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1 Unité Signaux et Systèmes, ENIT, BP 37, Le Belvédère 1002, Tunis, Tunisia
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In this study, two new approaches for speech signal noise reduction based on the empirical mode decomposition (EMD) recently
introduced by Huang et al. (1998) are proposed. Based on the EMD, both reduction schemes are fully data-driven approaches.
Noisy signal is decomposed adaptively into oscillatory components called intrinsic mode functions (IMFs), using a temporal
decomposition called sifting process. Two strategies for noise reduction are proposed: filtering and thresholding. The basic
principle of these two methods is the signal reconstruction with IMFs previously filtered, using the minimum mean-squared
error (MMSE) filter introduced by I. Y. Soon et al. (1998), or thresholded using a shrinkage function. The performance of these
methods is analyzed and compared with those of the MMSE filter and wavelet shrinkage. The study is limited to signals corrupted
by additive white Gaussian noise. The obtained results show that the proposed denoising schemes perform better than the MMSE
filter and wavelet approach.

Copyright © 2008 Kais Khaldi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Speech enhancement is a classical problem in signal pro-
cessing, particularly in the case of additive white Gaussian
noise where different noise reduction methods have been
proposed [1–4]. When noise estimation is available, then
filtering gives accurate results. However, these methods are
not so effective when noise is difficult to estimate. Linear
methods such as Wiener filtering [5] are used because
linear filters are easy to implement and design. These linear
methods are not so effective for signals presenting sharp
edges or impulses of short duration. Furthermore, real
signals are often nonstationary. In order to overcome these
shortcomings, nonlinear methods have been proposed and
especially those based on wavelets thresholding [6, 7]. The
idea of wavelet thresholding relies on the assumption that
signal magnitudes dominate the magnitudes of noise in a
wavelet representation so that wavelet coefficients can be set
to zero if their magnitudes are less than a predetermined
threshold [7]. A limit of the wavelet approach is that basis
functions are fixed, and, thus, do not necessarily match all
real signals. To avoid this problem, time-frequency atomic
signal decomposition can be used [8, 9]. As for wavelet
packets, if the dictionary is very large and rich with a collec-

tion of atomic waveforms which are located on a much finer
grid in time-frequency space than wavelet and cosine packet
tables, then it should be possible to represent a large class of
real signals; but, in spite of this, the basis functions must be
specified (Gabor functions, damped sinusoids, . . .).

Recently, a new data-driven technique, referred to as
empirical mode decomposition (EMD) has been introduced
by Huang et al. [10] for analyzing data from nonstationary
and nonlinear processes. The EMD has received more
attention in terms of applications [11–23], interpretation
[24, 25], and improvement [26, 27]. The major advantage
of the EMD is that basis functions are derived from the
signal itself. Hence, the analysis is adaptive in contrast to
the traditional methods where basis functions are fixed.
The EMD is based on the sequential extraction of energy
associated with various intrinsic time scales of the signal,
called intrinsic mode functions (IMFs), starting from finer
temporal scales (high-frequency IMFs) to coarser ones (low-
frequency IMFs). The total sum of the IMFs matches the
signal very well and therefore ensures completeness [10]. We
have shown that the EMD can be used for signals denoising
[14, 15] or filtering [17]. The denoising method reconstructs
the signal with all the IMFs previously thresholded as in
wavelet analysis or filtered [14, 15]. The filtering scheme
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relies on the basic idea that most structures of the signal
are often concentrated on lower-frequency components (last
IMFs), and decrease toward high-frequency modes (first
IMFs) [17]. Thus, the recovered signal is reconstructed with
only few IMFs that are signal dominated using an energy
criterion. Thus, compared to the approach introduced in [14,
15], no thresholding or filtered is required. The proposed
filtering method is a fully data approach [17].

In this paper, we show how the idea of thresholding
IMFs using hard or soft shrinkage introduced in [14, 15] can
be extended and adapted to speech signal for enhancement
purpose. According to if the noise level can be correctly
estimated or not, two noise reduction methods are proposed.
The first strategy combines the EMD and the minimum
mean-squared error (MMSE) filter [1], and the second
one associates the EMD with hard shrinkage [14, 15]. The
two methods are applied to speech signals corrupted with
different noise levels, and the results are compared to the
MMSE filter and the wavelet approach.

2. EMD ALGORITHM

The EMD decomposes a signal x(t) into a series of IMFs
through an iterative process called sifting; each one, with
distinct time scale [10]. The decomposition is based on the
local time scale of x(t) and yields adaptive basis functions.
The EMD can be seen as a type of wavelet decomposition
whose subbands are built up as needed to separate the
different components of x(t). Each IMF replaces the signals
detail, at a certain scale or frequency band [24]. The EMD
picks out the highest-frequency oscillation that remains in
x(t). By definition, an IMF satisfies two conditions:

(1) the number of extrema and the number of zeros
crossings may differ by no more than one;

(2) the average value of the envelope defined by the
local maxima and the envelope defined by the local
minima is zero.

