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Abstract Dilute liquid sprays can be modeled at the mesoscale usirigedik equation,
namely the Williams-Boltzmann equation, containing terfimis spatial transport, evapo-
ration and fluid drag. The most common method for simulathrg Williams-Boltzmann
equation uses Lagrangian particle tracking wherein a ferisemble of numerical “parcels”
provides a statistical estimate of the joint surface aretgoity number density function
(NDF). An alternative approach is to discretize the NDF idtoplet size intervals, called
sections, and to neglect velocity fluctuations conditioaediroplet size, resulting in an Eu-
lerian multi-fluid model. In comparison to Lagrangian pelditracking, multi-fluid models
contain no statistical error (due to the finite number of pljcbut they cannot reproduce the
particle trajectory crossings observed in Lagrangian Etmans of non-collisional kinetic
equations. Here, in order to overcome this limitation, adyature-based moment method
is used to describe the velocity moments. When coupled Wihsectional description of
droplet sizes, the resulting Eulerian multi-fluid, mulglocity model is shown to capture
accurately both particle trajectory crossings and the-de@endent dynamics of evapo-
ration and fluid drag. Model validation is carried out usirigect comparisons between
the Lagrangian and Eulerian models for an unsteady freesjgiguration with mono- and
polydisperse droplets with and without evaporation. Catispas between the Eulerian and
Lagrangian instantaneous number density and gas-phdsadsgs fraction fields show ex-
cellent agreement, suggesting that the multi-fluid, meétocity model is well suited for
describing spray combustion.
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1 Introduction

Many industrial devices involve turbulent combustion ofiquid fuel. Indeed, the trans-
portation sector, rocket, aircraft and car engines are stlexclusively based on storage and
injection of a liquid phase, which is sprayed into a chambken turbulent combustion
takes place. Thus, itis of primary importance to understardicontrol the physical process
as a whole, from the injection into the chamber up to the catitd phenomena. Numer-
ical simulation is now a standard tool to optimize turbuleambustion processes in such
devices. If the modeling of purely gas-phase configuratisn®latively well understood
with a wide range of suggested closures such as the trapgpmabability density function
methods pioneered by S. B. Pope [22], this is not the caseMmphase flows where de-
tailed information is needed about the physics of the tripleractions of spray dynamics,
fluid turbulence and combustion.

In general, two approaches for treating liquid sprays,esponding to two levels of de-
scription, can be identified. The first one, associated withlairect numerical simulation
(DNS) of the process, provides a model for the dynamics ofrttesface between the gas
and liquid phases, as well as for the details of the exchahgeai and mass between the
two phases. The second one, based on a more global pointvafuses kinetic theory to
describe the droplets as a cloud of point particles, the géoes of which are presumed
spherical, and for which the exchange of mass, momentum eaichine described globally.
The latter is the only description for which numerical siatidns at the scale of a combus-
tion chamber can be conducted. Thus, this “mesoscopic’t pdimiew will be adopted in
the present study.

In the kinetic theory framework, there exists considerabterest in the development
of numerical methods for simulating sprays using the WitkaBoltzmann transport equa-
tion [26]. The principal physical processes that must beacted for are (1) transport in
physical space, (2) evaporation, (3) size-dependenteratiin of droplets due to drag, and
(4) breakup, rebound and coalescence leading to polydigperhe major challenge in nu-
merical simulations is to account for the strong couplingMeen these processes. In the
context of one-way coupling, the Lagrangian Monte-Carlprapch (also known as direct
simulation Monte-Carlo (DSMC) [2]) is generally considéite be more accurate than Eu-
lerian methods for solving the Williams-Boltzmann equatiélowever, its computational
cost is high, especially in unsteady configurations. Moegow applications with two-way
coupling, Lagrangian methods are difficult to couple acmlyawvith Eulerian descriptions
of the gas phase. Thus, there is considerable impetus téogeizalerian methods, keeping
in mind that such models still need validation.

Currently there exists two significant shortcomings in Eale models. First, they fail
to describe polydispersity. However, in many industriaifeggurations, evaporating droplets
of different sizes follow different pathways, depositiftgir fuel mass fraction at different
locations. One way to overcome this shortcoming is to uséi+fiuid models [16,18,4,19].
Second, Eulerian models are derived from the Williams-Bodnn equation through an
near-equilibrium assumption (called the hydrodynamidtliior the normal solution of the
Boltzmann equation in kinetic theory [13, 1]), leading tosure at the level of second-order
velocity moment equations conditioned on droplet size. dtute sprays (e.g. liquid vol-
ume fractions of less than one percent), droplet-dropliis@ns are negligible and, hence,
the important processes leading to an equilibrium velodisfribution in the Boltzmann
equation are absence. Since it is essentially monokinetic lear equilibrium), the hydro-
dynamic model is unable to capture the multi-modal drop&oeity distributions arising
in dilute sprays during droplet crossings. Even if the raflltid model can capture droplet



crossing for droplets of different sizes, the near-eqtiiiim assumption is too limiting and
leads to the creation of singularities (i.8-shocks’) that have been studied analytically in
[18], with a physical interpretation in [5, 4]. Recentlygtdevelopment of quadrature-based
moment methods in velocity phase space [8,9] has providddsare for non-equilibrium
velocity distributions for monodisperse particles, poing a description of droplet crossing
at finite Stokes numbers. In principle, by adding the callisierms to the kinetic equations
[11], quadrature-based moment methods can treat liquaysprith any liquid volume frac-
tion, and thus have the potential to overcome all of the knelwortcomings of Eulerian
models for polydisperse two-phase flows.

The framework of the present study is DNS of the gas phase amighway coupling
to the kinetic equation describing the liquid phase. Howewethe context of large-eddy
simulations, Eulerian models will encounter the same ssilescribed above from both
a modeling and computational point of view. Furthermorethis study, we evaluate the
numerical methods in a 2-D framework. Nevertheless, theatsathn be easily extended to
3-D configurations [4].

The scope of the present contribution is two fold. First, galwation of the multi-
fluid model in a free-jet configuration is carried out by a dethcomparison between the
MUSES3D code [4] and the Euler-Lagrange ASPHODELE solver [25, 24jer®demon-
strating the accuracy of the multi-fluid model for capturithg dynamics of droplets of
various sizes, we investigate its ability to properly eadéuthe gas-phase fuel mass fraction
field issuing from evaporation. For droplets with moderatek&s number, the proposed nu-
merical scheme, which is second order in time and spaces titea potential singularities
naturally occurring in the model equations and attains g satisfactory level of accuracy
with very limited numerical diffusion. Properly capturiribe topology of the fuel mass
fraction resulting from evaporation is the primary goal aipray model for combustion ap-
plications and we demonstrate the necessity of descriliingrately the polydispersity in
order to reach this goal.

