. 

We have a network composed of P identical processors (numbered from 1 to P). The 

processor 1 has a message which needs to be sent to all the other processors. The duration of 

transmitting a message between any two processors is L. Before sending a message, a processor 

(which previously received the message) consumes ts time units with the preparation of the sending 

of the message. After the message reaches a processor, tr time units are consumed at the receiver 

before the message is decoded and properly received. Thus, the total duration from the moment 

when a proceesor A decides to send the message to a processor B and until the moment when B 

effectively receives the messageis equal to ts+tr+L. After sending the message, a processor must 

wait at least g time units before starting sending the next message. We want to compute a minimum 

time broadcast strategy, i.e. a strategy in which the maximum time moment at which a processor 

effectively receives the message is minimum. Note how the parameters ts and tr generalize the 

parameter o of the LogP model. 

 We will maintain a heap H with time moments at which the processors which have already 

received the message can start sending it further. Each value from H will also have the processor 

index associated to it. We will also maintain a counter np, storing the number of processors which 

have received the message, and a value Tmax. 

 Initially, we have np=1, Tmax=0 and we insert the value 0 (with the associated processor 

index 1) in H. While (np<P) we will extract from H the minimum value Tmin (and let its associated 

processor index be q). The processor q will send a message to the processor np+1, which will be 

effectively received at the time moment Tmin+ts+tr+L. We will set Tmax=Tmin+ts+tr+L. Then, 

we will insert into H the values: Tmax (with its associated processor index np+1) and Tmin+g (with 

its associated processor index q). Then, we will increment np by 1.  

 The last value of Tmax is the minimum duration of the optimal broadcast strategy. The time 

complexity of the presented algorithm is O(P·log(P)). 

 If the time moments are integer and we know an upper bround TM for the broadcast 

duration, we can maintain a list L(t) with processor indices for each time moment t (0≤t≤TM). 

Initially, L(0) will contain the processor index 1, while the other lists will be empty. Then, while 

(np<P), we will traverse these lists, in increasing order of the time moment Tmin (starting with 

Tmin=0). We consider every processor q from L(Tmin) and we perform the already described 

actions: we remove q from L(Tmin), we insert q into L(Tmin+g) and we insert np+1 into 

L(Tmin+ts+tr+L) ; after this, we increment np by 1 (and we stop the algorithm if np becomes equal 

to P). The time complexity in this case is O(P+TM). Note also that, when we reached the time 

moment Tmin, only the lists L(t) with Tmin≤t≤Tmin+ts+tr+L may be non-empty. This suggests that 

we may not store O(TM) lists, but rather only M=O(ts+tr+L) lists (e.g. M=ts+tr+L+1). Then, the 

list L(t) may in fact be stored at the memory position of the list L(t mod M) (if we use, for instance, 

an array of lists). 
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Chapter 7 – Optimal Replica Placement in Tree-Like Content 
Delivery Networks 
 

 

 

 In this chapter we will consider distributed systems whose application-level functionality is 

that of storing and facilitating the retrieval of data items. We will introduce several techniques for 

designing and optimizing such systems, always maintaining our focus on the communication 

parameters (e.g. minimizing the communication latency). 

 We will start by presenting novel algorithms for optimally placing replicas of highly popular 

data items in tree-like content delivery networks (cacti, trees and paths), where the optimization 

metrics are minimizing the sum of (weighted) latencies and minimizing the maximum (weighted) 

latency. For tree graphs we developed a new algorithmic framework which is used for solving some 

restricted versions of the connected k-center and k-median problems. 

Then, we will discuss the balanced content replication problem in trees, which is equivalent 

to the k-equitable coloring problems in trees. For this problem, we present a novel efficient 

algorithmic solution. Then, we define a tree reliability metric based on the unrestricted vertex 

multicut problem in trees (for which we present the first linear time solution). The reliability metric 

is evaluated on the output of the k-equitable tree coloring algorithm. In the last part of this chapter 

we introduce a new dynamic programming framework for several optimization problems in graphs 

with bounded pathwidth. This framework is used for solving replica placement problems in such 

graphs. 

 The results presented in this chapter were published in [Andreica and Ţăpuş, 2009g], [Tîrşa, 

Andreica and Costan, 2009], [Andreica, Andreica and Vişan, 2009], [Andreica, 2008a], [Andreica 

and Ţăpuş, 2008a], [Andreica and Ţăpuş, 2008h], [Andreica, 2008d], [Andreica et al., 2008] and 

[Andreica, Tîrşa, Costan and Ţăpuş, 2009]. 

7.1. Replica Placement in Tree-Like Content Delivery Networks 

The problem of efficiently placing data replicas in content delivery networks is very 

important due to the wide spread usage of such networks. The replicas should be placed such that 

they minimize the network traffic generated in order to reach them and acquire the stored content, 

according to an objective metric. Weighted min-max and min-sum metrics are most widely used 

and, in computer science, the corresponding optimization problems consist of locating the k-center 

and the k-median of the graph which represents the topology of the network. 

In this section we will consider only networks with a tree-like topology: cacti, trees and 

paths. Although the tree-like structure may seem to be only a particular case, we argue that many 

existing networks have a hierarchical structure, e.g. with users devices at the edge and router 

backbones at its core. Moreover, many graph topologies can be reduced to tree topologies, by 

choosing a spanning tree or by decomposing the set of edges into edge disjoint spanning trees. 

The (k+p)-center problem is the following: Given a graph with n vertices where each vertex 

has a weight and each edge has a length, we want to place at most k≥0 (k+p≥1) servers in the graph, 

such that the maximum weighted distance from a vertex to its closest server is minimized. If the 

servers may be placed only at the graph vertices, we are considering the discrete case. If they can be 

placed anywhere along the edges, it is the continuous version. Furthermore, p≥0 fixed servers are 

already placed in the network (at the graph vertices or on its edges) and they can be used by the 

vertices. Thus, we need to place at most k extra servers.  

Note that although the fixed servers may be located along the graph’s edges, we can insert 

new vertices on the edges at the locations of the fixed servers, obtaining a graph with n+p vertices 

where the fixed servers are located only at its vertices (and, thus, we will only consider this case). 

The (k+p)-median problem is defined similarly, except that we want to minimize the sum of 
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weighted distances from all the vertices to their closest server. We also consider an extra 

requirement for the discrete case (of both the center and median problems): the set of (at most) k 

locations chosen for the servers must form a connected subgraph of the given graph. This 

requirement makes sense when the data stored on the servers needs to be (periodically) 

synchronized or when a server may redirect requests to other servers. 

A path network with n nodes has the property that its vertices can be numbered in the order 

v(1), …, v(n), such that the only existing edges are between v(i) and v(i+1) (1≤i≤n-1). A tree 

network is an undirected, connected, acyclic graph. A tree may be rooted, in which case a special 

vertex r will be called its root. Even if the tree is unrooted, we may choose to root it at some vertex. 

In a rooted tree, we define parent(r,i) as the parent of vertex i (when the tree’s root is r) and 

ns(r,i) as the number of sons of vertex i (when the tree root is r). For a leaf i, ns(r,i)=0 and for the 

root r, parent(r,r) is undefined. The sons of a vertex i are denoted by s(r,i,j) (1≤j≤ns(r,i)). A vertex j 

is a descendant of vertex i if (parent(r,j)=i) or parent(r,j) is also a descendant of vertex i. We 

denote by T(r,i) the subtree rooted at vertex i, i.e. the part of the tree composed of vertex i and all of 

its descendants (and the edges connecting them), when r is the tree root. When the root r is always 

the same, we may drop the index r from these notations (e.g. we may use parent(i), s(i,j) and T(i), 

instead of parent(r,i), s(r,i,j) and T(r,i)). 

A cactus is a graph in which any two cycles are edge-disjoint. The diameter of a graph is the 

length of the longest shortest path between any pair of vertices. 

7.2. Replica Placement in Cactus Networks 

 Every edge (u,v) has a weight we(u,v) and every vertex u has a weight wv(u). The length of a 

path v(1), …, v(k) is the sum of the weights of the vertices v(i) (1≤i≤k) and of the edges (v(j),v(j+1)) 

(1≤j≤k-1). In this section we will consider the problems of computing the longest path, diameter, 

and 1-center of a cactus graph. The 1-center problem is equivalent to the replica placement 

problem, as mentioned in the previous section. 

7.2.1. Longest Path 

 We will present here a linear time algorithm for the problem of computing the longest path 

in a cactus, i.e. the path having the largest length. First, we will compute the block-cut vertex tree 

TBC [Das and  Pas, 2008] of the cactus graph. Such a tree can be computed in O(n+m) time for a 

graph with n vertices and m edges. Since m=O(n) in a cactus, this takes linear time. Every vertex of 

TBC is either a biconnected component (type BC) or a cut vertex (type C) of the original graph. We 

choose the root r such that it is a biconnected component. The neighbors of each vertex 

corresponding to a biconnected component B are the cut vertices which belong to B. The sons of 

each vertex corresponding to a cut vertex CV are the biconnected components which contain CV 

(except for the component B which is CV’s parent). 

 For every node x of TBC, we define C(x) as follows: if x corresponds to a cut vertex cv, then 

C(x)=cv; otherwise, if x is not the root of the tree, then C(x)=C(parent(x)) (i.e. the cut vertex 

belonging to the biconnected component corresponding to x which is its parent in TBC). If x is the 

root of the tree, then C(x) can be set to any vertex in the biconnected component corresponding to 

the tree root. 

 For every node x of TBC we will compute two values: A(x)=the length of the longest path 

starting at C(x), and B(x)=the length of the longest path passing through C(x) if x is of type C, or 

through any vertex of the biconnected component corresponding to x, if x is of type BC. These paths 

may contain only vertices contained in node x’s subtree of TBC. The length of the longest path is 

B(r). 

 It is easy to compute these values for a node x of type C. We compute 

A1(x)=max{ wv(C(x)), max{A(y)|y is a son of x}}                             (7-1) 
and set y1 to the son y of x with the largest value A(y). We also compute 

A2(x)=max{A(y)|y is a son of x, y≠y1}                                         (7-2) 
(if x has at most one son, then A2(x)=wv(C(x))). We have A(x)=A1(x) and B(x)=A1(x)+A2(x)-
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wv(C(x)). For a node x of type BC, we will denote by v(x,1), …, v(x,nv(x)) the vertices of the 

biconnected component corresponding to x. In a cactus, every biconnected component is a cycle. If 

the component consists of only one edge (v(x,1),v(x,2)), we will double this edge, in order to obtain 

a cycle composed of two vertices and two edges (of equal weights). 

 We will order the vertices in the order in which they appear on the cycle, starting from 

v(x,1)=C(x) and continuing in one of the two possible directions. Thus, we have v(x,1)=C(x), v(x,i) 

and v(x,i+1) are adjacent (1≤i≤nv(x)-1), and v(x,nv(x)) and v(x,1) are adjacent. We will assign a 

value l(x,j) to each vertex v(x,j). If v(x,j) (1≤j≤nv(x)) is a cut vertex corresponding to a node y which 

is a son of x in TBC, we set l(x,j)=A(y)-wv(v(x,j)); otherwise, l(x,j)=0. We will first compute A1(x), 

the length of the longest path starting at v(x,1) (=C(x)), not containing the edge (v(x,nv(x)),v(x,1)).  

 We traverse the vertices in increasing order of their index j and compute: lsum1(x,0)=0, 

lsum1(x,1)=wv(v(x,1)) and for j>1, lsum1(x,j)=lsum1(x,j-1)+we(v(x,j-1),v(x,j))+ wv(v(x,j)). 

A1(x)=max{lsum1(x,j)+l(x,j)|1≤j≤nv(x)}}.  

)1))iv(x,i),we(v(x,i))(wv(v(x,)),((),(
1

1

1 ∑
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jxvwvjxlsum                     (7-3) 

 We will now compute A2(x), the length of the longest path starting at v(x,1), containing the 

edge (v(x,nv(x)), v(x,1)). We compute the values lsum2(x,j): 
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 We have lsum2(x,nv(x))=wv(v(x,nv(x))) and for 2≤j≤nv(x)-1, 

lsum2(x,j)=lsum2(x,j+1)+we(v(x,j+1), v(x,j))+wv(v(x,j)). 

 We set A2(x) to max{lsum2(x,j)+ l(x,j)+wv(v(x,1))+we(v(x,1),v(x,nv(x))) | 2≤j≤nv(x)}. A(x) 

will be equal to max{A1(x), A2(x)}. 

 In order to compute B(x), we consider the same two cases as before, and compute two 

values, B1(x)=the length of the longest path passing through some vertex v(x,j) (1≤j≤nv(x)), not 

containing the edge (v(x,1),v(x,nv(x))), and B2(x)=the length of the longest path passing through 

some vertex v(x,j), containing the edge (v(x,1),v(x,nv(x))). B(x)= max{B1(x), B2(x)}. In order to 

compute B1(x), we will assign to each vertex v(x,j) the same value l(x,j) as before and then compute 

the same values lsum1(x,j). 

 Afterwards, we will also compute the values lmax1(x,j). We have lmax1(x,0)=0 and 

lmax1(x,j)=max{lmax1(x,j-1), l(x,j)+wv(v(x,j))-lsum1(x,j)} (1≤j≤ nv(x)). 

 Then, we compute lmax2(x,j)=max{wv(v(x, j))+l(x,j), l(x,j) + lsum1(x,j) + lmax1(x,j-1)} 

(1≤j≤ nv(x)). lmax2(x,j) represents the length of the longest path containing a segment v(x,i), …, 

v(x,j) (1≤i≤j) of the cycle, and not containing any other part of the cycle. Thus, the path starts at 

some vertex v(x,i) (i≤j) or somewhere in its subtree (if v(x,i) is a cut vertex), walks along the cycle 

from v(x,i) to v(x,j) (in increasing order of the vertex indices) and either ends at v(x,j) or at a vertex 

in v(x,j)’s subtree (if v(x,j) is a cut vertex). B1(x)=max{lmax2(x,j)|1≤j≤nv(x)}. 

