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NON LOCAL POINCARÉ INEQUALITIES ON LIE

GROUPS WITH POLYNOMIAL VOLUME GROWTH

EMMANUEL RUSS AND YANNICK SIRE

Abstract. Let G be a real connected Lie group with polynomial
volume growth, endowed with its Haar measure dx. Given a C2

positive function M on G, we give a sufficient condition for an L
2

Poincaré inequality with respect to the measure M(x)dx to hold
on G. We then establish a non-local Poincaré inequality on G with
respect to M(x)dx.
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1. Introduction

Let G be a unimodular connected Lie group endowed with a measure
M(x) dx where M ∈ L1(G) and dx stands for the Haar measure on G.
By “unimodular”, we mean that the Haar measure is left and right-
invariant. We always assume that M = e−v where v is a C2 function
on G. If we denote by G the Lie algebra of G, we consider a family

X = {X1, ..., Xk}
of left-invariant vector fields on G satisfying the Hörmander condition,
i.e. G is the Lie algebra generated by the X ′

is. A standard metric on G ,
called the Carnot-Caratheodory metric, is naturally associated with X
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and is defined as follows: let ℓ : [0, 1] → G be an absolutely continuous
path. We say that ℓ is admissible if there exist measurable functions
a1, ..., ak : [0, 1] → C such that, for almost every t ∈ [0, 1], one has

ℓ′(t) =

k∑

i=1

ai(t)Xi(ℓ(t)).

If ℓ is admissible, its length is defined by

|ℓ| =
∫ 1

0

(
k∑

i=1

|ai(t)|2 dt
) 1

2

.

For all x, y ∈ G, define d(x, y) as the infimum of the lengths of all
admissible paths joining x to y (such a curve exists by the Hörmander
condition). This distance is left-invariant. For short, we denote by |x|
the distance between e, the neutral element of the group and x, so that
the distance from x to y is equal to |y−1x|.
For all r > 0, denote by B(x, r) the open ball in G with respect to

the Carnot-Caratheodory distance and by V (r) the Haar measure of
any ball. There exists d ∈ N∗ (called the local dimension of (G,X))
and 0 < c < C such that, for all r ∈ (0, 1),

crd ≤ V (r) ≤ Crd,

see [NSW85]. When r > 1, two situations may occur (see [Gui73]):

• Either there exist c, C,D > 0 such that, for all r > 1,

crD ≤ V (r) ≤ CrD

where D is called the dimension at infinity of the group (note
that, contrary to d, D does not depend on X). The group is
said to have polynomial volume growth.

• Or there exist c1, c2, C1, C2 > 0 such that, for all r > 1,

c1e
c2r ≤ V (r) ≤ C1e

C2r

and the group is said to have exponential volume growth.

When G has polynomial volume growth, it is plain to see that there
exists C > 0 such that, for all r > 0,

(1.1) V (2r) ≤ CV (r),

which implies that there exist C > 0 and κ > 0 such that, for all r > 0
and all θ > 1,

(1.2) V (θr) ≤ CθκV (r).
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Denote by H1(G, dµM) the Sobolev space of functions f ∈ L2(G, dµM)
such that Xif ∈ L2(G, dµM) for all 1 ≤ i ≤ k. We are interested in L2

Poincaré inequalities for the measure dµM . In order to state sufficient
conditions for such an inequality to hold, we introduce the operator

LMf = −M−1
k∑

i=1

Xi

{
MXif

}

for all f such that

f ∈ D(LM) :=

{
g ∈ H1(G, dµM);

1√
M

Xi

{
MXif

}
∈ L2(G, dx), ∀1 ≤ i ≤ k

}
.

One therefore has, for all f ∈ D(LM) and g ∈ H1(G, dµM),

∫

G

LMf(x)g(x)dµM(x) =

k∑

i=1

∫

G

Xif(x) ·Xig(x)dµM(x).

In particular, the operator LM is symmetric on L2(G, dµM).
Following [BBCG08], say that a C2 function W : G → R is a Lyapunov
function if W (x) ≥ 1 for all x ∈ G and there exist constants θ > 0,
b ≥ 0 and R > 0 such that, for all x ∈ G,

(1.3) − LMW (x) ≤ −θW (x) + b1B(e,R)(x),

where, for all A ⊂ G, 1A denotes the characteristic function of A. We
first claim:

Theorem 1.1. Assume that G is unimodular and that there exists a
Lyapunov function W on G. Then, dµM satisfies the following L2

Poincaré inequality: there exists C > 0 such that, for all function
f ∈ H1(G, dµM) with

∫
G
f(x)dµM(x) = 0,

(1.4)

∫

G

|f(x)|2 dµM(x) ≤ C

k∑

i=1

∫

G

|Xif(x)|2 dµM(x).

