
HAL Id: hal-00449764
https://hal.science/hal-00449764

Submitted on 22 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study on the Benefit of TCP Packet Prioritisation
Eugen Dedu, Emmanuel Lochin

To cite this version:
Eugen Dedu, Emmanuel Lochin. A Study on the Benefit of TCP Packet Prioritisation. The 17th
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP
2009), Feb 2009, Weimar, Germany. pp.0. �hal-00449764�

https://hal.science/hal-00449764
https://hal.archives-ouvertes.fr


A Study on the Benefit of TCP Packet

Prioritisation

Eugen Dedu1 and Emmanuel Lochin2,3

1 Laboratoire d’Informatique de l’Université de Franche-Comté (LIFC)
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Abstract

This paper studies and analyses the benefits of favouring the trans-
fer of packets of a TCP flow over a best-effort network. Specifically,
we aim at studying whether we could improve the pace of short data
request, such as HTTP request, by giving a high priority to TCP pack-
ets that are not previously enqueued inside a core router. Following
the idea that long-lived TCP flows greatly increase the routing queue
delay, the motivation of this work is to minimise the impact in terms
of delay, introduced by long-lived TCP flows over short TCP flows.
Thus, this forwarding scheme avoids to delay packets that do not be-
long to a flow already enqueued inside a router in order to avoid delay
penalty to short flow. We define metrics to study the behaviour of
such forwarding scheme and run several experiments over a complex
and realistic topology. The results obtained present interesting and
unexpected property of this forwarding scheme where not only short
TCP flows take benefit of such routing mechanism.

1 Introduction

Favouring the TCP connection establishment packets or any others packets
belonging to a TCP flow inside a core network is not a novel idea. James
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Kurose, in his famous text book Computer Networking, suggests that it
would be useful to protect from losses TCP packets with a low time-to-live
value in order to prevent retransmission of packets that have already done
a long travel inside a core network. As another example and in the context
of QoS networks, Marco Mellia et Al. [3] have proposed to protect from loss
some key identified packets of a TCP connection in order to increase the TCP
throughput of a flow over an AF DiffServ class. In this study, the authors
observe that TCP performance suffers significantly in the presence of bursty,
non-adaptive cross-traffic or when it operates in the small window regime,
i.e., when the congestion window is small. The main argument is that bursty
losses, or losses during the small window regime, may cause retransmission
timeouts (RTOs) which will result in TCP entering the slowstart phase. As
a possible solution, the authors propose qualitative enhancements to protect
against loss: the first several packets of the flow in order to allow TCP to
safely exit the initial small window regime; several packets after an RTO
occurs to make sure that the retransmitted packet is delivered with high
probability and that TCP sender exits the small window regime; several
packets after receiving three duplicate acknowledgement packets in order to
protect the retransmission. This allows to protect against losses, packets
that strongly impact on the average TCP throughput. In this paper, we
propose to study the prioritisation of certain TCP packets in order to in-
vestigate whether we could minimise the transfer delay of short TCP flows
without impacting on the long lived connections. Basically, we study how to
exploit router functionality to improve the performance of short TCP flows
in a best-effort network by giving a higher priority to the first packets of a
TCP flow inside a router queue if no others packets belonging to the same
flow are already en-queued. One of the main goals of this proposal, called
FavourTail, is to investigate and understand the benefits of using a priori-
tisation forwarding scheme inside a core network. Intuitively, we expect to
decrease the transfer delay of small TCP connections but surprisingly, we
show that this routing behaviour does not only improve the performance of
TCP flows and allows to improve the overall performance in terms of trans-
fer delay when slight congestion occurs. We present the potential benefit of
using such solution and analyse the benefit of our scheme over a realistic and
complex network topology. We show that the proposed scheme can improve
the transfer delay of TCP flows up to 25%.

This paper is organised as follows: the next section 2 presents the prob-
lem and gives the motivation of this work. Both sections 3 and 4 evaluate
through simulations our FavourTail proposal. Then, we provide some related
work section 5 and finally, section 6 concludes and gives the perspectives of
this study.
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2 Problem formulation and motivation

The purpose of storing packets at a router queue is to temporarily absorb
burst of packets. The idea we want to develop is to prevent short data flows
to be enqueued due to a burst induced by long-lived traffic.