 In order to compute B2(x), we need to compute the values lsum1(x,j) and lsum2(x,j), defined 

previously. Afterwards, we compute lmax3(x,j) (lmax3(x,1)=lsum1(x,1)+l(x,1) and 

lmax3(x,j>1)=max{lmax3(x,j-1), lsum1(x,j)+l(x,j)}) and lmax4(x,j) (lmax4(x,nv(x))= 

lsum2(x,nv(x))+l(x,nv(x)) and lmax4(x,j<nv(x)) = max{lmax4(x,j+1), lsum2(x,j)+l(x,j)}). 

 B2(x) is equal to we(v(x,1),v(x,nv(x))) + max{lmax3(x,j)+lmax4(x,j+1)| 1≤j≤nv(x)-1}.  

 lmax3(x,j) is the length of the longest path starting at v(x,1) and ending at a vertex v(x,i), 

with i≤j (or in v(x,i)'s subtree). lmax4(x,j) is the length of the longest path starting at v(x,nv(x)) and 

ending at a vertex v(x,i), with i≥j (or in this vertex's subtree). Thus, the path corresponding to B2(x) 

is composed of the edge (v(x,1), v(x,nv(x))), a segment of the cycle starting at v(x,1) and ending at 

some vertex v(x,i1) (1≤i1), a segment of the cycle starting at v(x,nv(x)) and ending at some vertex 

v(x,i2) (i1<i2≤nv(x)), plus the longest paths starting at v(x,i1) and v(x,i2) and ending in their subtrees 

(these paths may be void). All the values can be computed in O(n+q) time, where n is the number 

of vertices of the graph and q=O(n) is the number of vertices of TBC. 

 Note that unlike the longest path problem, finding the longest (maximum weight) cycle in a 

cactus graph (in linear time) is quite easy. We first perform a DFS traversal of the cactus (starting 
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from an arbitrary vertex r) and, thus, we obtain a DFS tree rooted at r (let parent(u) be the parent of 

the vertex u in this DFS tree). Then, for each vertex u, we compute plen(u): if u=r then 

plen(r)=wv(r); otherwise, plen(u)=plen(parent(u))+we(parent(u), u)+wv(u). 

 We also compute, for each vertex u, its level in the DFS tree: level(r)=1 and 

level(u≠r)=level(parent(u))+1. Afterwards, we consider all the edges (u,v) which are not part of the 

DFS tree. Each such edge closes a cycle in the DFS tree and all these cycles are disjoint. The weight 

of this cycle is wlen(u,v)=we(u,v)+(if (level(u)<level(v)) then (plen(v)-plen(u)+wv(u)) else (plen(u)-

plen(v)+wv(v))). 

 The maximum weight of a cycle is max{wlen(u,v) | (u,v) is an edge which does not belong to 

the DFS tree}. 

7.2.2. Discrete 1-Center and Diameter 

 In order to compute the center vertices and the diameter of a cactus, we will use the same 

block-cut vertex tree TBC. For each node x of TBC, we will compute A(x)=the longest shortest path 

starting at C(x), which may contain only vertices located in node x’s subtree. For each vertex i of 

the cactus, we will compute l1(i), l2(i) and l3(i), the lengths of the longest, 2
nd

 longest and 3
rd

 longest 

shortest paths in the graph which start at the vertex i, with the condition that these 3 paths are 

computed at different nodes of TBC. 

 Initially, the values l1(i), l2(i) and l3(i) are set to 0. We also maintain the nodes xp(i) of TBC 

where the corresponding lp(i) value was computed (initially, xp(i)=0, p=1,…,3). During the 

algorithm described below, we will frequently identify a candidate value val (computed at a node x 

of TBC) for l1(i), l2(i) and l3(i). Every time we do this, if we have xp(i)=x (for some p=1,…,3), we 

replace lp(i) by max{lp(i), val} and then re-sort the values l1(i), …, l3(i). If x≠xp(i) (for all p=1,…,3), 

we will compute val1, val2 and val3, the 1
st
, 2

nd
 and 3

rd
 maximum values in the (multi)set {val, l1(i), 

l2(i), l3(i)}. The new values of l1(i), l2(i) and l3(i) will be val1, val2 and val3 (in this order); we then 

also set the values xp(i) accordingly (p=1,…,3). 

 For a type C node x of TBC, we have A(x)=max{wv(C(x)), max{A(y)|y is a son of x}}. For a 

type BC node x of TBC, we consider an ordering of the vertices in the corresponding cycle 

(biconnected component): v(x,1)=C(x), v(x,2), …, v(x,nv(x)). We will compute WC(x), the sum of 

all the edge and vertex weights in the cycle. Afterwards, we will double this list of vertices, by 

attaching a copy of the list at the end of the list. Thus, we will have nv'(x)=2·nv(x) elements in the 

list, with v(x,j)=v(x,j-nv(x)) (nv(x)<j≤nv'(x)). 

 We will compute the same lsum1(x,j) and l(x,j) values as in the longest path case (for all the 

nv'(x) vertices). We will traverse all the vertices in order, from 1 to nv'(x), and maintain a sorted 

double-ended queue (deque) DQ. All the pairs (p,val) in DQ will be maintained in increasing order. 

Whenever we want to add a value (q,val) at the end of DQ, we will repeatedly remove the element 

(p,val') at the end of DQ, as long as val'≥val; only after this will we insert (q,val) at the end of DQ. 

 For each vertex v(x,1≤j≤nv'(x)), we will first add (j,l(x,j)+wv(v(x,j))-lsum1(x,j)) at the end of 

DQ. Then, we will repeatedly remove the element (p,val) at the front of DQ, as long as (p<j) and 

(lsum1(x,j)-lsum1(x,p)-wv(v(x,j))>(WC(x)-wv(v(x,j))-wv(v(x,p)))/2). 

 After this, a candidate value for l1(v(x,j)), l2(v(x,j)) and l3(v(x,j)) will be computed (at node x) 

as follows: (1) let (p,val) be the first element in DQ; (2) the candidate value will be val+lsum1(x,j). 

At the end of this stage, we will consider a different ordering v': v'(x,1)=v(x,1) and 

v'(x,2≤j≤nv'(x))=v(x,nv'(x)-j+2) (this is the opposite ordering on the cycle, starting from v(x,1)). We 

will run the algorithm described in this paragraph again, considering the new ordering (we start 

from (re)computing the lsum1(x,j) and l(x,j) values, and then we traverse the vertices in the new 

order). After processing the node x (of type BC), we set A(x)=max{lp(C(x))|1≤p≤3}. 

 After running the algorithm for the entire tree TBC, we need to traverse the tree again, top-

down this time (i.e. we consider a node x before all of its sons). If x is a non-root node of type BC, 

we need to consider the following candidate values for l1(v(x,i)), l2(v(x,i)) and l3(v(x,i)) (considering 

the same ordering of the vertices, starting from v(x,1)=C(x)): for a vertex v(x,j>1), a candidate 

value (computed at node x) would be dist(v(x,1), v(x,j))+max{lp(v(x,1)))|1≤p≤3, xp(v(x,1))≠x} (the 
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last term is the length of the longest shortest path that starts at C(x) and does not pass through 

another vertex of x). 

 We have dist(v(x,1), v(x,j))=min{lsum1(x,j), WC(x)-lsum1(x,j)+wv(v(x,1))+ wv(v(x,j))} (i.e. 

the length of the shortest path between v(x,1) and v(x,j) on the cycle). 

 The radius of the cactus graph is r=min{l1(i)|1≤i≤n} and the diameter is 

max{l1(i)+l2(i)|1≤i≤n}. The center vertices of the graph are those vertices i with l1(i)=r. The 

complexity is O(n). 

7.3. Tree (K+P)-Centers 

 We consider a tree with n vertices, in which every vertex u has a weight wv(u) and every 

edge (u,v) has a length l(u,v). The p fixed servers are placed at some of the tree vertices. The 

weighted distance from a vertex u to a server v in the tree is wd(u,v)=wv(u)·dist(u,v), where dist(u,v) 

is the sum of the lengths of the edges on the unique path between u and v. We will binary search the 

minimum weighted distance WD, such that the weighted distance from every vertex u to the closest 

server is at most WD. For a candidate weighted distance WDcand, we will perform the following 

feasibility test. 

 For each vertex i, we compute dmax(i)=WDcand/wv(i). We root the tree at an arbitrary vertex 

r and traverse the tree bottom-up (from the leaves towards the root). We will maintain a counter nf, 

initialized to 0. For each vertex i we will compute the values: dmin(i)=the (non-weighted) distance 

to the closest server in T(r,i) and smin(i) the maximum distance away from i at which a new server 

needs to be placed. We initialize dmin(i)=+∞ and smin(i)=dmax(i). 

 If we have a fixed server placed at vertex i, we set dmin(i)=0 and smin(i)=+∞; if not, we 

traverse all the sons s(r,i,j) of vertex i and, for each son, we perform the following updates: 

dmin(i)=min{dmin(i), l(i,s(r,i,j))+dmin(s(r,i,j))} and smin(i)=min{smin(i), smin(s(r,i,j))-l(i,s(r,i,j))}. 

If (dmin(i)≤smin(i)) then we set smin(i)=+∞. If (i≠r) and (smin(i)<l(parent(r,i),i)) then: (1) in the 

discrete case, we place a server at vertex i and set dmin(i)=0; (2) in the continuous case, we place a 

server on the edge (i, parent(r,i)), at distance smin(i) from i and, after this, we set dmin(i)=-smin(i). 

 In both situations ((1) and (2)), we increment nf by 1 afterwards, and then set smin(i)=+∞. If 

(i=r) and (smin(i)<dmin(i)) then we place a new server at vertex r and increase nf by 1. If, at the 

end, we have nf≤k, then WDcand is feasible; otherwise, it is not. The time complexity of the 

algorithm is O(n·log(WMAX)) (WMAX is max{wv(i)} multiplied by the length of the longest path). 

 For the connected k-center problem in trees, we could only find a solution for the 

unweighted case (i.e. all the vertex weights are equal to 1). We will start with the case where all the 

edges have unit length. In this case, we can repeatedly remove the layers of leaves from the tree, 

until we remain with only one or two vertices (the tree center(s)). 

 We consider the layers as l(1), …, l(nl), sorted from the center(s) towards the leaves of the 

tree (l(1) contains the tree center(s)); each layer l(i) has nlv(i) vertices. We will find the largest 

index j, such that nlv(1)+…+nlv(j)≤k and (j=nl or nlv(1)+…+nlv(j+1)>k) by linear or binary 

search. We will place the k centers at all the vertices in l(1), …, l(j). 

 When the edges have different lengths, we compute for each vertex i the value dmax(i)=the 

largest distance from vertex i to one of the tree leaves. Then, we sort the vertices such that 

dmax(v(1))≥…≥dmax(v(i)). For both the discrete and continuous cases, we will place the k servers at 

v(1), …, v(k). It is easy to prove that they form a connected subset. The algorithm has linear time 

complexity in the unit edge length case and O(n·log(n)) for the case with different edge lengths. 

7.4. Centers on Wireless Path Networks 

 In this section we consider a wireless path network modeled as a set of n points located on 

the real line. Each point i is a node of the network, is located at coordinate xi and has a weight wi 

(e.g. its expected service demand or its expected amount of requested data). We are interested in 

placing (at most) k identical servers, each of them easily covering all the nodes at a distance equal 

to L/2 around them. In geometric terms, each server is the midpoint of an interval of fixed length 

L≥0, which covers all the points contained in the interval. 
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 The weighted distance from a point xj to an interval [a,b] is: 0, if a≤xj≤b ; wj·(a-xj), if xj<a ; 

wj·(xj-b), if xj>b. If the weighted distance is non-zero, the corresponding vertex needs to increase its 

power consumption in order to reach the closest server. We want to place the k servers (intervals) in 

such a way that the maximum weighted distance from a point to the closest interval is minimized. 

Furthermore, p fixed servers are already placed. 

 We will binary search the weighted distance WD with a specified accuracy. The feasibility 

test consists of computing for each point i an interval [lxi,rxi] [Andreica et al., 2008], where the left 

endpoint of one of the k intervals can be placed. We will first verify if any of these intervals 

contains one of the left endpoints of the p fixed servers. We will ignore all such intervals in the 

decision algorithm, because the points associated with these intervals are “satisfied” by the p fixed 

servers (i.e. are already within weighted distance WD from one of these servers). 

 In order to exclude the points which are satisfied by the p fixed servers, we sort the intervals 

assigned to each point and the left endpoints of the intervals of the fixed servers and maintain a set 

S of open point intervals (an interval is opened when its left endpoint is encountered and closed 

when we encounter its right endpoint). When we reach the left endpoint of a fixed server, we mark 

all the open point intervals at that moment (and remove them from S). 

 In the end, we sort the unmarked intervals and we compute the minimum number of points 

np such that every interval is pierced by at least one point. If np>k, then a larger candidate weighted 

distance is tested; otherwise, we test a smaller one. 

 We will now present some improvements for k=1 and p=0. In Solution 1, the feasibility test 

becomes linear (no sorting is required) and consists of comparing the smallest right endpoint sre of 

an interval [lxi,rxi] against the largest left endpoint lle of an interval [lxj,rxj]. If sre≥lle, then the 

candidate weighted distance is feasible; otherwise, it is not. 

 In Solution 2 we define a function dmax(q)=the maximum weighted distance from one of 

the n points to the interval [q,q+L]. This function is unimodal, i.e. it descends up to q=q0, where 

dmax(q0) is the minimum value of dmax(q) and then it ascends again. As it is well-known, we can 

find the minimum value (and x-coordinate) of a unimodal function by using binary search on its 

“derivative”. 

 To be more precise, we binary search the optimal value q0 in the interval [a,b], where a is 

the x-coordinate of the leftmost point and b is max{a,c-L}, with c being the x-coordinate of the 

rightmost point. The feasibility test for a value q consists of computing dif(q)=dmax(q+ε)-dmax(q), 

where ε>0 is a very small constant. If dif(q)≥0, then q≥q0; otherwise, q<q0. The feasibility test runs 

in linear time (it computes in O(1) time the weighted distance from each point to the interval and 

selects the maximum distance). 