Let us give, as a corollary, a sufficient condition on v for (1.4) to
hold:

Corollary 1.2. Assume that G is unimodular and there exist constants
a ∈ (0, 1), c > 0 and R > 0 such that, for all x ∈ G with |x| > R,

(1.5) a

k∑

i=1

|Xiv(x)|2 −
k∑

i=1

X2
i v(x) ≥ c.

Then (1.4) holds.



4 EMMANUEL RUSS AND YANNICK SIRE

Notice that, if (1.5) holds with a ∈
(
0, 1

2

)
, then the Poincaré inequal-

ity (1.4) has the following self-improvement:

Proposition 1.3. Assume that G is unimodular and that there exist
constants c > 0, R > 0 and ε ∈ (0, 1) such that, for all x ∈ G,

(1.6)
1− ε

2

k∑

i=1

|Xiv(x)|2 −
k∑

i=1

X2
i v(x) ≥ c whenever |x| > R.

Then there exists C > 0 such that, for all function f ∈ H1(G, dµM)
such that

∫
G
f(x)dµM(x) = 0:

(1.7)
k∑

i=1

∫

G

|Xif(x)|2 dµM(x) ≥ C

∫

G

|f(x)|2
(
1 +

k∑

i=1

|Xiv(x)|2
)
dµM(x)

We finally obtain a Poincaré inequality for dµM involving a non local
term:

Theorem 1.4. Let G be a unimodular Lie group with polynomial growth.
Let dµM = Mdx be a measure absolutely continuous with respect to the
Haar measure on G where M = e−v ∈ L1(G) and v ∈ C2(G). Assume
that there exist constants c > 0, R > 0 and ε ∈ (0, 1) such that (1.6)
holds. Let α ∈ (0, 2). Then there exists λα(M) > 0 such that, for any
function f ∈ D(G) satisfying

∫
G
f(x) dµM(x) = 0,

∫∫

G×G

|f(x)− f(y)|2
V (|y−1x|) |y−1x|α dx dµM(y) ≥ λα(M)(1.8)

∫

Rn

|f(x)|2
(
1 +

k∑

i=1

|Xiv(x)|2
)

dµM(x).

Note that (1.8) is an improvement of (1.7) in terms of fractional non-
local quantities. The proof follows the same line as the paper [MRS09]
but we concentrate here on a more geometric context.
In order to prove Theorem 1.4, we need to introduce fractional powers

of LM . This is the object of the following developments. Since the
operator LM is symmetric and non-negative on L2(G, dµM), we can
define the usual power Lβ for any β ∈ (0, 1) by means of spectral
theory.
Section 2 is devoted to the proof of Theorem 1.1 and Corollary 1.2.
Then, in Section 3, we check L2 “off-diagonal” estimates for the resol-
vent of LM and use them to establish Theorem 1.4.
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2. A proof of the Poincaré inequality for dµM

We follow closely the approach of [BBCG08]. Recall first that the
following L2 local Poincaré inequality holds on G for the measure dx:
for all R > 0, there exists CR > 0 such that, for all x ∈ G, all r ∈ (0, R),
all ball B := B(x, r) and all function f ∈ C∞(B),

(2.9)

∫

B

|f(x)− fB|2 dx ≤ CRr
2

k∑

i=1

∫

B

|Xif(x)|2 dx,

where fB := 1
V (r)

∫
B
f(x)dx. In the Euclidean context, Poincaré in-

equalities for vector-fields satisfying Hörmander conditions were ob-
tained by Jerison in [Jer86]. A proof of (2.9) in the case of unimodular
Lie groups can be found in [SC95], but the idea goes back to [Var87].
A nice survey on this topic can be found in [HK00]. Notice that no
global growth assumption on the volume of balls is required for (2.9)
to hold.