To solve this problem, a possible solution is to involve only the end
points. Suppose a connection which only needs to send 10 packets. If we
assume the sender is aware of this small number of packets to transmit, we
could propose to let him choose to send them in burst. However, this violates
the slow start phase and the congestion control principle. As a matter of fact,
it results that a mechanism to favour short flows must necessarily involve
routers.

Idea presentation When a packet arrives at a router, the router first
decides whether it is to be rejected/marked or simply enqueued. If the
packet is to be enqueued, the packet scheduling takes place. In the FIFO
scheduling policy, the packet is inserted at the top of the queue.

Our packet scheduling proposal, called FavourTail, changes the enqueu-
ing packet process. Indeed, when a packet is enqueued, a check is made in
the whole queue to seek another packet from the same flow. If no other
packet is found, it becomes a priority packet, otherwise it is added as usual
at the top of the queue. Priority packets are added at the beginning of the
queue, right after the last priority packet (if there are any). The packet
reordering inside a flow is thus avoided.

This scheme is quite similar to a priority queuing scheduling mecha-
nism [5].

The packet scheduling policy proposed in FavourTail can be enabled
inside any queue management such as DropTail and RED. In the simulations
below, we use DropTail.

Variants There are many variants of this idea which do not involve flow
states on routers. We plan to work on them in order to understand their
effect and drive performances comparison measurements. The following de-
tails some possible variants:

• Instead of a binary function (i.e. insert the packet in the priority
queue or in the normal one), we could use another function f(n, m)
giving the level in the queue where the packet is inserted, where n is
the number of packets of the same flow in the queue, and m is the
total number of packets in the queue. Function f might be linear,
exponential, logarithmic and so on. For example, in classical FIFO,
f(n, m) = m, i.e. the packet is always added on top of the queue (the
difference with Fair Queuing scheduling policy is f also depends on
the number of packets of other flows);
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• Instead of having only two queues, we could choose to set several ones
with number of packets threshold. For example: one which enqueues
packets with no other packets belonging to the same flow, another for
packets with only few packets (for instance, one or two packets), one
for a bit more packets (more than two and less than five) and the last
priority queue for all the other packets. However, this solution has to
be studied carefully as it might introduce an important overhead;

• Act on dropped/marked packets. When a packet is going to be dropped
and if it is a priority packet, then choose the last low priority packet.

Dimensioning We want to evaluate if FavourTail might have good results
in realistic cases. As an example, suppose a flow of 8Mb/s (equivalent
to 1000 pkts/s with a 1000 bytes packet size). Suppose also an RTT of
50ms. It results 50 pkts/RTT (1000 pkts/s * 50ms/RTT). If each direction
gets half of them, then there are 25 data packets in flight. If there are 10
routers between source and destination, then there are 2.5 pkts/router in
average. We therefore consider that there are a few routers where this flow
is still prioritised. However, it is more consistent to consider the overall gain
obtained by the flow rather than the number of times this flow got a packet
with a high priority.

Characteristics

• FavourTail does not only favour the beginning of connection but also
flows with few packets in flight, i.e. with small congestion window;

• There is no relationship between the routers, i.e. a flow with ten pack-
ets in flight, one in each router, is favoured, while another flow with
only two packets in flight, both on the same router, is not favoured.
This is especially true in the TCP slow start phase: packets are gener-
ated in burst, so the probability to have several packets of this flow in
a router is higher. A CBR-like behaviour, such as the one in TFRC,
should be much more prioritised, because their packets are distributed
across all the routers;

• There are still several cases where a flow with a very small trans-
mission time has the same transmission time in both cases (DropTail
and FavourTail): (1) it might have only one intermediate router, so
the chance to be in concurrence with other flows are smaller, (2) this
might be explained because in FavourTail, they never get high priority
(it crosses routers which have only high priority packets), (3) it might
be because in DropTail the routers are empty (so it is like they would
be priority), (4) it might be because on the next router of the next
router the prioritisation of the packet does not change anything;
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• For priority flows, the more routers are in the path, the greater is the
gain in terms of transmission time;