 Although the solutions presented above are more efficient than the standard algorithm for 

interval k-centers [Andreica et al., 2008] (for k=1 and p=0), we can improve the complexity to 

O(n), if the points are sorted. We will first introduce a linear algorithm for computing the upper-

envelope of right-oriented half-lines. 

7.4.1. Upper Envelope of Right-Oriented Half-Lines 

Let’s consider a set of n half lines with their origins at (xi,0, yi,0) and with equations of the 

form yi(x)=yi,0+wi·(x-xi,0) (1≤i≤n), defined only for x in [xi,0,∞] (wi is the slope of the half line). The 

upper envelope of these half-lines consists of a set of line segments (except for the last part, which 

is a half line). Each line segment (xa,ya)-(xb,yb) is part of a half-line i such that the values yi(x) 

(xa≤x≤xb) are larger than the values of all the other half lines. 

We will present a linear time algorithm for computing the upper envelope of these half-lines, 

if they are given in sorted order of their origins (ascending after xi,0 and descending after yi,0, for 

equal values of xi,0), i.e. for i<j we have (xi,0<xj,0) or ((xi,0=xj,0) and (yi,0>yj,0)). We will assume that 

no two half-lines i and j have the same origin; if they do, then we will keep the one with the larger 

slope. Moreover, we need to have the following condition: the origins of every half line i (xi,0, yi,0) 

must be located below every half line j<i. With this condition, we present the algorithm described 

below. 
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Pseudocode 7-1. Algorithm for Computing the Upper Envelope of Right-Oriented Half-Lines.  

We will maintain a stack, containing pairs (hl, xfirst), where hl is the index of a half-line and 

xfirst is the smallest x value where the y-value of the half line hl is the largest among the values of 

all the other half lines. The pairs will be sorted in increasing order of both hl and xfirst. We will 

insert the half-lines in the stack in increasing order of their index. If the current half-line i has a 

slope which is smaller than the slope of the half-line hl at the top of the stack, then we will discard 

the half-line i, because it will not be part of the upper envelope. Otherwise, we will compute the x-

value xcross where i surpasses hl. If xcross is smaller than the value xfirst of hl, then we remove hl 

from the top of the stack and repeat the procedure; otherwise, we insert the pair (i, xcross) at the top 

of the stack. The pseudocode is given in Pseudocode 7-1. 

 At the end of the algorithm, the pairs on the stack define the upper envelope of the n half-

lines. A pair (hl(b), xfirst(b)), located on top of a pair (hl(a), xfirst(a)) defines a line segment 

(xfirst(a), yhl(a)(xfirst(a))) – (xfirst(b), yhl(a)(xfirst(b))) of the upper envelope. The topmost pair 

(hl(top), xfirst(top)) defines the last part of the upper envelope, given by the half-line hl(top), 

starting from x=xfirst(top). The time complexity of the algorithm is O(n), because each half line is 

pushed on and/or popped from the stack at most once. Some particular situations where this 

algorithm can be used are when all the lines have their origins on the OX or the OY axis. 

7.4.2. Interval 1-Center on a Path Network 

Before proceeding to the algorithm, we should notice that if L≥xn-x1, then all the points can 

be covered by one interval of length L and, thus, the weighted distance is 0. Otherwise, we assign to 

each point i a right-oriented half-line with slope wl(i)=wi, starting at (xi,0). We will compute the 

upper-envelope of these half-lines, restricted to the interval [x1,xn]. 

In order to achieve this, we can use the linear time algorithm presented before, because the 

half-lines assigned to the n points satisfy the conditions required by that algorithm. Thus, the upper-

envelope of these half-lines consists of lp points a(1), a(2), ..., a(lp) and lp-1 indices f(1), f(2), ..., 

f(lp-1), where: a(1)=x1; a(lp)=xn; any two intervals (a(i),a(i+1)) are disjoint; the union of the 

intervals [a(i),a(i+1)] is [x1,xn]; the half-line associated to point f(i) has the largest y-value among 

all the other half-lines on the interval [a(i),a(i+1)]. With this upper envelope, we can compute in 

O(1) time the largest distance dleft from a point located to the left of an interval [q,q+L], if we 

know the interval [a(j),a(j+1)] which contains q (dleft=wl(f(j))·(q-xf(j))). 

Afterwards, we assign to each point i a left-oriented half-line with slope wr(i)=wi, starting at 

UpperEnvelopePositiveHalfPlane(): 
stack={(1,x1,0)} 

for i=2 to n do { // i=2, 3, …, n 

  (hl, xfirst)=stack.top() 

  if (wi≤whl) then continue // jump to the next iteration 

  popped=true 

  while ((stack.size()>0) and (popped=true)) do { 

    (hl, xfirst)=stack.top() 

    xcross=the crossing point of half-lines i and hl 

    if (xcross≤xfirst) then { 

      stack.pop() 

      popped=true 

    } 
    else popped=false 

  } 
  if (stack.size()>0) then stack.push((i, xcross)) 

else stack.push((i, xi,0)) 

} 
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(xi,0). By running the same linear algorithm for computing the upper envelope and considering the 

half-lines from right to left, we obtain the upper-envelope of this second set of half-lines. More 

exactly, we obtain rp points, b(1), …, b(rp), such that b(1)=x1, b(rp)=xn, every two intervals 

[b(i),b(i+1)] are disjoint and their union is [x1,xn]. We also obtain the rp-1 indices g(1), …, g(rp-1), 

meaning that the half-line assigned to point g(i) has the largest y-value among all the other half-

lines on the interval [b(i),b(i+1)]. lp and rp are of the order O(n). 

We will now traverse in O(n) time the intervals [a(i),a(i+1)] with the left endpoint q of a 

length L interval, while the right endpoint q+L traverses the [b(j),b(j+1)] intervals. We start with 

q=a(1) and find the interval [b(v),b(v+1)] containing q+L. 

For each position of q and considering that q is located in [a(u),a(u+1)] (q<a(u+1)) and 

q+L is located in [b(v),b(v+1)] (q+L<b(v+1)), we define d(q)=min{a(u+1)-q, b(v+1)-(q+L)}. 

We need to compute the minimum value of the maximum weighted distance if the left 

endpoint of the interval belongs to [q,q+d(q)]. Let’s consider yleftu(p)=the value of the right-

oriented half-line assigned to point f(u), at the coordinate p and yrightv(p)=the value of the left-

oriented half-line assigned to point g(v), at the coordinate p+L. Thus, we want to compute 

min{max{yleftu(p),yrightv(p)}| q≤p≤q+d(q)}. 

The candidate values of p which could minimize the maximum weighted distance are p=q, 

p=q+d(q) and p=peq, where, if it exists, peq is the coordinate such that yleftu(peq)=yrightv(peq). 

Since yleftu and yrightv are linear functions, we can compute peq in O(1) time by interpreting yleftu 

and yrightv as straight lines instead as half-lines (peq is the x-coordinate of the point of intersection 

of the two lines) and then verifying if peq belongs to [q,q+d(q)]. 

After this, we increment q by d(q). If q becomes equal to a(u+1), we increment u by 1; if 

q+L becomes equal to b(v+1), we increment v by 1. We stop when v>rp. 

The following table shows the running times of the algorithm described above and Solution 

1 (described previously). In Solution 1, the answer was searched for with a precision of 4 decimal 

digits. The range of the coordinates was [0,10
8
]. 

Table 7-1. Running Times: O(n·log(WMAX))-vs-O(n). 

N L O(n·log(WMAX)) (Solution 1) O(n) 
1000000 17 3,1 sec 0,78 sec 

1000000 900000 3,2 sec 0,78 sec 

900000 0 3,2 sec 0,73 sec 

999999 100000 3,4 sec 0,81 sec 

100000 234567 0,4 sec 0,07 sec 

7.5. An Algorithmic Framework for Some Optimization Problems in Tree 
Networks 

 In this section we introduce an algorithmic framework which will be used in the following 

section for developing (new) solutions for the connected k-center and the (restricted) connected k-

median in a tree. The framework is applicable in the following situation. Let’s assume that we want 

to compute a subset of vertices of a tree, subject to certain restrictions, such that the value of a 

global property is optimized. Let’s also assume that we know how to compute the optimal subset, 

with the restriction that the subset contains a given vertex i (algorithm A(i)). This computation is 

performed bottom-up in Q(n) time, by rooting the tree at the vertex i. 

 In order to compute the optimal subset, an easy solution would be to root the tree at every 

vertex i, run the algorithm for each vertex, and choose the best solution obtained this way. This 

would take O(n·Q(n)) time. For some problems, we can do better and maintain the Q(n) time 

complexity, by using a top-down approach. Let’s assume that V(r,i) is a tuple of values computed 

for each vertex i of the tree, during the execution of the algorithm A(r) (with vertex r as the root). 

V(r,i) is computed based on the values V(r,s(r,i,j)) of the sons of vertex i. For the root r, we can 

derive the optimal solution based on the values V(r,r), but we cannot do this for the other vertices 

i≠r, because the values V(r,i) are only based on the vertices in T(r,i). Thus, we are interested in 

computing V(i,i) for each vertex i. 
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 The proposed algorithmic framework consists of two stages. In the first stage, we choose an 

arbitrary vertex r and run the algorithm A(r). This way, we compute the values V(r,i) for every 

vertex i. The 2
nd

 stage consists of the following recursive algorithm, called with the vertex r as its 

(first) argument. 

 We only need to define the functions UpdateRemove and UpdateAdd. UpdateRemove 

computes the value V(root,i) based on the same values which determine V(i,i) (V(r,s(r,i,j)) and 

V(i,parent(r,i))), from which we must disconsider the son s(r,i,j)=root. UpdateAdd computes the 

value V(i,i) based on the values V(r,s(r,i,j)) of vertex i’s sons (which determine V(r,i)), at which we 

add an “extra son”, the vertex parent(r,i), which contributes with V(i,parent(r,i)). 

 The most straight-forward implementation is to reconsider all the current sons of a vertex 

(which may include its former parent and may exclude one of its former sons) and compute the 

required values the same way they are computed in the algorithm A. Let’s assume that algorithm A 

takes O(ns(r,i)
c
) time to compute the values for a vertex i (thus, Q(n)=O(n

c
)). If we use the straight-

forward implementation, the extra time complexity for each edge (parent(r,i),i) would be 

O(ns(r,parent(r,i))
c
). Thus, the overall time complexity would be O(n

c+1
)=O(n·Q(n)). 

 In case the degree of every vertex is bounded by a constant D, then the time complexity 

remains O(Q(n)) and the straight-forward implementation is acceptable. Even if the degree is not 

bounded, implementing things this way may still produce large improvements over the obvious 

solution, in terms of running time. However, if we consider the star with one central vertex and n-1 

leaves, we can see that we obtain no improvement over the obvious solution of considering every 

vertex as a possible root of the tree. 

 
Pseudocode 7-2. Functions of the Algorithmic Framework for Optimization Problems in Trees. 

7.5.1. Connected K-Center and K-Median 

 Let’s assume that we have a tree, rooted at a vertex r. Each tree edge (parent(r,i),i) has a 

weight w(r, parent(r,i), i), such that w(r,parent(r,i),i))>w(r, i, p) (for any i and p≠parent(r,i)); that 

is, the weight of the edges (parent(r,i), i) are larger than the weights of the edges in T(r,i). We want 

to find a connected subset S composed of k tree vertices, such that r∈S and the sum (maximum) of 

the weights of the edges not connecting two vertices u and v from S is minimized. 

 A connected subset composed of k vertices implies that there are k-1 edges whose weights 

are not added to the sum (maximum). The best solution would be obtained if we could select the k-1 

edges with the largest weights. A problem that could occur is that the subset of the endpoints of the 

k-1 largest edges is not connected. However, as it was proven in [Yen and Chen, 2006], it is 

impossible for this subset not to be connected. Let’s assume that the subset is not connected. That 

means that there is an edge (parent(r,u),u) which is not part of the set of k-1 edges, but some edges 

in T(r,u) were selected. This is impossible, because w(r,parent(r,u), u) is larger than the weights of 

the edges in T(r,u). Thus, if we selected an edge in T(r,u), we must have also selected the edge 

(parent(r,u), u). 

 In order to select the k-1 largest edges, we insert all the n-1 tree edges into a max-heap HT, 

from which we extract the desired edges. Thus, in O(n·log(n)) time, we can solve this problem. 

Let’s assume that the problem is extended as follows. If we choose a different vertex r’ as the root 

of the tree, the weights of the edges do not stay the same. However, they change according to the 

following restrictions. When considering as the new tree root a vertex r’ which is a son of r, only 

TopDownTraversal(i, r): 
if (i≠r) then { 

Compute(parent(r,i), i, r); Compute(i, i, r) 

} 
for j=1 to ns(r,i) do TopDownTraversal(s(r,i,j), r) 
 

Compute(i, root, r): 
if (i≠root) then V(root,i)=UpdateRemove(i, root) 

else V(i,i)=UpdateAdd(i,  parent(r,i), r) 
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the weight of the edge (r’,r) changes (it does not necessarily increase, but its new weight is larger 

than all the weights of the edges located in r’s subtree). We will use the algorithmic framework 

introduced in the previous section. 

 Let’s assume that we have a min-heap HS which maintains all the edges in the solution for 

the vertex r as the root (the other edges are in HT). In the UpdateRemove function, if (r,r’) is in HS, 

we remove it from HS and insert it in HT; otherwise, we remove the edge with the minimum weight 

from HS and insert it in HT. In the UpdateAdd function, we add the edge (r’,r) to HS, considering 

its new weight (removing it from HT). 

 For the min-sum case, we will also maintain the sum esum of the edges which are outside 

HS. Initially, esum=the sum of all the edges in HT. Whenever we remove (insert) an edge from 

(into) HT, we decrease (increase) esum by the (current) weight of that edge. At any time, the 

maximum weight of an edge in HT (for the min-max case) or the value of esum (for the min-sum 

case) are the cost corresponding to the current root. Thus, in O(n·log(n)) time, we can compute the 

optimal solutions for every vertex i as the tree root (the alternative would have been to root the tree 

independently at every vertex and recompute the solution from scratch every time – this would have 

taken O(n
2
·log(n)) time). 

