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In this work we compare the recently developed two-region mass transfer theory reported by Ahmadi et al. [A. Ahmadi, M. Quintard, S. 
Whitaker (1998), Transport in chemically and mechanically heterogeneous porous media, V, two-equation model for solute transport 
with adsorption, Adv. Water Resour. 1998;22:59–86] with experimental results reported by Zinn et al. [Zinn, B., L. C. Meigs, C. F. Har-
vey, R. Haggerty, W. J. Peplinski, C. F. Von Schwerin. Experimental visualization of solute transport and mass transfer processes in two-
dimensional conductivity fields with connected regions of high conductivity. Environ Sci Technol 2004;38:3916–3926]. We find that the 
constant mass transfer coefficient predicted by the steady-state closure to the theory, when used with the macroscale transport equation, 
provides a reasonable prediction of the observed breakthrough curve. However, the use of a constant mass transfer coefficient does not 
allow good representation of the tailing that is observed in the data. We show that the mass transfer coefficient can be represented in terms 
of the eigenvalue expansion of a Green’s function. For a steady solution to the closure problem, this expansion leads to the effective mass 
transfer coefficient being defined in terms of the harmonic average of the eigenvalues of the expansion; this is consistent with pre-vious 
work on this topic. To further investigate the influence of using a single, constant value for the mass transfer coefficient, we examine the 
solution to the mass transfer problem in terms of a mixed model, where the eigenvalues of one region (the inclusions) are kept, while the 
second region (the matrix) is treated as a homogenized material. The results from this comparison indicate that the mass transfer 
coefficient predicted via volume averaging using a quasi-steady closure could potentially be improved upon by development of new meth-
ods that retain more of the eigenvalues of the system.

Keywords: Mass transfer; Upscaling; Volume averaging; Mobile–immobile; Solute transport

1. Introduction

Although methods for treating solute transport in heter-
ogeneous media with a low variance of the log-conductivity
are now well established, corresponding methods for media
with a high-variance of the log-conductivity (for which we

will use the terminology highly heterogeneous) have only
recently been explored in detail. One of the distinguishing
features of solute transport in highly heterogeneous fields
is that the transport behavior is often distinctly non-Fic-
kian; that is, a conventional dispersive flux term in the
conservation of mass equation does not capture all of the
important solute transport behavior. Transport in highly
heterogeneous fields is often observed experimentally
by tailing in the spatial concentration field or solute

* Corresponding author. Fax: +1 541 737 3099.
E-mail address: brian.wood@oregonstate.edu (B.D. Wood).
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Nomenclature

Roman Letters

a radius of a spherical or cylindrical inclusion
(m)

Agx interfacial area of the interface between the ma-
trix and inclusion material in an averaging vol-
ume or unit cell (m2)

Ag,effluent the area of the effluent boundary for the
experimental flow cell (m2)

Age the area associated with the boundaries of the
system volume (the flowcell boundaries in the
case of the experimental work) (m2)

av =Agx=V, area per unit volume of the solid–fluid
interface (1/m)

bgg closure variable that relates ~cg to sources involv-
ing $hcgi

g; defined by Eq. (B.1) (m)
bxx closure variable that relates ~cx to sources involv-

ing $hcxi
x; defined by Eq. (B.2) (m)

bgx closure variable that relates ~cg to sources involv-
ing $hcxi

x; defined by Eq. (B.1) (m)
bxg closure variable that relates ~cx to sources involv-

ing $hcgi
g; defined by Eq. (B.2) (m)

cg Darcy scale (associated with volume Vd in
Fig. 1) concentration in the matrix (g-region)
(kg/m3)

cx Darcy scale concentration (associated with vol-
ume Vd in Fig. 1) in the inclusions (x-region)
(kg/m3)

hcgi superficial average concentration, as given by
Eq. (34) (kg/m3)

hcgi
g intrinsic average concentration, as given by Eq.

(34) (kg/m3)
hcxi superficial average concentration, as given by

Eq. (35) (kg/m3)
hcxi

x intrinsic average concentration, as given by Eq.
(35) (kg/m3)

~cg =cg � hcgi
g, Darcy scale deviation concentration

in the matrix (g-region) (kg/m3)
~cx =cx � hcxi

x, Darcy scale deviation concentra-
tion in the inclusions (x-region) (kg/m3)

cg,effluent flux-averaged concentration across the flowcell
effluent surface (kg/m3)

c0 initial concentration in the flowcell (kg/m3)
c0g deviation between cg,effluent and hcgi

g, defined by
Eq. (65) (kg/m3)

Cgx =hcgi
g � hcxi

x, as defined in Appendix C (kg/
m3)

Dmol the (dilute solution) molecular diffusion coeffi-
cient for the solute in water (m2/s)

Deff,g Darcy scale (associated with volume Vd in
Fig. 1) effective diffusion coefficient for solute
in the matrix (g-region) (m2/s)

Deff,x Darcy scale (associated with volume Vd in
Fig. 1) effective diffusion coefficient for solute
in the inclusions (x-region) (m2/s)

D
�
g Darcy scale (associated with volume Vd in

Fig. 1) total dispersion tensor for the matrix
(g-region) (m2/s)

D
�
x Darcy scale (associated with volume Vd in

Fig. 1) total dispersion tensor for the inclusions
(x-region) (m2/s)

D
�
gg Macroscale (associated with volume V in

Fig. 1) effective dispersion tensor for the matrix
(g- region) (m2/s)

D
�
xx Macroscale (associated with volume V in

Fig. 1) effective dispersion tensor for the matrix
(g-region) (m2/s)

D
�
gg;mixed Macroscale effective dispersion tensor for the

matrix (g-region) as defined for the mixed model
(m2/s)

Kg Darcy-scale hydraulic conductivity for the ma-
trix (g-region) (m/s)

Kx Darcy-scale hydraulic conductivity for the inclu-
sions (x-region) (m/s)

‘g, ‘x characteristic lengths associated with the Darcy
scale (see Fig. 1, Level II) (m)

L characteristic length associated with the macro-
scale (see Fig. 1, Level III) (m)

‘i lattice vector for the ith direction (i = 1,2,3) (m)
ngx = �nxg, unit normal vector, pointing from the g

phase toward the x phase (�)
nge unit normal vector, pointing outward from the g

phase toward the outside of the system volume
(or flowcell boundaries for the case of the exper-
imental work) (�)

nexit unit normal vector, pointing outward from the
flowcell effluent surface (�)

Pexx =hvxi
xa2/LDeff,x, a macroscale Péclet number

for the inclusions (�)
Pegg =hvgi

gL/Deff,g, a macroscale Péclet number for
the matrix (�)

Pegx =hvgi
ga/Deff,x, a mixed macroscale Péclet num-

ber (�)
Q generic flow rate (m3/s)
QHigh the high flow rate for the flowcell experiments

(1.32 mL/min) (mL/min)
QLow the low flow rate for the flowcell experiments

(0.66 mL/min) (mL/min)
R0 characteristic length associated with a macro-

scale averaging volume (Level II of Fig. 1) (m)
rg closure variable that relates ~cg to (hcgi

g � hcxi
x);

defined by Eq. (B.1) (�)
rx closure variable that relates ~cx to (hcgi

g �
hcxi

x); defined by Eq. (B.2); also interpretable
as the first integral of a Green’s function as indi-
cated by Eq. (C.23) (�)

tg, tx characteristic times associated with Darcy scale
concentration changes in the matrix and inclu-
sions, respectively (s)
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breakthrough curves (e.g. [1–6]). A large variety of methods
have begun to be explored for describing transport in such
systems, including fractional derivative formulations [2–4],
continuous time random walks [5,6], convolution integro-
differential equation approaches [7,8], cumulant expan-
sion/renormalization methods [9–16], homogenization the-
ory [17,18], and volume averaging [19].

First-order mass transfer models (also known as linear
driving force models) are the most widely applied methods
for representing mass transfer and transport in media with
regions of distinctly different hydraulic conductivity. Gener-
alizations of the approach have considered systems in which
the spatial hydraulic conductivity field is partitioned into a
sequence of discrete conductivities [20–24]. The advantage
of this approach is that the overall variability in hydraulic
conductivity is maintained, but the overall effect of the het-
erogeneities can be studied by examining the interaction of a
finite number of non-overlapping spatial fields each with
reasonably small variance in the log hydraulic conductivity.

In the simplest case, the spatial conductivity field is bin-
ary, and an example of such a field appears in Fig. 1, Level
II. In Fig. 1, the binary field is represented as a high-con-
ductivity matrix material (labeled as the g-region, with
hydraulic conductivity Kg) with low-conductivity inclu-
sions (labeled as the x-region, with hydraulic conductivity
Kx). Such structures are common in the subsurface [25,26],
so binary media represent a useful starting point for many
studies of the heterogeneous subsurface. In this work, the
length scale r0 illustrated in Fig. 1, Level III will be termed
the Darcy or microscale; the volume associated with this
scale is smaller than the volume of the inclusions, but suf-
ficiently large such it provides a continuous representation
of the porous medium. The length scale R0 illustrated in

Fig. 1, Level II will be termed the macroscale, and the vol-
ume associated with this scale is larger than an individual
inclusion, but smaller than the entire system of interest.

First-order mass transfer models are usually applied
with a constant effective mass transfer coefficient (e.g.
[27–35]). It has been pointed out by a number of research-
ers that the use of a constant mass transfer coefficient is
applicable only under certain limiting conditions [28,36].
Parker and Valocchi [28] have generated specific time-scale
constraints for the validity of the first-order mass transfer
model. Others have pointed out that the effective mass
transfer depends not only upon the media properties, but
on the initial and boundary conditions as well [36,37], sug-
gesting that the general construction of a linear mass trans-
fer model would be done most appropriately in a non-local
context. In response to these shortcomings, several non-
local models have been developed for the linear mass trans-
fer model, and this includes the diffusion into spherical
grains models [22,37], and the multi-rate mass transfer
models [3,38,39].

The first-order mass transfer models described above
have been developed either heuristically or by a geome-
try-specific analysis. Recently, the development of a first-
order mass-transfer model has been investigated for more
general conditions using the method of volume averaging
(e.g. see the studies by Ahmadi et al. [20] and Cherblanc
et al. [40,41]). These developments have provided schemes
in which the effective linear mass transfer coefficient can
be determined for an inclusion geometry that may be
non-spherical, and they have provided specific constraints
for assessing the range of validity of the method. Both
the asymptotic [20,40,41] and transient-non-local
approaches have been developed in this context [42,43].

T �
g characteristic times associated with macroscale

concentration changes in the matrix (s)
vg Darcy scale fluid velocity vector for the matrix

(m/s)
vx Darcy scale fluid velocity vector for the inclu-

sions (m/s)
hvgi

g intrinsic average macroscale fluid velocity vector
for the matrix (m/s)

hvxi
x intrinsic average macroscale fluid velocity vector

for the inclusions (m/s)
~vg =vg � hvg ig, fluid velocity deviation vector for

the matrix (m/s)
~vx =vx � h vxi

x, fluid velocity deviation vector for
the inclusions (m/s)

vg,effluent velocity normal to the flowcell outlet surface of
the experimental flow cell (m/s)

V volume associated with a macroscale averaging
volume, as defined in Fig. 1 (m3)

Vd volume associated with a Darcy scale averaging
volume, as defined in Fig. 1 (m3)

Vg volume associated with the matrix within an
averaging volume (m3)

Vx volume associated with the inclusions within an
averaging volume (m3)

Vb,g, Vb,x volume fraction of fluid within the matrix
and inclusions, respectively (see Appendix A)
(m3)

Greek Letters

a* effective mass transfer coefficient (1/s)
aL,g,aL,x Darcy-scale longitudinal dispersivity for the

matrix and inclusions, respectively (m)
aT,g, aT,x Darcy-scale transverse dispersivity for the ma-

trix and inclusions, respectively (m)
dij Kronecker delta symbol
g phase indicator for the matrix (�)
x phase indicator for the inclusions (�)
j =Kg/Kx, ratio of hydraulic conductivities of the

matrix to that of the inclusions (�)
r2Y variance of the log-transformed hydraulic con-

ductivity field (�)
Xg, Xx non-conventional terms in the macroscale mass

balance equations, as defined by Eqs. (B.42)
and (B.43), respectively
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For our analysis the macroscale transport equations are
a simplified version of that reported by Ahmadi et al. [20],
and they take the classical form for a two-region model:

Matrix (g-region):
ohcgi

g

ot|fflffl{zfflffl}
Accumulation

¼ r � ½D�
gg � rhcgi

g�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dispersion

�hvgi
g � rhcgi

g

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Convection

� e�1
g u�1

g a�ðhcgi
g
� hcxi

x
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inter-phase mass transfer

ð1Þ

Inclusion (x-region):

ohcxi
x

ot|fflfflffl{zfflfflffl}
Accumulation

¼ r � ½D�
xx � rhcxi

x�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dispersion

�hvxi
x � rhcxi

x

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Convection

þ e�1
x u�1

x a�ðhcgi
g
� hcxi

x
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inter-phase mass transfer

ð2Þ

In these equations, additional terms (dispersive cross-terms
and convective term corrections [20,40]), have been dis-
carded compared to the original generalized model. These
were found to make a negligible contribution in the test
cases under investigation in this paper.