Thus, locally, each IMF contains lower-frequency oscillations
than the just-extracted one. To be successfully decomposed
into IMFs, x(t) must have at least two extrema; one mini-
mum and one maximum. The sifting involves the following
steps:

Step 1. fix the threshold ǫ and set j ← 1 ( jth IMF);

Step 2. r j−1(t) ← x(t) (residual);

Step 3. extract the jth IMF:

(a) h j,i−1(t) ← r j−1(t), i← 1 (i number of sifts),

(b) extract local maxima/minima of h j,i−1(t),

(c) compute upper and lower envelopes U j,i−1(t) and
L j,i−1(t) by interpolating, using cubic spline, respec-
tively, local maxima and minima of h j,i−1(t),

(d) compute the mean of the envelopes: µ j,i−1(t) =
(U j,i−1(t) + L j,i−1(t))/2,

(e) update: h j,i(t) := h j,i−1(t)− µ j,i−1(t), i := i + 1,

(f) calculate the following stopping criterion: SD(i) =∑T
t=1(|h j,i−1(t)− h j,i(t)|2/(h j,i−1(t))2),

(g) repeat Steps (b)–(f) until SD(i) < ǫ and then put
IMF j(t) ← h j,i(t) ( jth IMF);

Step 4. update residual: r j(t) := r j−1(t)− IMF j(t);

Step 5. repeat Step 3 with j := j + 1 until the number of
extrema in r j(t) is ≤ 2;

where T is x(t) time duration. The sifting is repeated several
times (i) in order to get h true IMF that fulfills the conditions
(1) and (2). The result of the sifting is that x(t) will be
decomposed into a sum of C IMFs and a residual rC(t) such
that

x(t) =
C∑

j=1

IMF j(t) + rC(t), (1)

C value is determined automatically using SD (Step 3(f)).
The sifting has two effects: (a) it eliminates riding waves and
(b) to smoothen uneven amplitudes. To guarantee that IMF
components retain enough physical sense of both amplitude
and frequency modulation, we have to determine SD value
for the sifting. This is accomplished by limiting the size of the
standard deviation SD computed from the two consecutive
sifting results. Usually, SD (or ǫ) is set between 0.2 to 0.3 [10].

3. DENOISING PRINCIPLE

Let a clean speech signal x(t) be corrupted by an additive
white Gaussian noise b(t) as follows:

y(t) = x(t) + b(t). (2)

The noisy signal is decomposed into a sum of IMFs by the
EMD, such that

y(t) =
C∑

j=1

IMF j(t) + rC(t), (3)

where IMF j is a noisy version of the data f j :

IMF j(t) = f j(t) + b j(t). (4)

An estimation f̃ j(t) of f j(t) based on the noisy observation
IMF j(t) is given by

f̃ j(t) = Γ[IMF j(t); τ j], (5)

where Γ[IMF j(t); τ j] is a preprocessing function, defined by
a set of parameters τ j , applied to signal IMF j [14, 15]. The
function Γ is chosen according to if noise level can be esti-
mated or not. When this estimation is possible, Γ is reduced
to the MMSE filter [1]. However, when the estimation is not
easy, the preprocessing can be a thresholding [14, 15]. The
function Γ is a shrinkage, and τ is a threshold parameter.
Finally, the denoised signal, x̃(t), is given by

x̃(t) =
C∑

j=1

f̃ j(t) + rC(t). (6)
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Figure 1: The original signals “a”, “b”, “c”, and “d”.
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Figure 2: The noisy version of signals “a”, “b”, “c”, and “d”. (SNR =

5 dB).

3.1. EMD-MMSE

Generally, speech noise estimation is performed using the
Boll’s method [28]. Accordingly, the silence periods of the
signal are detected, and then power spectra noise estimation
is performed by considering the average of the power spectra
of the noisy signal on the M first temporal frames which
are considered as being moments of silence, following the
relation

∣∣B̂(fe,m)
∣∣2 = 1

M

M−1∑

i=0

|B(fe, i)|2, (7)

EMD-MMSE
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Figure 3: Denoising results of signals “a”, “b”, “c”, and “d” by the
EMD-MMSE and the MMSE filter.

where |B(fe, i)| is power spectra value at the discrete fre-
quency fe of frame i. This method gives a correct estimation
of the noise [28].