Second, a new Eulerian model, with dedicated numericalrsebegable to deal with
polydispersity as well as non-equilibrium velocity dibtrtions for evaporating sprays based
on the quadrature method of moments in velocity phase spawitioned on droplet size
is developed. Two key issues are addressed (beyond thadaebnntroduced in [8,9]): (1)
moment space must to be preserved, that is the numericabthethst guarantee that the
moment vectors throughout the computation always remaimemts of a velocity distri-
bution when transport is coupled to drag and evaporatiod;(2nthe higher-order model
must naturally degenerate to the multi-fluid model at therldlawies of moment space, that
is when the velocity distribution function becomes moneki up to machine precision.
Using Lagrangian/Eulerian comparisons, we illustrate ghaity of the newly developed
model and numerical methods to satisfy these properties\p@dsons between the multi-
fluid model and the higher-order multi-fluid, multi-velocinodel in a free-jet configuration
with two polydisperse spray injections are presented. Weharsize the necessity to capture
droplet trajectory crossing in such a case and again denat@she good performance of
the proposed model.

The organization of the paper is as follows. After brieflyaking the fundamentals of
both the Lagrangian discrete particle simulations (DP$)tas multi-fluid model (as well
as the associated numerical methods) in Sects. 2 and 3, we o attention in Sect. 4
on the free-jet configuration with polydisperse spray itigtand delineate the accuracy
and efficiency of the multi-fluid model and numerical methaas well as its limitations.

1 Multi-fluid Spray Eulerian Solver developed at EM2C by LeFatf and S. de Chaisemartin.



In Sect. 5, the multi-fluid, multi-velocity model is introded. We investigate the details of
the quadrature method (which is a key issue) and the nunhemigihod needed to preserve
the moment space. Section 6 is devoted to the numericaltigaéisn of a single free jet
with droplets over a large range of Stokes numbers leadiigdplet crossing. The ability
to properly capture the behavior on the boundaries of morseate is presented, as well
as the necessity to rely on a multi-velocity model for a tebeonfiguration. The principal
achievements of the present contribution are summarizétei€onclusions.

2 Statistical description at the mesoscopic scale and Lagngian discretization

At the mesoscopic scale, liquid sprays are described asud oliopoint particles for which
the exchange of mass, momentum and thermal energy arelsssgiobally, using eventu-
ally correlations, and the details of the interface behadogular momentum of droplets,
etc., are not predicted. In the following, even if heating easily be included in the mod-
els, we will restrict the framework of the study to liquid aps undergoing evaporation and
drag. We also make the assumption that these phenomena epdyd on the local gas-
phase properties as well as on the state of each droplet.diticad we assume that all
the scales of the gas phase are resolved in the context of BDIN&over, we restrict our
attention to dilute sprays where coalescence, breakup ahsians in general can be ne-
glected. It should be noted that the models have been extéadrore dense sprays, where
droplets coalescence [16] or rebounds [12] can take plaeeadipt a statistical (kinetic)
description of the Boltzmann type and the spray can be destiy its joint surface area
(9, velocity (u) number density function (NDFj(t,x, S,u), which satisfies the following
Williams-Boltzmann equation [26]:

O+ (Uf)+ds(KT)+d,- (FF)=0, )

where, for the sake of simplicit (t,x) is the constant of a2 law andF = (Ug(t,x) —
u)/1p(S) is the Stokes drag force per unit makk, being the gas velocity ant,(S) =

P S/(pgl8nv) is the droplet dynamical time, whepg and pg are the liquid and gas densi-
ties, respectively, and is the kinematic viscosity of the gas.

For the sake of simplicity, the liquid and gas densities al agethe gas viscosity are
assumed constant here. This is partially justified by thetfeat we will only consider con-
figurations with a constant composition and temperaturéefygas, but this is not a restric-
tion of the model. Rather, it allows us to use a simple nonedisional formulation, using a
reference droplet surfa®, a reference lengthg for the space location, a reference veloc-
ity Uo for the gas and droplet velocities, and the associated tialets = Lo/Up. The same
notation is used for the dimensionless variables in suchyethat the transport equation is
also defined by Eq. (1), but witk the non-dimensional evaporation rate (independeit of
andx) andF = (Ug(t,x) —u)/(StS) the non-dimensional drag force, where=St,(S) /to
is the Stokes number.

In this context, the Williams-Boltzmann equation can becditized through a parti-
cle discretization (PD), where the NDF is represented bym stiDirac delta functions:
f(t,%,u,S) = 3 pWpd (X —Xp(t))d(u—up(t))d(S— S(t)), wherew, is a constant weight
of the pth numerical particle andp, up, S, are its position, velocity and surface area, re-
spectively. These characteristics of numerical partielesve through standard differential
equations:

dixp = Up, diup =F, &S, =K. (2



The PD method provides, if enough numerical particles aeeluan ensemble average of
the droplet number density and other relevant statisticahtjties, which are Eulerian fields.
Under the particular set of assumptions we have chosen,Bhadthod is equivalent to an
ensemble of discrete particle simulations where each ichaity numerical particle repre-
sents one droplet and the weights are equal to one [25]. Timb@udensity of particles for
DPS is then evaluated with respect to a given equivaleniefoatevaporation and combus-
tion purposes, and corresponds to one realization of amdieeaverage governed by the
Williams-Boltzmann equation.

3 Eulerian multi-fluid model

As an alternative to Lagrangian methods, multi-fluid modelse been developed, which

take into account the polydispersity of the spray in a Eateformalism, while keeping a
rigorous link to the kinetic model.

3.1 Model equations

The formalism and the associated assumptions needed e dieei multi-fluid model were
originally introduced in [16], extending the ideas of [1¥]e recall briefly the main features.

[H1] We presume the form of the NDIF(t,x,S u) = n(t,x,S)d(u — u(t,x,S)) through a
single-node quadrature method of moments in velocity pbpaee conditioned on size,
wherel(t,x, S) is the average velocity conditioned on droplet $ize

[H2] The droplet size phase space is divided into inter{f@ls;, S|, called sections. In one
section,U¥ does not depend on droplet size and the form('8ft, x, S) = m® (t, x)k K (S)
as a function oSis assumed independent(bfx). The variable used s = fs‘j‘ A SY2nkds,
the non-dimensional mass density in sectiaelative to the typical mass densitgy =

Pro S 2o/ (6\/T).