The purpose of this work is to compare theory and exper-
iment for two-region systems where significant mass trans-
fer effects are present. We examine two different
theoretical approaches as follows: (1) a linear first-order
method where the mass transfer process is represented by
an effective mass transfer model, and (2) a mixed method
in which the inter-phase mass transfer process is represented
by a Fickian diffusive flux. Both approaches are developed
using a volume averaging. The specific goals of this work
are (1) to assess the relative merits and drawbacks of these
two approaches, (2) to assess the ability of each method to

Fig. 1. Hierarchy of scales associated with a highly heterogeneous binary porous medium.
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predict the breakthrough curves for the experimental sys-
tems analyzed, and (3) to make recommendations for model
use and directions for additional theory development.

The remainder of the paper is organized as follows: in
Section 2 we briefly describe the two-region experimental
flowcell systems of Zinn et al. [44], which provided the
breakthrough curves used in the subsequent analysis. In Sec-
tion 3 we describe the two-equation models (the first-order
mass transfer and mixed models) developed using volume
averaging method. In Section 4, we present the numerical
methods used for the computation of the effective properties
and for the mixed model; results for the two models are pre-
sented. Finally, in Section 5 we provide some discussions of
the results, and in Section 6 we offer some conclusions.

2. Laboratory experiments and parameter estimates

In this section we briefly outline the operational and
physical set up of the two-region flowcell experiments.
Although the physical properties of the porous media used
in these experiments were measured independently, the
properties of the media when packed in a particular flow-
cell system vary somewhat from the independently mea-
sured values. These deviations result primarily from the
packing effort itself; what is actually realized within the
flowcell is different from the independently measured val-
ues because of (uncontrollable) differences in the micro-
structure of the media during packing. Because of these
differences, a calibration and validation step was also
included as part of the experimental methods. The purpose
of this step was to use a fully-resolved Darcy-scale model of

the experimental system to compare the predicted break-
through curves with those observed. Small modifications
of the physical parameters (within the range of values
expected for each medium) could then be introduced to
improve the estimates of the physical parameters as actu-
ally realized in the experimental system.

2.1. Experiment process parameters

In this paper we examine two of the three experimental
systems studied by Zinn et al. [44]. These correspond to (1)
the intermediate contrast in hydraulic conductivity (experi-
ments 2a and 2b) and (2) the high contrast in hydraulic con-
ductivity (experiments 3a and 3b). The physical parameters
for these two experimental systems are presented in Table
1, and the two Péclet numbers for these experiments are
plotted in Fig. 2. The experiments were conducted under

Table 1

Simulation data for the high and intermediate conductivity contrast media

Parameter High contrast, j = 1800 Low contrast, j = 300

Deff,g, m
2/s 5.7 · 10�10 5.7 · 10�10

Deff,x, m
2/s 5.7 · 10�10 5.7 · 10�10

eg 0.505 0.505

ex 0.505 0.505

aL,g, m 0.004 0.002

aT,g, m 0.004 0.002

aL,x, m 0.0004 0.0002

aT,x, m 0.0004 0.0002

QHigh, cm
3/min 0.66 0.63

QLow, cm
3/min 1.32 1.26

r2Y 12.4 7.2

3a

2a

3b

2b

10.1 10 100

1

0.1

10

100

Pe

Pe

One-equation Model
‘Mobile-Mobile’ Regime

One-equation Model
‘Local Mass Equilibrium’
Regime

Two-equation Model
-Phase is Convection Dominated

‘Mobile-Mobile’ Regime

Two-equation Model
-Phase is Diffusion Dominated

‘Mobile-Immobile’ Regime

Pe

Pe

≥ 

≥ 

1

1

Pe ≥ 1Pe /

I.
Pe

Pe

≥ 

< 

1

1

II.

Pe

Pe

≥

≥

1

1

Pe < 1Pe /

V.

One-equation Model
Both Phases are 
Diffusion Dominated
Regime

Pe

Pe

< 

< 

1

1

III. Pe

Pe

< 

≥ 

1

1

IV. 

Fig. 2. Plot illustrating the empirically-classified transport regimes as a function of the two Péclet numbers, Pexx and Pegx. The point correspond to

experiments conducted by Zinn et al. [44]. Experimental conditions were as follows: Experiment 2a: j = 300, Q = 0.66 mL/min. Experiment 2b: j = 300,

Q = 1.32 mL/min. Experiment 3a: j = 1800, Q = 0.66 mL/min. Experiment 3b: j = 1800, Q = 1.32 mL/min (diagram adapted from Zinn et al. [44]).
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conditions that correspond to a ‘mobile–mobile’ (e.g. [45–
50]) regime for experiments 2a and 2b, and a mobile–
immobile (e.g. [27,48,51–54]) regime for experiments 3a
and 3b. We specifically do not consider the low contrast
case from Zinn et al. [44] because our focus is specifically
on systems where the variance of the log-K distribution is
greater than 1. The geometry of the experimental system
used for these experiments is illustrated in Fig. 3.

Zinn et al. [44] developed a useful empirical categoriza-
tion of possible transport regimes for such binary systems,
and a slightly modified version of that plot is presented
here as Fig. 2. For this classification, two Péclet numbers,
measuring the relative importance of convection to diffu-
sion, appear. These are defined by

Pexx ¼
hvxi

x
a

Deff ;x

ð3Þ

Pegx ¼
hvgi

g
a

Deff ;x

a

L

� �
ð4Þ

Here, a represents the characteristic length (radius) of the
inclusions, L is the characteristic length of the matrix mate-
rial (observation scale), hvgi

g is the average pore-water
velocity in the inclusions, hvxi

x is the average pore-water
velocity of the matrix material, and Deff,x is the effective
diffusion coefficient in the inclusions. The first of these
two Péclet numbers represents the ratio of convective to
diffusive fluxes in the inclusions (or, equivalently, the ratio
of the characteristic time for diffusion in the inclusions di-
vided by the characteristic time for advection across the
inclusions). The second to these two groupings is a mixed
region Péclet number, representing the ratio of the convec-
tive flux in the matrix to the diffusive flux in the inclusion
(or, equivalently, the ratio of the characteristic time for dif-
fusion in the inclusions divided by the characteristic time
for convection across the observation region in the matrix
material). Note that in the Zinn et al. [44] work the second
of these two dimensionless groupings was expressed as a
Damköhler number (Da), where Pegx = Da�1. There is a
third Péclet number that one can define for the matrix
material by

Pegg ¼
hvgi

g
L

Deff ;g

¼ Pegx
L2

a2
Deff ;x

Deff ;g

� �
ð5Þ

It has been implicitly assumed in the work of Zinn et al.
[44] that the term in the bracket is of order unity, so that
Pegg = O(Pegx). Note that this is not a restriction for the
theoretical developments reported here, this approximation
applied only to the results reported by Zinn et al. [44].

Previous results obtained by Parker and Valocchi [28]
indicate that a first-order mass transfer model should be
valid under the constraint:

2ð1� bÞ

175
Pe2gx < 0:25 ð6Þ

Note that in this expression, our definition of Pegx is
equivalent to the parameter c�1 in [28], and b = egug/
(ex ux + egug). Here we have assumed that the observation
point is the column effluent, and that the retardation factor
is identically equal to 1. Solving this for the Péclet number,
this constraint can be expressed

Pegx <
175

8ð1� bÞ

� �1
2

ð7Þ

From the parameters in Table 1, we find that for the exper-
imental systems reported by Zinn et al. [44], this constraint
suggests that Pegx should be less than about 10. From
Fig. 2, it is apparent that these two sets of experiments
are very near the boundary where the one-equation linear
transport model is valid.

2.2. Flowcell geometry and operation

A flowcell system with inclusions of contrasting conduc-
tivity was created by packing a 40 cm wide by 20 cm high
by 0.65 cm thick chamber with low-conductivity circular
emplacements of 2.54 cm diameter and supporting high-
conductivity background media. Fifty-three inclusions
were placed in the chamber in a computer-generated ran-
dom pattern, with the inclusions being no closer to each
other than 6 mm and no closer to the edges of the chamber
than 4 mm. The inclusions constituted 33.5% of the tank
volume. The geometry of the system has been presented
in Fig. 3.

The conductivity of the matrix material was on the
order of 10�4 m/s (grain size average of 2 mm diameter),
and the conductivity of the inclusions was a factor of
1800 or 300 lower depending upon the experiment. The
average grain sizes of the porous media used to construct
the inclusions was 57 lm and 135 lm diameter, respec-
tively. Both materials had a measured porosity between
0.425 ± 0.025; however, because the flow cell was very
thin compared to the grain size (particularly for the matrix
material) the porosity in place may have been much higher
due to packing non-uniformities. Numerical simulations
of the flowcells (described in Section 4) suggested that
the porosity in the matrix material might be as high as

40 cm

20 cm

0.65 cm

y

x

Q=0.66 ml/min

 (low flow)

or

Q=1.32 ml/min

(high flow)

η

ω

2.54 cm

Fig. 3. Geometry of the experimental system used for the transport

experiments of Zinn et al. [44]. Inclusions are represented as dark gray

(low-conductivity); the high-conductivity background material is repre-

sented by light grey.

6



Acc
ep

te
d 

M
an

us
cr

ip
t

eg = 0.505, and this value was assumed for the remainder
of this study.

Flow conditions at the inlet and outlet were controlled
by carefully-designed manifolds and screens. Water was
pumped into the chamber using a computer-controlled
ISCO model 500 D syringe pump. The flowcell was flushed
with CO2 gas and then de-aired water to allow saturation
without creating trapped air. Transport experiments were
conducted by first saturating the flowcell with a solution
of a dye tracer (FD&C Blue Number 1) at a concentration
of 30 mg/L. The transport experiments were conducted in a
‘flushing’ mode, where clean water replaced the dye filling
the flowcell. For each contrast in hydraulic conductivity,
two transport experiments were conducted with flowrates
of 0.66 mL/min and 1.32 mL/min.

2.3. Concentration measurement

Spatial distributions of the dye concentration were
imaged by using a 60 MHz fluorescent light source with a
neutral density filter to provide uniform backlighting.
The system was fan-cooled to prevent heating of the cham-
ber. A 14-bit liquid-cooled CCD (charge-coupled device)
camera captured a sequence of images at specified time
intervals. A combination of filters was used on the camera
to create a 600–700 nm band pass filter for optimal light
absorbance. Data were recorded in terms of pixel intensi-
ties (0–4095). Each pixel resolved an area of the chamber
approximately 400 · 400 lm. Outflow dye concentration
was measured with a spectrophotometer (Varian). The tra-
cer, FD&C Blue Number 1, possesses a distinct absorbance
peak with strong linearity. The photometer was computer-
controlled and programmed to target the 630 nm and
409 nm wavelengths of FD&C Blue Number 1. The
630 nm peak was effective at measuring concentrations
from 0.01 mg/L to approximately 20 mg/L. The 409 nm
peak was effective from 0.1 mg/L to well above the maxi-
mum concentration of 30 mg/L. Outflow concentrations
were calculated from spectrophotometer measurements at
both wavelengths. A cutoff concentration value where both
measurements agreed with each other was chosen (near
10 mg/L). Concentrations calculated using the 409 nm cal-
ibration curve were employed above the cutoff value, while
the 630 nm calibration was used below this cutoff value.
This method did not introduce discontinuities in the data
because of the strong agreement between the two different
estimates within this overlap range.