The proof of (1.4) relies on the following inequality:

Lemma 2.1. For all function f ∈ H1(G, dµM) on G,

(2.10)

∫

G

LMW

W
(x)f 2(x)dµM(x) ≤

k∑

i=1

∫

G

|Xif(x)|2 dµM(x).

Proof: Assume first that f is compactly supported on G. Using
the definition of LM , one has

∫

G

LMW

W
(x)f 2(x)dµM(x) =

k∑

i=1

∫

G

Xi

(
f 2

W

)
(x) ·XiW (x)dµM(x)

= 2

k∑

i=1

∫

G

f

W
(x)Xif(x) ·XiW (x)dµM(x)

−
k∑

i=1

∫

G

f 2

W 2
(x) |XiW (x)|2 dµM(x)

=

k∑

i=1

∫

G

|Xif(x)|2 dµM(x)

−
k∑

i=1

∫

G

∣∣∣∣Xif − f

W
XiW

∣∣∣∣
2

(x)dµM(x)

≤
k∑

i=1

∫

G

|Xif(x)|2 dµM(x).
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Notice that all the previous integrals are finite because of the support
condition on f . Now, if f is as in Lemma 2.1, consider a nondecreasing
sequence of smooth compactly supported functions χn satisfying

1B(e,nR) ≤ χn ≤ 1 and |Xiχn| ≤ 1 for all 1 ≤ i ≤ k.

Applying (2.10) to fχn and letting n go to +∞ yields the desired
conclusion, by use of the monotone convergence theorem in the left-
hand side and the dominated convergence theorem in the right-hand
side.

Let us now establish (1.4). Let g be a smooth function on G and let
f := g − c on G where c is a constant to be chosen. By assumption
(1.3),
(2.11)∫

G

f 2(x)dµM(x) ≤
∫

G

f 2(x)
LMW

θW
(x)dµM(x)+

∫

B(e,R)

f 2(x)
b

θW
(x)dµM(x).

Lemma 2.1 shows that (2.10) holds. Let us now turn to the second term
in the right-hand side of (2.11). Fix c such that

∫
B(e,R)

f(x)dµM(x) = 0.

By (2.9) applied to f on B(e, R) and the fact that M is bounded from
above and below on B(e, R), one has

∫

B(e,R)

f 2(x)dµM(x) ≤ CR2
k∑

i=1

∫

B(e,R)

|Xif(x)|2 dµM(x)

where the constant C depends on R and M . Therefore, using the fact
that W ≥ 1 on G,
(2.12)

∫

B(e,R)

f 2(x)
b

θW
(x)dµM(x) ≤ CR2

k∑

i=1

∫

B(e,R)

|Xif(x)|2 dµM(x)

where the constant C depends on R,M, θ and b. Gathering (2.11),
(2.10) and (2.12) yields

∫

G

(g(x)− c)2dµM(x) ≤ C

k∑

i=1

∫

G

|Xig(x)|2 dµM(x),

which easily implies (1.4) for the function g (and the same dependence
for the constant C).

Proof of Corollary 1.2: according to Theorem 1.1, it is enough to
find a Lyapunov function W . Define

W (x) := eγ(v(x)−infG v)
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where γ > 0 will be chosen later. Since

−LMW (x) = γ

(
k∑

i=1

X2
i v(x)− (1− γ)

k∑

i=1

|Xiv(x)|2
)
W (x),

W is a Lyapunov function for γ := 1− a because of the assumption on

v. Indeed, one can take θ = cγ and b = maxB(e,R)

{
− LMW + θW

}

(recall that M is a C2 function).

Let us now prove Proposition 1.3. Observe first that, since v is C2 on
G and (1.6) holds, there exists α ∈ R such that, for all x ∈ G,

(2.13)
1− ε

2

k∑

i=1

|Xiv(x)|2 −
k∑

i=1

X2
i v(x) ≥ α.

Let f be as in the statement of Proposition 1.3 and let g := fM
1

2 .
Since, for all 1 ≤ i ≤ k,

Xif = M− 1

2Xig −
1

2
gM− 3

2XiM.