The set of droplets in one section can be seen as a ‘fluid’ faclwtonservation equations
are written, thus yielding exchanges of mass and momentumeka the coupled fluids.
Droplets in different sections can then have different dyica with ana priori control of
the required precision in size phase space. Let us noteublatas approach only focuses on
one moment of the distribution in the size variable withinlesection, and the mass moment
is chosen because of its relevance in evaporation and ceioiysocesses. Higher-order
approximations can also be used (see [20] and referencesrthe

The conservation equations for tki8 section read:

am¥ 46, - (TR = (EW + EM)yml — D mksd)

A (M0 TR 4 4, (MW TN T = (EX + EF)ymMTW 3)
7E£k+1)m(k+l)ﬂk+l)+ mWEK

where Eik) and Eék) are the evaporation coefficients aRtf) = (Ug(t,x) —u)/(St sﬁ,'%a,g
is the average drag force, a function of the mean surfaceddrtee sectior‘sg,'%an For a

2 This corresponds to a generalized Maxwell-Boltzmann idistion at zero temperature and remains an
“equilibrium” velocity distribution even if there is no didion operator in the model.



choice of the shape of the distribution wit) (S) constant in each section, the evaporation
coefficients can be written:

553 D EMZ 55°-59) &Sy gy (S‘i‘/zfﬁ)_
2A52-572) i/z 2A52-572) 55°-5/%)

The E§ and E2 terms represent the exchange between successive sectibrgchange
with the gas phase through evaporation, respectively. & besservation equations have
the same mathematical structure as the pressure-less gamidg equation. Thus, they
potentially lead to singular behavior and require welksdinumerical methods [19, 5].

k
EX = 4)

3.2 Numerical methods

Because of the transport in physical space and the trariggarase space due to evaporation
and drag have different structures, we use a Strang splédgorithm [5, 18]. We first solve
for At/2 the transport in phase space, thendoithe transport in physical space, and then
for At/2 the transport in phase space. The interest in Strangisglit two fold. First, this
approach has the great advantage of preserving the pegpeftihe schemes we use for the
different contributions, such as for example a maximumgpile or positivity. If we assume
that the involved phenomena evolve at roughly the same toakes, the Strang splitting
algorithm guarantees second-order accuracy in time pedvitlat each of the elementary
schemes has second-order time accuracy. Furthermore afcmmputational point of view,
this is optimal and yields high parallelization capalekti

The transport in physical space obeys a system of weaklyrbge conservation laws
and relies on kinetic finite volume schemes as introduceglim[order to solve the pressure-
less gas dynamics equation. Through assumption [H1], ibeefa kinetic description that
is equivalent to the moment system of equations for smodthisns and allows to properly
define the fluxes for transport of the moments in one spacerdiime. The resulting scheme
is second-order accurate in space and time. For a 2-D spackyriler use a dimensional
Strang splitting of the 1-D scheme previously describedb]nThe corresponding scheme
offers the ability to treat thé-shocks and vacuum states, and preserves the positivityeof t
mass density as well as the moment space.

For the transport in phase space through evaporation amy tira model equations
reduce to systems of ODE’s, which can be stiff, for each poirthe domain. The system
is solved using an implicit Runge-Kutta Radau IIA method ofey 5 with adaptive time
steps.

4 Results with Eulerian multi-fluid model
The aim of this section is first to validate the Eulerian mfiltid model on an unsteady flow

configuration. We then show the importance of the descriptibthe polydispersity, and
also highlight some of the limitations of the multi-fluid meldor describing dilute flows.

4.1 Free-jet configuration

In order to assess the Eulerian methods we focus on a 2-Deftea polydisperse spray is
injected in the jet core with either a lognormal size NDF (Fi&g1-right), whose mean diam-



eterdp corresponds to the reference surf&geor a constant size distribution ¢B ] in the

surface variable (linear in radius), corresponding to tbgitning of a typical experimen-
tal distribution [17]. The simulations are conducted withacademic solver, coupling the
ASPHODELE solver [23] with the multi-fluid solver MUSES3D, ®], using the models
presented in this work. The ASPHODELE solver couples a kanetescription of the gas
phase with a Lagrangian description of the spray. One of éyddatures of this simulation
tool is to allow, in the framework of one-way coupling, thensitaneous computation of the
gas phase as well as both Lagrangian and Eulerian sprayt@sts within the same code.

2 4 6 8 10 12 605 1 15 7
droplet diameter

Fig. 1 Free-jet configuration at time= 20. (Left) Gas vorticity on a 408 200 grid. (Right) Polydisperse
lognormal distribution discretized with 5 and 10 sections.

As far as the gas phase is concerned, we use a 2-D Cartesiavidolv number com-
pressible solver. The gas jet is computed on aX@00 uniformly spaced grid. To desta-
bilize the jet, we inject turbulence using the Klein methaithwt 0% fluctuations [15]. The
Reynolds number based b, vp andLg is 1,000, wherdJg is the injection velocity antlp
is the jet width. We will eventually provide dimensional qtities for illustration purposes.
These will be based on a velocity df = 1 m/s and_g = 1.5x 102 m, as well as a typical
value ofvg = 1.6 x 107> m?/s. Finally we havely = Lo/300, wheredy is the diameter cor-
responding to the typical droplet surfa&g andp;/pg = 565. The gas vorticity is presented
in Figure 1-left. Since we aim to validate the Eulerian med#irough comparisons to a
Lagrangian simulation, and to show the importance of thergfgson of the polydispersity,
we restrict ourselves to one-way coupling.

4.2 Lagrangian versus multi-fluid model for free-jet confagfion

In this first case, the lognormal distribution (Figure 1htigis used for the injected spray.
We take as a reference solution for the liquid phase a Lagaai@PS with particle numbers
in the computational domain ranging from 10,000 to 70,000edeling on the case. The
number of droplets for each case is determined by stoictiigmé/e provide comparisons
between the Lagrangian reference and the Eulerian muidi-dlemputations by plotting the

Lagrangian particle positions versus the Eulerian numbasity. Thanks to the multi-fluid

description, we perform the comparisons for different engf droplet sizes and thus for
different Stokes numbers, for evaporating and non-evaipgraases.



4.2.1 Free-jet non-evaporating test case

For the non-evaporating case we use five sections for tha-fluidt simulation (see Fig-
ure 1-right). We have 70,000 Lagrangian particles in thepaational domain at the time
considered. We present first a comparison for low-inert@pldits and find a very good
agreement for the droplets with a Stokes range froddDto 012, corresponding to diam-
eters between &im and 30um, as shown in Figure 2-left. The multi-fluid model is thus
shown to simulate the dynamics of a polydisperse spray fatively small Stokes num-
bers. Droplet dynamics are close to the gas dynamics forahige of sizes, and therefore
the model remains in its domain of validity (see Sect. 3). ligher Stokes numbers the
droplets are ejected from the vortices and crossing tr@jiest are likely to occur, breaking
the monokinetic multi-fluid assumption described in Sech&vertheless, the dynamics are
still very well reproduced for high-inertia droplets. Thesults are plotted in Figure 2-right
for Stokes numbers from48 to 11, corresponding to diameters from géh to 90um. One
can notice that the number density is concentrated in a fdainghis case and that the nu-
merical method does not encounter any problems to captardistribution, illustrating its
robustness.

Fig. 2 Non-evaporating polydisperse spray at time 20. (Left) Low-inertia droplets with Stokes@L1 to
0.12, corresponding to diameters from 9 to @fh. (Right) High-inertia droplets with Stokes4® to 11,
corresponding to diameters from 60 to @M. (Top) Lagrangian particle positions with 40,000 paescbver
gas vorticity. (Bottom) Eulerian number density on a 4000x 5 grid.