• In terms of security, sources cannot cheat by sending packets at a rate
making them always priority, because they cannot estimate how many
priority packets are inside routers (a priority packet may be put in the
head if there is no other priority packet, but it may be put as number
10 is there are already 9 priority packets in the queue);

• FavourTail is NAT-compatible, if source port and destination port are
used to identify flows (as they are unique for NAT too);

• The deployment is in the interest of the person who deploys. Indeed,
when a router uses FavourTail, his own users are advantaged: clients
receive faster Web pages, and servers reply faster to their Internet
clients;

• Starvation may occur for long flows in a router which receives only
priority packets. In order to remove this, the normal queue could be
served from time to time even if the priority queue is not empty; we
will tackle this in a future work;

• A solution which acts on two bursty packets exactly like two spaced
packets, i.e. which spaces the bursty packets, would avoid TCP prob-
lem given below. We reserve this possible enhancement in a future
study.

FavourTail has been implemented in ns2 as an extension of the DropTail
queue. The next sections present the results.

3 Simulation results on a simple network

3.1 Network topology

We firstly evaluate FavourTail over the simple network topology given fig-
ure 1. The links are configured as follows: both access links have a capacity
set to 2Mb/s while the bottleneck link has a 1Mb/s capacity. All links have
a transfer delay set to 10ms. Two FTP/TCP traffics are generated: the first
one, C1, from src1 to dest, and the second one, C2 (in the second simula-
tion we use TFRC instead of TCP), from src2 to dest. C1 starts at sec. 0
and ends at sec. 5. C2 starts at sec. 1 and generates only 12 data packets.
Obviously, at the beginning of the connection, a SYN packet is generated,
and FavourTail will give it a high priority. However, it is important to keep
in mind that not only SYN packet will get a priority. The tests are made
with both policies: DropTail and FavourTail.
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Figure 1: Topology of the simple network.

3.2 Results

TCP The time elapsed between the last packet sent and the first one for
C2 is 0.53 for DropTail and 0.43 for FavourTail. The total number of packets
sent by C1 is 591 in both cases. No packet is lost.

This is a positive result for the user in terms of transfer duration. Indeed,
C1 is not penalised at the end of the connection, while C2 finishes about
20% sooner. The reason is that the two first packets of C2 are prioritised
by the router. In fact, when arrived at the router, the first packet overtakes
13 slots, while the second one overtakes 14 slots. The difference in time for
C2 (0.53 − 0.43 = 10 ms) corresponds to the processing time of packets by
the router (13 + 14 = 27 packets), time gained by C2.

TFRC If C2 uses TFRC instead of TCP, the time elapsed between the
last packet sent and the first one for C2 is 0.54 for DropTail and 0.17 for
FavourTail. The total number of packets sent by C1 is 591 in both cases.

This is again a very positive results for the user. C1 is not penalised at
the end of the connection, while C2 transfer is about 3 times faster. In fact,
6 packets from C2 are prioritised, gaining each one between 14 and 17 slots.

3.3 Discussion

While the results with this network topology are positive, i.e. the small flow
is indeed favoured, the question is why not all its packets are prioritised.

In fact, TCP is a protocol which sends packets in burst. The first burst
contains one packet, so it is prioritised. The second burst, sent when the
acknowledgement arrives, contains two packets. The first packet is priori-
tised on the router, but the second one arrives before the first one leaves the
router (the link after the router, 10ms/1Mb, is slower than the link before
the router, 10ms/2Mb), hence it is not prioritised. As the queue contains
many packets from the long flow, this packet is still in the queue when
the packets of the next burst arrive. In fact, because the queue has many
packets, none of the following packets are prioritised.

On the other hand, TFRC is a congestion control which sends a smooth
(CBR-like) non bursty traffic. More packets than TCP are prioritised, but
not all (6 out of 12/13). The reason is that for the seventh packet the
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Router

Figure 2: Backbone of the flower network.

throughput of the TFRC flow is a bit higher than the output router link, so
this packet arrives at the router before the sixth packet has left. The next
packets will experience the same problem.