Assumption (2.13) yields two positive constants β, γ such that

(2.14)

k∑

i=1

∫

G

|Xif(x)|2 (x) dµM(x) =

k∑

i=1

∫

G

(
|Xig(x)|2 +

1

4
g2(x) |Xiv(x)|2 + g(x)Xig(x)Xiv(x)

)
dx

=
k∑

i=1

∫

G

(
|Xig(x)|2 +

1

4
g2(x) |Xiv(x)|2 +

1

2
Xi

(
g2
)
(x)Xiv(x)

)
dx

≥
k∑

i=1

∫

G

g2(x)

(
1

4
|Xiv(x)|2 −

1

2
X2

i v(x)

)
dx

≥
k∑

i=1

∫

G

f 2(x)
(
β |Xiv(x)|2 − γ

)
dµM(x).

The conjunction of (1.4), which holds because of (1.6), and (2.14) yields
the desired conclusion.

3. Proof of Theorem 1.4

We divide the proof into several steps.
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3.1. Rewriting the improved Poincaré inequality. By the def-
inition of LM , the conclusion of Proposition 1.3 means, in terms of
operators in L2(G, dµM), that, for some λ > 0,

(3.15) LM ≥ λµ,

where µ is the multiplication operator by 1 +
∑k

i=1 |Xiv|2. Using a
functional calculus argument (see [Dav80], p. 110), one deduces from
(3.15) that, for any α ∈ (0, 2),

L
α/2
M ≥ λα/2µα/2

which implies, thanks to the fact L
α/2
M = (L

α/4
M )2 and the symmetry of

L
α/4
M on L2(G, dµM), that

∫

G

|f(x)|2
(
1 +

k∑

i=1

|Xiv(x)|2
)α/2

dµM(x) ≤

C

∫

G

∣∣∣Lα/4
M f(x)

∣∣∣
2

dµM(x) = C
∥∥∥Lα/4

M f
∥∥∥
2

L2(G,dµM )
.

The conclusion of Theorem 1.4 will follow by estimating the quantity∥∥Lα/4f
∥∥2
L2(G,dµM )

.

3.2. Off-diagonal L2 estimates for the resolvent of LM . The
crucial estimates to derive the desired inequality are some L2 “off-
diagonal” estimates for the resolvent of LM , in the spirit of [Gaf59] .
This is the object of the following lemma.

Lemma 3.1. There exists C with the following property: for all closed
disjoint subsets E, F ⊂ G with d(E, F ) =: d > 0, all function f ∈
L2(G, dµM) supported in E and all t > 0,

∥∥(I+ t LM)−1f
∥∥
L2(F,dµM )

+
∥∥t LM(I+ t LM)−1f

∥∥
L2(F,dµM )

≤

8 e
−C d

√

t ‖f‖L2(E,dµM ) .

Proof. We argue as in [AHL+02], Lemma 1.1. From the fact that LM

is self-adjoint on L2(G, dµM) we have

‖(LM − µ)−1‖L2(G,dµM ) ≤
1

dist(µ,Σ(LM))

where Σ(LM ) denotes the spectrum of LM , and µ 6∈ Σ(LM ). Then we
deduce that (I+t LM )−1 is bounded with norm less than 1 for all t > 0,
and it is clearly enough to argue when 0 < t < d.
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In the following computations, we will make explicit the dependence
of the measure dµM in terms of M for sake of clarity. Define ut =
(I + t LM)−1f , so that, for all function v ∈ H1(G, dµM),

∫

G

ut(x) v(x)M(x) dx+(3.16)

t

k∑

i=1

∫

G

Xiut(x) ·Xiv(x)M(x) dx =

∫

G

f(x) v(x)M(x) dx.

Fix now a nonnegative function η ∈ D(G) vanishing on E. Since f
is supported in E, applying (3.16) with v = η2 ut (remember that
ut ∈ H1(G, dµM)) yields

∫

G

η2(x) |ut(x)|2 M(x) dx+ t
k∑

i=1

∫

G

Xiut(x) ·Xi(η
2ut)M(x) dx = 0,

which implies

∫

G

η2(x) |ut(x)|2 M(x) dx+ t

∫

G

η2(x)

k∑

i=1

|Xiut(x)|2 M(x) dx

= −2 t
k∑

i=1

∫

G

η(x) ut(x)Xiη(x) ·Xiut(x)M(x) dx

≤ t

∫

G

|ut(x)|2
k∑

i=1

|Xiη(x)|2M(x) dx+

t

∫

G

η2(x)

k∑

i=1

|Xiut(x)|2 M(x) dx,

hence
(3.17)
∫

G

η2(x) |ut(x)|2 M(x) dx ≤ t

∫

G

|ut(x)|2
k∑

i=1

|Xiη(x)|2 M(x) dx.