2.4. Validation and calibration of the Darcy-scale physical

properties

In the original work reporting the results of the flowcell
data sets, Zinn et al. [44] did not validate their dataset with
a Darcy scale model of the system in which the inclusions
were fully resolved. The utility of such a model is that it
would allow for a more precise validation/calibration of
the experimental parameters involved, in particular the val-

ues of the porosity and dispersion coefficient for each region
in the experimental systems. The exact values for these
parameters were known only for the individual media com-
prising the matrix and inclusion materials. As described
above the actual properties of the materials used to con-
struct the porous medium would be expected to be slightly
different from the independently measured values due to
changes induced by packing of the media within the cell.

For the work reported here, a Darcy-scale model was
developed to directly simulate the intermediate- and high-
contrast experimental systems reported by Zinn et al.
[44]. The set of balance equations used to model the system
at the Darcy scale were as follows [55]:

Darcy scale transport equations:

eg
ocg

ot
þr � ðegvgcgÞ ¼ r � ½egD

�
g � rcg� in the g-region

ð8Þ

cg ¼ cx at Agx ð9Þ

� ngx � ðegvgcg � egD
�
g � rcgÞ

¼ �ngx � ðexvxcx � exD
�
x � rcxÞ; at Agx ð10Þ

ex
ocx

ot
þr � ðexvxcxÞ ¼ r � ½exD

�
x � rcx� in the x-region

ð11Þ

cg ¼ 0 at inlet;� nge � egD
�
g � rcg ¼ 0 at outlet;

�nge � ðegvgcg � egD
�
g � rcgÞ ¼ 0 at all other boundaries

ð12Þ

cg ¼ c0 in the g-region at t ¼ 0 ð13Þ

cx ¼ c0 in the x-region at t ¼ 0 ð14Þ

Darcy scale steady flow equations:

r � ðegvgÞ ¼ 0 in the g-region ð15Þ

r � ðexvxÞ ¼ 0; in the x-region ð16Þ

vg ¼ �
Kg

eg
rhg; vx ¼ �

Kx

e x
rhx ð17Þ

vg ¼ vx; at Agx ð18Þ

hg ¼ h0 at inlet; hg ¼ h1 at outlet;

nge � vg ¼ 0 at all other boundaries
ð19Þ

In Eqs. (8)–(19), cg and cx are the intrinsic average con-
centrations in the g- and x-regions respectively, eg and ex
are the porosities, vg and vx are the intrinsic average pore
velocities, D�

g and D
�
x are the total dispersion tensors (diffu-

sion plus hydrodynamic dispersion) for the two regions (cf.
Whitaker [56, Chapter 3]; Bear [57, Section 7-3]), Kg and
Kx are the hydraulic conductivities for the two regions,
and hg and hx are the corresponding hydraulic heads.
The interfacial area between the two regions is denoted
by Agx, and the outward pointing normal vector for the
volume boundaries of the cell is given by nge. The porosity
of intrinsic average Darcy concentration and pore velocity
can be defined explicitly in terms of the pore-scale variables
by the following

7



Acc
ep

te
d 

M
an

us
cr

ip
t

eg ¼
V fluid

Vd

¼
V b

Vd

in the g-region ð20Þ

ex ¼
V fluid

Vd

¼
V b

Vd

in the x-region ð21Þ

The parameters used for these computations are listed in
Table 1. Note that for these computations, we have
adopted the notation

j ¼ Kg=Kx ð22Þ

where Kg and Kx represent the hydraulic conductivity in
the matrix and inclusions, respectively.

A multiple-step numerical method was adopted. In this
approach the transport equation is split into a hyperbolic
part (convective terms) and an elliptic part (diffusive term).
A second-order TVD-scheme proposed by Takacs [58] was
used for the hyperbolic part in order to reduce numerical
diffusion [59], whereas the dispersive part is solved using
a implicit discretization based on a nine-point scheme
[60]. A uniform mesh (400 in x by 200 in y) was used for
simulations. The Darcy-scale hydrodynamic dispersion
tensor (note that this is the scale associated with Eqs.
(27)–(33)) was defined by [57,61]

D�
ij;g ¼ ðaL;g � aT;gÞ

vi;gvj;g

jvgj
þ aT;gjvgjdij þ Deff ;ij;gdij ð23Þ

D�
ij;x ¼ ðaL;x � aT;xÞ

vi;xvj;x

jvxj
þ aT;xjvxjdij þ Deff;ij;xdij ð24Þ

Here, aL and aT are the longitudinal and transverse local
dispersivities, v is the local (Darcy-scale) velocity vector
and Deff,ij,g is the local-scale effective diffusion tensor, and
dij is the Kronecker delta function (NB, Bear [57] uses
the notation Dh for this tensor). The molecular diffusion
coefficient of the tracer in water was reported by Zinn
et al. [44] as Dmol = 5.7 · 10�10 m2 s�1. The longitudinal
dispersivity for the high conductivity media was reported
to be 0.00625 ± 0.0013 m, and for the low conductivity
material, the longitudinal dispersivity was reported to be
0.0022 ± 0.0003 m [B. Zinn, personal communication].

These estimates were from a sequence of laboratory mea-
surements on the porous media itself, but the exact value
of the dispersivity as packed for any one experiment was
not measured.

In our direct Darcy-scale simulations of the experimen-
tal data, we varied the porosities, dispersivities, and flow
rates from the reported estimated values in order to opti-
mize the simulation of the observed data. The primary rea-
son that the reported parameters were not treated as exact
is that the original publication [44] reported these parame-
ters either as estimates or with significant uncertainties
associated with them. By allowing small variations in eg,
ex, aL,g, aL,x, and Q value we were able to develop a set
of parameters that was both reasonable in light of the
uncertainties associated with the experimental conditions,
and also provided good representation of the experimental
breakthrough curves. These adjustments were conducted
manually, with no attempt to optimize the set of parame-
ters by, for example, a least-squares scheme.

The values determined from the Darcy-scale simulation
are reported on Table 1. Of the parameters varied, the
porosity values in particular were the only ones that were
significantly different from the values measured experimen-
tally. Several possibilities might explain this discrepancy:
(1) the method used to measure the porosity was only
approximate [44], and did not account for the fences used
to contain the medium used for the inclusions (there was
an approximate 1–2% increase in porosity when including
these); (2) according to the literature it is possible for
FD&C Blue Number 1 adsorb to surfaces [62], and this
would have been observed in our fitting of the data as a
decrease in the effective velocity of the solute, which ulti-
mately would be manifest by an increase in porosity.

In Fig. 4 we have plotted the solute breakthrough curves
(effluent concentration as a function of time) for the
high- and intermediate contrast cases under the low flow
conditions (Q = 0.66 mL/min). These curves have been
normalized by the initial concentration in the flow cells,

0.01
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1

0 200 400 600 800 10001000

Time (min)

0.01

0.1

1

0 200 400 600 800

Time (min)

Measured Concentration

Darcy-scale simulation
Measured Concentration

Darcy-scale simulation

c

c
0

c

c
0

Fig. 4. Concentration breakthrough curves for the high- and intermediate-contrast flowcells. The results of the Darcy-scale validation simulations are

shown as a solid line.
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c0; because our emphasis is on the behavior of the ‘tails’ of
the breakthrough curves, we have also plotted the vertical
axis on a logarithmic scale. Physically, the effluent solute
concentration is flux-averaged over the area of the flowcell
exit. We will denote the effluent solute concentration by
cg,effluent; it is defined by

cg;effluent ¼
1

Qg;effluent

Z

Ag;effluent

nge � ðvgcgÞdA ð25Þ

where

Qg;effluent ¼

Z

Ag;effluent

nge � vg dA ð26Þ

Here Ag,effluent represents the area of the flowcell exit, nge
the outward-pointing unit normal vector for this surface.
Because the flowcells were operated in ‘flushing mode’,
the normalized effluent concentration starts at 1 and grad-
ually decreases to 0 as solute-free water enters the flowcell.
Similar results were obtained for the second flow rate. Rea-
sonable agreement is obtained between the simulated and
measured effluent concentrations, indicating at least that
our estimates for the physical parameters are consistent
with the observed data.

A comparison of the dimensionless concentration field
obtained from the experimental system and from numerical
simulations appears in Fig. 5. The two fields compare

Fig. 5. Comparison of the dimensionless concentration field observed inside the chamber (top), and predicted from simulations (bottom). These fields are

for the intermediate-contrast case with a flow rate of 0.66 mL/min at t = 500 min. The discrepancy between observations and numerical simulations are

partly experimental artifact due to the filtering process.
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reasonably well, with both fields showing the combination
of diffusion and convection in the inclusions. Because of
the optical filtering mechanisms that were used, the residual
concentration in the inclusions observed for the experimen-
tal data at this time represent in part an experimental
artifact.

The results above provide confirmation that the experi-
mental system, as predicted by a Darcy-scale numerical
model where no upscaling has been done, performs as it
was intended to within the experimental uncertainties
reported originally by Zinn et al. [44].

3. Two-equation models for mass transport

We present two different two-equation models for
describing mass transport in highly heterogeneous media.
The first is a linear mass transfer model with a constant
coefficient, developed by volume averaging with a steady
closure scheme. The second is a mixed model. This second
model is similar to previously proposed spherical diffusion
models [22,32,37], although because it does not rely explic-
itly on an eigenvalue expansion solution, it has no restric-
tion associated with the particular geometries for which it
can be applied.

3.1. Volume averaging with steady-state closure

The upscaling from the pore scale, characterized by the
characteristic lengths ‘b and ‘r, to the field scale, character-
ized by length scale L, takes place in two averaging steps
for the hierarchical system illustrated inFig. 1. The upscaling
from thepore-scale to theDarcy scale (the averaging volume,
Vd , associatedwithLevel I inFig. 1) has been completedpre-
viously [55]. The second level of upscaling from the Darcy to
the field scale for a highly-heterogeneousmedium is the focus
of this research. The upscaling process itself has been exam-
ined in detail by Ahmadi et al. [20] and Cherblanc et al. [40],
and the results of those efforts are summarized below. The
focus of this paper is primarily on comparing theory and
experiment for this second level of upscaling.

3.1.1. Microscale transport equations

We begin by posing the solute conservation equations in
these two regions completed with boundary conditions
(also, ultimately, arising from conservation equations; cf.
Ref. [63]) at the g � x interface. The Darcy-scale equations
can be written similarly to those for the Darcy-scale numer-
ical analysis described in Section 2.4.

g-region transport equation:

eg
ocg

ot
þr � ðegvgcgÞ ¼ r � ½egD

�
g � rcg� in the g-region

ð27Þ

Boundary condition 1 (equal concentrations at region

interfaces)

cg ¼ cx at Agx ð28Þ

Boundary condition 2 (equal fluxes at region interfaces)

�ngx � ðegvgcg � egD
�
g � rcgÞ

¼ �ngx � ðexvxcx � exD
�
x � rcxÞ at Agx ð29Þ

x-region transport equation

ex
ocx

ot
þr � ðexvxc

�
xÞ ¼ r � ½exD

�
x � rcx� in the x-region

ð30Þ

Boundary condition 3 (volume boundaries):

cg ¼ F ðtÞ at Age ð31Þ

Initial conditions:

cg ¼ IgðxÞ in the g-region ð32Þ

cx ¼ IxðxÞ in the x-region ð33Þ

The parameters defined here are the same as for the Darcy
scale equations reported in Section 2.4. Now, however, we
have put general volume boundary and initial conditions
on the system. To simplify the analysis, we will assume as
in [20,40] that we can neglect variations of eg and ex within
the averaging volume (although eg and ex themselves may
be different from one another).

3.1.2. Upscaling

The upscaling is conducted by forming spatial averages
over the (macroscale) averaging volumeV. The superficial
and intrinsic averages for the concentration in the g- and
x-regions are given by

hcgi ¼
1

V

Z

V g

cg dV ; hcgi
g
¼

1

V g

Z

V g

cg dV ð34Þ

hcxi ¼
1

V

Z

V x

cx dV ; hcxi
x ¼

1

V x

Z

V x

cx dV ð35Þ

Here Vg is the volume of the g-region contained in the aver-
aging volume V. Similar definitions hold for the averages
of the velocities vg and vx. The intrinsic and superficial
averages are linked, in analogy with the superficial and
intrinsic averages posed at the pore scale, through the vol-
ume fraction of the region

hcgi ¼ ughcgi
g

ð36Þ

hcxi ¼ uxhcxi
x ð37Þ

Here we have used the following definitions for the volume
fractions of the two regions

ug ¼ V g=V ð38Þ

ux ¼ V x=V ð39Þ

It is important to make the distinction between eb, which is
the porosity of the Darcy-scale averaging volume (Level I
of Fig. 1), and the volume fractions ug and ux, which rep-
resent the fractions of high- and low-conductivity regions
respectively (Level II of Fig. 1).