4.2.2 Free-jet evaporating test case

The free-jet case is assessed here with an evaporating Sorahed? law, we take a con-
stant mass-transfer number Ba0.1. The corresponding non-dimensional evaporation co-
efficientisk = 0.07. The results are presented in the same manner as for thevaparating
case. In order to describe accurately the evaporation gspeee take ten sections for the



multi-fluid simulation, whereas 30,000 Lagrangian pagtichre present in the domain at
the time considered. As in the non-evaporating case, we fineryagood agreement be-
tween the Eulerian and Lagrangian descriptions. For lanvtia droplets, the comparison is
shown in Figure 3-left, with Stokes numbers frord01 to 012, corresponding to diameters
do =9 um to dy = 30 um. For high-inertia droplets, the comparison is shown iruFeg3-
right, with Stokes number from.88 to 11, corresponding to diameters from @@n to
90 um.

Fig. 3 Evaporating polydisperse spray at tiine 20. (Left) Low-inertia droplets with Stokes@L1 to 012,
corresponding to diameters from 9 to 0. (Right) High-inertia droplets with Stokes4® to 11, corre-
sponding to diameters from 60 to @0n. (Top) Lagrangian patrticle positions with 40,000 paescbver gas
vorticity. (Bottom) Eulerian number density on a 40@00x 5 grid.

The polydisperse evaporating free-jet case shows theyabflithe multi-fluid method
to treat more complex flows, closer to realistic configuraioUsing these comparisons,
we demonstrate that the multi-fluid model captures sizaditimmed dynamics that carry
droplets of different sizes to different locations. It igthessential to evaluate the ability of
the Eulerian model to capture the evaporation process askwh

4.2.3 Gas-phase fuel mass fraction

Our interest being in combustion applications, a key isfuevaporating spray modeling
is prediction of the gas-phase fuel mass fraction. We thesgmt comparisons between the
gas-phase fuel mass fraction obtained from the LagrangidriEalerian descriptions of the
spray. These results are found with the same coupled codesimshe previous section,
the spray being described on the one hand by the Lagrangidmochand on the other hand
by the multi-fluid model. These simulations are again doriagusne-way coupling. As
a consequence, the evaporated fuel is not added as a mase s&um in the gas-phase
equations, but is stored in two passive scalars, one for@estription of the spray, that are
transported by the flow. The Lagrangian gas-phase fuel masdh is obtained through
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a projection of the droplet evaporation over the neighbdis @ the computational mesh.
These two fields are plotted in Figure 4. One can see the very ggreement of both
descriptions for spray evaporation. This comparison Umater the efficiency of the multi-
fluid model in describing polydisperse evaporating spr&ysthermore, as can be seen in
Figure 4, the Eulerian description provides a smoother fieddh the Lagrangian one. This
illustrates the difficulties that arise when coupling thgtamgian description of the liquid to
the Eulerian description of gas, and underlines the adgant&the Eulerian description of
the spray for the liquid-gas coupling. These results reges first step towards combustion
computations with full two-way coupling.
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Fig. 4 Comparison of the gas-phase fuel mass fraction at ttme45 (left) andt = 20 (right). (Top) La-
grangian method with 30,000 droplets. (Bottom) Euleriaritifluid model on 400x 200x 10 mesh.

4.3 Importance of treatment of polydispersity

Our objective in this section is to highlight the key role @lyaispersity in the description

of the dynamics of the droplets. We consider the same fieegjfiguration as detailed
previously but with a constant size distribution of the atgd spray. We compare results
obtained using one and ten size sections for the evaporase The constant mass-transfer
number is set as Bz 0.1. The corresponding non-dimensional evaporation coeffids

K = 0.07. The Stokes number of the droplets in the one-sectionisaSe= 1.88 (dy =

119 um). In the case of ten sections, the Stokes number rangesStes0.0188 @y =

12 um) to 286 (dp = 147 um). Two results are provided, the first shows the spray number
density, and the second the gas-phase fuel mass fraction.

When focusing on the number density (Figure 5), it is obvithat the global evap-
oration rate strongly depends on the refinement of the gesnriof polydispersity. The
evaporation, when considering one section, is highly ugtenated in comparison to the
evaporation when considering ten sections. This can berstoael by considering the trans-
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Fig. 5 Total number density of the polydisperse evaporating sptaymet = 20. (Left) Multi-fluid model
with one section. (Right) Multi-fluid model with ten sect&n
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Fig. 6 Comparison of the gas-phase fuel mass fraction at tirees5 (left) andt = 20 (right). (Top) Multi-
fluid model with one section. (Bottom) Multi-fluid model witen sections.
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fer coefficients given in Eq. (4). For the higher sections,dtiaporative coefficienEQ('O are
lower than the global coefficient in the case with one secfidre opposite is true for the
lower sections. Adding the fact that there is a mass flux filmerhigher sections to the lower
ones leads us to the result of Figure 5. Backing up this ceraiyit can be seen in Figure 6
that the gas-phase fuel mass is higher in the computatidnterit sections.

Furthermore, the dynamics observed are quite differenthferspray with one section
than for the spray with ten sections. First, as can be seeigiurd-6, when we focus on
the free outlet zone, the gas-phase fuel mass fraction lehigith one section than with
ten sections, whereas the opposite is true everywhereretse idomain. Indeed, the high
evaporation rate has almost made the totality of the spisgpgiear, so that at the very end
of the jet, only small droplets with low mass remain. On thetcary, with one section, the
spray does not evaporate at as high a rate, which leads tduh&@ where the remaining
liquid mass is much higher with one section than with tenisest Thus the evaporation
rate, proportional to the mass, becomes higher with onéosect

A purely dynamic effect is observed in the gas-phase vortexacting with the droplets
whose repartition within the vortex depends on their size.tRe one-section case, there is
no segregation as a unique size is considered. In partidhlare are no droplets at the
center of the vortex. In contrast, with ten sections theeggagion by size is significant. The
bigger droplets are on the outer edge of the vortex, wheteasrhaller ones remain near
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the center. These differences between the two models wsihect to polydispersity have
far-reaching consequences, since the accurate localizattigas-phase fuel mass fraction is
a key requirement for combustion applications.

4.4 Limitations of multi-fluid model

w
w

@
o

Fig. 7 Simulation of crossing jets with drag and evaporation aetiimet = 10. (Left) Multi-fluid model.
(Right) Multi-fluid, multi-velocity model.

One typical configuration for which the multi-fluid model gdiets an artificial spatial
averaging is when two droplet jets cross for a monodispgysysindeed, at the crossing
point, there exist at the same space and time location twaritiels leading to a bi-modal
velocity distribution that is out of equilibrium. This cogfiration is presented in Figure 7.
In Figure 7-right the multi-fluid, multi-velocity model, esented in the next section, can
describe the crossing of the jets. Nevertheless, due tmestign and drag, the CFL num-
ber is no longer unitary and some numerical diffusion appeBecause of the equilibrium
assumption [H1], the multi-fluid method can not handle tlasec Indeed, only different
size droplets can experience crossing within the multdffsamework. If the multi-fluid
model is used to describe dilute (non-collisional) flowsegults in the artificial collisional
“zero-Knudsen” limit presented in Figure 7-left wheré-ahock is created (i.e., mass accu-
mulates on 1-D spatial structures). The presenc@-siiocks is especially problematic for
fully two-way coupled systems because mass accumulatiadathock can induce strong
(unphysical) changes in the gas-phase fluid dynamics. Feré¢ason, it is necessary to
develop Eulerian models for non-equilibrium velocity distitions.