Let ζ be a nonnegative smooth function on G such that ζ = 0 on E,
so that η := eα ζ − 1 ≥ 0 and η vanishes on E for some α > 0 to be
chosen. Choosing this particular η in (3.17) with α > 0 gives

∫

G

∣∣eα ζ(x) − 1
∣∣2 |ut(x)|2 M(x) dx ≤
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α2 t

∫

G

|ut(x)|2
k∑

i=1

|Xiζ(x)|2 e2α ζ(x)M(x) dx.

Taking α = 1/(2
√
t maxi ‖Xiζ‖∞), one obtains

∫

G

∣∣eα ζ(x) − 1
∣∣2 |ut(x)|2 M(x) dx ≤ 1

4

∫

G

|ut(x)|2 e2α ζ(x)M(x) dx.

Using the fact that the norm of (I+tLM)−1 is bounded by 1 uniformly
in t > 0, this gives∥∥eαζ ut

∥∥
L2(G,dµM )

≤
∥∥(eαζ − 1

)
ut

∥∥
L2(G,dµM )

+ ‖ut‖L2(G,dµM )

≤ 1

2

∥∥eαζ ut

∥∥
L2(G,dµM )

+ ‖f‖L2(G,dµM ) ,

therefore∫

G

∣∣eα ζ(x)
∣∣2 |ut(x)|2 M(x) dx ≤ 4

∫

G

|f(x)|2 M(x) dx.

We choose now ζ such that ζ = 0 on E as before and additionnally that
ζ = 1 on F . It can furthermore be chosen with maxi=1,...k ‖Xiζ‖∞ ≤
C/d, which yields the desired conclusion for the L2 norm of (I +
tLM)−1f with a factor 4 in the right-hand side. Since t LM(I+t LM )−1f =
f − (I + t LM)−1f , the desired inequality with a factor 8 readily fol-
lows. �

3.3. Control of

∥∥∥Lα/4
M f

∥∥∥
L2(G,dµM )

and conclusion of the proof of

Theorem 1.4. This is now the heart of the proof to reach the conclu-
sion of Theorem 1.4. The following first lemma is a standard quadratic
estimate on powers of subelliptic operators. It is based on spectral
theory.

Lemma 3.2. Let α ∈ (0, 2). There exists C > 0 such that, for all
f ∈ D(LM),
(3.18)∥∥∥Lα/4

M f
∥∥∥
2

L2(G,dµM )
≤ C3

∫ +∞

0

t−1−α/2
∥∥t LM (I+ t LM)−1f

∥∥2
L2(G,dµM )

dt.

We now come to the desired estimate.

Lemma 3.3. Let α ∈ (0, 2) . There exists C > 0 such that, for all
f ∈ D(G),

∫ ∞

0

t−1−α/2
∥∥t LM (I+ t LM)−1f

∥∥2
L2(G,dµM )

dt ≤

C

∫∫

G×G

|f(x)− f(y)|2
V (|y−1x|) |y−1x|α M(x) dx dy.
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Proof. Fix t ∈ (0,+∞). Following Lemma 3.2, we give an upper bound
of ∥∥t LM (I + t LM)−1f

∥∥2
L2(G,dµM )

involving first order differences for f . Using (1.1), one can pick up a
countable family xt

j , j ∈ N, such that the balls B
(
xt
j ,
√
t
)
are pairwise

disjoint and

(3.19) G =
⋃

j∈N
B
(
xt
j , 2

√
t
)
.

By Lemma 4.1 in Appendix A, there exists a constant C̃ > 0 such that

for all θ > 1 and all x ∈ G, there are at most C̃ θ2κ indexes j such that
|x−1xt

j | ≤ θ
√
t where κ is given by (1.2).

For fixed j, one has

t LM (I + t LM)−1f = t LM (I + t LM)−1 gj,t

where, for all x ∈ G,

gj,t(x) := f(x)−mj,t

and mj,t is defined by

mj,t :=
1

V
(
2
√
t
)
∫

B(xt
j ,2

√
t)
f(y)dy

Note that, here, the mean value of f is computed with respect to the
Haar measure on G. Since (3.19) holds, one clearly has
∥∥t LM (I + t LM)−1f

∥∥2
L2(G,dµM )

≤
∑

j∈N

∥∥t LM (I + t LM)−1f
∥∥2
L2(B(xt

j ,2
√
t),dµM)

=
∑

j∈N

∥∥t LM (I + t LM)−1gj,t
∥∥2
L2(B(xt

j ,2
√
t),dµM)

,

and we are left with the task of estimating
∥∥t LM (I + t LM)−1gj,t

∥∥2
L2(B(xt

j ,2
√
t),dµM)

.