 We will now show how the (unweighted) connected k-center and a restricted version of the 

weighted connected k-median problem can be solved using the generic solution presented above, in 

O(n·log(n)) time. 

7.5.1.1. Unweighted Connected K-Center in Trees 
 We assume that every edge (u,v) of the tree has a length (e.g. delay, latency) l(u,v). We want 

to find a connected subset S composed of k vertices, such that the maximum distance from a vertex 

outside of S to the nearest vertex in S is minimized. The distance from a vertex u to a vertex v is 

d(u,v), the sum of the lengths of the edges on the (unique) path between u and v. The vertices in S 

need to form a connected subtree. 

 We will root the tree at an arbitrary vertex r and we will want to compute a connected subset 

S of k vertices which contains r. For each vertex i, we compute lmax(r,i)=the length of the longest 

path starting at i and ending at a vertex in T(r,i), and lmax2(r,i)=the length of the 2
nd

 longest path 

starting at i and ending in T(r,i). 

 We assign a weight we(r,parent(r,u),u) to each edge (parent(r,u),u): 

we(r,parent(r,u),u)=l(parent(r,u),u)+lmax(r,u). It is obvious that the weight of the edge 

(parent(r,u),u) is larger than all the weights of the edge in T(r,u). Furthermore, if we choose a 

connected subset of k vertices containing r, the maximum distance from a vertex outside of S to its 

closest vertex in S will be equal to the largest weight of an edge which does not connect two 

vertices in S. Thus, it is optimal to choose the k-1 edges having the largest weights. 

 When changing the root of the tree (a son r’ of the previous root r is lifted as the new root), 

only the weight of the edge (r’,r) changes. We will have lmax(r’,r)= lmax(r,r) if the path 

corresponding to this value did not pass through the vertex r’; otherwise, lmax(r’,r)=lmax2(r,r). For 

r’, lmax(r’,r’) and lmax2(r’, r’) are the smallest two values in the (multi)set {lmax(r,r’), lmax2(r,r’), 

l(r’,r)+lmax(r’,r)}. The new weight of the edge (r,r’) will be l(r,r’)+lmax(r’,r). We can now easily 

use the algorithm presented previously. If k=1, then we don’t need to use the heaps, as only the 

values lmax(i,i) are of interest, obtaining an O(n) solution for the unweighted tree center problem. 

7.5.1.2. Connected K-Median in Trees 
 Each vertex u is enhanced with a weight wv(u) (e.g. expected amount of data transferred 

from the servers). The k-median problem asks for a connected subset S composed of k vertices, such 

that the total sum of weighted distances from the vertices outside S to the corresponding closest 

vertex in S is minimized. The weighted distance from a vertex u to a vertex v is 

dw(u,v)=wv(u)·d(u,v), where d(u,v) is the sum of the lengths of the edges on the (unique) path 

between u and v. 

 For each vertex i, we will compute wvt(r,i)=the sum of the weights of the vertices in its 
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subtree; wvt(r,i)=wv(i)+wvt(r,s(r,i,1))+ … +wvt(r,s(r,i,ns(r,i))) (if i is a leaf,  wvt(r,i)=wv(i)). 

 We will assign to each edge (parent(r,i),i) a weight we(r,parent(r,i),i)= 

wvt(r,i)·l(parent(r,i),i). In the general case, this weight function does not imply the property 

required by the algorithm described previously (that we(r,parent(r,i),i) is larger than the weight of 

any edge in T(r,i)). We will restrict our attention to situations in which this property holds, e.g. 

when all the edge lengths are equal. 

 The minimum cost criterion (for a subset containing the vertex r) implies that the sum of the 

weights of the edges not connecting two vertices in S must be minimized. Thus, we again want to 

choose the k-1 edges with largest weights, which will form a connected subset of vertices. When 

lifting a vertex r’ as the new root (above the previous root r), we have: wvt(r’,r)=wvt(r,r)-wvt(r,r’) 

and wvt(r’,r’)=wvt(r,r). The new weight of the edge (r’,r) is wvt(r’,r)·l(r’,r). All the other edge 

weights and wvt(*) values stay the same. Thus, we can use the presented algorithm. 

7.6. Optimal Replica Placement in Tree Networks 

 A tree is an undirected, connected, acyclic graph. A tree may be rooted, in which case a 

special vertex r will be called its root. Even if the tree is unrooted, we may choose to root it at some 

vertex. In a rooted tree, we define parent(i) as the parent of vertex i and ns(i) as the number of sons 

of vertex i. For a leaf vertex l, ns(l)=0 and for the root r, parent(r) is undefined. The sons of a 

vertex i are denoted by s(i,j) (1≤j≤ns(i)). A vertex j is a descendant of vertex i if (parent(j)=i) or 

parent(j) is also a descendant of vertex i. We denote by T(i) the subtree rooted at vertex i, i.e. the 

part of the tree composed of vertex i, all of its descendants and all the edges connecting them. 

P(u,v) denotes the (unique) path between vertices u and v. 

 We consider a tree with n vertices, where every edge (u,v) has Q+3≥3 weights we(u,v,d) 

(1≤d≤Q+1) and every vertex v has Q weights wv(v,d) (1≤d≤Q), we want to identify k≥1 disjoint 

(not necessarily connected) subsets of vertices, satisfying the constraints: 

szmin(j,d)≤sz(j,d)≤szmax(j,d) (1≤j≤k; 1≤d≤Q-1), where sz(j,d) is the aggregate aggd of the weights 

wv(v,d) and we(u,v,d) of the vertices v and the edges (u,v) in the j
th

 subset (an edge (u,v) belongs to 

the j
th

 subset if both u and v belong to this subset). 

 szmin(*) and szmax(*) are given as lower and upper bounds on the subset sizes. The cost 

employed by the subsets is equal to the aggregate aggopt of the weights wv(v,Q), we(u,v,Q), 

we(u’,v’,Q+1), we(u’’,v’’,Q+2) and we(u’’’,v’’’,Q+3) of the vertices v and of the edges (u,v) and 

(u’,v’) such that:  

• the vertex v does not belong to any subset 

• u and v belong to the same subset 

• u’and v’ belong to different subsets 

• one of u’’ or v’’ belongs to a subset and the other belongs to no subset 

• neither u’’’ nor v’’’ belong to any subset 

 

 The vertices in each subset will store one replica of one of k replicated files in the network. 

We will root the tree at an arbitrary vertex r. Then, for each vertex i, we compute Copt(i, j, sz(a,d) 

(1≤a≤k; 1≤d≤Q-1))=the optimal cost (relative to the optimum function opt) of obtaining k subsets 

from the vertices of T(i) such that the aggregate of the d weights in the a
th

 subset is sz(a,b), with 

vertex i belonging to the set j (if j=0, then i does not belong to any subset). We will denote by ed the 

neutral element of the aggd operation, by eopt the neutral element of the aggopt operation, and by ∞ 

the worst values for the aggopt aggregate. Each vertex v must have at least one weight wv(v,d)≠ed 

(1≤d≤Q-1) (otherwise, we can increase Q by 1 and add a new weight to each vertex, such that the 

property is sastisfied). 

 For a leaf vertex l we have Copt(l, 0, sz(*,1≤d≤Q-1)=ed)=wv(l,Q), Copt(l, j≥1, sz(j,1≤d≤Q-

1)=wv(l,d), sz(a≠j,1≤d≤Q-1)=ed)=eopt and Copt(l, j, sz(a,d) (1≤a≤k; 1≤d≤Q-1))=∞ for all the other 

tuples (j, sz(a,d) (1≤a≤k; 1≤d≤Q-1)) except the ones mentioned earlier. 

 For a non-leaf vertex i, we compute the auxiliary table Caux(i, q, j, sz(a,d) (1≤a≤k; 1≤d≤Q-

1)), having the same meaning as Copt(*), except that only the first q sons are considered.  
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 We have Caux(i, 0, j, sz(a,d) (1≤a≤k; 1≤d≤Q-1)) as if i were a leaf (i.e. we have non-∞ values 

only for j=0 and sz(*,1≤d≤Q-1)=ed, and for j≥1, sz(j,1≤d≤Q-1)=wv(i,d) and sz(a≠j,1≤d≤Q-1)=ed). 

For each tuple (q≥1, j, sz(a,d) (1≤a≤k; 1≤d≤Q-1)) we first initialize Copt(i, q, j, sz(a,d) (1≤a≤k; 

1≤d≤Q-1))=∞ and then we consider all the tuples (q-1, j’, sz’(a,d) (1≤a≤k; 1≤d≤Q-1)) (with 

ed≤sz’(a,d)≤sz(a,d) aggd
-1

 we(i,s(i,q),d)).  

 For each considered tuple we set Caux(i, q>0, j, sz(a,d) (1≤a≤k; 1≤d≤Q-1))=opt{Caux(i, q, j, 

sz(a,d) (1≤a≤k; 1≤d≤Q-1)), Caux(i, q-1, j, sz(a,d) aggd
-1

 sz’(a,d) aggd
-1

 we(i,s(i,q),d) (1≤a≤k; 1≤d≤Q-

1)) aggopt Copt(s(i,q), j’, sz’(a,d) (1≤a≤k; 1≤d≤Q-1)) aggopt extra_cost(j, j’, i, s(i,q))}. 

 We have extra_cost(j, j’, u, v)=(if ((j=0) and (j’=0)) then we(u,v,Q+3) else if (((j=0) and 

(j’≠0)) or ((j≠0) and (j’=0))) then we(u, v, Q+2) else if (j≠j’) then we(u,v,Q+1) else we(u,v,Q)). 

Copt(i, j, sz(a,d) (1≤a≤k; 1≤d≤Q-1))=Caux(i, ns(i), j, sz(a,d) (1≤a≤k; 1≤d≤Q-1)). For the aggd 

operation, the ≤ relation is defined such that ed is the best value and ∞ is the worst value. 

 If all the weights wv(*,d) are ∞ (each vertex must belong to a subset), we can drop the 

values sz(k,d) from the state definition (and sz’(k,d) from the states of a vertex i’s son), because it 

can be derived from the values sz(1≤j≤k, d). 

 For a vertex i, sz(k,d)=wagg(T(i),d) aggd
-1

 (sz(1,d) aggd … aggd
 

sz(k-1,d)) 

(sz’(k,d)=wagg(T(s(i,q)),d) aggd
-1

 (sz’(1,d) aggd
 
… aggd sz’(k-1,d)). For an auxiliary state (i,q) 

(vertex i and its first q sons), sz(k,d)=wv(i,d) aggd
 
wagg(T(s(i,1)),d) aggd

 
… aggd

 
wagg(T(s(i,q)),d) 

aggd
-1

 (sz(1,d) aggd
 
… aggd

  
sz(k-1,d)). We denote by wagg(T(a), d)=the aggregate aggd of the 

weights wv(v,d) of the vertices v in T(a). For a leaf vertex a we have wagg(T(a),d)=wv(a,d) ; for a 

non-leaf vertex a we have wagg(T(a),d)=wv(a,d) aggd (wagg(T(s(a,1)),d) aggd … aggd 

wagg(T(s(a,ns(a))),d)). The presented technique is, in fact, an application of the multidimensional 

tree knapsack method. 

 If the subsets are required to be connected, then, when computing Caux(i, q, j≥1, sz(a,d) 

(1≤a≤k; 1≤d≤Q-1)), we will only consider  values of the form Copt(s(i,q), j’=j, sz’(a,d) (1≤a≤k; 

1≤d≤Q-1)) or Copt(s(i,q), j’≠j, sz’(a,d) (1≤a≤k; 1≤d≤Q-1) with sz’(j,d)=ed (1≤d≤Q-1). 

 The problem can be extended to the case when wv(v,d) for every vertex v and we(u,v,d) for 

every edge (u,v) are not weights, but sets of weights from which one value can be chosen. In this 

case, for a leaf l, we set Copt(l, 0, sz(*,1≤d≤Q-1)=ed)=opt{wv(l,Q)}. Then, we consider every weight 

w in wv(l) and set Copt(l, j≥1, sz(j,1≤d≤Q-1)=w, sz(a≠j,1≤d≤Q-1)=ed)=eopt. 

 For a non-leaf vertex i, we initialize Caux(i, 0, *, …, *) as if i were a leaf. Then, when 

computing Caux(i, q≥1, *, …, *), we will set Caux(i, q>0, j, sz(a,d) (1≤a≤k; 1≤d≤Q-1))=opt{Caux(i, q, 

j, sz(a,d) (1≤a≤k; 1≤d≤Q-1)), Caux(i, q-1, j, sz(a,d) aggd
-1

 sz’(a,d) aggd
-1

 w (1≤a≤k; 1≤d≤Q-1)) aggopt 

Copt(s(i,q), j’, sz’(a,d) (1≤a≤k; 1≤d≤Q-1)) aggopt extra_cost(j, j’, i, s(i,q)) | w ∈ we(i,s(i,q),d), 

ed≤sz’(a,d)≤sz(a,d) aggd
-1

 w}. In the extra_cost function we replace we(u, v, *) by opt{we(u, v, *)}. 

This situation corresponds to the multiple choice multidimensional tree knapsack problem. 

7.7. The Balanced Content Replication Problem on Trees 

In the balanced content replication problem, we are given k pieces of content of equal 

importance, which have to be placed in the n vertices of a tree network. Within each vertex, only a 

single piece of content can be placed. For each piece of content i (1≤i≤k), we define nvi as the 

number of vertices in which the piece was placed. Because each piece is of equal importance, the 

number of pieces placed in two different vertices should be approximately equal. More formally, 

|nvi-nvj|≤1, for any two pieces of content i and j. 

Each vertex of the tree is a server used both for storing a replica of some piece of content 

and for serving client requests. A client may require any piece of content and the server will get that 

piece from the nearest server possessing it. In order to minimize network traffic, it is desirable that 

replicas of the required piece of content be found very close to the server. In particular, the traffic is 

kept low if either the server possesses that piece of content or one of its neighbors does. In order to 

maximize the chance that some of its neighbors possess a required piece of content that the server 

does not possess, any two neighboring servers should not store the same piece of content. 

The problem translates into an equitable coloring of the tree network, using exactly k colors. 