4 Simulation results on a complex network

4.1 Network topology

In order to evaluate FavourTail over a more realistic case, a more complex
topology is used in the next simulations. According to a small study of the
xDSL backbone of a Internet provider1, most of these networks are built
around a central core where several loops are connected. These loops are
composed of a small number of routers. The aim of the closed loop is to
have a fault tolerance.

For the simulation, a flower with five loops is considered as backbone,
each loop has 8 routers, shown in figure 2. Each router (except the 5 core
routers) has 2 DSLAMs connected to it, and each DSLAM has 3 hosts con-
nected to it. Each link has the following characteristics: 10Mb/s bandwidth,
10ms delay, DropTail (or our FavourTail).

We emit 500 FTP over TCP/Newreno connections (flows) with random
and non identical hosts as source and destination. Each connection starts
at a random time between 0 and 20 seconds and sends a random number
between 10 and 600 packets.

1http://support.free.fr/reseau/province.png, not available anymore as of August
2008.
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DropTail FavourTail

Sum of transmission times (in seconds) 2618.68 2410.34
Number of lost packets 2470 1608

Number of lost data packets 913 626

Table 1: Global metrics.
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Figure 3: Transmission time of all the flows; the two curves have different
values on abscissa.

4.2 Results

Several metrics are used to compare the classical DropTail and FavourTail,
we divide them in global and short flows specific ones.

Global metrics Global metrics refer to metrics about the whole simula-
tion. Table 1 presents some results.

FavourTail globally reduces the transmission time of all flows. The time
reduction is globally spread among the flows, as shown in figure 3, but
among the flows with higher transmission time, as will be detailed later. As
a matter of fact, if a scheduler treats first shorter tasks, then the total finish
time is smaller. This might explain the reason why we obtain a shorter
transmission time.

We also notice that the number of lost packets, and of lost data packets,
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Figure 4: Transmission time of all the flows, ordered by the transmission
time of FavourTail variant, and DropTail variant.

is 30% smaller with FavourTail.

Short flow specific metrics Our idea favours packets when they are
alone inside the current router (i.e. no other packets from the same flow
exist). This leads to the idea that flows which have to send only few packets
should be favoured. However, several results prove the contrary.

The transmission time of each flow for both variants is given in figure 4.
They are ordered by the transmission time of the FavourTail variant, in
figure 4(a), and the DropTail variant, in figure 4(b). In figure 4(a), it seems
that flows with short transmission times are indeed favoured. However, this
is not true. This is clearly shown in figure 4(b), where for short transmission
times (on the left x-axis in this figure), DropTail variant seems to have
smaller times.

It results that using DropTail or FavourTail transmission time is subjec-
tive. An objective comparison, i.e. order the abscissa based on the “length”
of flow, is therefore needed. Several criteria may be chosen as length of flow:
(1) number of packets sent by the flow, (2) number of packets divided by
the number of intermediate routers (or links), (3) number of packets divided
by the number of concurrent flows inside path routers, and so on. In our
context, i.e. favouring packets with few packets, the most appropriate crite-
rion is the number of packets divided by the number of intermediate routers
(we use here a simple ratio function for simplicity purpose). A smaller value
means more favoured. In fact, the more the packets, the smaller the gain of
FavourTail; the more the number of links, the higher the gain of FavourTail.

Table 2 presents the statistics of the transmission time ordered by the
number of packets divided by the number of links. We can observe a slight
advantage for FavourTail. The statistics ordered by the number of packets
show similar results (albeit the difference between both variants is a bit
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DropTail FlavourTail

Average 5.24 4.82
Std. Dev. 3.38 3.06

Min 0.24 0.24
Max 16.52 17.2

Table 2: Statistics of the transmission time of the 500 flows, ordered by the
number of packets divided by the number of flow links.

further reduced).

Several parameters of the simulation have been changed, the results are
quite similar. The parameters changed are:

• all the traffic is TFRC instead of TCP;

• the data size of flows follows a Pareto distribution;

• the first 50 flows send a number of packets ranging from 1 to 10 packets
and all others send between 200 and 800 packets;

• each core router has attached only one DSLAM, and each DSLAM has
only one host attached.