5 Eulerian multi-fluid, multi-velocity approach
5.1 Multi-velocity approach for monodisperse sprays
As shown in the previous section, dilute sprays with finitekBs number particles can lead

to particle trajectory crossings, which cannot be captimgdnulti-fluid models. In order
to overcome this limitation, it is necessary to have reauosa model that can capture
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multiple particle velocities at the same time and spatieatmn. In quadrature-based mo-
ment methods, the velocity distribution function is reprged by a finite sum of weighted
delta functions centered at discrete velocities [8—10&sBEvelocities, as well as the weights
multiplying the delta functions, evolve in space and timegproduce a finite set of lower-
order velocity moments. Most importantly, thisilti-velocityapproach provides a realizable
kinetic-based closure for the spatial fluxes of the mometits For non-collisional systems
(i.e., infinite Knudsen number), the multi-velocity appecbaallows for an exact description
of particle trajectory crossing [7]. In this section, we cliise the implementation of the
multi-velocity approach to solving the Williams-Boltzmarquation for a monodisperse
spray in two dimensions corresponding to Eq. (1) vidtk- 0 andS= 1.

5.1.1 Moment transport equations

To handle the velocity moments, we employ a third-order madroksure using quadrature
[8]. In two dimensions, the set of ten velocity moments ughiadtorder is defined by

W2 = (Moo, M10, Mo1, M20, M11, Moz, Mo, M21, M12, Mog).

The velocity moments are found from the velocity distribatfunction for a monodisperse
spray by integration:

M :/uilu;fdu. )
The unclosed transport equations for the velocity momeansbe easily found starting from

Eq. (1):
0tMoo + 0x, M10+ 9,Mo1 =0,

GtM1o+ 0y Moo + O, M11 = (UglMoo Mio) ,
0tMo1 + dx M11+ 05, Moz = §t (UgaMoo — Moz) .
2
0:M20 + G M3+ Gy, Mz1 = St (UgiM1o— M2o) ,
1
GtM11+ 0y Ma1+ O, M12 = St (UgaMoz +UgaM1o— 2M11) ,
2 (6)
Moz + 0 M12+ d, Moz = St (UgaMo1 — Moz) ,
3
0tM3g+ Ox, Mag + Ox,M31 = St (UgiM20— Mzo) ,
1
GtM21+ 0 Ma1 + 0, Moo = St (2Ug1M11 4+ UgoMao — 3M21) ,
1
GtM12+ 0y Moz + O, M1z = St (UgaiMoz+ 2UgoM11 — 3My2)
3
0:Moz + Ox; M13+ 0x,Mosa = St (UgaMoz — Mog) ,
where the terms on the right-hand sides are due to drag. Télesenl fourth-order terms
in the moment transport equationd, ..., Mos) are closed using quadrature as described

below. Note that because St is constant, the drag termsagedcand linear functions of the
moments. The corresponding coefficient matrix is lower died with eigenvalues equal to
—(i+j) for Mjj. In the absence of transport (i.e. using Strang splittitig) drag terms can
be solved analytically.
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5.1.2 Relationship between moments and quadrature nodes

Quadrature-based moment methods distinguish themsebmsther moment methods by
the use of quadrature weights and abscissas to model thesedcterms in the moment
transport equations. Thus, when developing a quadratuthoghean important task is to
define the algorithm for computing the weights and absciéses the moments [8,9].
Here we limit ourselves to quadrature formulas for momepttouthird order, and use one-
dimensional product formulas [8]. Thus, the number of gaade nodes in each direction
of velocity phase space will be two.

LetVs = [(ng,Uq)] with a € (1,2,3,4) denote the set of weights and abscissas for the
4-node quadrature approximation fafNote that the set of quadrature nodgsontains 12
unknowns (i.e. four weights, and four 2-component velogggtors). To find the compo-
nents of\4, we work with the velocity moments up to third order, whicle aelated to the
guadrature weights and abscissas by

4 4 4
Moo = z Ng, M1o= z NgU1q, Mo1 = z NgUz2q,
a=1 a=1 a=1

4 4 4
Moo=y ngUf;, M= 3 NaUiaUza, Moz= Y naUZ;, (7)
a=1 a=1 a=1

4 4 4 4
3 2 2 3
M3z = z NaUiy, M21= Z NaUigU2a, M12 = z NaU1qUsq, Moz = Z NaUgg-
d=1 d=1 d=1 d=1

Below we describe an algorithm for finding from W2 [8]. The inverse operation (finding
W2 from V) is Eq. (7), which we will refer to agrojection In general, it will not be possible
to represent all possible moment setsWg using weights and abscissas\ip. We will
therefore define the set of representable momentg?s- W2.

5.1.3 Quadrature-based closure of spatial fluxes

The moment transport equations given above contain urtlepatial flux terms. Using
guadrature, these fluxes can be expressed in terms of thbteeigd abscissas:

4 4 4
Mio= Y naUfy, Mar= Y naUizUzg, Mo =y ngUf;UZ, 8
a=1 a=1 a=1

4 4
Mi3= z naUllaU23a, Mosg = Z nD,UfO,. (9)
a=1 a=1

Quadrature is also used to write the other spatial fluxegingef the weights and abscissas
[6,7]. The fluxes are based on the kinetic description usidgl&-function representation
of the velocity distribution function:

f(u)= i Ngd(u—Ug). (10)

a=1

For example, the negative and positive contributions tdltheterms in thex; direction for
the zero-order moment are expressed as

4 4
M= Y ngmin(0,Us) and M= > NgmMax(0,Usa). (11)
a=1 a=1
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Likewise, the fluxes for higher-order moments have analsgoums [6-9].

We should note that the fluxes as defined above are not guadaiasi@roduce moments
that can be represented by the proposed quadrature algoi@ For this reason, after
advancing the moments due to the spatial fluxes (or any otieeeps that does not remain
in W2), it is necessary to project the moments back W& This is accomplished simply
by using the moments to compute the weights and abscissashean using Eg. (7) to
recompute the moments.