In addition to the definition of the averages and the vol-
ume fractions, one additionally needs a theorem describing
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how to interchange the operations of averaging and differ-
entiation when discontinuities at the phase boundaries are
present. The required theorem is known as the spatial aver-
aging theorem, and it has been derived by various research-
ers in a variety of ways [63–68]. The spatial averaging
theorem can be stated

hrcgi ¼ rhcgi þ
1

V

Z

Axg

ngxcg dV ð40Þ

where ngx represents the unit normal pointing from out-
ward from the g-region. Finally, in the process of averag-
ing, one always finds terms involving the Darcy-scale
values (which we refer to also as the ‘point’ values even
though a Darcy-scale support volume is assumed) of cg,
cx, vg, and vx rather than their averages. It is often useful
to express these terms as the sum of an average plus a devi-
ation quantity, i.e.,

cgðx; tÞ ¼ hcgi
g
		
x;t

þ ~cgðx; tÞ ð41Þ

cxðx; tÞ ¼ hcxi
x
jx;t þ ~cxðx; tÞ ð42Þ

vgðxÞ ¼ hvgi
g
		
x
þ ~vgðxÞ ð43Þ

vxðxÞ ¼ hvxi
x
jx þ ~vxðxÞ ð44Þ

Elimination of the deviation terms by expressing them as
functions of the concentration averages is classically
known as the closure problem. The closure problem will be
discussed in additional detail below and in Appendix A.
In the remainder of the paper we will drop the explicit ref-
erence to the coordinates, with the understanding that each
of these quantities (point value, the mean, and the devia-
tion) are treated as fields that are defined uniquely
pointwise.

With these definitions one can derive large-scale aver-
aged equations at the macroscopic scale (Level II of
Fig. 1) by applying the averaging operators to the Darcy-
scale conservation equations posed by Eqs. (27)–(33). The
development of the two-equation model by averaging
Eqs. (27)–(33) has been presented previously [20,40], and
we simply list the result here

g-region:

ohcgi
g

ot|fflffl{zfflffl}
Accumulation

¼ r � ½D�
gg � rhcgi

g
�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dispersion

�hvgi
g
� rhcgi

g

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Convection

� e�1
g u�1

g a�ðhcgi
g � hcxi

xÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inter-phase mass transfer

þ e�1
g u�1

g Xg|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Non-conventional terms

ð45Þ

x-region:

ohcxi
x

ot|fflfflffl{zfflfflffl}
Accumulation

¼ r � ½D�
xx � rhcxi

x�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dispersion

�hvxi
x � rhcxi

x

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Convection

þ e�1
x u�1

x a�ðhcgi
g � hcxi

xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inter-phase mass transfer

þ e�1
x u�1

x Xx|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Non-conventional terms

ð46Þ

We have used the following definitions for the effective
parameters:

D
�
gg ¼

1

V g

Z

V g

½D�
g � ðIþrbggÞ � ~vgbgg�dV ð47Þ

D
�
xx ¼

1

V x

Z

V x

½D�
x � ðIþrbxxÞ � ~vxbxx�dV ð48Þ

a� ¼ �
1

V

Z

Agx

ngx � ðegvgrg � egDg � rrgÞdA

¼
1

V

Z

Agx

ngx � ðexvxrx � exDx � rrxÞdA

ð49Þ

The variables bgg, bxx, rg, and rx are specified by the solu-
tion to a set of three closure problems, and this process is
described more fully in Appendix A. Note that the velocity
appears as a parameter field. The balance equations for the
momentum itself is not upscaled (this would lead to a large-
scale form of Darcy’s law), nor is it needed for predicting the
effective dispersion tensor. This is common to all theories of
upscaling of the dispersion problem; the effective dispersion
tensor is defined by integrals of the microscale velocity field.
Finally, we note that these equations represent the spatially
smoothed mass balances that apply to a suitably sized vol-
ume that contains both matrix and inclusions. Although
the x-phase in the system that we describe is not connected
at the microscale, the macroscale equations still contain
both convection and dispersion terms; this is consistent with
other similar formulations [20,42,46,69]. The proper way to
think about this is that these equations honor the first and
second moments of the solute transport within the two
regions. The average x-phase concentration, hcxi

x, has a
first and second spatial moment that changes in time as
the solute moves through the system. As pointed out by
Kitanidis [70], the dispersion tensor only describes how sol-
ute spreads spatially, but it says essentially nothing about
the spatial structure (or mixing) of the solute. The disper-
sion term in this case reflect the spatial spreading of the mac-
roscale concentration, and says nothing else about how the
concentration is organized within the volume of interest.

In Eqs. (45) and (46), the interaction between the two
porous media is characterized by an inter-phase mass flux
that is defined in terms of a macroscopic mass transfer
coefficient, a*, and the difference in concentration between
the two regions. Unlike many ‘two-region’ models, there
are also additional non-conventional flux terms, e�1

g u�1
g Xg

and e�1
x u�1

x Xx, that arise in the upscaling analysis; these
are discussed more fully in Appendix A and by Cherblanc
et al. [40]. For the conditions reported in this paper, we
have verified that these non-conventional terms are negligi-
ble, and they are not considered further.

In general, the effective parameters that appear in Eqs.
(47)–(49) are time-dependent. Several semi-heuristic theo-
ries have been developed to account for a non-local-in-time
mass transfer coefficient [3,38]. However, linear transport
models appear almost uniformly in practice, even though
it is generally recognized that they are applicable for
only a narrow range of conditions (e.g. [28,33,36,71]).
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Generally, the development of the two-region model pre-
sented above requires a separation of space and time scales,
which can be generically specified by

‘g; ‘x � R0 � L ð50Þ

tg; tx � T �
g ð51Þ

where tg and tx represent the characteristic time scales asso-
ciated with the small length scales ‘g and ‘x, and T �

g is the
time scale associated with macroscopic concentration
changes in the high conductivity phase (the g-phase). Note
that in particular, Eq. (51) is a somewhat crude simplifica-
tion of this problem, which is characterized by many time
scales (cf. [22]). However, to our knowledge, no thorough
examination of the constraints required to ensure a separa-
tion of time scales in such highly heterogeneous media has
yet been developed.

The effective coefficients which appear in Eqs. (45) and
(46) are given explicitly by the set of three steady-state clo-
sure problems developed previously [20,40]. By definition,
the solution to the steady state closure problems cannot
recover all the eigenvalues that occur in the full transient
closure problem. The closure problems described in
Appendix A will be most accurate when the process time
scales of the two regions are of the same order of magni-
tude. As the process time scale for the x-phase (inclusions)
becomes large relative to the time scale associated with the
g-phase, the approximation of a steady-state closure
becomes less accurate. Under these conditions, the use of
a constant effective mass transfer parameter may not be
valid [32]. It has been demonstrated by Landereau et al.
[72] that the steady closure provides an approximation that
is related to the harmonic mean of the eigenvalues (and the
same result is obtained for the exchange coefficient pro-
vided by a Laplace transform analysis [72]).

3.2. Mixed model formulation

One method for improving the representation of the
mass transfer process is to adopt the use of a distribution
of relaxation times rather than a single time associated with
the harmonic mean. This is the idea behind multi-rate mod-
els [3,22]. Multi-rate model represents the Laplacian oper-
ator as an eigenvalue expansion, and they keep a
(potentially infinite) number of eigenvalues in this expan-
sion as an approximation to the solution. This supplemen-
tary set of eigenvalues of the Laplacian operator forms a
set of additional mass transfer coefficients. In essence,
one can think of these models as adding additional regions
to the system, where mass transfer in each region is
described by a first-order mass transfer coefficient indepen-
dent from the others. Considerable improvements have
been obtained by this kind of approach (e.g. [72]), and it
has been shown that for the ‘mobile–immobile’ model this
representation converges to the case where mass transport
in the immobile region is modeled explicitly as a diffusion
process [22].

The construction of a multi-rate model is still not with-
out difficulties, the foremost of which is that concentra-
tion in each additional region is defined by a transport
equation that is fully coupled to each of the other regions.
The complexity of this set of equations increases dramat-
ically as the number of eigenvalues kept is increased. As
an alternative to this approach, the idea of using a mixed

model has been suggested by some researchers. In a mixed
model, the macroscale description of mass transport is
maintained for the matrix (the g-phase), but mass transfer
for the inclusions is modeled at the microscale. The idea
of mixed models for describing flow in dual-porosity
media was introduced first for the case of the flow of a
slightly compressible fluid in a two region medium (see
a discussion of the literature in Ref. [73]). For dispersion
problem, this idea was first proposed by Rao [74] and
Bibby [75] and others [76,77], who applied the method
to the problem of solute diffusion into (or out of) low
conductivity regions during transport in a higher conduc-
tivity material. In the work of Rao [74], an finite differ-
ence solution for the concentration in a spherical
inclusion was applied as ‘sink’ term to represent the influ-
ence of spherical inclusions in a high-conductivity matrix
material. Improvements were observed for this mixed
model when compared with the use of a conventional
two-equation mass transfer model with a constant, but
theoretically derived [78], coefficient. In the case of the
work of Bibby [75], the applications were for a fracture-
matrix network, and a solution was sought that only
required that the statistics of the structure (in Bibby’s
case, these statistics were the average matrix block size,
block porosity, joint spacing, and joint width) be main-
tained (cf. [79]).

We explore the use of a mixed model formulated in the
spirit of the work of Rao [74] and Bibby [75]. The primary
purpose for examining the mixed model is to provide some
indication as to how much influence the quasi-steady
assumption used in the prediction of a* has on the resulting
macroscale predictions. Because the mixed model main-
tains the eigenvalues associated with the diffusion problem,
it is equivalent to a version of the multi-rate models dis-
cussed above. It also allows us a direct assessment of
how important these eigenvalues are to the resulting mac-
roscale solute transport behavior.

Our mixed model is developed by upscaling the trans-
port equation for the g-region while the microscale repre-
sentation is adopted for the x-region. The mixed model
takes the form

g-region:

ohcgi
g

ot|fflffl{zfflffl}
Accumulation

¼ r � ½D�
gg;mixed � rhcgi

g
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dispersion

�hvgi
g
� rhcgi

g

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Convection

þ
e�1
g u�1

g

V g

Z

Axg

ngx � ðegD
�
grcgÞdA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interfacial flux

ð52Þ
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x-region:

ex
ocx

ot
¼ r � ½exD

�
x � rcx� ð53Þ

and the following boundary conditions, derived from Eqs.
(28) and (29), fully specify the boundary value problem

Boundary condition 1 (equal concentrations):

cx ¼ hcgi
g

at Agx ð54Þ

Boundary condition 2 (equal fluxes):

ngx � ðegD
�
g � rcgÞ ¼ ngx � ðexD

�
x � rcxÞ at Agx ð55Þ

Initial condition:

cg ¼ cg0; cx ¼ cx0 at t ¼ 0 ð56Þ

Implicitly this model assumes that convection in the
x-phase is negligible, and this approximation is valid for
large values of the hydraulic conductivity ratio, j.

The expression of the dispersion tensor D
�
gg;mixed which

appears in Eq. (52) is derived by following the same devel-
opment than for the two-equation model. In the develop-
ment of the mixed model, however, the deviation term ~cg
is neglected at the interface, Agx, which forces the solutions
in the g- and the x-regions to be uncoupled. Under these
conditions, the dispersion tensor that is developed corre-
sponds to a porous medium where the inclusions are
impermeable. However, when the ratio of hydraulic con-
ductivities, j, is high, this approximation is a good one,
and results in very little error. Following the developments
detailed in Appendix B, the closure problem for the vari-
able bg can be expressed as follows:

Problem I. (Closure problem related to the source $ Æ hcg i
g)

r � ðugbgÞ þ ~ug ¼ r � ðD0
g � rbgÞ þ r � eD 0

g � u�1
g cg;mixed

ð57Þ

B:C:1 bg ¼ 0 at Agx ð58Þ

B:C:2 ngx � ðD0
g � rbgÞ ¼ 0 at Agx ð59Þ

bgðrþ ‘iÞ ¼ bgðrÞ; i ¼ 1; 2; 3 ð60Þ

hbgi
g ¼ 0 ð61Þ

where the constant is defined by

cg;mixed ¼ �
1

V

Z

Agx

ngx � ðugbg �D
0
g � rbg �D

0
gÞdA ð62Þ

An expression similar to Eq. (47) is thus obtained for the
effective coefficient,

D
�
gg;mixed ¼

1

Vg

Z

V g

½D�
g � ðIþrbgÞ � ~vgbg�dV ð63Þ

In principle, this problem specification still requires that
the interface between the two regions be explicitly known.
This requirement means that the problem described by
Eqs. (52)–(55) would be nearly as complex as the original
problem described at the Darcy scale. However, if one

can assume that the influence of the inclusions are indepen-
dent from one another, and that the geometry of the inclu-
sions is relatively constant, then it may be possible to
represent the effects of the inclusions by examining a geo-
metrically simplified representation of the system. Thus,
the complexity of the porous medium is reduced to one
or several representative unit cells. In this way, important
transient information (representing the influence of partic-
ular eigenvalues of the solution) is kept, but a substantial
reduction in the complexity of the system can be achieved.
Based on the size and the distribution of the inclusions
inside the flowcell, ten independent inclusions have been
used to describe the domain. Thus, the concentration
distribution in the g-phase, solved as a 1-dimensional
problem, is coupled with the fine description of the
2-dimensional microscopic problem in the x-region. The
information transfer between both regions is processed
through the interfacial flux, Eq. (52) and the boundary con-
dition, Eq. (54).