Extensive simulations have shown that when a speech
signal with a silence sequence is decomposed by EMD, its first
IMF corresponds to that silence sequence. Thus, the first IMF
can be used to correctly estimate the noise level. According
to [24], the noise level of the modes following the first IMF
(k = 1) is estimated via

σ̃k =
σ̃1√
2
k−1

with k ≥ 2, (8)

where σ̃1 is the noise level of first IMF.
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Figure 4: Final SNR values obtained for different initial noise levels of signals “a”, “b”, “c”, and “d”. The results are the average of 100 instances
signal. It is reported for EMD-MMSE and the MMSE filter.

The combination of the EMD and the MMSE filter [1]
is called EMD-MMSE strategy. Thus, each IMF is filtered by
the MMSE filter as follows:

F̃ j(fe,m) = H(fe,m)IMF j(fe,m), (9)

where F j(fe,m) and F̃ j(fe,m) are the spectral noisy IMF
and the spectral estimated IMF, respectively, observed at the
discrete frequency fe on the frame m. H(fe,m) is described as
follows [1]:

H(fe,m) =
SNRprio(fe,m)

1 + SNRprio(fe,m)
. (10)

The signal-to-noise ratio, SNRprio, is estimated according to
the method of Ephraim and Malah [2] which is based on the

estimated F̃(fe,m−1) from the previous frame and on a local
estimation of SNRinst:

SNRprio(fe,m)

= α
F̃

2
(fe,m− 1)

B2(fe,m− 1)
+ (1− α) max(SNRinst(fe,m), 0),

(11)

where α is a weighting factor (equal to 0.98) and SNRinst indi-
cates the instantaneous SNR, defined as the local estimation
of SNRprio:

SNRinst =
IMF2(fe,m)

B2(fe,m)
. (12)
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Figure 5: The original signals “e”, “f”, “g”, and “h”.
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Figure 6: The noisy version of signals “e”, “f”, “g”, and “h” (SNR =

−1 dB).

3.2. EMD-shrinkage

A smooth version of the input signal can be obtained by
thresholding the IMFs before signal reconstruction [14, 15].
In this case, the threshold parameter is estimated by the
following expression [6, 14, 15, 29, 30]:

τ =
√

2 log(T)σ , (13)

where T is the signal length and σ is the estimated noise level
(scale level). The σ̃1 is given by [14, 15, 31]

σ̃1 = 1.4826×Median
{∣∣IMF1(t)−Median

{
IMF1(t)

}∣∣}.
(14)
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Figure 7: Denoising results of signals “e”, “f”, “g”, and “h” by the
EMD-shrinkage and the wavelet approach (Daubechies 4).

According to [24, 32], using σ̃1, the noise level σ̃k of the IMFs
can be estimated using (8).

There are different nonlinear shrinkage functions [33]. In
the present work, we use the hard shrinkage which has given
interesting denoising results for speech enhancement:

f̃ j =
{

IMF j(t) if
∣∣IMF j(t)

∣∣ > τ j ,

0 if
∣∣IMF j(t)

∣∣ ≤ τ j .
(15)

The association of the EMD and the hard shrinkage is called
EMD-shrinkage method.



6 EURASIP Journal on Advances in Signal Processing

0

2

4

6

8

10

12

14
SN

R
ga

in
(d

B
)

−10 −8 −6 −4 −2 0 2 4

Initial SNR (dB)

EMD-shrinkage

Wavelet (Haar)

Wavelet (Symmlet 4)

Wavelet (Daubechies 4)

(a) Gain in SNR for noisy version of “e”

0

2

4

6

8

10

12

SN
R

ga
in

(d
B

)

−10 −8 −6 −4 −2 0 2 4

Initial SNR (dB)

EMD-shrinkage

Wavelet (Haar)

Wavelet (Symmlet 4)

Wavelet (Daubechies 4)

(b) Gain in SNR for noisy version of “f”

−2

−1

0

1

2

3

4

5

6

7

SN
R

ga
in

(d
B

)

−10 −8 −6 −4 −2 0 2 4

Initial SNR (dB)

EMD-shrinkage

Wavelet (Haar)

Wavelet (Symmlet 4)

Wavelet (Daubechies 4)

(c) Gain in SNR for noisy version of “g”

−2

−1

0

1

2

3

4

5

6

7

8
SN

R
ga

in
(d

B
)

−10 −8 −6 −4 −2 0 2 4

Initial SNR (dB)

EMD-shrinkage

Wavelet (Haar)

Wavelet (Symmlet 4)

Wavelet (Daubechies 4)

(d) Gain in SNR for noisy version of “h”

Figure 8: Final SNR values obtained for different initial noise levels of signals “e”, “f”, “g”, and “h”. The results are the average of 100 instances
signal. It’s reported for EMD-shrinkage and for three different wavelets (Haar, Symmlet 4, Daubechies 4).