5.1.4 Four-node quadrature

Using the set of ten moments up to third orté, we seek to define a four-node quadrature.
We begin by defining the mean particle velocity vector [8]:

_ |M10/Moo
Up = [Mm/ Moo} ’ (12)

and the velocity covariance matrix:

Mao/Moo—UJ;  Mi1/Moo — Up1Up2:|

[93j] |:M11/MOO_UplUp2 Moz/Moo—U,fg (13)

The next step is to introduce a linear transformat#oto diagonalizes. The choice of
the linear transformation is not unique, but we choose toausariation of the Cholesky
decomposition as described in Sect. 5.1.5 below. With thi@oce we introduce a two-
component vectoX = [X; Xo|" defined by

X=A"1(u-Up) sothat u=AX+Up. (14)

If we denote the first four moments ¥f by mik, ke (0,1,2,3), then they are related to the
velocity moments by

I']'\Ozl7 n"lzo7 n"zzl7
m = h; (A, Up, M3o/Moo, . . ., Mos/Moo) ,

whereh; depends, in general, on all ten third-order velocity mors¢sit
Using the two-node quadrature formulas [8], the moment¥;afan be inverted for
i € (1,2) tofind (ngi)1, Niy2, Xiy1, Xiiy2):

(15

1oy \ 2
Niy1 = 0.5+, X(i)lz_( y.>
1+2y (16)
1+ 2y 12
Nij2 =0.5= ¥, Xip2 = =2y
where(—1/2 <y <1/2)
- m/2 (17)

()2 4]
The four-node quadrature approximation is then definedguie tensor product of the
one-dimensional abscissas as

Vlik = [(n>:‘|<.7x(l)lvx(2)l)7 (n§7x(l)l7x(2)2)7(n§7X(1)27X(2)1)7 (nZ,X(1)27X<2)2)] (18)
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where the (as yet) unknown weight$ must obey the linear equations [8]

Ny — N = N(g1 —N2)2
n; +n; = N(2)2, (19)
nES, + nZ = n<1)2.
The right-hand sides of Eq. (19) are known, and have the piopieatn); +ng1). = 1 and
n<2)l + n<2)2 == l
The linear system in Eq. (19) has rank three. We must thexreddd another linear
equation to define the four weights. For this purpose, wews# the cross moment, =

(X1X2) = 0, the value of which follows from the definition &f. In terms of the weights and
abscissas in Eqg. (18), we have

X1)1X(2)1M + X(1)1%(2)2M% + X(1)2X(2)1M3 + X(1)2X(2)2M = 0. (20)

The resulting system can be inverted analytically to find

g =ng =(0.54y1)(0.5+ )
ns = ng =(0.5+1)(0.5— ) (21)
m =Ny =(0.5-y1)(0.5+ )
nrn =(0.5-y1)(05- ).

Note that these weights are always non-negative.
In summary, the weights and abscissa¥jmre found from those il using Eq. (14)
to invert the abscissas ang = M°nj,. The eight moments controlled in this process are

W2 = (P, mg, mg, Mg, mip, mg, Mg, m3).

Note that the two third-order moments\&2* are a linear combination of the four third-
order moments ikV2. HenceW?* is a subset ofV2 containing eight independent moments
(instead of ten). However, given moment3Af it is straightforward to project them (using
the weights and abscissas) iM&", i.e., the eight-dimensional moment subspace that can
be represented By is W2'. The overall procedure can be represented as [8]

W2 5 W2 VoV o W2 cw?,

where a projection step is used to defiid’.

5.1.5 Choice of velocity covariance decomposition

Here we describe the decomposition used in this work to défine two dimensions (or
greater), the correspondence between the moment set agetthiequadrature weights and
abscissas is not one-to-one. We transport the whole setrofmis but effectively restrict the
moment subspace recursively structured from the set ohslecaler velocity moments for
which the correspondence is one-to-one, and insure thattheity moment vector lives in
this subspace. An additional difficulty is that the choic¢heftransformation matriA is not
unique. In this work, we use the Cholesky decomposition efdbvariance matrix, defined
such thatL 'L = o. Indeed, there are fundamental grounds for using this dposition
rather than other methods. For example, defining the mAtiixterms of the eigenvectors
of the covariance matrix is a good choice for the passivesfrari of a distribution function.
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However, because the velocity is a dynamic variable, a fonestal difficulty comes from
the fact that the eigenvectors afdo not vary smoothly with its components. As a conse-
guence, the fluxes computed from the abscissas are themtiisas, leading to random
fluctuations in the moments. In contrast, the Cholesky matdefinesA in such a way that
it varies smoothly with the components @fand, hence, the fluxes are well-behaved [8].

However, the Cholesky matrix is itself non-unique. If weatluce a rotation matribR,
the matrixRL is another candidate for the decomposition. This bringssadiiantage for
the use of the Cholesky matrix: it depends on the ordering®ftbvariance matrix, and is
thus different for each of the two permutations (six in thdgaensions) of the coordinates
corresponding to tw® matrices (identity and rotation by/2). It is thus desirable to replace
the two linear transformation&y andA, in the two preceding choices with a permutation-
invariant linear transformation. Here we employ the halfla betweerA, andAy, which
treats each direction in the same manner and is indepentigmet ardering of the covariance
matrix. Moreover, this choice is stable and defines a sulesplithe moment space in which
the conserved variables live.

In the particular cases where the dispersion of the digtabufunction is null for at
least one direction (the moment vector lies on the boundamyoonent space), the Cholesky
matrix L becomes singular. In order to be able to treat this case wuiitimbroducing an
artificial velocity variance in the system, we use, for thastjgular case, the eigenvectors of
the covariance matrix, where only one of the two eigenvaisiesn-zero. The quadrature in
the direction where the velocity variance is null is triviiit this does not prevent us from
using the 1-D quadrature method in the other direction. ieté the resulting quadrature
algorithm are given in Appendix 1.

5.2 Multi-fluid, multi-velocity model for polydisperse sprs

The quadrature-based method for velocity moments destiib&ect. 5.1 has been inte-
grated in the multi-fluid model, described in Sect. 3. Theultésy model, which we call
the multi-fluid, multi-velocity model, overcomes the limitons of the multi-fluid model by
capturing the dynamics of the spray, even in the “infinite #sen limit”, while describing
polydispersity like the multi-fluid model does. The mostaigde advance compared to the
multi-fluid model is that the multi-fluid, multi-velocity nuel allows droplet crossing in the
configuration of two impinging jets.

In this section, we consider a polydisperse spray. The #fluld model presumes the
form of the NDFf(t,x,Su) = n(t,x,S)d(u — u(t,x,S)). The droplet phase space is then
discretized into sections. The multi-fluid, multi-velgcinodel goes beyond the equilibrium
hypothesis, so that in each sectiothe NDF is written asf (t,x, S,u) = n(t,x,S) o™ (u —
a(t,x,S)), where@® is the velocity distributiona priori different from the Dirac distri-
bution. In other words, it is a distribution function chaextstic of sectionk, such that
J, @M (t,x,u)du = 1. The size and velocity distributions are then independeatch sec-
tion so that polydispersity and the size distributions ateexl independently. In particular,
we can use the quadrature-based expressiomfforas a sum of weights and abscissas,
capturing the lower-order moments @ up to the third order.