4. Macroscale solutions

In the previous section, two different methods were pro-
posed for developing a set of macroscale solute transport
equations for highly heterogeneous (multi-region) media.
Each of the models represents a form of upscaling, with
the first-order mass transfer model being the more restric-
tive of the two. In applications to the experimental results,
the solution to the macroscale transport problem is com-
pleted in a sequence of steps as follows.

1. A representative unit cell is identified for representing
the important geometrical features of the heterogeneous
porous medium. In principle, the unit cell can be as com-
plex as we like, but it is preferable to search for a unit
cell that tends to minimize the amount of complexity
needed to recover the essential physics of the process
of interest. There are no a priori rules for selecting a unit
cell structure, since the complexity of the structure
within the cell will depend both upon the actual physical
structure of the porous medium that is being repre-
sented, and on the kinds of operators that are involved
in the transport process itself. As an example, for pure
diffusion in an isotropic medium, a simple periodic array
of spheres in cubes [80] provides results that are very
accurate when compared with the available laboratory
data [81]. The same is not true, however, for the problem
of dispersion in porous media, where the convection
operator dramatically changes the nature of the trans-
port problem. Ultimately, the selection of how much
information must be contained in a unit cell must be
done heuristically.

2. The closure problem (Appendix B) is solved over the
representative unit cell to predict the fields bgg, bxx, rg,
and rx. The effective macroscale parameters defined by
Eqs. (47)–(49) is obtained by numerical quadrature of
these fields.

13



Acc
ep

te
d 

M
an

us
cr

ip
t

3. Once the effective parameters are determined, they are
then used in a forward mode to predict the macroscale
behavior of the heterogeneous system. This is done by
solving the macroscale transport equations (given by
Eqs. (45)–(49) for the first-order mass transfer model
and by Eqs. (52)–(56) for the mixed model), augmented
with the appropriate macroscale initial and boundary
conditions, over the domain of interest. Velocities of
each region are derived directly from the injection veloc-
ity. In this case, the observable macroscale behavior is
measured by the breakthrough curves observed for the
flowcells during each of the four experiments that were
conducted.

Note that the goal of this effort is, ultimately, to produce
a representation of the complex transport problem that
contains fewer degrees of freedom than the original Darcy
scale description. By definition, the first-order mass trans-
fer model contains less information (fewer degrees of free-
dom) than does the mixed model. Correspondingly,
however, the linear mass-transfer model has more stringent
constraints on its validity, and we do not expect it to per-
form as well as the representation that contains a full diffu-
sion model for transport in the inclusions. The details
associated with completing these two steps are outlined
below.

4.1. Calculation of the effective coefficients

Once characteristics of the unit cell are established, the
closure problem consists in solving the sets of equations
presented in Appendix B and calculating the associated
large-scale coefficients. We used a flux continuous, locally
conservative finite volume scheme that accommodated
the use of full dispersion tensors [60]. This approach
yielded an accurate approximation of the diffusion term,
requiring nine-point support in 2-D. In this approach, the
convection term is first treated using an ordinary upstream
weighting scheme. The numerical dispersion introduced by
this first-order scheme is then limited by locally correcting
the diffusion term as described by Cherblanc et al. [40].
Finally the resulting linear system was solved using an suc-
cessive over relaxation iteration algorithm. Once the map-
ping variables were computed, calculating the effective
properties was done using Gaussian quadrature to com-
pute the integrations that appear in Eqs. (47)–(49).

Our initial computations of the effective parameters
were computed using the simple unit cell illustrated in
Fig. 6a. The volume fraction of each region as well as the
size and the shape of the inclusion are identical to those
used in the physical experiment. The effective parameters
computed using this unit cell are presented in Table 2.

4.2. Macroscale simulations

Once the effective parameters had been determined
from the solution to the closure problem (49), we then
used these parameters to conduct a forward simulation
of the flowcell using the upscaled equations given by
Eqs. (45) and (46). Recall that these homogenized equa-
tions take the form of a two-region model where the
geometry of the two regions are no longer represented
explicitly. This forward simulation was a simple 1-dimen-
sional solution to Eqs. (45) and (46) using the boundary
conditions that were applicable to the experimental sys-
tem. A comparison of the observed data and simulation
results for the high and low hydraulic conductivity con-
trast cases, each for two different flow rates, appears as
Figs. 7 and 8. One can see from these figures that the first
part of the breakthrough curve from the large-scale com-
putation lags the actual breakthrough curve, especially for
the high conductivity contrast system.

Although in general it is the flux-averaged concentration
that is measured at the flowcell effluent rather than the vol-
ume-averaged concentration, we were able to show that for
the conditions of these experiments, the differences between

a b

Fig. 6. Unit cells used for the solution to the closure problem: (a) square

array and (b) staggered array.

Table 2

Effective parameters computed from the numerical solution to the closure problem

Parameter High contrast, j = 1800 Low contrast, j = 300

High flow rate

(Q = 1.32 mL/min)

Low flow rate

(Q = 0.66 mL/min)

High flow rate

(Q = 1.26 mL/min)

Low flow rate

(Q = 0.63 mL/min)

Dgg,xx, m
2/s 3.27 · 10�7 1.63 · 10�7 2.40 · 10�7 1.20 · 10�7

Dxx,xx, m
2/s 3.95 · 10�10 3.82 · 10�10 4.42 · 10�10 4.04 · 10�10

a*, m/s 3.25 · 10�6 2.96 · 10�6 7.22 · 10�6 4.56 · 10�6

hvgi
g, m/s 3.33 · 10�5 1.67 · 10�5 3.16 · 10�5 1.58 · 10�5

hvxi
x, m/s 2.10 · 10�8 1.04 · 10�8 1.19 · 10�7 5.94 · 10�8
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these two quantities was negligible. To start, we noted that
the flux-averaged concentration, cg,effluent, can be written as

cg;effluent ¼

R
Ag;effluent

nge � ðvgcgÞdAR
Ag;effluent

nge � vg dA
ð64Þ

The concentration in the integral can be decomposed using
Eq. (41). Under the length scale constraints that have al-
ready been imposed, the average concentration can be ta-
ken out from under the integral yielding the following
decomposition for cg,effluent:

cg;effluent ¼ hcgi
g þ c0g ð65Þ

where

c0g ¼

R
Ag;effluent

nge � ðvg~cgÞdAR
Ag;effluent

nge � vg dA
ð66Þ

For the j = 1800 case with Q = 0.66 mL/min, we found
that the second term on the right-hand side of Eq. (65)
was only a few percent of the spatial average concentration,
hcgi

g. Although the deviation c 0g might be important in
some instances, it was clearly not a major contribution to
the differences between the experiments and theory that
can be observed in Figs. 7 and 8.
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Fig. 7. Comparison of experimental data (points) and large scale simulations for the intermediate-contrast (j = 300) case using the effective parameters

determined by the solution to the steady closure problem with a simple unit cell.
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Fig. 8. Comparison of experimental data (points) and large scale simulations for the high-contrast (j = 1800) case using the effective parameters

determined by the solution to the steady closure problem with a simple unit cell.

15



Acc
ep

te
d 

M
an

us
cr

ip
t

5. Discussion

The comparison between the first-order mass transfer
theory and the experimental breakthrough curves illus-
trated in Figs. 7 and 8 show a reasonable comparison; how-
ever, some significant differences also appear. The most
significant difference is that the first-order mass transfer
theory over-predicts the concentration at early time, and
under-predicts the concentration at late time. This kind
of behavior has been noted by other researchers [30], and
ultimately it arises because the first-order mass transfer
model matches only the first two moments of the break-
through curve [30]. This leads to the breakthrough of tracer
in the high-conductivity matrix occurring somewhat earlier
than is actually observed.

We have hypothesized that the differences between the-
ory and experiment may have resulted primarily because
of two simplifications that we made for solving the closure
problem associated with the first-order mass transfer
model. These are (1) the geometrical simplification
assumed in the closure problem, and (2) the quasi-steady
assumption used to solve the closure problem. The impact
of each of these assumptions is explored in more detail
below.

5.1. Impact of geometry

Ideally, one can pick a simple unit cell that contains the
essential features of the system of interest without the need
for the cell being overly geometrically complex. The geom-
etry of a unit cell is ultimately specified by (1) the physics of
the problem under investigation, and (2) the accuracy of
the solution that is desired. As an example, for the process
of pure diffusion in isotropic porous media, upscaling
investigations have shown that it is primarily the volume
fraction of the fluid phase that determines the effective dif-
fusion tensor [56,81]. In contrast, for the problem of heat
transfer in porous media, the volume fraction of the media,
the media structure, and the contact geometry among the
solid-phase particles can all influence the resulting effective
dispersion tensor for heat transport [82,83]. Although some
of the necessary features of unit cell have been studied in
some detail [84], it is currently not possible to determine
a priori what the necessary features are for the unit cell
(i.e., how much geometrical information must be repre-
sented) for a particular set of processes of interest. There-
fore, this question must be addressed heuristically, using
guidance from previous studies. Note that this problem is
not a function of the method used to conduct the upscal-
ing, but rather is a function of the kinds of processes that
are manifest at the microscale. Consider, as an example,
the well-developed theories pertaining to field-scale disper-
sion for continuous but mildly heterogeneous hydraulic
conductivity fields. For this case, several approaches based
on perturbation techniques have yielded results that predict
the ensemble average of the effective dispersion tensor.
However, it is much more difficult to say how large a par-

ticular realization (i.e., a particular unit cell) must be so
that the ensemble average dispersion tensor is observed
for it with a high degree of confidence. For fields that are
highly heterogeneous and discrete, it is not currently possi-
ble to predict exactly what features need to be captured by
a unit cell.

To address this problem, we have examined the influ-
ence of three different unit cells of increasing complexity
on the effective parameters computed from the closure
problem. The first unit cell corresponds to the simple unit
cell used previously, and is illustrated in Fig. 6a. The sec-
ond unit cell, illustrated in Fig. 6b, has been made slightly
more complex by imposing a staggered structure on the
inclusions. If interactions among inclusions are particularly
important, we would expect this staggered array to give a
result that is different from that obtained for a simple unit
cell. Finally, to determine unambiguously how much these
two simplified unit cells impact the computation of the
effective parameters, we have used a third unit cell that
has all of the microscale geometry for the experimental sys-
tem embedded in it (i.e., the unit cell is structured like the
experimental distribution of hydraulic conductivities, as
illustrated in Fig. 3). The volume fraction of the two
regions, size, average separation distance between inclu-
sions, and shape of the inclusions are identical for the three
unit cells.

It should be noted that this last unit cell does not lead to
an upscaling that is particularly useful, because the num-
bers of degrees of freedom in the upscaling problem are
essentially equal to the number of degrees of freedom con-
tained in the direct numerical solution at the Darcy scale as
described in Section 4. However, the solution for this field
is a useful reference for this investigation, because it pro-
vides a unique indication of the information content
required by the closure problem. If the information content
of the simple unit cells (Fig. 6) is sufficient, then the closure
problem for each of these unit cells should give (within
some acceptable error) the same answer. However, if the
correlation structure of the experimental system is impor-
tant (in that the specifics of interactions among inclusions
are important), then it is unlikely that the simple unit cells
will be sufficient. Although with simple periodic cells we
can match the volume fraction and mean separation dis-
tance of the inclusions (the zeroth and first moments
respectively), we cannot reproduce the correlation structure
of the field (the second moment) with a simple periodic cell.

