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Abstract  
While Impulse Ultra Wideband (I-UWB) is well estab-
lished in the frequency range between 3.1 and 
10.6 GHz, the application of pulse modulation in the 
frequency band around 60 GHz is a recent develop-
ment. In this paper, the properties of 60 GHz pulses 
are outlined. Different architectures for pulse based 
transceiver front-ends are compared. It is distin-
guished between the up-conversion of UWB-pulses 
and their direct generation at millimeter-wave (mm-
wave) frequencies. Both non-coherent and coherent 
receiver front-ends are considered. These considera-
tions form the basis for a future 60 GHz UWB trans-
ceiver in 65 nm CMOS SOI that can be employed as 
part of a System on Chip (SoC) for sensor networks. 
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1. INTRODUCTION  

The desired properties for wireless sensor networks 
are manifold [1]:  Depending on the application, high 
data rate, multi-user capability, low probability of 
detection and/or interception and very low cost and 
power consumption are demanded. These require-
ments can be met by transceivers using pulse based 
modulation techniques [2]. Time Hopping (TH) Pulse 
Position Modulation (PPM) is hereby the most prom-
ising scheme [3]. 

Because of its inherently transient nature, pulse 
modulation needs large bandwidths. One possibility is 
therefore the use of the UWB frequencies between 3.1 
and 10.6 GHz. However, this frequency range is al-
ready occupied by other narrowband signals like 
WLAN, resulting in both a high interference level and 
a low permitted transmit power. The recent bulletin of 
the regulatory bodies in Europe constrains the use of 
parts of this frequency range even more.  

Therefore, more and more research interest is fo-
cused on the frequency range around 60 GHz. Here, 
an unoccupied bandwidth of at least 7 GHz is avail-
able in the US, Europe and Japan with very high 
emission limits not likely to be exceeded by fully 
integrated transceivers. [4], [5].  

Other advantages of this frequency range are a po-
tentially high user density due to strong signal at-
tenuation,  small device dimensions permitting a true 
SoC architecture, a strong line-of-sight path (possible 
with directive antennas having mm-dimensions) and 
small delay spread introduced by the channel. Alto-

gether, there is a potential for data-rates between 1 and 
10 Gbit/s.  

While the mm-wave range was until recently only 
accessible by expensive III-IV semiconductors, the 
suitability of SiGe [6], and later CMOS technologies 
[7],[8],[9] for fully integrated transceiver circuits was 
demonstrated. The presented transceiver front-ends are 
intended for up- and down-conversion of modulated 
baseband signals not further specified. 

In the first explicit demonstration of pulse modula-
tion at 60 GHz, baseband PPM pulse trains are simply 
up-converted. A transmitter of that kind was first im-
plemented in a III-IV [10] and later in SiGe BiCMOS 
technology [11]. The employed receivers use non-
coherent detection for the down-conversion of the 
UWB-pulses. 

Very recently, pulse generators (PG) that emit true 
UWB-pulses directly at 60 GHz were demonstrated. 
The approach in [12] uses CMOS-technology to delay 
ultra-short pulses and arrange a 60 GHz pulse, while in 
[13] an injection-locked oscillator is rapidly switched 
on and off. 

The paper at hand will compare the different possi-
bilities of pulse modulation techniques at 60 GHz. A 
conversion approach and a direct approach are explic-
itly distinguished. The principle architectures of the 
appropriate mm-wave front-ends are outlined. While 
up to date, the published receiver architectures for 
pulse modulation use non-coherent down-conversion 
methods, this paper shows the advantages and chal-
lenges of a carrier phase or pulse timing recovery. 

In chapter 2 the characteristics of pulses at 3.1-
10.6 GHz and 60 GHz are compared. In chapter 3 
transmitter architectures for both approaches are pre-
sented. In chapter 4 the receiver principles are out-
lined. Chapter 5 gives some simulation results that 
compare coherent, correlation and non-coherent mm-
wave front-ends.  

Based on the simulation results and discussions in 
this paper, an architecture can be selected to build a 
PPM-TH-receiver in 65 nm CMOS SOI with superior 
performance. 

 
2. PULSE WAVEFORMS 

A simple PPM signal consisting of pulses with the 
constant pulse shape g(t) can be described mathemati-
cally as [3]  
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with a pulse rate of 1/Td, a time delay between two 
adjacent pulse positions of δ, and the symbol to be 
transmitted at a discrete time instant k to be dk. For 
sake of simplicity, TH is not included in (1).  

In the 3.1 to 10.6 GHz band, a monocycle is a typi-
cal, simple pulse waveform g(t) approximately meet-
ing the spectrum requirements. Its representation in 
the time and frequency domain is given in figure 1. 
Note that due to its large relative bandwith brel > 100% 
its characteristics are ultra-wideband with no oscilla-
tions occurring.  

The pulse waveforms required for the 7 GHz range 
available at 60 GHz must look differently: because the 
relative bandwidth available is only brel = 11.7 %, a 
classical UWB waveform is not suited. The required 
waveform has narrowband, oscillating behaviour. A 
modulated Gaussian pulse meets these requirements. 
An example for such a pulse is depicted in Figure 2. 