To that purpose, set

Cj,t
0 = B

(
xt
j , 4

√
t
)

and Cj,t
k = B

(
xt
j , 2

k+2
√
t
)
\B
(
xt
j , 2

k+1
√
t
)
, ∀ k ≥ 1,

and gj,tk := gj,t 1Cj,t
k
, k ≥ 0, where, for any subset A ⊂ G, 1A is the

usual characteristic function of A. Since gj,t =
∑

k≥0 g
j,t
k one has

∥∥t LM (I + t LM)−1gj,t
∥∥
L2(B(xt

j ,2
√
t),dµM)

≤(3.20)
∑

k≥0

∥∥t LM (I + t LM)−1gj,tk

∥∥
L2(B(xt

j ,2
√
t),dµM)
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and, using Lemma 3.1, one obtains (for some constants C, c > 0)

∥∥t LM (I + t LM)−1gj,t
∥∥
L2(B(xt

j ,2
√
t),dµM)

≤(3.21)

C

(
∥∥gj,t0

∥∥
L2(Cj,t

0
,dµM )

+
∑

k≥1

e−c 2k
∥∥gj,tk

∥∥
L2(Cj,t

k
,dµM )

)
.

By Cauchy-Schwarz’s inequality, we deduce (for another constant C ′ >
0)

∥∥t LM (I + t LM)−1gj,t
∥∥2
L2(B(xt

j ,2
√
t),dµM)

≤(3.22)

C ′

(
∥∥gj,t0

∥∥2
L2(Cj,t

0
,dµM )

+
∑

k≥1

e−c 2k
∥∥gj,tk

∥∥2
L2(Cj,t

k
,dµM )

)
.

As a consequence, we have

(3.23)

∫ ∞

0

t−1−α/2
∥∥t LM (I + t LM)−1f

∥∥2
L2(G,dµM )

dt ≤

C ′
∫ ∞

0

t−1−α/2
∑

j≥0

∥∥gj,t0

∥∥2
L2(Cj,t

0
,dµM )

dt+

C ′
∫ ∞

0

t−1−α/2
∑

k≥1

e−c 2k
∑

j≥0

∥∥gj,tk

∥∥2
L2(Cj,t

k
,dµM )

dt.

We claim that, and we pospone the proof into Appendix B:

Lemma 3.4. There exists C̄ > 0 such that, for all t > 0 and all j ∈ N:

A. For the first term:

∥∥gj,t0

∥∥2
L2(Cj,t

0
,M)

≤ C̄

V (
√
t)

∫

B(xt
j ,4

√
t)

∫

B(xt
j ,4

√
t)
|f(x)− f(y)|2 dµM(x) dy.

B. For all k ≥ 1,

∥∥gj,tk

∥∥2
L2(Cj,t

k
,dµM )

≤

C̄

V (2k
√
t)

∫

x∈B(xt
j ,2

k+2
√
t)

∫

y∈B(xt
j ,2

k+2
√
t)

|f(x)− f(y)|2 dµM(x) dy.
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We finish the proof of the theorem. Using Assertion A in Lemma
3.4, summing up on j ≥ 0 and integrating over (0,∞), we get
∫ ∞

0

t−1−α/2
∑

j≥0

∥∥gj,t0

∥∥2
L2(Cj,t

0
,dµM)

dt =
∑

j≥0

∫ ∞

0

t−1−α/2
∥∥gj,t0

∥∥2
L2(Cj,t

0
,dµM)

dt

≤ C̄
∑

j≥0

∫ ∞

0

t−1−α
2

V (
√
t)

(∫

B(xt
j ,4

√
t)

∫

B(xt
j ,4

√
t)
|f(x)− f(y)|2 dµM(x) dy

)
dt

≤ C̄
∑

j≥0

∫∫

(x,y)∈G×G

|f(x)− f(y)|2M(x)×


∫

t≥max







|x−1xt
j|2

16
;
|y−1xt

j|2
16







t−1−α
2

V (
√
t)
dt


 dx dy.