4. RESULTS

The two proposed noise reduction methods are tested
on speech signals corrupted by additive white Gaussian
noise with different SNRs. The results are compared to the
MMSE filter and the wavelet approach (Haar, Symmlet 4,
Daubechies 4). As indicated, the EMD denoising schemes
depend on the noise estimation. So, if the prespeech period
of the noisy signal is detected, then the EMD-MMSE is used.
Otherwise, the EMD-shrinkage is used. The SNR is used
as an objective measure to evaluate the denoising methods
performance. More precisely, the SNR is used to compare the

EMD-MMSE to the MMSE filter and the wavelet approach to
the EMD-shrinkage. The SNR is defined by

SNR = 10 log10

∑T
i=1

(
x
(
ti
))2

∑T
i=1

(
x
(
ti
)
− x̃
(
ti
))2 , (16)

where x(ti) and x̃(ti) are the original signal and the
reconstructed one, respectively.

The EMD-MMSE denoising scheme is applied to four
clean speech signals “a”, “b”, “c”, and “d” (Figures 1(a)–
1(d)) corrupted by additive white Gaussian noise with SNR
values ranging from 4 dB to 10 dB. Noisy versions of the
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original signals corresponding to SNR = 5 dB are shown
in Figure 2. We carried out numerical simulations where
for each SNR value, 100 independent noise simulations are
generated and averaged values calculated. Figure 3 shows
the denoising result obtained by the EMD-MMSE and the
MMSE filter. From this figure and compared to the respective
clean signals of Figure 1, one can conclude that the EMD-
MMSE performs better in terms of noise reduction than the
MMSE filter. This fact is confirmed by the results shown in
Figure 4 where interesting improvement in SNR are given by
the EMD-MMSE compared to the MMSE filter. Indeed, the
EMD-MMSE’s SNR improvement is about 1 dB greater than
the MMSE filter for all the four considered signals “a”, “b”,
“c”, and “d”.

The EMD-shrinkage is applied to four clean speech
signals “e”, “f”, “g”, and “h” (Figure 5), corrupted by additive
white Gaussian noise with SNR values ranging from − 10 dB
to 3 dB. Noisy versions of the original signals corresponding
to SNR = − 1 dB are shown in Figure 6. Denoising results
of the EMD-shrinkage (hard thresholding) and the wavelet
method (Daubechies 4) are shown in Figure 7. A careful
examination of the signals of Figures 5 and 7 shows that
the EMD-shrinkage performs better than the wavelet method
in terms of noise reduction. Furthermore, signals structures
or features are globally better preserved with the EMD-
shrinkage than the wavelet method. Figure 8 shows the
improvement in SNR values obtained for different noise
levels of the signals “e”, “f”, “g”, and “h” for the EMD-
shrinkage and three-type wavelet method (Haar, Symmlet
4, Daubechies 4). This figure demonstrates that for noise
SNR values from − 10 dB to 3 dB, the improvement in SNR
provided by the EMD-shrinkage varies from − 0.7 dB to
11.5 dB. In addition, the gain in SNR of the EMD-shrinkage
is much better than the one obtained by the other method for
the three wavelets. When listening to the enhanced speeches,
both the EMD-MMSE and the EMD-shrinkage are found
to produce lower residual noise and, noticeably, less speech
distortion for all the signals compared to the MMSE or the
wavelet method.

5. CONCLUSION

This paper presents two new speech denoising methods.
Both schemes are based on the EMD and thus are simple
and fully data-driven methods. The methods do not use
any pre- or postprocessing and do not require any use
of parameters setting (except the threshold ǫ). The study
is limited to signals corrupted by additive white Gaussian
noise. Obtained results for clean speech signals corrupted
with additive Gaussian noise with different SNR values
ranging from− 10 dB to 10 dB show that the proposed EMD-
denoising methods, associated with the MMSE filter or the
shrinkage strategy, perform better than the MMSE filter and
the wavelet approach, respectively. These results show that
the EMD-denoising methods are effective for noise removal
and confirm our previous findings [14, 15]. The EMD-
shrinkage is very attractive, especially in the case where the
noise estimation is not easy. Even in the case when the noise
level estimation is possible, the EMD improves the denoising

result with the classical MMSE filter. The obtained results
also show that it is more efficient to apply thresholding or
filtering to the different components (IMFs) of the signal
than to the signal itself. To confirm the obtained results
and the effectiveness of the EMD-denoising approaches, the
schemes must be evaluated with a large class of speech signals
and in different experimental conditions, such as sampling
rates, sample sizes, multiplicative noise, or the type of noise.
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