In Fig. 9 we have illustrated the impact of the pore-scale
geometry on the elution curves obtained from the macro-
scale two-equation model for the high contrast medium
and the flow rate of Q = 0.66 mL/min; this represents the
case that previously lead to the most significant deviation
between theory and experiment. The effective parameters
computed for the staggered unit cell (unit cell 2) and the
full domain (unit cell 3) are listed in Table 3.

The results of these simulations suggest that the com-
plexity of the unit cell itself is not the source of the discrep-
ancy between theory and experiment.
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5.2. Steady closure assumption for prediction of a*

The discussion above suggests that the discrepancy
between theory and experiment must result from one or
more of the assumptions imposed on the closure problem.
Two primary assumptions are imposed on the closure
problem that is described in Appendix B: (1) it is assumed
that quasi-steady conditions can be imposed so that the
time dependence of a* can be neglected, and (2) it is
assumed that the difference of the average quantities can
be treated as constant for the purposes of the closure prob-
lem. These two assumptions result in a steady closure prob-
lem that is decoupled from the macroscale transport
equations. It is this assumption that ultimately leads us
to a simple first-order approximation of the mass transfer
coefficient within the two-equation model. Without this
approximation, the fully transient closure would lead to a
solution that takes the form of an integro-differential equa-
tion [42,85], equivalent to the multi-rate methods that have
been described previously [22].

The influence of imposing the quasi-steady and decou-
pled conditions on the closure problem have been studied
in some detail by Landereau et al. [72], and Cherblanc
et al. [40]; however, a detailed understanding as to how
a* is influenced by this kind of closure is still unresolved.

We can make some progress by considering a special case
of the two-equation model where it is assumed that (1) con-
vective transport can be neglected within the inclusions
(x-phase), and (2) spatial concentration gradients in the
matrix (g-phase) are negligible, and (3) the inclusions are
uniform spheres (or cylinders in 2D) that are assumed to
be non-interacting. The resulting model has been studied
in detail by Rao et al. [78], and a fully transient expression
for the mass transfer coefficient is available from that
study. In our notation, the microscale formulation of the
Rao problem takes the form

g-region transport equation

cg ¼ cg0ðtÞ in the g-region ð67Þ

Boundary condition:

cx ¼ cg0ðtÞ at Agx ð68Þ

x-region transport equation

ex
ocx

ot
¼ r � ½exD

�
xrcx� in the x-region ð69Þ

Initial condition

cg ¼ 0 at t ¼ 0 ð70Þ

cx ¼ cx0 at t ¼ 0 ð71Þ

For this particular problem, Rao et al. [78] develop a clo-
sure for the transient mass transfer coefficient in terms of
a pair of infinite series. The resulting solution for a*(t)
shows exponential decay to a well-defined asymptotic value
as time tends toward infinity. This asymptotic value is

a� ¼
bðuxÞ

a2
uxexD

�
x ð72Þ

where the coefficient b(ux) is approximately 10 6 b(ux) 6
20 for 0 6 ux 6 1.

It is interesting to note that when Eqs. (67)–(71) are sub-
jected to the volume averaging procedure with a steady and
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Table 3

Comparison of effective parameters computed for three unit cells

Parameter High contrast j = 1800, Q = 0.66 mL/min

Unit cell 1 Unit cell 2 Unit cell 3

Dgg,xx, m
2/s 1.63 · 10�7 1.11 · 10�7 1.39 · 10�7

Dxx,xx, m
2/s 3.82 · 10�10 4.90 · 10�10 3.84 · 10�10

a*, m/s 2.96 · 10�6 3.29 · 10�6 3.16 · 10�6

hvgi
g, m/s 1.67 · 10�5 1.67 · 10�5 1.67 · 10�5

hvxi
x, m/s 1.04 · 10�8 1.02 · 10�8 1.15 · 10�8
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decoupled closure scheme, as described above, a different
value for the asymptotic value of a* is obtained. In Appen-
dix C we have presented the details of this analysis, and one
finds that for the Rao problem, the value of a* predicted
from our closure scheme is given by

a� ¼
15

a2
uxexD

�
x; 3-D; spherical inclusions ð73Þ

a� ¼
8

a2
uxexD

�
x; 2-D; cylindrical inclusions ð74Þ

and these results are consistent with a large number of
studies [28–30,32,34]. It has been recognized previously
[3,22] that these results represent the harmonic average of
the eigenvalues of the closure problem, and this result is
verified in the context of volume averaging in Appendix C.

In comparing the closure of Rao et al. [78] with the vol-
ume averaging scheme that we have presented, it is appar-
ent that the discrepancy between the asymptotic values for
a* arises because of the decoupling of the microscale and
macroscale transport problems. In other words, the macro-
scale variables (hcAgi

g, hcAxi
x, $hcAgi

g and $hcAxi
x) are

treated in our work (and in a large number of previous
studies by other researchers) as being spatially and tempo-
rally constant for the purposes of the closure problem. In
essence, this approximation forces the value of a* to be
the harmonic average of the eigenvalues of the closure
problem.

The result that the steady decoupled closure scheme
produces a harmonic-averaged value for a* is a significant
one. It has been shown by Harvey and Gorelick [30] that
this choice for a* assures that the zeroth, first, and sec-

ond temporal moments of the breakthrough curve are
maintained when one compares the exact and upscaled
(i.e., first-order mass transfer) results. Recently, Ahmadi
et al. [20] and Quintard et al. [19] have obtained similar
but more general results for a mobile/mobile model
developed in the context of volume averaging. These
results illustrate that if one imposes that a first-order
mass transfer model with constant a* must be used, then
the best possible (as measured by the zeroth, first, and
second moments) value for a* in the geometries investi-
gated thus far (slabs, cylinders and spheres) is obtained
by the steady, decoupled closure problem. This is identi-
cal to the closure scheme described in Appendix B, and,
therefore, the values for a* computed for this work are
optimal in the sense of maintaining equivalence for these
three moments.

The use of a constant value for a* represents a tradeoff
between reducing computational complexity and the accu-
racy of the final results. In the breakthrough curves
shown in Figs. 7 and 8 it is clear that, although three
moments of prediction and experimental data may be
the same, pointwise there may still be substantial devia-
tions between the two concentrations. This is because
the third (skewness) and subsequent moments do not
match, and, in fact, can not be made to match using a
first-order mass transfer model with constant a* [30]. If
greater accuracy is desired, one could adopt the use of a
fully transient closure problem with coupling between
the macroscale and microscale concentrations. In general,
this leads to a very complex problem that begins to be
nearly as difficult (if not more so) than the direct solution

Fig. 10. Geometry and dimensionless concentration fields the simplified medium used in the mixed model. The concentration field is shown for

t = 500 min for the low-flow-rate (Q = 0.66 mL/min) case.
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to the problem at the microscale. Under some circum-
stances, in fact, one can consider using a direct solution
for the concentration in the inclusions coupled with an
upscaled description of transport in the matrix material.
In fact, the result obtained by Rao et al. [78] can be con-
sidered to be of this type. In the next section, we briefly
describe this approach, and provide some examples as
to how it may be applied while still reducing the overall
complexity of the problem under consideration.

5.3. Mixed model results

Fig. 10 shows the dimensionless concentration fields
obtained from the mixed model for the low flow rate con-
ditions (Q = 0.66 mL/min) for the intermediate-contrast
case. Breakthrough curves for both cases appear in Figs.
11 and 12. Even for the intermediate-contrast case where
the convection should be an important process (as can be
seen in Fig. 5, where a small amount of asymmetry of the
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Fig. 11. Breakthrough curve for the mixed model, intermediate-contrast case (0.66 mL/mn).
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concentration field inside the inclusion can be observed due
to convective effects), it is interesting to note that a mixed
model still provides reasonably accurate results. The minor
deviations that can be observed between theory and exper-
iment result largely from the simplified geometry that has
been adopted; however, in many instances the decrease in
problem complexity would warrant this trade off.

These results show that the mixed model provides a sub-
stantially improved agreement between the experimental
data and theory. This improvement does come at a cost:
in the mixed model, essentially all of the eigenvalues asso-
ciated with transport in the inclusions are kept, and the
result is that more computational effort is required to com-
pute the solution. One could argue that the simplified
geometry that we have adopted could be used to directly
solve the microscale equations as originally posed by Eqs.
(27)–(33). Although in principle this is true, our use of
the mixed model here is specifically formulated to better
understand the impact that the steady-state approximation
in the closure problem for the mass transfer coefficient
imposes on the resulting macroscale equation described
in Section 3. Two additional criticisms can be made regard-
ing the use of the mixed model. First, the formulation of
the dispersive tensor implies that this one takes only into
account the passive dispersion. This can have a strong
impact, especially in reactive mass transfer problems. Sec-
ond, the two-equation model admits a small variation of
the concentration at the interface and accounts for convec-
tive effects within the inclusions; these processes are not
included in the mixed model as we have formulated it. Nev-
ertheless, the mixed model represents another tool that can
be used to examine the macroscale behavior of multi-scale
systems.

6. Conclusions

In this work we have examined the a priori prediction of
the effective mass transfer coefficient for a two-region med-
ium using the method of volume averaging with steady clo-
sure. Various methods exist for predicting the effective
mass transfer coefficient when diffusion dominates within
low-conductivity regions and these regions have idealized
(e.g. spherical, ellipsoidal, planar) geometries. However,
relatively fewer methods have been developed to handle
cases where the geometry is not necessarily ideal and where
non-negligible convection may occur in the low-conductiv-
ity inclusions. The method that we have described does
apply to these more general conditions, and allows for
the computation of the effective mass transfer coefficient
on the basis of the microscale physical properties and
geometry of the media. From the results described in this
work, our primary results and comments for future
research on this problem are as follows:

1. The first-order mass transfer model can be developed via
volume averaging, and the resulting theory allows one to
predict the effective mass transfer coefficient through the

solution of a closure problem. This closure can be done
numerically, and the method is therefore not con-
strained to cylindrical or spherical geometries. The mac-
roscale equations take the forms shown in Eqs. (1) and
(2), and the effective parameters (the effective mass
transfer coefficient, a*, and the effective dispersion ten-
sors D

�
gg and D

�
xxÞ can be predicted from the closure

problems described in Appendix B.
2. Our results indicate that the approach reasonably repre-

sents the mass transfer process when applied at the
macro scale. However, the existence of a formal method
for predicting the effective mass transfer coefficient does
not eliminate the shortcomings of the first-order mass
transfer model. These shortcomings have been discussed
at some length by other researchers [3,22,28,30,36,37],
and include (1) early arrival of the solute front, and
(2) higher concentrations in the ‘tailing’ part of the efflu-
ent breakthrough curve for a step decrease in influent
concentration.

3. For the special case where convection can be neglected
in the low-conductivity inclusions, we have shown in
Appendix C that the effective mass transfer coefficient,
a*, is equal to the harmonic average of the eigenvalues
associated with the closure problem. For spherical and
cylindrical inclusions, this result is consistent with previ-
ous observations [3,22,72], and leads to the classical
result of a� ¼ buxexD

�
x=a

2, where b is a parameter that
depends upon the geometry of the system. It has been
shown previously by Harvey and Gorelick [30] that for
this case one can match the zeroth, first, and second
temporal moments of the breakthrough curve using a
linear mass transfer model with a constant mass transfer
coefficient; however, higher-order moments cannot be
matched. The volume averaging scheme that we have
described yields the value of a* that is identical to that
proposed by Harvey and Gorelick [30]. This value of
a* can be said to be ‘optimal’ in the sense that it predicts
the best possible value of a* (as measured by adherence
to honoring the first three moments of a breakthrough
curve) for a linear mass transfer model with constant
coefficients.

4. The utility of the steady closure scheme for predicting a*

will depend upon the degree of accuracy required for the
macroscale transport equations. Although the closure
scheme that we describe can be considered to be ‘opti-
mal’ in the sense described by Harvey and Gorelick
[30] for the spherical diffusion case, there are still obvi-
ous deviations between the observed breakthrough
curves and those predicted by the macroscale theory
(e.g. Figs. 7 and 8). For many applications, the reduc-
tion in complexity that a macroscale linear mass transfer
model with a constant coefficient provides may be worth
the trade-off of reduced accuracy when compared to the
direct solution of the microscale equations.