The Fubini theorem now shows
∑

j≥0

∫

t≥max







|x−1xt
j|2

16
;
|y−1xt

j|2
16







t−1−α
2

V (
√
t)
dt =

∫ ∞

0

t−1−α
2

V (
√
t)

∑

j≥0

1

max







|x−1xt
j|2

16
;
|y−1xt

j|2
16







,+∞





(t) dt.

Observe that, by Lemma 4.1, there is a constant N ∈ N such that,

for all t > 0, there are at most N indexes j such that
∣∣x−1xt

j

∣∣2 < 16 t

and
∣∣y−1xt

j

∣∣2 < 16 t, and for these indexes j, one has |x−1y| < 8
√
t. It

therefore follows that∑

j≥0

1

max







|x−1xt
j|2

16
;
|y−1xt

j|2
16







,+∞





(t) ≤ N 1(|x−1y|2/64,+∞)(t),

so that, by (1.1),

(3.24)

∫ ∞

0

t−1−α/2
∑

j

∥∥gj,t0

∥∥2
L2(Cj,t

0
,dµM)

dt

≤ C̄ N

∫∫

G×G

|f(x)− f(y)|2M(x)

(∫ ∞

|x−1y|2/64

t−1−α
2

V (
√
t)
dt

)
dx dy

≤ C̄ N

∫∫

G×G

|f(x)− f(y)|2
V (|x−1y|) |x−1y|α dµM(x) dy.

Using now Assertion B in Lemma 3.4, we obtain, for all j ≥ 0 and all
k ≥ 1,
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∫ ∞

0

t−1−α/2
∑

j≥0

∥∥gj,tk

∥∥2
2
dt

≤ C̄
∑

j≥0

∫ ∞

0

t−1−α
2

V
(
2k
√
t
)
(∫∫

B(xt
j ,2

k+2
√
t)×B(xt

j ,2
k+2

√
t)

|f(x)− f(y)|2 M(x) dx dy

)
dt

≤ C̄
∑

j≥0

∫∫

x,y∈G
|f(x)− f(y)|2 M(x)×



∫ ∞

0

t−1−α
2

V (2k
√
t)
1

max







|x−1xt
j|2

4k+2
,
|y−1xt

j|2
4k+2







,+∞





(t) dt


 dx dy.

But, given t > 0, x, y ∈ G, by Lemma 4.1 again, there exist at most

C̃ 22kκ indexes j such that

∣∣x−1xt
j

∣∣ ≤ 2k+2
√
t and

∣∣y−1xt
j

∣∣ ≤ 2k+2
√
t,

and for these indexes j, |x−1y| ≤ 2k+3
√
t. As a consequence,

(3.25)

∫ ∞

0

t−1−α
2

V (2k
√
t)

∑

j≥0

1

max







|x−1xt
j|2

4k+2
,
|x−1xt

j|2
4k+2







,+∞





(t) dt ≤

C̃ 22kκ
∫

t≥|x−1y|2
4k+3

t−1−α
2

V (2k
√
t)

dt ≤

C̃ ′ 2k(2κ+α)

V (|x−1y|) |x−1y|α ,

for some other constant C̃ ′ > 0, and therefore

∫ ∞

0

t−1−α/2

V
(
2k
√
t
)
∑

j

∥∥gj,tk

∥∥2
L2(Cj,t

0
,dµM)

dt ≤

C̄ C̃ ′ 2k(2κ+α)

∫∫

G×G

|f(x)− f(y)|2
V (|x−1y|) |x−1y|α M(x) dx dy.



NONLOCAL POINCARÉ INEQUALITIES 15

We can now conclude the proof of Lemma 3.3, using Lemma 3.2,
(3.21), (3.24) and (3.25). We have proved, by reconsidering (3.23):

(3.26)