 167 

A supplementary assumption that we consider is that the number of pieces is not smaller than the 

maximum number of neighbors a server has, i.e. that the number of colors is greater than or equal to 

the maximum degree of any vertex of the tree. 

We will present next a greedy algorithm for solving the k-equitable coloring problem in 

trees. Afterwards, we will present a linear time solution for the unrestricted vertex multicut 

(UVMC) problem in trees. Then, we define a new reliability metric for trees which is based on the 

UVMC problem. This reliability metric is evaluated on the output of the k-equitable coloring 

algorithm on multiple types of trees. 

7.7.1. A Greedy Algorithm for the K-Equitable Coloring Problem in Trees 

We will start with some definitions. If an edge (i,j) belongs to the tree, then i is a neighbor of 

j and j is a neighbor of i. The degree degi of a vertex i is equal to the number of its neighbors. The 

maximum degree of the tree is: 

}deg{maxD
i

 treein the vertex a is i
= .                                                     (7-5) 

If the tree has one or two vertices, then finding an equitable coloring is trivial. Another 

trivial situation is if the number of colors k is greater than or equal to n, because in this case, each 

vertex can be colored with a different color. Therefore, we will only consider the case n≥3 and k<n 

(and k≥D). 

We will transform the tree into a rooted tree, by choosing a vertex r as the root. This vertex 

can be any vertex whose degree is less than D. For n≥3 vertices, this is always possible. For 

instance, the root can be any vertex of degree 1 (such a vertex always exists), because the maximum 

degree D is greater than 1. Considering the rooted tree, each vertex has a parent (except the root) 

and all of its neighbors except for its parent become its sons. Vertex i has nsi sons. Each vertex of 

degree D has D-1 sons, which is the maximum number of sons any vertex may have. In an equitable 

coloring of a subtree or of a forest, we will call c a surplus color if there is one extra vertex colored 

with c, compared to the color having the minimum number of vertices colored with it. If the total 

number of vertices in the subtree is divisible by k, there will be no surplus colors. 

The algorithm will compute an equitable coloring for each subtree of the tree, in a bottom-

up fashion (from the leaves towards the root). When finding an equitable coloring for the subtree 

rooted at vertex i, several values will be computed (we denote by A mod B the remainder of the 

integer division of A and B): 

• nvtotali = the number of vertices in vertex i’s subtree (including i). 

• ncplusi = (nvtotali mod k) – the number of surplus colors in an equitable coloring of vertex 

i’s subtree. 

• colori = the color of vertex i in an equitable coloring of its subtree. 

• color_permi = a permutation which describes how the colors in vertex i’s subtree should be 

relabeled. 

During the first bottom-up traversal of the tree, the actual colors of the vertices are not fully 

computed. For each vertex i, we will know its color in an equitable coloring of the subtree rooted at 

i. This color will not necessarily be the final color of the vertex, because some of its ancestors might 

choose to relabel the colors in vertex i’s subtree. 

Relabeling colors is the main mechanism employed by the described algorithm. The 

relabeling is described as a permutation p, where the values y=p(x) have the meaning that if a 

vertex was assigned color x, then it will be reassigned the color y. The color_perm permutations 

form a hierarchy of relabeling permutations. 

The actual color of vertex i will be obtained by first composing all the color_perm 

permutations on the path from the root to vertex i into a permutation p and then assigning to vertex i 

the color p(colori). For instance, if the path from the root r to the vertex i is composed of the 

vertices r=v1, v2, ..., vq=i, then p=color_permv1 · color_permv2 · … · color_permvq. we will present 

next how to compute all the values mentioned above, especially the color_perm permutations, 

which will be used in a second top-down traversal of the tree. 
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If vertex i is a leaf, then vertex i’s color will be set to 1 and the color_perm permutation will 

be set to the identity permutation (1,2,..,k). If i is not a leaf, then an equitable coloring will be found 

for the subtree rooted at each son of i, independently. In order to combine all the colorings of the 

subtrees of vertex i’s sons, some colors will have to be relabeled, i.e. for some of the sons, the 

color_perm permutation will need to be changed. An entry color_permj(c) means that every vertex 

that was colored with color c in j’s subtree will need to be recolored with the color color_permj(c). 

Obviously, relabeling the colors in a subtree will not change the equitable coloring of that subtree 

(the actual colors of the vertices will be changed, but the difference between the number of vertices 

colored with any two distinct colors will still remain at most 1). 

The computation of an equitable coloring for the subtree rooted at a vertex i will maintain 

the following invariant: the ncplusi surplus colors will be the colors 1,2,...,ncplusi. Vertex i’s color 

will be ncplusi, if ncplusi>0, or 1, otherwise. 

We will now explain how to combine the equitable colorings of the subtrees rooted at vertex 

i’s sons into an equitable coloring of vertex i’s subtree. We will consider vertex i’s sons in some 

arbitrary order s1, s2, ..., snsi. After considering all the nsi sons, their colors will belong to the set 

{1,…,k-1}, so that it will be possible to assign color k to vertex i. Furthermore, the color k will not 

be a surplus color, so assigning color k to vertex i will lead to an equitable coloring of vertex i’s 

subtree. After assigning color k to vertex i, we will change color_permi accordingly, in order to 

maintain the invariant. 

After considering the first j-1 sons, the number of surplus colors will be: 

k mod )nvtotal(scplus
1j

1p

p1-j 









= ∑

−

=

.                                            (7-6) 

Moreover, the colors {1,2,..,cplusj-1} will be the surplus colors. When reaching the j
th

 son, 

each of the first j sons is in one of the following two states: active or inactive. If ncplussj=0, then sj 

is inactive, otherwise sj is active. If (ncplussj>0 and cplusj-1=0) or (cplusj-1 + ncplussj > k), then all 

the sons s1,…,sj-1 are made inactive and sj will be the only active son. A counter cactive is maintained, 

storing the number of currently active sons. 

If the j
th

 son is active, the colors in its subtree will be permuted in a cyclic manner, such that 

color c (1≤c≤k) becomes color ((cplusj-1+c-1) mod k)+1 (this change is applied to the color_permj 

permutation). Then, sj’s subtree is added to the forest composed of the subtrees of the first j-1 sons. 

With this addition, the invariant that the first cplusj colors are the surplus colors still holds. 

After that, sj’s color will be relabeled (whether it is active or not), according to some rules 

we will mention in the following paragraph. If sj is active, this relabeling needs to be “visible” to all 

the previous sons, but must not be “visible” to the sons which were not considered yet, i.e. it must 

also relabel the color classes of the previously considered sons, but not those of the sons which were 

not yet considered. 

This can be achieved by applying the relabeling directly to the color_permsp permutations of 

every son sp (p≤j), but this would lead to a O(n
2
·k) algorithm. Instead, we will maintain a stack of 

relabeling permutations. Then, after considering all the sons, we will need to compose all the 

permutations on the stack, from the top down to level lev into a permutation plev and then replace 

color_permslev by plev · color_permslev, for 1≤lev≤nsi. All the plev permutations can be computed in 

O(k·nsi) time overall, so this maintains the time complexity of the algorithm to O(n·k). 

As stated in the previous paragraph, sj’s color will be relabeled. If sj is an inactive son, then 

we will swap its color with color k-1. This swap will be represented as a relabeling permutation and 

can be applied to the color_permsj permutation only. The swap does not need to be visible to any of 

the other sons. Therefore, we will apply the swap to the color_permsj permutation and push on the 

stack the identity permutation. 

If sj is an active son, we would like to swap sj’s color with the color indicated by the counter 

cactive. This can also be achieved using a simple relabeling permutation, which swaps the two color 

classes. However, this could cause some problems, for instance, if sj’s color is k, because then the 

color c which will be relabeled to k might have been assigned to some other son. If this happens, it 

will be impossible to assign color k to vertex i in the end and the algorithm will be incorrect. 
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Pseudocode 7-3. First Stage of the K-Equitable Coloring Algorithm. 

The solution, however, is simple. We will swap not just two colors, but three. We will swap 

sj’s color with some color c which was not assigned to any previous son, and after that swap the 

GreedyEquitableColoringPhase1(i, k): 
if (nsi=0) then { 
  color_permi=(1,2,..,k) // the identity permutation 
  colori=nvtotali=1 

  ncplusi=1 mod k 

return 
} 
// find an equitable coloring for each of vertex i’s sons 

for each j=1 to nsi do 

  GreedyEquitableColoringPhase1(sj, k) 

nvtotali=cplus0=cactive=totalactive=0 

stack=empty 

for j=1 to nsi do { 

  ntotali=nvtotali+nvtotalsj 

  if (ncplusj=0) then { 

    Swap2(sj, k-1, k) 

    stack.push((1,2,..,k)) 

  } else { 
    CyclicPermutation(sj, cplusj-1, k)      

    cactive=cactive+1 

    totalactive=totalactive+1 

    if (cplus+ncplussj>k) then cactive=1 

    soncolor=color_permsj(colorsj). 

    if (soncolor>totalactive) then stack.push(Swap3(sj, cactive, totalactive, k)) 

    else { 
      perm=(1,2,..,k) 

      perm(soncolor)=cactive 

      perm(cactive)=soncolor 

      stack.push(perm) 

    } 
    if (cplusj-1+ncplusj=k) then cactive=0 

  } 
  cplusj=nvtotali mod k 

} 
// empty the stack 

lev=nsi 

plev+1=(1,2,..,k) 

while (not stack.isEmpty()) do { 
  plev=ComposePermutations(plev+1, stack.top(), k) 

  color_permslev=ComposePermutations(plev, color_permslev,k) 

  stack.pop() 

  lev=lev-1 

} 
// choose a color for the vertex i 

colori=k 

color_permi=(1,2,..,k) 

nvtotali=nvtotali+1 

ncplusi=(cplus+1) mod k 

Swap2(i, cplus+1, k) // relabel vertex i’s color with cplus+1 
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color c with the color cactive. These swaps can also be described by a relabeling permutation. Finding 

a color c not assigned to any previous son is easy: we will maintain a counter totalactive, denoting the 

total number of sons which have ever been active (including sj). Then, the color totalactive is just the 

color we need. The relabeling permutation will be pushed on the stack, as it needs to be visible to 

all the sons sp (p<j). This relabeling using three colors will be used only if sj’s current color is 

greater than the value of totalactive. Otherwise, the invariant that the surplus colors are the first ones 

will not hold. 

 
Pseudocode 7-4. Second Stage of the K-Equitable Coloring Algorithm. 

 
Pseudocode 7-5. Auxiliary Functions for the K-Equitable Coloring Algorithm.  

After adding all of vertex i’s sons, the obtained forest is equitably colored, the colors of 

vertex i’s sons belong to the set {1,..,k-1} and the first cplusnsi (0≤cplusnsi<k) colors are the surplus 

colors. By assigning the color k to vertex i, the coloring is kept equitable and valid. All that remains 

to be done is to relabel vertex i’s color with cplusnsi+1, in order to maintain the invariant that the 

ncplusi surplus colors in an equitable coloring of vertex i’s subtree are the colors 1,2,...,ncplusi. This 

is accomplished by swapping the colors k and cplusnsi+1 in the color_permi permutation. 

In order to find the actual color of each vertex, we will have to traverse the tree again, 

starting from the root (in a top-down fashion this time). We will maintain a stack of color 

permutations. The first permutation pushed on the stack will be the identity permutation. When 

going from some vertex i to one of its sons j, we will compose the color permutation on the top of 

the stack with color_permj and push this permutation on the stack. The permutation at the top of the 

stack will then be used for finding the real color of vertex j. When returning from a son j to its 

parent i, the permutation from the top of the stack is popped. 

It is easy to notice that both parts of the algorithm (the bottom-up computations and the top-

down assignment of real colors) take O(n·k) time. The two stages of the algorithm are described in 

Pseudocode 7-3 and 7-4. The auxiliary functions used by the algorithm are given in Pseudocode 7-5. 

7.7.2. The Unrestricted Vertex Multicut Problem 

We are given a connected graph G with V vertices and E edges, as well as H critical pairs 

(s1,t1), ..., (sH,tH). The Unrestricted Vertex Multicut (UVMC) problem asks for the minimum number 

CyclicPermutation(j, offset, k): 
for c=1 to k do { 

  color_permj(c)=((color_permj(c)+offset-1) mod k) 

+ 1 

} 

ComposePermutations(p1, p2,k): 
for c=1 to k do 
  presult(c)=p1(p2(c)) 

return presult 

Swap2(j, newcol, k): 
oldcol=color_permj(colorj) 

find c’ such that color_permj(c’)=newcol 

color_permj(c’)=oldcol 

color_permj(colorj)=newcol 

Swap3(j, newcol, auxcol, k): 
perm=(1,2,..,k) 

oldcol=color_permj(colorj) 

perm(oldcol)=newcol 

perm(newcol)=auxcol 

perm(auxcol)=oldcol 

return perm 
 

GreedyEquitableColoringPhase2(i, k, stack): 
real_color_perm = ComposePermutations(stack.top(), color_permi, k) 

stack.push(real_color_perm) 

real_colori = real_color_perm(colori) 

for j=1 to nsi do { 
  GreedyEquitableColoringPhase2(sj, k) 
} 
stack.pop() 
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of vertices which need to be removed in order to disconnect every critical pair of vertices, i.e. at 

least one vertex must be removed from the path between the two vertices of each critical pair 

(possibly even one or both vertices of the pair). When G is a tree, a simple polynomial time 

algorithm is presented in Pseudocode 7-6. 

 
Pseudocode 7-6. The Generic Algorithm for the Unrestricted Vertex Multicut Problem in Trees.  

The number of vertices removed at Step 4.1.1 is the minimum number of vertices which 

need to be removed in order to disconnect all the H critical pairs. The algorithm presented above 

can easily be implemented in time O(V·H). Step 1 only takes O(V) time. Computing the LCA of 

each pair in Step 2 can be done in O(V) time, so Step 2 takes O(V·H) time overall. Step 3 can be 

performed in O(H·log(H)) time. The connectivity test at Step 4.1 can be performed in O(V) time. 

Multiplying this by H, we obtain an O(V·H) time complexity for Step 4. 