5. For cases where the linear mass transport model with a
constant coefficient does not provide sufficient accuracy,
we have provided an example of a mixed model that can
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provide improved representation of the inter-region
transport process in the case where convection within
low-conductivity regions can be neglected. The mixed
model solves the macroscale transport equation in the
matrix, but solves the microscale transport equation in
the low-conductivity inclusions. The resulting equations
can be solved in a representative domain that is substan-
tially less complex than the full microscale geometry of
the heterogeneous medium, leading to a substantial
reduction in complexity when compared to the direct
microscale solution. As shown in Figs. 11 and 12, the
resulting description of the mass transport can be dra-
matically improved as compared with the results
obtained using the macroscale equations with the steady
closure scheme.

6. Our results (e.g. Fig. 9) have shown that simple unit cells
can be used to predict accurate values for a*, even for
structurally complex media. This suggests that the value
of a* predicted from a steady closure scheme is primarily
a function of (i) the volume fraction of the inclusions,
(ii) the physical properties (hydraulic conductivity,
porosity, and dispersivity), and (iii) the geometry of indi-
vidual inclusions. Interactions among inclusions appear,
at least for values of ux near the values studied in this
work, to be of secondary importance to the prediction
of a*.

Additional research should be conducted on upscaling
schemes that can represent the transient evolution of the
effective mass transfer coefficient. The disadvantage of this
approach is that the transport equations will necessarily
become non-local in time. However, if efficient approxima-
tions can be found, these might yield improved results at
the macroscale without the need to directly compute the
microscale solutions (as is done in the mixed model
approach). The prediction of time-dependent mass transfer
coefficients represents research that is currently in progress,
and some first results are available in the publication by
Chastanet and Wood [43].
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Appendix A

In description of multi-scale systems, notation can be
come unduly complex. In an effort to simplify the notation
and yet still make it possible for the reader to be certain
about the interpretation of various quantities, we list the
following Darcy scale variables here in terms of the sub-
pore scale averages over which they are defined. The fol-

lowing list contains Darcy scale variables defined by inte-
grating over a representative volume (corresponding to
the volume Vd in Fig. 1, Level III). In Fig. 1, Level III,
the fluid phase is referred to as the ‘b-phase’. The volume
of the fluid phase within the averaging volumeVd is repre-
sented by Vb;g or Vb;x, depending upon which region the
volume Vd resides in.

Darcy scale porosity in the g- and x-regions

eg ¼
Vb;g

Vd

in the g-region ðA:1Þ

ex ¼
Vb;x

Vd

in the x-region ðA:2Þ

Darcy scale intrinsic (average pore-scale) concentration

in the g- and x-regions

cg ¼
1

V b;g

Z

V b;g

cb dV in the g-region ðA:3Þ

cx ¼
1

V b;x

Z

V b;x

cbdV in the x-region ðA:4Þ

Darcy scale intrinsic (average pore-scale) velocity in the

g- and x-regions

vg ¼
1

V b;g

Z

V b;g

vb dV in the g-region ðA:5Þ

vx ¼
1

V b;x

Z

V b;x

vb dV in the x-region ðA:6Þ

Darcy scale total dispersion tensor

D
�
g ¼ Deff ;g þDg in the g-region ðA:7Þ

D
�
x ¼ Deff ;x þDx in the x-region ðA:8Þ

More information regarding the definition of the compo-
nents of the dispersion tensor described by Eqs. (A.7)
and (A.8) can be found in Ref. [56, Chapter 3].

Appendix B. The closure problem

In the process of volume averaging, one always finds
integrals of the deviation concentrations in the averaged
conservation equation. The process of determining the
relationship between the deviations and the mean concen-
tration is classically known as ‘closure’. The closure prob-
lems associated with the two-equation model have been
developed previously by Ahmandi et al. [20] and by Cher-
blanc et al. [40]. Briefly, one develops a conservation equa-
tion for the deviation concentrations by subtracting the
phase-averaged equations from the Darcy-scale equations
given by Eqs. (27) and (30) (this is analogous to how con-
servation equations for the Reynolds stress are developed
in the theory of homogeneous turbulence). The boundary
conditions given by Eqs. (28) and (29) are decomposed
using Eqs. (41) and (42) to develop conditions that involve
the deviation concentrations. At this point, one has conser-
vation equations for the quantities ~cg and ~cx complete with
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boundary conditions. The quantities $hcgi
g, $hcxi

x and
(hcgi

g � hcxi
x) arise as non-homogeneous source terms

in these equations.
Under the separation of length scales constraint posed

by Eq. (50), spatial variations of the mean concentrations
(and their gradients) can be neglected for the purposes of
the closure problem (cf. Whitaker [56], Chapter 2). It is
possible to show that for linear problems under these con-
ditions, the solution of the problem must be a function of
the source terms of the form (cf. Wood et al. [86] for an
explicit 1-phase example)

~cg ¼ bgg � rhcgi
g
þ bgx � rhcxi

x
þ rgðhcgi

g
� hcxi

x
Þ ðB:1Þ

~cx ¼ bxx � rhcxi
x
þ bxg � rhcgi

g
þ rxðhcxi

x
� hcgi

g
Þ ðB:2Þ

With these functional forms established, one can show that
three closure problems define the unknown functions bgg,
bgx, bxg, bxx, rg and rx.

In the following, we have made special efforts to keep
the notation for the closure problem as similar to that used
by Cherblanc et al. [40] as possible. To that end, we have
adopted the following notation:

ug ¼ egvg ðB:3Þ

ux ¼ exvx ðB:4Þ

ug ¼ hugi
g þ ~ug ðB:5Þ

ux ¼ huxi
x
þ ~ux ðB:6Þ

D
0
g ¼ egD

�
g ðB:7Þ

D
0
x ¼ exD

�
x ðB:8Þ

D
0
g ¼ hD0

gi
g þ ~D0

g ðB:9Þ

D
0
x ¼ hD0

xi
x þ ~D0

x ðB:10Þ

For the purposes of the closure problem only, we will also
neglect variations in the volume fractions eg, ex, ug, and
ux. With this notation, the closure problem can be stated
as [40].

Problem I. (Closure problem related to the source $ Æ hcgi
g)

r � ðugbggÞ þ ~ug ¼ r � ðD0
g � rbggÞ þ r � ~D0

g � u�1
g cgg ðB:11Þ

B:C:1 bgg ¼ bxg at Agx ðB:12Þ

B:C:2 ngx � ðD0
g � rbggÞ ¼ ngx � ðD0

x � rbxgÞ at Agx

ðB:13Þ

r � ðuxbxgÞ ¼ r � ðD0
x � rbxgÞ � u�1

x cxg ðB:14Þ

bggðrþ ‘iÞ ¼ bggðrÞ; i ¼ 1; 2; 3 ðB:15Þ

bxgðrþ ‘iÞ ¼ bxgðrÞ; i ¼ 1; 2; 3 ðB:16Þ

hbggi
g
¼ 0; hbxgi

x
¼ 0 ðB:17Þ

In Eqs. (B.11) and (B.14) two constant vectors have been
defined, and they are specified by

cgg ¼ �
1

V

Z

Agx

ngx � ðugbgg �D
0
g � rbgg �D

0
gÞdA ðB:18Þ

cxg ¼ �
1

V

Z

Axg

nxg � ðuxbxg �D
0
x � rbxgÞdA ðB:19Þ

where the two constants are related by

cgg ¼ �cxg ðB:20Þ

Problem II. (Closure problem related to the source

$ Æ hcxi
x)

r � ðugbgxÞ ¼ r � ðD0
g � rbgxÞ � u�1

g cgx ðB:21Þ

B:C:1 bgx ¼ bxx at Agx ðB:22Þ

B:C:2 ngx � ðD0
g � rbgxÞ

¼ ngx � ðD0
x � rbxxÞ þ ngx �D0

x at Agx ðB:23Þ

r � ðuxbxxÞ þ ~ux ¼ r � ðD0
x � rbxxÞ þ r �D0

x � u�1
x cxx

ðB:24Þ

bgxðrþ ‘iÞ ¼ bgxðrÞ; i ¼ 1; 2; 3 ðB:25Þ

bxxðrþ ‘iÞ ¼ bxxðrÞ; i ¼ 1; 2; 3 ðB:26Þ

hbgxi
g ¼ 0; hbxxi

x ¼ 0 ðB:27Þ

cgx ¼ �
1

V

Z

Agx

ngx � ðugbgx �D
0
g � rbgxÞdA ðB:28Þ

cxx ¼ �
1

V

Z

Agx

nxg � ðuxbxx �D
0
x � rbxx �D

0
xÞdA ðB:29Þ

where the two constants are related by

cgx ¼ �cxx ðB:30Þ

Problem III. (Closure problem related to the exchange

source hcx ix � hcgi
g)

r � ðugrgÞ ¼ r � ðD0
g � rrgÞ � u�1

g a� ðB:31Þ

B:C:1 rg ¼ rx þ 1 at Agx ðB:32Þ

B:C:2 ngx � ðD0
g � rrgÞ ¼ ngx � ðD0

x � rrxÞ at Agx ðB:33Þ

r � ðuxrxÞ þ ~ux ¼ r � ðD0
x � rrxÞ þ u�1

x a� ðB:34Þ

rgðrþ ‘iÞ ¼ rgðrÞ; i ¼ 1; 2; 3 ðB:35Þ

rxðrþ ‘iÞ ¼ rxðrÞ; i ¼ 1; 2; 3 ðB:36Þ

hrgi
g
¼ 0; hrxi

x
¼ 0 ðB:37Þ

a� ¼ �
1

V

Z

Agx

ngx � ðegvgrg � egDg � rrgÞdA

¼
1

V

Z

Axg

nxg � ðexvxrx � exDx � rrxÞdA

ðB:38Þ

The closure problems are solved over a representative unit
cell. These closure problems assume (1) that periodic
boundary conditions are a reasonable condition to impose
on the boundaries of the representative unit cell (N.B., this
does not imply that the porous medium is actually periodic,
but rather is only a convenient device for obtaining a solu-
tion; see the discussion in Ref. [86]), and (2) that the char-
acteristic time scale of the deviation concentrations is much
smaller than the time scale for diffusion [20]

D0
gt

�

‘geg
� 1;

D0
xt

�

‘xex
� 1 ðB:39Þ
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The solutions to these closure problems provide the infor-
mation filtered from the microscale (in terms of the fields
bgg, bxx, and rg) that are needed to predict the macroscale
effective dispersion tensors and mass transfer coefficient.
These effective parameters are given in the body of the pa-
per by Eqs. (47)–(49), and are repeated here

D
�
gg ¼ hD�

g � ðIþrbggÞ � ~vgbggi
g

ðB:40Þ

D
�
xx ¼ hD�

x � ðIþrbxxÞ � ~vxbxxi
x ðB:41Þ

a� ¼ �
1

V

Z

Agx

ngx � ðegvgrg � egDg � rrgÞdA

¼
1

V

Z

Axg

nxg � ðexvxrx � exDx � rrxÞdA

ðB:42Þ

The two non-conventional flux terms are given by

Xg ¼ r � ½dg � ðhcgi
g � hcxi

xÞ� þ ugx � rhcxi
x

þugg � rhcgi
g
þr � ½ugD

0
gx � rhcgi

g
� ðB:43Þ

Xx ¼ r � ½dx � ðhcxi
x
� hcgi

g
Þ� þ uxx � rhcxi

x

þuxg � rhcgi
g þr � ½uxD

0
xg � rhcgi

g� ðB:44Þ

As mentioned in the body of the paper, the non-conven-
tional flux terms were negligible for this work, and were
not considered in further analyses.

Employing these definitions, the upscaled transport
equations given by Eqs. (45) and (46) have been closed,
and the effective parameters that appear in those transport
equations have been formally related to the underlying
properties and structure of the Darcy-scale system.

Appendix C. Mass transfer coefficient for a simplified

two-region model

This appendix serves two purposes. First, we develop
the closure problem for the two-equation model under
the conditions that are equivalent to those presented by
Rao et al. [78] (see also the development by Glueckauf
[29], which has many similarities), and then examine the
result if quasi-steady conditions are assumed. Second, we
use this as an opportunity to show how closure problems
can be expressed in terms of Green’s functions, and how
this is equivalent to our more standard practice of decom-
posing the deviations in terms of sources (as done, for
example, in Eq. (B.1)).