∫ ∞

0

t−1−α/2
∥∥t LM (I + t LM)−1f

∥∥2
L2(G,dµM )

dt ≤

C ′ C̄ N

∫∫

G×G

|f(x)− f(y)|2
V (|x−1y|) |x− y|α M(x) dx dy

+
∑

k≥1

C ′ C̄ C̃ ′ 2k(2κ+α) e−c 2k
∫∫

G×G

|f(x)− f(y)|2
V (|x−1y|) |x−1y|α M(x) dx dy

and we deduce that∫ ∞

0

t−1−α/2
∥∥t LM (I + t LM)−1f

∥∥2
L2(G,dµM )

dt ≤

C

∫∫

G×G

|f(x)− f(y)|2
V (|x−1y|) |x−1y|α dµM(x) dy

for some constant C as claimed in the statement. �

Remark 3.5. In the Euclidean context, Strichartz proved in ([Str67])
that, when 0 < α < 2, for all p ∈ (1,+∞),

(3.27)
∥∥(−∆)α/4f

∥∥
Lp(Rn)

≤ Cα,p ‖Sαf‖Lp(Rn)

where

Sαf(x) =

(∫ +∞

0

(∫

B

|f(x+ ry)− f(x)| dy
)2

dr

r1+α

) 1

2

,

and also ([Ste61])

(3.28)
∥∥(−∆)α/4f

∥∥
Lp(Rn)

≤ Cα,p ‖Dαf‖Lp(Rn)

where

Dαf(x) =

(∫

Rn

|f(x+ y)− f(x)|2

|y|n+α dy

) 1

2

.

In [CRTN01], these inequalities were extended to the setting of a uni-
modular Lie group endowed with a sub-laplacian ∆, relying on semi-
groups techniques and Littlewood-Paley-Stein functionals. In particu-
lar, in [CRTN01], the authors use pointwise estimates of the kernel of
the semigroup generated by ∆. In the present paper, we deal with the
operator LM for which these pointwise estimates are not available, but
it turns out that L2 off-diagonal estimates are enough for our purpose.
Note that we do not obtain Lp inequalities here.
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4. Appendix A: Technical lemma

We prove the following lemma.

Lemma 4.1. Let G and the xt
j be as in the proof of Lemma 3.3 .

Then there exists a constant C̃ > 0 with the following property: for

all θ > 1 and all x ∈ G, there are at most C̃ θ2κ indexes j such that∣∣x−1xt
j

∣∣ ≤ θ
√
t.

Proof of Lemma 4.1. The argument is very simple (see [Kan85]) and
we give it for the sake of completeness. Let x ∈ G and denote

I(x) :=
{
j ∈ N ;

∣∣x−1xt
j

∣∣ ≤ θ
√
t
}
.

Since, for all j ∈ I(x)

B
(
xt
j ,
√
t
)
⊂ B

(
x, (1 + θ)

√
t
)
,

and

B
(
x,
√
t
)
⊂ B

(
xt
j , (1 + θ)

√
t
)
,

one has by (1.2) and the fact that the balls B
(
xt
j ,
√
t
)
are pairwise

disjoint,

|I(x)| V
(
x,
√
t
)

≤
∑

j∈I(x)
V
(
xt
j , (1 + θ)

√
t
)

≤ C(1 + θ)κ
∑

j∈I(x)
V
(
xt
j ,
√
t
)

≤ C(1 + θ)κV
(
x, (1 + θ)

√
t
)

≤ C(1 + θ)2κV
(
x,
√
t
)

and we get the desired conclusion.

5. Appendix B: Estimates for gtj

We prove Lemma 3.4. For all x ∈ G,

gj,t0 (x) = f(x)− 1

V (2
√
t)

∫

B(xt
j ,2

√
t)
f(y) dy

=
1

V (2
√
t)

∫

B(xt
j ,2

√
t)
(f(x)− f(y)) dy.

By Cauchy-Schwarz inequality and (1.1), it follows that

∣∣gj,t0 (x)
∣∣2 ≤ C

V (
√
t)

∫

B(xt
j ,4

√
t)
|f(x)− f(y)|2 dy.
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Therefore,

∥∥gj,t0

∥∥2
L2(Cj,t

0
,M)

≤ C

V (
√
t)

∫

B(xt
j ,4

√
t)

∫

B(xt
j ,4

√
t)
|f(x)− f(y)|2 dµM(x) dy,

which shows Assertion A. We argue similarly for Assertion B and ob-
tain
∥∥gj,tk

∥∥2
L2(Cj,t

k
,M)

≤ C

V (2k
√
t)

∫

x∈B(xt
j ,2

k+2
√
t)

∫

y∈B(xt
j ,2

k+2
√
t)

|f(x)− f(y)|2 dµM(x) dy,

which ends the proof.
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