7.7.3. A Linear Time Algorithm for the UVMC Problem on Trees 

The algorithm presented in the previous section has an obvious O(V·H) implementation. 

However, using more intelligent techniques, it can be implemented in O(V+H) time. 

Step 2 of the algorithm can be computed in time O(V+H) for all the critical pairs. In order to 

achieve this, we use the algorithm presented in [Bender and Farach-Colton, 2000]. The rooted tree 

is preprocessed in O(V) time. An array E containing the Euler tour of the tree traversal is produced, 

as well as an array L with the levels of the vertices, in the order in which they are encountered in the 

Euler tour. From the first array, a representative array R is computed: for each vertex u, R[u] 

represents the position of the first occurence of u in E. Now, in order to compute the LCA of two 

vertices u and v, we need to find the vertex having the minimum level and which is located between 

R[u] and R[v] in E. This is performed in O(1) time, by using a technique called Range Minimum 

Query (RMQ). The array L is first preprocessed in O(V) time, by splitting it into blocks of suitable 

sizes. Then, using this preprocessing, the minimum value between two given positions can be found 

in O(1) time. Therefore, the time complexity is O(H) for all the critical pairs. 

At the end of this step, we have two new arrays, pLCA and level, where pLCA[i] is the 

lowest common ancestor of the i
th

 pair of vertices and level[i] is the level of the i
th

 pair’s LCA. All 

the procedures presented in this paragraph are described in detail in [Bender and Farach-Colton, 

2000] and, as mentioned, lead to an O(V+H) time complexity. Implementing the other steps in 

O(V+H) is an original contribution of this book. 

Step 3 of the algorithm can be implemented in O(V+H) time, by using an array of linked-

lists LL. For each critical pair i, we will add the pair’s index at the beginning (or at the end) of the 

linked-list LL[level[i]], in O(1) time. Since level[i] is between 0 and V-1, the array LL only has V 

entries. Now, in order to sort the pairs, we will traverse the entries of LL from V-1 down to 0. If 

LL[i] is not empty, then we will traverse this linked-list and each element of the list is added to the 

end of an array sorted_pairs. The array sorted_pairs will contain the pairs in non-increasing order 

of their LCA’s level. It is obvious that, because of the order of the traversals, pairs with the LCA on 

larger levels (located lower in the tree) will be located before pairs with the LCA on smaller levels 

(located higher in the tree) in the sorted_pairs array. The overall complexity of this step is O(V+H). 

Creating the LL array takes O(V) time, inserting all the critical pairs in LL takes O(H) time and 

traversing the linked-lists in LL takes O(V+H) time. 

Step 1. root the tree at some vertex r and compute the parent-son relationships for all the 

vertices. 

Step 2. for each critical pair (si,ti) do: compute its LCA and the level of the LCA (the distance 

from the LCA to the root) 

Step 3. sort all the critical pairs in non-increasing order of the level of their LCA 

Step 4. for each critical pair (si, ti), in the sorted order, do 

Step 4.1. if si and ti are not already disconnected then 

Step 4.1.1. remove the LCA of si and ti from the tree 
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Implementing Step 4 in O(V+H) time is the trickiest part of the algorithm. We will maintain 

an array of boolean values, marked. For each vertex of the tree, this array will tell us if the vertex 

was marked or not. Initially, no vertex is marked. We will consider the critical pairs in the order 

produced at Step 3. Checking if the two vertices of the pair are disconnected will be performed in 

O(1) time, by simply inspecting the marked array. If at least one of the two vertices was marked, 

then the two vertices were disconnected because of the removal of the LCA of a previous pair. If 

they are still connected, we will “remove” and mark their LCA, as well as mark all the unmarked 

vertices located in their LCA’s subtree. 

This time, removing a vertex from the tree does not mean deleting it from the tree, together 

with the incident edges. The tree is not modified, only a counter with the number of “removed” 

vertices is increased. 

Let’s first analyze the correctness of this algorithm. The part that needs to be considered is 

the connectivity test for the two vertices si and ti of a critical pair i. For this, we use Theorem 1. 

Theorem 1: When considering a critical pair (si,ti) in Step 4 of the algorithm and (marked[si]=True 

or marked[ti]=True), then the two vertices of the pair have already been disconnected. 

Proof. Without loss of generality, we will consider that vertex si is marked (ti could be marked, too). 

If si is marked, this is because some ancestor k of si (a vertex on the path from si to the root of the 

tree) was removed and this lead to all the vertices in k’s subtree being marked. This ancestor k was 

the LCA of the vertices of a pair considered in Step 4 before the pair i. Because the levels of the 

LCAs of the pairs are sorted in non-increasing order, vertex k’s level must be greater than or equal 

to level[i]. Note that all the ancestors of si whose level is greater than or equal to level[i] are located 

on the path between si and pLCA[i] (including the endpoints of the path, too). Therefore, we 

conclude that at least one vertex on the path between si and pLCA[i] was removed previously. 

Now it is easy to prove that the vertices si and ti are disconnected. In the tree, the path from 

si to ti is unique. We will consider this path as being composed of two parts: the path from si to 

pLCA[i] and the path from pLCA[i] to ti. Since we know that at least one vertex on the path from si 

to pLCA[i] was removed previously, this means that at least one vertex on the path from si to ti was 

removed, which concludes our proof. 

 
Pseudocode 7-7. The TraverseAndMark Function. 

Theorem 1 proves the correctness of the algorithm, but the time complexity of Step 4 is not 

obvious, yet. There could be O(V) vertices removed and each of them may have O(V) unmarked 

vertices in its subtree, which would make the time complexity O(V
2
+H). This is where we use of 

the Theorem 2: 

Theorem 2. If some vertex v of the tree is marked, then all the vertices in v’s subtree are marked, 

too.  

Proof. If v is the LCA of some pair which is removed in order to disconnect the vertices of that pair, 

then we will mark v and all the unmarked vertices in its subtree. Therefore, all the vertices in v’s 

subtree will be marked. If v is not one of the removed vertices, then v was marked because of the 

removal of some ancestor k of v. When vertex k was removed, all the vertices in vertex k’s subtree 

were marked. Since all the vertices in vertex v’s subtree also belong to vertex k’s subtree, they were 

marked, too, and this concludes the proof. 

Using Theorem 2, we can use the recursive algorithm TraverseAndMark, presented in 

Pseudocode 7-7, for marking the unmarked vertices in the subtree of a vertex v. In this algorithm we 

TraverseAndMark(v): 
  marked[v]=True 

  for each vsonsw ∈ do 

    if (not marked[w]) then 

      TraverseAndMark(w) 
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denote by sonsv the set of sons of the vertex v. 

TraverseAndMark marks only the unmarked vertices in the subtree of the vertex v given as an 

argument. Since no vertex is marked twice, TraverseAndMark is called at most V times during Step 

4 of the algorithm. During each call, all the sons of the vertex v given as an argument are considered. 

Overall, all the calls do not take more time than calling TraverseAndMark for the root of the tree, 

which takes O(V) time. Therefore, Step 4 of the algorithm has time complexity O(V+H). The 

pseudocode of the whole algorithm is given in Pseudocode 7-8. 

 
Pseudocode 7-8. The Linear Algorithm for the Unrestricted Vertex Multicut Problem in Trees.  

7.7.4. A New Reliability Metric for Trees 

We define the reliability of a tree as the number of vertices whose removal disconnects a 

carefully chosen set of H critical pairs, divided by the total number of vertices belonging to at least 

one pair. The way critical pairs are defined depends on the purpose of the tree network. They could 

be pairs of vertices between which the highest amounts of traffic are recorded or pairs of vertices 

which, if disconnected, would highly compromise the performance of the network. We will choose 

the situation in which tree networks are used for balanced content replication and define the critical 

pairs according to the specific communication patterns of this situation. We present evaluation 

results of the reliability metric in this case. 

We considered two types of test scenarios. For the first type, we chose different values for 

the following parameters: the number of vertices of the tree, the maximum degree, the number of 

leaf vertices and the number of colors (pieces of content). Then, using the algorithm presented 

earlier, we equitably colored the tree (we chose a balanced distribution of content replicas). We then 

chose an extra parameter C, representing the number of vertices used for serving client requests; the 

actual vertices were then chosen randomly. The critical pairs were the pairs (i,j) where i is a vertex 

serving client requests and j closer to i than other vertices q colored with the same color as vertex j. 

The results are shown in Table 7-2. 

UVMC(tree with V vertices, H pairs (s1,t1), ..., (sH,tH)): 
Step 1. Choose a root r and compute the parent-son relationships for all the vertices of the 

tree. 

Step 2. Compute the arrays pLCA and level: pLCA[i] is the lowest common ancestor of the 

ith pair and level[i] is the level of their LCA in the tree. 

Step 3. 

for l=0 to V-1 do LL[l]=empty 

for i=1 to H do LL[level[i]].add(i) 

sorted_pairs=empty 

for lev=V-1 down to 0 do { 

  if (LL[lev] is not empty) then { 

    for i in LL[lev] do sorted_pairs.add(i) 

  } 
} 
Step 4. 
for vn=1 to V do marked[vn]=False 

num_removed=0 

for i=1 to H do { 

  p=sorted_pair[i] 

  if ((not marked[sp]) and (not marked[tp])) then {     

    num_removed = num_removed+1 

    TraverseAndMark(pLCA[p]) 

} 
} 
return num_removed 
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It is clear that the reliability decreases with the number of colors (for fixed V and D) and 

with the maximum degree (for fixed V and k), with a few minor exceptions. We also studied 

reliability variations for fixed V, variable leaf percentage and variable number of colors. Fig. 7-1 

shows that reliability decreases as the leaf percentage increases. Furthermore, we tried to 

understand how the reliability would change with the number of vertices and different leaf 

percentages. Fig. 7-2 shows that leaf percentage matters much more than the number of vertices. 

In the second type of test scenarios, we considered critical pairs of the form (i,j), where i and 

j are two vertices with the same color. The motivation behind this was that different replicas need to 

be synchronized occasionally, so communication between vertices hosting the same replica is 

needed. The obtained results are similar to the ones for the first type of test scenarios. The 

experiments showed that tree structure, rather than other parameters, is the most important in terms 

of reliability, which was to be expected. 
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Fig. 7-1. Variation of Reliability Values for V=10000 Vertices. 
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Fig. 7-2. Reliability Values for Different Numbers of Vertices and Leaf Percentages. 

Table 7-2. Results for the First Type of Test Scenarios. 
V D k C H removed 

vertices 
vertices in 

pairs 
reliability number of leaves 

10000 2 2 1000 2000 987 2705 0,3649 2 
10000 2 3 1000 2000 987 2705 0,3649 2 
10000 2 5 1000 4000 987 4101 0,2407 2 
10000 2 10 1000 9792 987 6550 0,1507 2 
10000 3 3 1000 2774 954 3215 0,2967 50% 
10000 3 4 1000 3787 954 3835 0,2488 50% 
10000 3 5 1000 4987 954 4488 0,2126 50% 
10000 3 10 1000 10587 954 6599 0,1446 50% 
10000 5 5 1000 5545 935 4525 0,2066 50% 
10000 5 6 1000 6884 935 5054 0,1850 50% 
10000 5 10 1000 11885 935 6412 0,1458 50% 
10000 15 15 500 9557 485 5642 0,0860 50% 
10000 15 20 500 12981 485 6410 0,0757 50% 
10000 15 30 500 19446 485 7412 0,0654 50% 
10000 15 50 500 31735 485 8511 0,0570 50% 

7.8. A Dynamic Programming Framework for Optimization Problems on 
Graphs with Bounded Pathwidth and Treewidth 

 The pathwidth of an undirected graph is a number which reflects the resemblance of the 

graph’s structure to a path – the lower the pathwidth, the closer the graph “looks” like a path. A 

path decomposition of a graph G is a path D, with nodes D1, D2, ..., DP (in the order they lie on the 
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path), having the following properties: 

• each node Di corresponds to a subset of nv(i)≥0 vertices of G (we will denote the subset by Di, 

too) 

• any two adjacent vertices of the graph G, u and v, belong together to at least one subset Di 

• each vertex u of G belongs to at least one subset Di and if u belongs to two subsets Di and Dk, 

then it also belongs to all the subsets in between Di and Dk (the subsets which contain a vertex 

u form a sub-path of D) 

 

The width of the path decomposition is defined as pwD=max{nv(1), …, nv(P)}-1. The 

minimum value of pwD of a path decomposition of the graph is called the graph’s pathwidth. 

Finding a path decomposition with minimum width is an NP-hard problem, but in many practical 

situations, a decomposition whose width is bounded by a constant can be easily found. Moreover, 

some efficient algorithms for finding path decompositions of small width have been developed 

[Bodlaender, 1996]. 

The pathwidth concept is strongly related to the notion of treewidth, which was introduced 

by Robertson and Seymour [Robertson and Seymour, 1986]. The treewidth captures the degree of 

similarity of a graph’s structure to a tree. Many NP-hard problems can be solved in polynomial time 

on graphs whose pathwidth (or treewidth) are bounded by a constant. These algorithms are usually 

based on the dynamic programming technique and have a time complexity of the form O(f(pw)·n) 

(O(f(tw)·n)), where f(pw) (f(tw)) is a function which is exponential in the width of the path 

decomposition pw (width of the tree decomposition tw), and n is the number of vertices of the graph.  

We will discuss next the case of graphs of bounded pathwidth and we will present a generic 

algorithmic framework for such graphs. Then, in section 7.9.6 we will show how the framework can 

be extended to graphs with bounded treewidth. In order to simplify the algorithms, we will use the 

concept of nice path decompositions. The nodes (subsets) of a nice path decomposition are of the 

following two types: 

• Introduce node: If Di is an introduce node, then }{1 xDD ii ∪= −
, where x is a vertex which does 

not belong to Di-1 (the introduced vertex). D1 is an introduce node consisting of just one 

vertex. 

• Forget node: If Di is a forget node, then }{\1 xDD ii −= , where x is a vertex which belongs to Di-

1, but not to Di (the forgotten vertex). DP is a forget node with nv(P)=0. 