C.1. A simplified two-region model

For this simplified problem, it is assumed that (1) the
heterogeneities are non-interacting spherical inclusions,
(2) there is no convection in the inclusions, and (3) that
the solute concentration in the matrix is uniform (but pos-
sibly time-varying). Under these conditions, Eqs. (27)–(30)
take the form

g-region transport equation

cg ¼ cg0ðtÞ in the g-region ðC:1Þ

Boundary condition

cx ¼ cg0ðtÞ at Agx ðC:2Þ

x-region transport equation

ex
ocx

ot
¼ r � ½exDeff ;xrcx� in the x-region ðC:3Þ

Initial condition

cg ¼ 0 at t ¼ 0 ðC:4Þ

cx ¼ cx0 at t ¼ 0 ðC:5Þ

Following a development identical to the one described in
Section 2 of the main body of the paper, the volume aver-
aged transport equations take the form

Macroscale equations

hcgi
g ¼ cg0ðtÞ in the g-region ðC:6Þ

cx ¼ cg0ðtÞ at Agx ðC:7Þ

uxex
ohcxi

x

ot
¼ r � ½uxexDeff;xrhcxi

x
�

þ
1

V

Z

Agx

nxg � ðexDeff ;xr~cxÞdA ðC:8Þ

Initial condition

cg ¼ 0 at t ¼ 0 ðC:9Þ

cx ¼ cx0 at t ¼ 0 ðC:10Þ

The g-phase concentration can be found by conducting a
total mass balance on the two phases. Any mass ‘lost’ by
the inclusions is gained by the matrix, allowing one to ex-
press the concentration cg(t) by

cg0ðtÞ ¼
uxðcx0 � hcxi

x
Þ

ug

at tP 0 ðC:11Þ

An additional term arises in the averaging process, but it is
identically zero for the cylindrical or spherical geometry as-
sumed for this development, i.e.,

1

V

Z

Agx

ngx~cx dA ¼ 0 ðC:12Þ

This set of equations leads to a quasi-steady closure prob-
lem that takes the form

Closure problem:

ex
o~cx

ot
¼ exDeff ;xr

2~cx � u�1
x a�ðtÞCgxðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Source Term

in the x-region

ðC:13Þ

~cx ¼ CgxðtÞ|fflffl{zfflffl}
Source Term

at Agx ðC:14Þ

~cx ¼ 0 at t ¼ 0 ðC:15Þ

where Cgx(t) represents the difference in the macroscale
concentration

CgxðtÞ ¼ cg0ðtÞ � hcxi
x

at Agx ðC:16Þ

and a*(t) is a function of only time, given by
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a�ðtÞ ¼ C�1
gx

1

V

Z

Agx

nxg � ðexDeff ;xr~cxÞdA ðC:17Þ

We need to point out here that the appearance of Cgx (t) in
the source term in Eq. (C.13) is artificial, but convenient.

This set of equations has two time-varying sources, the
heterogeneous source u�1

x a�ðtÞCgxðtÞ, and the boundary
source Cgx(t). Under the constraints that have been
imposed already (i.e., Eq. (50)), both quantities can be con-
sidered to be spatially constant for the purposes of the clo-
sure problem. However, because they are both explicit
functions of time, they cannot, in general, be considered
to be time independent. One might hope to find conditions
for which the following restriction is valid

ex
o~cx

ot
� exDeff ;xr

2~cx ðC:18Þ

which would allow the closure problem to be treated as
quasi-steady. However, because the inclusions are as-
sumed to be diffusion-dominated, it is difficult to envision
conditions where the concentration deviations and the
average concentration have dramatically different time
scales.

There are essentially two ways to proceed from here: (1)
maintain the explicit coupling between the macroscale and
microscale equations, and solve a transient closure problem
to determine a time-dependent mass transfer coefficient,
a*(t); or (2) adopt the simplification given by Eq. (C.18)
that allows one to determine a non-time-dependent mass
transfer coefficient. The subsequent task for this latter
approach would be to assign a definite meaning to this
(constant) value for a*, and to determine how this assump-
tion influences the representation of the mass transfer
process.

The first approach was the method adopted by Rao
et al. [78] for the mobile/immobile model for spherical
inclusions, and it has begun to be explored in the context
of volume averaging theory [42,85]. Although explicit ana-
lytical solutions can be obtained for the simples cases (e.g.
where the inclusions have no convection, the geometry is
ideal, and there is a separation of time scales for transport
in the two regions) in general this approach yields complex
integro-differential equations which can be very compli-
cated to solve. As an alternative, we have pursued option
(2) here. Some additional comments regarding this
approach are provided below.

Before proceeding further, we make the substitution
~c0x ¼ ~cx=Cgx. The quasi-steady closure problem takes the
form

Quasi-steady closure problem

r2~c0x ¼
a�

uxexDeff ;x

in the x-region ðC:19Þ

~c0x ¼ 1 at Agx ðC:20Þ

where now both a* and Cgx are treated as being true con-
stants (time and space-independent) for the purposes of the
closure problem. This treatment imposes some interesting

constraints on the resulting value of a*, and these will be
discussed in further detail below. The closure problem
now takes the form that has simple solution in terms of
Green’s functions

~cx ¼
Cgxa

�

uxexDeff ;x

Z

V xðx0Þ

Gðx; x0ÞdV ðx0Þ

þ Cgx

Z

Agxðx0Þ

nxg � rx0Gðx; x
0ÞdAðx0Þ ðC:21Þ

where G is the Green’s function associated with the
Dirichlet problem given by Eqs. (C.19) and (C.20). Note
that this solution takes the form analogous to that of
Eq. (B.2):

~cx ¼ rxðhcxi
x
� hcgi

g
Þ ðC:22Þ

where

rx ¼
a�

uxexDeff ;x

Z

V xðx0Þ

Gðx; x0ÞdV ðx0Þ

þ

Z

Agxðx0Þ

nxg � rx0Gðx; x
0ÞdAðx0Þ ðC:23Þ

This result establishes the correspondence between the
Green’s function solution to the closure problem and the
conventional closure variables that are usually used in
the method of volume averaging (e.g. Eqs. (B.1) and (B.2)).

For the closure of Eq. (C.8), we need the quantity r~cx,
which is given by

r~cx ¼
Cgxa

�

uxexDeff ;x

Z

V xðx0Þ

rGðx; x0ÞdV ðx0Þ

þ Cgxr

Z

Agxðx0Þ

nxg � rx0Gðx; x
0ÞdAðx0Þ ðC:24Þ

Using the properties of Green’s functions, it is easy to show
Z

Agxðx0Þ

nxg � rx0Gðx; x
0ÞdAðx0Þ ¼ 1 ðC:25Þ

hence, the second term on the right-hand side of Eq. (C.24)
is zero, and the notation Agx (x 0) indicates integration over
the set of points on the surface Agx. Rearranging what re-
mains from Eq. (C.24) we have

exDeff ;xr~cx ¼
VCgxa

�

V x

Z

V xðx0Þ

rGðx; x0ÞdV ðx0Þ ðC:26Þ

where we have used the definition ux = Vx/V, and the
notation Vx(x

0) indicates integration over the set of points
in the volume Vx. Substituting this result into the unclosed
macroscale equation give by Eq. (C.8) and interchanging
the order of integration gives

uxex
ohcxi

x

ot
¼ r � ½uxexDeff ;xrhcxi

x
�

þ
Cgxa

�

V x

Z

V xðx0Þ

Z

Agx

nxg � rGðx; x0ÞdAdV ðx0Þ

ðC:27Þ

Finally, once again noting the identity given by Eq. (C.25),
we find the result
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exux

ohcxi
x

ot
¼ r � ½exuxDeff ;xrhcxi

x
� � a�ðcg0 � hcxi

x
Þ

ðC:28Þ

Note that conventionally the macroscale diffusion term is
dropped relative to the interfacial mass transfer term yield-
ing the expression (cf. Cherblanc et al. [40], Eq. (77))

exux

ohcxi
x

ot
¼ a�ðcg0 � hcxi

x
Þ ðC:29Þ

C.2. Interpretation of the effective mass transfer coefficient

Although this establishes a steady-state solution for
predicting a*, it is not clear from this solution exactly
how a* relates to a more general, transient closure
scheme. To answer this question, it is convenient to
expand the deviation concentration in terms of eigenfunc-
tions. The steady closure problem is a linear problem
that is identical to the Dirichlet problem on a sphere.
In this case, the right-hand side of Eq. (C.19) is a con-
stant, but an unknown one. A set of orthonormal eigen-
functions for this problem exists, and we will denote
these functions by wmn(x). One can expand the Green’s
function for this problem in terms of these eigenfunctions
(cf. Ref. [87], Section 10.7), yielding the following expres-
sion for ~cx

~cxðxÞ ¼ �
Cgxa

�

uxexDeff ;x

Z

V xðx0Þ

X1

m¼1

X1

n¼1

�
1

kmn
wmnðxÞwmnðx

0ÞdV ðx0Þ þ Cgx ðC:30Þ

For this expression, integration and summation can be
interchanged, yielding

~cxðxÞ ¼ �
Cgxa

�

uxexDeff ;x

X1

m¼1

X1

n¼1

V x

kmn
wmnðxÞhwmni

x
þ Cgx

ðC:31Þ

This expression still has one unknown constant, a*. We can
determine a* if we have an additional independent equa-
tion. For the steady closure, we can impose the condition
h~cxi

x
¼ 0. Imposing this constraint, we can take the aver-

age of both sides of Eq. (C.31) to yield

a�

uxexDeff ;x

X1

m¼1

X1

n¼1

V xðhwmni
xÞ2

kmn
¼ 1 ðC:32Þ

As a direct result of Parseval’s equality [88] for a weighting
function equal to 1/Vx, we must have the condition that

X1

m¼1

X1

n¼1

V xðhwmni
x
Þ
2
¼ 1 ðC:33Þ

From this expression, it is clear that the terms Vx (hwmn i
x)2

can be considered to be weights for each of the eigenvalues,
kmn. We find that a* is proportional to the harmonic average
of the eigenvalues of the closure problem

a� ¼ exDeff;xu
�1
x

X1

m¼1

X1

n¼1

V xðhwmni
x
Þ
2

kmn

!�1

ðC:34Þ

To complete this definition, we note that we can assign a
definite value to a* for the particular problem discussed
in this appendix. The solution to (C.19) and (C.20) is
straightforward [89], and ~cx is given by

~cxðxÞ � Cgx ¼ �
Cgxa

�

uxexDeff ;x

ða2 � x � xÞ ðC:35Þ

where a is the radius of the sphere. Averaging both sides of
this equation, and noting the condition imposed earlier
(h~cxi

x
¼ 0Þ one obtains the relation

1 ¼
a�

uxexDeff ;x

ða2 � hx � xixÞ ðC:36Þ

The value of hx Æ xix is determined by a simple integration
to provide

hx � xi
x
¼

3

5
a2 ðC:37Þ

Substituting this into Eq. (C.36) one finds that for the sim-
ple unit cell consisting of a periodic array of spheres, the
value of a* is found to be

a� ¼
15

a2
uxexDeff ;x ðC:38Þ

Noting that many references define the effective diffusion
coefficient in porous media by

D0
eff ;x ¼ exDeff ;x ðC:39Þ

we find that Eq. (C.38) represents the harmonic average of
the eigenvalues of the Laplace operator for our particular
boundary value problem, and that this value is consistent
with the value proposed previously for a* [29,30,35]. A sim-
ilar analysis for cylindrical inclusions [42] leads to the value
a* = 8uxexDeff,x/a

2. Further discussion about the deriva-
tion of steady values for a* from the perspective of volume
averaging are presented by Cherblanc et al. (Ref. [40], Sec-
tion 5.1).

It is interesting to note that the steady solution of the
closure problem specifies a value for a* that is generally dif-
ferent from the asymptotic and time-averaged values of a*

developed by Rao et al. [78] (where for that work, the lead-
ing coefficient is a value between about 10 and 20, depend-
ing upon the value of ux). The only difference between the
approach developed above and that of Rao et al. [78] is
that in this work the source term Cgx (representing the dif-
ference between the average concentrations in the two
regions) is treated as a constant. We can only conclude that
by forcing a decoupling between the micro- and macro-
scale equations (i.e., by treating Cgx as a constant) we force
the system of equations to predict the harmonic average
value of a*. Because it has been shown previously by
Harvey and Gorelick [30] that this value for a* forces the
zeroth, first, and second temporal moments of the break-
through curve to be maintained, we can consider prediction
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of a* from the steady closure problem to be optimal in this
sense.
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