Note the difference in mathematical representation 
between up-converted pulses and pulses directly gen-
erated at mm-waves: In the former case, the constant 
pulse waveform that is position-modulated is 
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while in the latter the shifted pulse waveform is 
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This implies that for PPM with true 60 GHz-pulses 
like g2(t) the sinusoid is shifted with the pulse position 
according to (1). This causes fundamental differences 
of the architectures of both transmitter and coherent 
receiver front-end between the conversion approach 
and the direct approach. 

 
3. TRANSMITTER  
ARCHITECTURES 

In this chapter, the two principle architectures for 
pulse transmitters are compared. It is always distin-
guished between the conversion approach, where 
baseband pulses like the one given in (2) are up-
converted, and the direct approach, where pulses ac-
cording to (3) are generated and transmitted directly at 
60 GHz.  

 
3.1. CONVERSION APPROACH 

The block diagram of a transmitter using the conver-
sion approach is sketched in Figure 3. The input signal 
of this transmitter is a PPM pulse train in the baseband 
with already shaped pulses g1(t). Alternatively, super-
heterodyne-structures with one or more intermediate 
frequencies are possible, as well as lower oscillator 
frequencies that are multiplied to yield 60 GHz.  

A modified version of this architecture is realized in 
[10] and [11]. There, the up-conversion is done by a 
switch instead of the mixer, necessitating a filter to 
shape the pulse at 60 GHz.  

Figure 3: Millimeter-wave front-end for 
conversion approach 
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Figure 2: Gaussian-shaped 7 GHz- pulse 
g(t) at 60 GHz 



3.2 DIRECT APPROACH 
At the direct approach the pulses are generated by a 

mm-wave pulse generator (PG), like the ones pre-
sented in [13], [14]. The input hereby is a digital pilot 
signal that designates the time instants when a pulse 
needs to be launched. The unifying property of all 
mm-wave PGs of this type is that the phase of the 
sinusoidal part of (3) always remains constant with 
respect to the maximum of the pulse. The transmitter 
principle for the direct approach is illustrated in fig-
ure 4.  

 
 

Figure 4: 60 GHz pulse transmitter 
 

4. RECEIVER ACHITECTURES 
In this chapter receiver front-ends that facilitate the 

detection of the pulse positions in the baseband are 
shown. While the non-coherent down-conversion 
receiver works together with both transmitters, in 
chapter 4.2 and 4.3 receivers that are matched to the 
transmitter type are introduced. 

 
4.1. NON-COHERENT APPROACH 

In figure 5 the non-coherent receiver front-end is 
shown. The output-signal of this receiver yields the 
(noise-corrupted) envelope of the sent pulse train. If a 
additive white Gaussian noise (AWGN) channel with 
noise contribution n(t) that corrupts the sent 60 GHz 
pulse g2(t) is assumed, the output signal (in front of 
the low-pass filter) is  
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(4) 

This signal contains a squared noise component. 
The same holds if the input signal originates from a 
conversion-approach transmitter, because no synchro-
nization with the 60 GHz carrier phase is achieved.  

The following two chapters propose architectures 
that synchronize either the carrier phase or the posi-
tion of the 60 GHz pulses in order to reduce the noise 
contribution. 

4.2 CONVERSION APPROACH 
The block diagram of a coherent receiver front-end 

for up-converted UWB-pulses is given in Figure 6. If 
carrier phase recovery can be accomplished, this cir-
cuit completely reconstructs the sent pulse train. Be-
cause the received signal, that is assumed to be only 
corrupted by the additive noise term n(t), is multiplied 
with a uncorrupted, recovered carrier, the down-
converted signal only contains a linear noise contribu-
tion: 
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(5) 

The carrier phase recovery circuit that eliminates the 
phase difference φ can be accomplished by using 
feedback loops. A first PLL circuit at 60 GHz is dem-
onstrated in [14] in BiCMOS SiGe technology. 

Note that in contrast to the direct approach that will 
be presented in the following chapter, the down-
converted baseband signal still needs to be analogly 
processed, i.e. by matched filtering. 

 

 
4.3 DIRECT APPROACH 

The principal receiver structure for the direct ap-
proach is depicted in figure 7. The received 60 GHz 
pulses are not down-converted, but directly correlated 
with template pulses launched by a PG according to 
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with T0 being the duration of one pulse. 
The challenge of this approach is to recover the 

pulse timing in order to determine when the template 
pulses need to be emitted: This will be accomplished 
for t0=0 in (7). Different from the carrier phase recov-
ery, where synchronization is done on one of the pe-
riodically occurring maxima of the auto-correlation 
function (ACF), the pulse timing recovery needs to 
detect the global maximum of the ACF. An example 
for an ACF of a 60 GHz pulse is depicted in figure 8 to 
illustrate the problem. A solution for this task was not 

Figure 6: Coherent receiver front-end for 
up-converted UWB pulses 
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Figure 5 : Non-coherent detector front-end 
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