Experiments with variable queue buffer size In this experiment, we
vary the queue size of each router buffer from 2 to 200 packets. This allows to
emulate a congestion level inside the whole core network. We use the flower
network topology previously presented with random size of data transfer.
Then, we report the number of dropped packets and the number of TCP
data packets and the sum of transmission time of all data transfer during
the experiment. These metrics are those already presented at the beginning
of this section.

In order to verify the benefit introduced by our solution at a macroscopic
level, we show in figure 5 the difference between the results obtained by
DropTail and our proposal. When this difference is positive, our proposal
gets better performance than DropTail. As expected, and in order to verify
our implementation, when the queue size is very small (i.e. when the queue
size is set to two packets), the difference is nil meaning there is no advantage
for both mechanisms. When the queue size is very large (i.e. higher than
hundred packets), the performance realized by both mechanisms is quite
similar. The fixed TCP window size of all sources explains this later result:
the buffer occupancy of each router queue is stabilized since the emitted
traffic is not growing anymore due to this fixed size. This result allows to
stand that when buffers size are large, meaning there is no congestion inside
the network, our proposal does not bring any advantage. However, when the
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Figure 5: Comparison between DropTail and our proposal.

queue size is ranging from 10 to 70, that can symbolize a congestion level
considered as severe to slight, our proposal allows to decrease the number of
dropped packets and as a consequence, the number of retransmitted packets
which directly results by a lower transmission time for the TCP flows.

At a microscopic level, the results obtained by all flows are similar to
those presented in figure 3. Despite the fact that the overall performance
gets better, we cannot see a lower transfer time for short TCP flows as
illustrated in figures 6 for various queue sizes.
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Figure 6: Transmission time of all flows as a function of the queue size.
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5 Related work

Many research papers have tackled router-based methods to optimise flows
transfer. This section presents the most related to our proposal.

In [4], routers memorise the number of bytes of each flow crossing them.
Upon reception of a packet, the number of bytes is updated and is added to
the queue so that packets in the queue be always sorted based on the number
of bytes traversed. The consequence is the flows are given higher priority
when they are at the beginning of connection. The drawbacks are routers
need flow states, heavy computations are requested to sort the queue, and
the number of packets in the flow must be known.

In [1], the authors remove this final condition by computing the number
of the packet from the TCP sequence number. To do this, they introduce
the following hypothesis: the starting sequence number must have the last
N bits (N = 22 proposed in the article) equal to zero. The drawbacks are
TCP senders must be modified, the sequence number is more vulnerable to
guessing attack and the deployment is difficult: short flows on a standard
TCP source will be penalised, since the sequence number of the first packets
are misinterpreted by the router as being the Nth packets. Two queues
are used and a threshold. Upon reception of a packet, if the number of
bytes of that flow is inferior to a threshold, the packet is enqueued in the
priority queue and in the normal queue otherwise. The priority queue is
FIFO, while the normal one is sorted by the number of crossing packets.
The normal queue is only used when the priority queue is empty.

Another idea is presented in [2]. Only edge routers need flow soft states
(soft meaning that they do not need it permanently). They count the packets
of each flow and set the DiffServ bits of each packet. Core routers use only
DiffServ information. Edge routers mark packets as IN if the current number
of packets is inferior to a certain threshold, and OUT if they exceed this
threshold.

6 Conclusion

In this paper, we have presented and evaluated a novel forwarding scheme.
We show that this scheme leads to interesting properties allowing to decrease
the overall transfer delay of TCP flows in the context of best-effort networks.
The results obtained are quite unexpected, as intuitively we would expect a
stronger benefit of this mechanism to short TCP flows and on the contrary,
measurements show an overall benefit for long flows without high impact
over short ones with our proposal compared to DropTail. Indeed, the main
findings are that FavourTail decreases the number of packets dropped and
as a primary consequence, the sum of transmission times is thus reduced.
However, the short flows are not noticeably favoured compared to the other
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longer flows.
In a future work, we aim at investigating, through a larger measurements

campaign, this forwarding scheme and in particular with other transport
protocols such as TFRC in order to verify whether we would benefit similar
properties.
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