 

Any path decomposition can be easily transformed into a nice path decomposition with O(n) 

nodes in O(n) time [Bodlaender and Kloks, 1996]. All the algorithms in the subsequent section will 

consider that a nice path decomposition is already known. 

Dynamic programming algorithms traverse the nodes of the given nice path decomposition 

in order and for each node i they compute a table Ti. The size of the table Ti is exponential in the 

number of vertices of the subset Di. Each entry of the table contains a state S and a value v, i.e. 

Ti[S]=v. S is the state of the vertices in Di and is usually composed of one or several values for each 

vertex in Di. v is the value of the optimization function, restricted to the vertices in 

U
i

j

ji DUD
1=

=                                                   (7-7) 

and considering that the vertices in Di are in the state S. Ti[S] is computed based on the values Ti-

1[S’], for some states S’ which are compatible with the state S. The definition of state compatibility 

depends on the actual problem solved (just like the definition of the state itself). Each state obeys 

several structural rules, which depend on the problem. We will call the states which violate some of 

these rules intermediate states. These states will need to be normalized into valid states. The set of 

all valid states of a node Di is called VSi. 

Within the proposed generic algorithm, we will iterate through all the states for node Di-1 

and expand these states into valid states for the node Di. The expansion function will depend on the 

actions that we can perform (which are problem dependent) and on the node Di’s type (Introduce or 
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Forget node). In the end, the solution will be found in one of the entries of the table TP, considering 

only states belonging to a subset of valid final states. We are only interested in finding the value of 

an optimization function, not the states of the graph vertices leading to the optimal value. However, 

these states can easily be computed from the tables stored for each node of the path decomposition 

(by going back from node P to node 1). The generic dynamic programming algorithm is given in 

Pseudocode 7-9. 

From an implementation point of view, the states for each node will be generated in an array 

(or hash table) of states, which can be traversed easily. When reading or writing a value Ti[S], we 

need to know the index of state S in the array of states (between 1 and the total number of states). 

The most efficient way to do this is to use two hash functions (hash1 and hash2). hash1 will generate 

a unique hash value for each state S (no collisions are allowed). This value will be stored in a hash 

table, together with the state index. The hash table will use the hash2 function and permits some 

collisions. Pseudocode 7-10 illustrates the use of this approach. 

 
Pseudocode 7-9. The Generic Dynamic Programming Algorithm for Graphs with Bounded Pathwidth.  

 
Pseudocode 7-10. State Management Functions.  

Since we are discussing efficiency, we should note that the sets of states of two nodes Di and 

Dj will differ only if nv(i)≠nv(j). This suggests that we could generate the states only for each 

distinct value of the number of vertices (there are only pwD+1 such values) and not for each node. 

We will show next how we can solve several graph optimization problems (including 

generateStates(i): // generates all the states for node Di 

stateIndex=0 

for each state S generated do { 

  h1=hash1(S) 

  stateIndex=stateIndex+1 

hashTable[i].put(S, stateIndex) // hashTable[i] uses hash2() 

} 
 

getStateIndex(S, i): 
return hashTable[i].get(hash1(S)) 

Generic Dynamic Programming Algorithm: 
compute T1[S], for all states S in VS1 

for i=1 to P-1do { 

  for all states S in VSi+1 do Ti+1[S]=uninitialized 

  for S in VSi, such that Ti[S]≠uninitialized do { 

    for action in setOfActions(i+1) do { 

      // S’ is an intermediate state (not necessarily valid) 

      // C is the (new) value of the optimization function 

      (S’,C,ok)=expandState(S, i, action) 

      if (ok=true) then { 

        S’’=normalize(S’) 

        if ((better(C, Ti+1[S’’])) or (Ti+1[S’’]=unintialized)) then Ti+1[S’’]=C 

        } 
      } 
    } 
  } 
OPT=uninitialized 

for S in setOfValidFinalStates() do 

  if (better(TP[S], OPT)) or (OPT=uninitialized) then OPT=TP[S] 

return OPT 
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optimal replica placement problems) using the generic algorithmic framework that we just 

introduced. 

7.8.1. Coloring a Graph with a Fixed Number of Colors 

We are given a graph G together with a nice path decomposition of the graph. We have to 

assign to each vertex of the graph a color from the set {1,2,…,C}, such that any two vertices 

connected by an edge are assigned different colors. 

This is one of the simplest problems, in which the function which needs to be computed is a 

binary function. We need to decide if a coloring exists or not. If it exists, the vertex colors can be 

derived from the tables stored at each node of the path decomposition. Furthermore, we can use the 

solution to this problem in a binary (or linear) search algorithm, in order to find the minimum 

number of colors required to color the graph. 

The state of the vertices of a node Di of the path decomposition has the form S=(c1, c2, …, 

cnv(i)), where },...,1{ Cci ∈ is the color of the i
th

 vertex in the subset Di. We will, occasionally, denote 

by S[i] the i
th

 component of the state S. We will consider the vertices of a node Di ordered as vi,1, vi,2, 

…, vi,nv(i). If Di is an Introduce node, then we will consider that the introduced vertex is vi,nv(i). We 

will maintain these vertex ordering assumptions in all the other problems considered in this section. 

An entry Ti[S] has one of the values true or uninitialized, meaning that there exists (does not exist) 

a coloring of the vertices in UDi, such that the vertices in Di are colored according to the state S. 

 
Pseudocode 7-11. Graph Coloring Functions.  

The node D1 contains only a single vertex, so we will assign T1[S]=true, for all the states S 

setOfActions(i): 
if (Di is an Introduce node) then 

  return the set composed of (Col, 1), (Col, 2), …, (Col, C) 

else return the set containing the only element „Forget” 
 

updateCost(S, i, C): // auxiliary function, used by expandState 

let S=(c1, c2, …, cnv(i)) 

for j=1 to nv(i)-1 do 

  if ((vi,j and vi,nv(i) are adjacent) and (cj=cnv(i))) then return ( (), 0, false) 

return (S, 1, true) 
 

expandState(S, i, action): 
if (Di is an Introduce node) then { 

  (Col, cx)=action // cx is the color assigned to the new vertex 

  S’=(c1, c2, …, cnv(i)-1, cnv(i)=cx), where S=(c1, c2, …, cnv(i)-1) 

 return updateCost(S’, i, Ti-1[S]) 

} else { 
  vi-1,j = the “forgotten” node 

  S’=(c1, c2, …, cj-1, cj+1, …, cnv(i-1)), where S=(c1, c2,…, cnv(i-1)) 

return (S’,1,true) 

} 
 

normalize(S): 
return S 
 

better(cost1, cost2): 
if (cost1=1) then return true 

else return false 
 

setOfValidFinalStates(): 
return VSP // all the states of DP are valid final states 
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in VS1. The set of actions which can be performed for expanding a state S of the node i into a state 

S’ of the node i+1 depends on the type of the node Di+1. If Di+1 is an Introduce node, the set of 

actions consists of coloring the introduced node in every possible color; if it is a Forget node, only a 

“forget” action exists. We will now define all the functions required to turn the generic algorithm 

from the previous section into a solution to the problem. 

It is obvious that the expandState function is the most important one in the algorithm and 

this will be the case with each problem we will consider. In this function, the selected action is 

performed and the validity of the resulting intermediate state is checked. The complexity of the 

algorithm is O((pw+1)·C
pw+1

·P), considering that the path decomposition has width pw. Since P is 

O(n) and (pw+1)·C
pw+1

 is bounded by a constant, the time complexity of the algorithm is linear. 

7.8.2. Coloring a Graph with a Fixed Number of Colors – Improved State 
Definition 

The improvement of the previous solution consists in reducing the number of states. It is 

obvious that, given a valid coloring of the graph’s vertices, we can relabel the colors differently and 

still get a valid coloring. For instance, if C=3 and we have two vertices a and b colored with colors 

3 and 2, respectively, we can relabel the colors such that vertex a is colored with 1 and vertex b is 

colored with 2. This suggests that the colors of a state S should form a partition and obey the 

following rules: 

• c1=1 

• }1,...,1{ 1 +∈ −ii mc , where }{max
11

1 j
ij

i cm
−≤≤

− =  

With these rules, the state S’ returned by the expandState function may not be a valid state. 

Therefore, we will have to define the normalize function differently: 

 
Pseudocode 7-12. The normalize Function.  

The normalize function relabels the colors of a state S such that they obey the structural rule. 

The number of states is greatly reduced. For instance, for C=7 and a node Di with nv(i)=9, the 

number of states is equal to the number of partitions of a set with 9 elements into at most 7 parts, 

which is 21.110. Before, the number of states was 9
7
= 4.782.969. 

7.8.3. Coloring a Graph with a Fixed Number of Colors in Order to Minimize 
Penalties due to Coloring Conflicts  

This problem is similar to the previous one, except that a valid coloring is not necessarily 

required. Each graph edge (u,v) has an associated penalty value pen(u,v). If the vertices u and v are 

assigned the same color, then the penalty pen(u,v) will be paid. The optimization function consists 

of minimizing the sum of paid penalties. For this problem, we will keep the same state definition as 

in the previous case, the same sets of actions and the same valid final states. We will have to 

slightly modify the expandState function, by redefining the auxiliary function updateCost, and the 

normalize(S): 
S’=S, where S=(c1, …, cK) 

counter=0 

newlabel={0,0,…,0} // K zeroes 

for i=1 to K do { 

  if (newlabel[S[i]]=0) then { 

    counter=counter+1 

    newlabel[S[i]]=counter 

S’[i]=newlabel[S[i]] 

} 
} 
return S’   
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better function. Ti[S] now represents the minimum penalty paid such that all the vertices in UDi are 

colored and the vertices in Di are colored according to the state S. T1 will be initialized with 0 for 

every possible state. 

No other changes are necessary in order to solve this problem, which has applications to 

frequency assignment in wireless networks. If we want to solve a slightly different version of the 

problem, in which we try to minimize the maximum penalty paid instead of the sum of penalties, 

we only have to change the additive operator in the updateCost function with the max operator 

(C’=max{C’, pen(vi,j, vi,nv(i))}). A different solution to this modified problem consists of binary 

searching the cost to be paid. When the cost C is fixed, we can ignore all the edges with a penalty 

lower than (or equal to) C and we would now have to solve a normal coloring problem (as a 

feasibility test). 

 
Pseudocode 7-13. Functions for Graph Coloring with Penalties.  

7.8.4. (L,U)-Replica Placement 

We are given an undirected graph with n vertices together with a nice path decomposition 

with small pathwidth pw. Every vertex i has a weight wk(i). We want to select a subset of distinct 

vertices of the graph and place a replica of some popular content in them, such that the sum of their 

wk values is at least L at most U. The cost of selecting a vertex i is csel(i). If two vertices u and v 

which are adjacent to one another are selected, then we will also need to pay a penalty cost pen(u,v). 

We are interested in paying the minimum total cost for placing the replicas. The state definition we 

will use is the following: for a node Di, a state S has the form (s1, …, snv(i), x), where: 

• sj=1 if vi,j was selected for placing a replica 

• sj=0 if vi,j was not selected for placing a replica 

• x is the total sum of the wk values of vertices selected (so far) 

 

The set of actions of an Introduce node consists of two actions { Select, Do Not Select } and 

that of a Forget node will be the same as before ({Forget}). The main functions required by the 

framework are shown in Pseudocode 7-14. The normalize function will not be presented (because 

all the intermediate states will be valid) and the valid final states will be only those with L≤x≤U. 

We will use the same better function as in the minimum penalty coloring problem. The time 

complexity of the algorithm is O(U·2
pw

·n). We can introduce several variations to this problem, like 

defining penalty or profit values for each pair of adjacent vertices (u,v), where u is a selected vertex 

and v is not. These changes would require a different updateCost function. 

7.8.5. Covering a Partial Grid Graph with Rectangular Sub-Grids 

A (m,n) grid graph has mxn vertices arranged on m rows and n columns. Each vertex is 

adjacent to at most four other vertices (on the rows above and below and the columns to the left and 

to the right). Such graphs appear, for instance, in processor interconnection networks. A partial 

(m,n) grid graph is a (m,n) grid graph in which some of the vertices and some of the edges may be 

missing. 

updateCost(S, i, C): 
C’=C 

for j=1 to nv(i)-1 do { 

  if ((adjacent(vi,j,vi,nv(i))) and (S[j]=S[nv(i)])) then C’=C’+pen(vi,j, vi,nv(i)) 

} 
return (S,C’,true) 
 

better(cost1, cost2): 
if (cost1<cost2) then return true 

else return false 
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Pseudocode 7-14. Replica Placement Functions.  

These graphs have their pathwidth bounded by min{m,n}. Let’s assume that one of the 

dimensions is bounded by a constant (without loss of generality, we will assume this dimension is 

n). A path decomposition with pathwidth n (i.e. in which each set contains at most n+1 vertices) 

can be easily obtained by ordering the vertices from the first to the last row and, for each row, from 

the first to the last column and introducing the vertices in this order (and forgetting the „oldest” 

vertex after every vertex set containing n+1 vertices).  

Moreover, the vertices within a node Di are ordered using the same criterion. Partial grid 

graphs are planar graphs and because of this, the number of states in the dynamic programming 

algorithm can be reduced by making use of the Catalan property (mentioned in [Dorn, Fomin and 

Thilikos, 2007]). Let’s consider the minimum path (cycle) cover problem. If a state S of a node Di 

contains both endpoints of two different paths, then let’s assume that vi,a and vi,b  (a<b) are the 

endpoints of the first path and vi,c and vi,d (c<d) are the endpoints of the second path. One of the 

following conditions must hold: (b<c), (d<a), ((a<c) and (d<b)), ((c<a) and (b<d)). The states S 

which do not obey any of these conditions can be removed. 