Let, as in Sect. 5.1.2) = 2 denote the number of velocity phase-space dimensions.
Moreover, let us work on a size section, delimited by therirate{S_1, &[. The massn(¥),
and the mean velocityl® are no longer enough to reconstruct the NDF. We need, as in
Sect. 5.1, a ten moment set (up to third-order velocity mds)erorresponding to four sets
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of weights and abscissas. These moments are defined by

S L
mom = [T o 2 / uhubf duds, (22)
S-1 u

with the conventionMé'é) = 1. The moments are tensorial products of the size moment

mk) and the velocity momenmi<-k). Consequently, in each section, the velocity distribu-
tion “sees” a monodisperse distribution, and can be rengetsd using exactly the same
qguadrature method presented in Sect. 5.1. If the size andityemoments were fully cou-
pled, then the phase space would have three dimensionshewgiadrature method would
be even more complex. (We recall that the moment-inversigarighm is exact only for
monovariate distributions. The fact that it works in a twimdnsional velocity phase space
is already quite exceptional.)

We introduce now the system of equations for the multi-flaiditi-velocity model:

A IM{ + 3, (mOME) ) + 0, (MIMK ) =

(Ef‘) +E§k>)m<k)Mi(jk> _ E£k+l)m<k+1)Mi<jk+l) +mFR (23

where the average drag foré& is obtained, as for the multi-fluid model, using the mean
surfa\ceﬁg};ﬂn The dynamics of the velocity moments within each size eadire the same
as explained in Sect. 5.1. For the evaporation operatom#ss and momentum fluxes in the
multi-fluid model are replaced by the fluxes of all the momeAtsemarkable consequence
is that the velocity distribution in sectidacan change from a monomodal to a bimodal
distribution due to the fluxes from secti&nr- 1.

5.3 Numerical methods

As done for the multi-fluid model in Eq. (3), we use a Strangtpd) algorithm to solve sys-
tem (23), splitting the transport in physical space fromttaasport in phase space through
evaporation and drag. For the transport in physical spheesyistem is still weakly hyper-
bolic and equivalent to a kinetic description, once a quadeais designed. We also use
a kinetic scheme [3] but first-order accurate in space and [8hin order to strictly pre-
serve the moment space during the reconstruction part dlgmeithm, which guarantees
that the eigenvalues of the covariance matrix are both mgative. In our simulations, we
aim at working also on the boundary of moment space since wé twdackle cases where
the velocity distribution reduces to a monokinetic disitibn and the proposed quadrature
degenerates to the multi-fluid model when the covarianceixriatzero up to machine pre-
cision.

The preservation of the moment space is also importantglaramsport in phase space.
The local dynamical system corresponding to the phasegoaiis Eq. (23) can be rewritten
d YK = o(Y®) with

Y = (m®, mOME, MY, mRME m oM, meImE,

3 K 3 K
MM mOME), moML, mRm%9).

This system is solved using an implicit Runge-Kutta Rad&urtiethod of order 5 with
adaptive time steps. Whereas this resolution in the caskeofrulti-fluid model did not
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yield any difficulties, for the multi-velocity model it carad to a non-realizable set6f.
The preservation of moment space is facilitated by workiiith the central moments:

) 5 . 4
m(k>Mi(jk) :/ o §/2/ (ulf Mfg)I (uzf Mé'i))l f(t,x,Su)duds,
S u

fori+ j > 2. The equations for the transport in phase space of theatembments are given

in Appendix 2. Using these transport equations, even ththgghhave additional nonlinear
terms, the Radau solver can be adapted and yields a robust ealthe conservative central
moments that strictly preserves the moment space and allmnisng up to the boundary

of moment space (i.e., a monokinetic velocity distribu}ion

6 Results for multi-fluid, multi-velocity model
6.1 Multi-fluid, multi-velocity versus Lagrangian modeby ffree-jet configuration

The configuration chosen for the simulation with the muliief] multi-velocity model is
the same free-jet configuration with gas-phase instadslitis described in Sect. 4.2. The
unstationary gas-phase velocity field destabilizes theidigphase, and because spatially
separated droplet clouds will interact with different gdse vortices, the droplets may
impinge at a later time. Nonetheless, the intensity of éngssis relatively low as only
a small amount of liquid interacts with the vortices. Indetée range of eligible Stokes
numbers for which droplet crossing can be observed is s@althe one hand, the Stokes
number must be greater than a minimum valug,,Stibove which droplets can be ejected
from the vortices. On the other hand, the Stokes number nautvieer than a maximum
value, Sthax, above which the liquid phase does not interact with the gase. In the free-
jet configuration, the range of Stokes number©i48, 1.1]. Nevertheless, this configuration
precisely highlights an important property of our model,ichhis the ability to capture
simultaneously regions where the droplet ‘temperaturevéocity variance) is low, and
areas where the droplet temperature is strictly equal t. zer

For the simulations with the multi-velocity model, the fissép is to show a good level
of agreement between the Eulerian and Lagrangian simntafay the non-evaporating test
case. Figure 8-left presents a fair comparison betweerrtipbed number density fields with
a level of agreement similar to the level obtained in eaflgures. In order to quantify the
ability of the method to capture droplet crossing, we hase glotted in Figure 8-(top right)
one-half the trace of the velocity covariance matrix, whachounts to a droplet ‘temper-
ature’ in the case of an isotropic velocity distribution. vitaver, the droplet temperature
is defined for all types of velocity distributions, includirisotropic and anisotropic ones,
and therefore the crossings may be difficult to discern frobentemperature fiellIn or-
der to characterize regions of anisotropy, and thus regidrese droplet crossings might be
more easily observed, we have also plotted the absolute wlthe difference of the two
eigenvalues of the velocity covariance matrix in Figuréb8t{om right). This figure very
beautifully complements the plot in Figure 8-(top rightydicating that droplet crossings
occur throughout the flow field.

3 The droplet temperature should not be confused with theeeatyre of the liquid.

4 Since droplet collisions are excluded from Eq. (1), a nam-zizoplet temperature automatically implies
the presence of droplet clouds with different velocitiethatsame location.
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Fig. 8 Non-evaporating polydisperse spray with high-inertiaptits (Stokes @8 to 11 corresponding to
diameters from 60 to 9um) at timet = 20. (Top left) Lagrangian particle positions with 20,006tjztes
over gas vorticity. (Bottom left) Eulerian number density400x 200x 5 grid. (Top right) Trace of velocity
covariance matrix. (Bottom right) Absolute value of thdeliénce between the two eigenvalues of the velocity
covariance matrix.

Next, we focus a specific region of the flow domain in order ®cdss details of the
actual droplet velocity field. The region of interest is Highted in Figure 8-(bottom right)
and contains both a zone with large differences betweemtheigenvalues of the velocity
covariance matrix and a zone where the temperature is rigliré-9-(top left) represents
the velocity vectors in the first zone. The associated weiginé displayed in Figure 9-
(top right) for the highest weights and in Figure 9-(bottdaght) for the lowest weights and
correspond, respectively, to the solid and bold arrows.h&sarder of magnitude between
the two sets of weights is five, these figures show the abifith@ multi-velocity model to
capture the fine structure of the droplet jet. It can be easign that the two different types
of velocity vectors correspond to two droplet clouds dragbg two different gas-phase
vortices. Let us note that there can only be (except for vpeciic cases) two dominant
velocity vectors, due to the fact that in the model we invieet ¥elocity moment set using
a two-node quadrature for each dimension. In the zero-teatyre zone, it can be seen
in Figure 9-(bottom left) that the velocity field consists afingle vector at each point.
The important conclusion drawn from these figures is thanthéi-velocity model (when
carefully implemented) is able to capture both regions optitt crossings as well as regions
of zero temperature.

Finally, we have plotted the results of the multi-fluid, niwiélocity model with evapo-
ration in the case of the polydisperse spray jet in FigureQi@e again, this figure demon-
strates the ability of the proposed method to capture thamyes conditioned on size as
well as evaporation for a range of small to moderate Stokasbeus.

6.2 Multi-velocity model versus multi-fluid model for crasg jets

In order to illustrate the behavior of the multi-velocity de in the context of a realistic jet,
we use the same configuration as in Sect. 6, with the addifiarvertical jet of droplets that
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Fig. 9 Focus on region of the spray outlined by the rectangle in&ighottom right). (Top) Region where a
significant and a null field of absolute value of the differeetween the two eigenvalues of the velocity co-
variance matrix coexist. The two types of arrows (soliddpoépresent two different velocities and highlight
droplet crossing in the zone where the absolute value of ifferehce between the two eigenvalues of the
velocity covariance matrix is non-zero. In the zone wheeedtoplet temperature is close to zero, the veloc-
ity field degenerates to one velocity. (Bottom left) Highezights associated with the solid arrows. (Bottom
right) Lower weights associated with the bold arrows.

will cross the horizontal jet. The gas phase is exactly thmesas before and the droplets
in the two jets are injected with the same velocitl), density and size. The particles in
the vertical jet are inertial enough to cross the horizojggleven though they are decel-
erated by the gas. Their Stokes number.354 corresponding to a diameter of 1g5n.
For comparison, the same configuration is simulated with ki-fwid model with one sec-
tion. In addition, separate simulations with only the honital or the vertical jet using the
multi-velocity model are presented.

Results from the four simulations are given in Figure 11. Thenber density of the
spray with two crossings jets obtained from the multi-véiomodel is shown in Figure 11-
(top right). Results for the vertical jet are shown in Figlile(top left) and for the horizontal
jetin Figure 11-(bottom left). One can see that the simairatf the two crossing jets cor-
responds to the superposition of the independent simokiid each jeb. This behavior
clearly illustrates the ability of the multi-velocity mode capture particle crossing. In con-
trast, the multi-fluid model in Figure 11-(bottom right) ieable to reproduce this kind of
crossing (i.e. it cannot capture the exact solution to thiéidiis-Boltzmann equation) and
instead producesa@shock. As discussed in Sect. 4.4, the presendedfocks in a two-way
coupled system will produce unphysical gas-phase flow sires.

5 In the absence of collisions, the Williams-Boltzmann eiqumis linear and thus the exact solution is a
superposition.
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Fig. 10 Evaporating polydisperse spray with high-inertia drapk&tokes 018 to 11 corresponding to di-
ameters from 60 to 9Qum) at timet = 15. (Top) Lagrangian particle positions with 7,000 paescbver
gas-phase vorticity. (Bottom) Eulerian number density 80:4200x 10 grid.

Fig. 11 Total number density of the non-evaporating spray at tiree20. (Top left) Vertical jet with the
multi-velocity model. (Bottom left) Horizontal jet with &hmulti-velocity model. (Top right) Two crossing
jets with the multi-velocity model. (Bottom right) Two crgiag jets with the multi-fluid model.

7 Conclusions

Two types of Eulerian models for polydisperse evaporatipgys have been developed
in this work. The first one, the multi-fluid model, has been dastrated to give excel-
lent agreement with Lagrangian simulations in a free-jetfigoration with the injection

of a polydisperse spray with and without evaporation. Initaaiy the gas-phase fuel mass
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fraction fields from the Eulerian model are in good agreemetit the Lagrangian fields,
while containing no statistical noise due to the finite numbenumerical particles. By
varying the number of sections in the multi-fluid model, werdhghown the importance
of including an accurate description of polydispersity whiescribing the gas-phase fuel
mass fraction. Nevertheless, we demonstrated, using tram@® of crossing jets, that the
multi-fluid model produces unphysicalshocks. In order to overcome this limitation, we
have developed a multi-velocity model that can accuratedgipt crossing jets in an Eule-
rian framework. By extending the multi-velocity model telnde multiple sizes, the result-
ing multi-fluid, multi-velocity model can capture polydmse sprays with droplets cross-
ing in complex flow configurations, characteristic of spraynbustion. In future work, the
guadrature-based moment models will be extended to casexe lie gas-phase velocity
field is modeled by a large-eddy simulation.
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Appendix 1: Quadrature at boundary of moment space

We distinguish between two different cases when the vglaxit/ariance matrix becomes
singular: (i) the singularity occurs in one of the two pripali directions (i.e.011 = 0 or
022 = 0), or (ii) it occurs in a non-principal direction. If the gialarity occurs in a prin-
cipal direction (let us choosg as an example), then the diagonalisation is trivial. A one-
dimensional quadrature is performed on the moments intérex; [8]. In directionxz, one
weight and the corresponding abscissa are set to one intordenserve the droplet mass,
the other weight and abscissa are null.

If the singularity does not occurs in a principal directitime general relationship de-
duced from the fact that the velocity covariance matrix rggalar is 0122 = 011022 With
011 # 0 andoy, # 0. Lettingp = 011/ 012, the covariance matrix can be written as

0 =012 [g 1/lp} . (24)

The eigenvalues af areA; = 011+ 022 andA, = 0. The inverse transformation matrix for
this case is
1

Al=Z=
a

p 1
L 25)

with a = (011 — 022)/1/022, given by the fact thatnz = 1 in order to use Eq. (16) in the
direction associated with eigenvaldg. A one-dimensional quadrature is then performed
on the moments in this direction [8]. In the orthogonal diie@g, like in the first case, one
weight and the corresponding abscissa are set to one intordenserve the droplet mass,
the other weight and abscissa are null. The weights andsaascin the canonical basis are
defined using the relatiom= AX + U
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Appendix 2: Phase-space transport equations for central moents

The central moments corresponding to moments of the digioib defined by Eq. (22) are

m(")l\7li<jk) = p| S?’/Z/( —Mfg)l (uszé'?)l f(t,x,Su)dudS
S< 1

=55 (3) (2) () (wt) by

(26)

The part of Egs. (23) corresponding to transport in the pbpaee through evaporation and
drag can be rewritten in terms of the central moments:

o (m<k),\7|élé)) _ —(E}k>+E§k)) ( )+E(k+1> (k+1)

~(k)
- ~ ~ (i Ug1—M;
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