We are given a mxn partial grid graph (with n bounded by a constant C) and a set of K types 

of rectangular pieces { (r1,c1), (r2,c2), …, (rK,cK) }. The i
th

 type covers ri rows and ci columns of the 

graph (i.e. covers rixci vertices). ci is bounded by n and ri is bounded by a constant R. Each piece i 

also has a weight wi. We want to place on the graph as many rectangular pieces of each type, such 

that the sum of the weights of each piece we placed is maximum, and under the following 

restrictions: 

• no two rectangular pieces should overlap 

• a rectangular piece cannot cover missing vertices 

• a rectangular piece must be fully included in the graph 

• we can use as many pieces of any type as we want 

updateCost(S, i, C): 
C’=C 

for j=1 to nv(i)-1 do { 

  if ((adjacent(vi,j, vi,nv(i)) and (S[j]=S[nv(i)]=1)) then C’=C’+pen(vi,j, vi,nv(i)) 

} 
return (S,C’,true) 

 

expandState(S, i, action): 
let S=(s1, s2, …, snv(i)-1, x) 
if (Di is an Introduce node) then { 
  if (action=Select) then { 
    if (x=k) then return ((), +∞, false) 

    S’=(s1, s2, …, snv(i)-1, 1, x+wk(vi,nv(i)))  

    return updateCost(S’, i, Ti-1[S]+csel(vi,nv(i))) 

  } else { // action = Do Not Select 

    S’=(s1, s2, …, snv(i)-1, 0, x)  

    return (S’, Ti-1[S], true) 

  } 
} else { 

  vi-1,j = the “forgotten” node 

  S’=(s1, s2, …, sj-1, sj+1, …, snv(i-1), x) 

return (S’,Ti-1[S],true) 

} 
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• we cannot rotate the pieces (although it’s not excluded that both (ri,ci) and (ci,ri) belong to the 

set) 

 

This problem is more difficult than the previous ones, because it is formulated taking into 

consideration the information that the graph is a partial grid graph (and not just a graph with 

bounded pathwidth). The dynamic programming states will have the following form: (h1, h2, …, 

hnv(i)), where hj is the number of vertices above (and including) the vertex vi,j (i.e. on the same 

column) which are not covered and not missing from the graph. We are only interested in values 

0≤hj≤R (if there are more than R vertices not covered and not missing above vi,j, we will limit this 

value to R). 

Then, when a new vertex is introduced, the set of actions consists of either not doing 

anything or choosing to place one of the K types of rectangular pieces with its lower right corner at 

vertex vi,j (if possible – i.e. for a piece (rp, cp) and the vertex vi,j located on row a and column b, we 

must have: b≥cp, none of the vertices on the row a and the columns b, b-1, …, b-cp+1 are missing 

from row a and each of them has at least rp non-covered and non-missing vertices above them). 

There is an extra problem here, given by the fact that we need to know the value of hj (for 

the vertex vi,j) at the moment the vertex is introduced. For this, we will consider the pathwidth to be 

n+1. This way, when vi,j is introduced, the vertex right above vi,j is located in Di and we can 

compute hj as 1 plus the corresponding value for the vertex above vi,j (or just 1 if that vertex is 

missing from the partial grid graph). When placing a rectangular piece over the columns b-cp+1, ..., 

b of the graph, the hj values of the corresponsing vertices of the obtained state will be set to 0. The 

framework functions are similar to those presented for the other problems. 

This problem is motivated by replica placement placement problems on connected subsets 

of vertices of a graph. 

7.8.6. Extending the Framework to Graphs with Bounded Treewidth 

 The framework can be extended to graphs with bounded treewidth quite easily. First, every 

tree decomposition of a graph can be transformed into a nice tree decomposition which consists of 

three types of nodes: 

• Introduce node: A node Qi is an introduce node if it has only one son Qj and }{xQQ ji ∪= , 

where x is a vertex which does not belong to Qj (the introduced vertex). 

• Forget node: A node Qi is a forget node if it has only one son Qj and }{\ xQQ ji = , where x is a 

vertex which belongs to Qj, but not to Qi (the forgotten vertex). 

• Join node: A node Qi is a join node if it has exactly two sons Qj and Qk, such that Qi=Qj=Qk 

(i.e. they represent the same subset of graph vertices) 

With a nice tree decomposition, we will compute, for each node of the decomposition (in a 

bottom-up manner), the same set of states we would compute in the case of a path decomposition. 

When we compute the table of states for an Introduce or Forget node, we use the same rules as if 

the current node were a node Di and its son were the previous from the path decomposition Dj. Thus, 

we only need to show how to handle the case when the node is a Join node. 

Let’s assume that we are at a Join node Qi and its sons are Qj and Qk. We have a table of 

states and values, T(Qj) and T(Qk), for each of the two sons. For a state S, T(Qi, S) is computed as a 

combination of T(Qj,S) and T(Qk,S). Combining the two values depends on the actual problem being 

solved. If better(T(Qj,S), T(Qk,S))=true then T(Qi,S)=T(Qj,S) else T(Qi,S)=T(Qk,S). 
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Chapter 8 – Conclusions 
 

 

 

8.1. Overview of the Results 

 This book has addressed multiple key problems from the communication optimization 

domain and has proposed several novel solutions, ranging from centralized and decentralized 

system architectures to online and offline optimization algorithms and generic algorithmic 

frameworks. The book began by identifying and classifying the main communication parameters 

and requirements of the most important types of distributed systems and then continued by 

performing a thorough analysis of the current state-of-the-art scientific knowledge in the domains 

addressed by the book. This analysis created the context in which the results presented in this book 

have to be placed, by identifying both the advantages and the disadvantages of the existing solutions 

and by pointing out the unsolved problems which were addressed in the book. 

 In Chapter 2 we argued for the need of application-layer routing architectures by presenting 

5 motivating scenarios. Then, in Chapter 3, we introduced a generic peer-to-peer architectural 

model, together with new methods for neighbouring peer selection. The model was implemented in 

two distinct peer-to-peer architectures (a fully decentralized one and a hybrid one), which were 

evaluated in real-life conditions. The evaluation results showed that data transfer throughput can be 

significantly increased by using peer-to-peer overlays specifically designed for this purpose. 

The concepts of the peer-to-peer architectural model were also used in a fully decentralized 

fault-tolerant peer-to-peer architecture for storing data objects which allows multidimensional range 

search queries. The peers are organized in a much more natural way which allows us to overcome 

some of the drawbacks of the previous solutions in this area. Each objects has an owner and is 

replicated at the neighbors of this owner (up to a certain number of hops). Multidimensional range 

searches visit only as many peers as they are necessary. The number of such peers is either 

proportional to the volume of the multidimensional interval or to the number of objects located in 

the interval (whichever is higher). 

 In Chapter 3 we also presented novel techniques for enhancing system-level fairness and 

user-perceived quality of service in peer-to-peer content sharing systems with arbitrary topologies. 

The techniques addressed the communication layer (by using path reservations and by allocating 

incoming bandwidth to sockets proportionally to the sum of the priorities of the reservations sharing 

the socket) of the system. These techniques were evaluated in real situations: we showed that 

bandwidth can be allocated proportionally, according to the stated goals. 

 Also in Chapter 3 we introduced a new method for upload capacity estimation, based on a 

collaborative scenario using helper peers. Although many techniques for estimating the end-to-end 

capacity (or even available bandwidth) of a path have been developed, there were no results on 

upload capacity estimations before ours. Information regarding upload capacities is useful in many 

peer-to-peer file sharing systems for selecting super-peers or for trading bandwidth with other peers. 

The upload capacity estimation method further led to the development of a novel less-than-best-

effort congestion control algorithm. 

 The development of large scale distributed systems is always a tedious task, which is made 

even harder by the difficulty of automatically deploying and testing the system in real conditions. In 

order to address this problem, we developed ServMark, a testing infrastructure for distributed 

systems. ServMark was developed by integrating DiPerF and GrenchMark, two previous 

complementary testing tools. ServMark was evaluated by testing 6 web servers, but, as we showed 

in Chapter 3, it can easily be used for testing and deploying any distributed system (e.g. peer-to-

peer systems). 

 The family of fully decentralized peer-to-peer architectures and techniques presented in 

Chapter 3 is complemented by the development of a centralized framework for data transfer 
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scheduling in networks on which we can exhibit full control, presented in Chapter 4. The 

architecture of the framework is an extension followed by a re-design of an architecture having the 

same purpose presented in [Cîrstoiu, 2008]. 

Our focus was on the scheduling component and, thus, in Chapter 3 we presented multiple 

novel algorithms and data structures for this purpose. We first identified the types of data transfer 

requests that were of interest and then we analyzed networks with simple topologies (a single 

network link, a network path, or networks with tree topologies). We considered two types of 

scheduling modes: online (one request at a time) and batch (multiple requests at a time). 

For the online scheduling mode we developed new data structures (e.g. Time Slot Groups) 

which can handle our types of data transfer requests better than any of the existing data structures in 

the literature, we defined new, generic algorithmic frameworks for the segment tree data structure 

and block partitioning techniques which are focused on range updates (including for the 

multidimensional case) and we also showed how to use some of the standard data structures for 

some particular cases. 

For the batch scheduling case we identified the problem of scheduling the requests (over 

time) in the presence of a mutual exclusion (hyper-)graph. We defined new algorithms for several 

mutual exclusion scheduling problems – some of them consider entirely new situations, while 

others complement some of the approaches existing in the literature. 

  Chapter 4 also presents a generic technique for the real-time centralized scheduling of 

deadline-constrained data transfers in networks with arbitrary topologies, based on the use of a 

time-expanded graph and maximum flow algorithms. The technique is evaluated and compared 

against three decentralized methods and is shown to obtain significantly better results than any of 

them. 

 Chapter 5 complements the online techniques presented in Chapter 4 by focusing on the 

offline scheduling of point-to-point communication flows. We consider several such scheduling 

problems (e.g. files with divisible sizes, two communication flows which need to be transferred 

concurrently on multiple disjoint paths, an optimization problem for the TCP sender buffer 

management) and we present new algorithmic solutions (many of them having a polynomial time 

complexity). One of the problems is equivalent to a problem previously studied in the literature, for 

which an algorithm with a slightly better time complexity than ours already exists. However, we 

argue that the algorithm we presented is simpler to understand and implement. 

 Multicast is an important communication method required in many distributed systems (e.g. 

either for signalling, or for live streaming). In Chapter 6 we presented a peer-to-peer architecture 

organized as a multicast tree with small diameter and bounded node degrees. The architecture is 

non-hierarchical and, under low rates of peer arrivals and departures, the tree can be maintained 

balanced. Simulation results have shown that even under larger peer arrival rates, the diameter of 

the tree does not increase much more than in the ideal case. 

The rest of Chapter 6 is dedicated to offline optimal multicast strategies. We extended the 

single port broadcast model in trees by introducing sending and receiving constraints and we 

developed a family of new algorithmic techniques for this case. We also developed new algorithms 

for the maximum reliability k-hop multicast strategy in tree networks. A previous algorithm for an 

equivalent problem already exists, but our solution is better by an O(log(n)) factor than the 

previously existing one. 

 In Chapter 7 we considered the problem of optimally placing replicas in tree-like networks 

in order to minimize metrics like the maximum latency to the closest replica or the sum of latencies 

to the closest replica (as well as several others, based on costs). We considered networks with path, 

tree and cactus architectures. We solved several center and median problems on these graphs, 

improving or matching the time complexities of previous existing algorithms. Examples of such 

cases are the 1-center and longest path problems in cacti, in which we also considered weights at the 

graph vertices (which are added to the weights of the edges on a path), or some restricted cases of 

the connected k-center and k-median problems in trees. 

In the end of Chapter 7 we presented an algorithmic framework for solving combinatorial 
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optimization problems in graphs with bounded pathwidth and treewidth. The framework is then 

used for solving an optimal replica placement problem in these graphs. 

8.2. Summary of the Contributions of this Book 

 The main contributions of this book can be summarized as follows: 

• The identification and classification of the main communication parameters and 

requirements of the most important classes of distributed systems 

• A critical analysis of the state-of-the-art scientific knowledge on the topics addressed by this 

book (peer-to-peer architectures, fairness enforcing techniques, bandwidth estimation 

techniques, congestion control algorithms, real-time centralized scheduling of data transfers, 

offline scheduling of point-to-point communication flows, offline multicast strategies, 

offline replica placement strategies in tree-like networks) 

• The definition and development of a generic peer-to-peer architecture, which can be 

extended for multiple purposes (e.g. data transfer optimization or data storage and retrieval) 

• The implementation of the architectural model in two distinct peer-to-peer architectures (a 

fully decentralized one and a hybrid one) and the evaluation of these architecture in real 

settings and through simulations 

• The development and evaluation of new techniques for ensuring system-level fairness and 

user-perceived system quality at the communication layer 

• The design, implementation and evaluation of a fault-tolerant peer-to-peer architecture for 

storing data objects which allows efficient multidimensional range queries (based on the 

generic peer-to-peer architecture defined earlier) 

• The design and evaluation of a new method for estimating the upload capacity of a machine 

• The development of a new less-than-best-effort congestion control algorithm 

• The development and evaluation of a new distributed testing architecture for Grid and web 

services, as well as any other distributed system (including peer-to-peer systems) 

• The definition and development of a centralized architecture for real-time data transfer 

scheduling 

• The design, implementation and evaluation of novel, efficient algorithms and data structures 

with guaranteed theoretical performances for online data transfer scheduling in networks 

with particular topologies (single network link, one network path, network with tree 

topology) 

• The development of new centralized techniques for real-time scheduling of data transfers in 

networks with arbitrary topology and their evaluation in comparison with distributed 

scheduling techniques 

• The development of new algorithms for data transfer scheduling with mutual exclusion 

graphs, with guaranteed theoretical performances 

• The design of new algorithms with guaranteed theoretical performances for the optimal 

offline scheduling of point-to-point communication flows 

• The design, implementation and evaluation of a peer-to-peer architecture with the structure 

of a multicast tree with small diameter and bounded node degrees 

• Novel extensions to the single port broadcast model in trees (i.e. the addition of sending and 

receiving constraints) and a new family of polynomial time algorithms addressing these 

extensions 

• The development of new algorithms, with a better time complexity than the previously 

existing ones, for the maximum reliability k-hop multicast strategy in tree networks 

• The design of new offline algorithms with guaranteed theoretical performances for the 

optimal placement of data items in networks with a tree-like topology (e.g. paths, trees, cacti, 

graphs with bounded pathwidth and treewidth) 
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