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Abstract  —  In this paper an approach to behavioral mod-

eling of microwave oscillators is described. The presented 
model takes into account start-up, steady state behavior and 
phase noise. To describe the nonlinearities, an Artificial 
Neural Network (ANN) is employed. The dynamic behavior 
of the oscillator is described by a system of differential equa-
tions that are solved in VHDL-AMS. As opposed to input-
output models of microwave devices, this paper presents a 
self sustaining oscillation, which starts from a small injected 
excitation (e.g. noise) and ends in a stable limit cycle. Addi-
tionally, the phase noise characteristics of the oscillator in the 
1/f2 and flat region are emulated. 

Index Terms —VHDL-AMS, behavioral modeling, oscilla-
tor, artificial neural network, black box model. 

I. INTRODUCTION 

In the design process of analog and mixed-signal inte-
grated circuits, behavioral modeling becomes indispensa-
ble. A hardware description language that permits the si-
mulation of entire systems is VHDL-AMS [1]. It incorpo-
rates both digital and analog modeling capabilities. Our 
goal is to create accurate VHDL-AMS models of all com-
ponents of a 60 GHz transceiver front-end to be capable to 
simulate a whole System on Chip.  

There exist a multitude of different approaches to model 
nonlinear components on the system level (e.g. [2]). Due 
to the use of VHDL-AMS, our models need to operate in 
the time domain. In order to be able to model not only 
weak nonlinearities (e.g. amplifiers), but also strongly 
nonlinear devices (e.g. oscillators and mixers), a black 
box approach that describes the output waveforms for 
different states and inputs seems sensible.  

In the context of large signal network analysis (LSNA), 
black box modeling using neural networks is proposed. 
The dynamics of the circuit are either contained by using 
delays [3], or in form of a differential equation [4]. For 
LSNA, modeling of the noise characteristics is of no in-
terest, yet it is indispensable for simulating a transceiver 
system and is thus considered in the presented model.  

This paper extends the methods described in [5] to 
model an oscillator in VHDL-AMS. The nonlinearity is 
reproduced by an ANN. The system of differential equa-
tions implicitly contains the feedback inside the oscillator. 

The oscillation starts up from a random signal injected 
into an artificial input port. Furthermore, this random sig-
nal is used to generate phase noise in the 1/f2 region.  

II.THEORETICAL BACKGROUND 

A. State Space Representation 

A nonlinear, time invariant dynamical system can be 
represented by the state equation 

( ))(),()( ttt uxx Φ=&                          (1) 

and the input equation 

( ))()( tt xy Ψ=                              (2) 

where the vector x(t) of size Nx represents the state of the 
system. The Nx-dimensional space on which x(t) is defined 
is called the systems state space (e.g. [6]). The input is 
represented by the vector u(t) of size Nu, the output by y(t) 
of size Ny. Nx represents the number of independent ener-
gy storages and is usually much larger than Ny. Φ( ) and 
Ψ( ) are generally nonlinear functions. 

To get a black box model, the internal states of the sys-
tem are not of interest. We need to know the behavior of 
the inputs u(t) over time, described by the input signals 
and their derivatives to determine the outputs y(t). The 
derivatives of the output y(t) are also necessary to embody 
the input-independent notion of memory. In systems with 
feedback (like oscillators) the dependence of y(t) on its 
own can be embodied by an implicit formulation of the 
system equations. 

The state variables of a black box model of (reduced) 
order N can then be defined by 

,

)1(

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− (t)

(t)
(t)

(t)

(t)
(t)

N
N y

y
y

x

x
x

M

&

M
                       (3) 

where the output equation is already contained in the first 
line of (3). The notation y(t)(N) = (dt)N/(dy(t))N is used. The 
state equation of the black box model is 
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The values N and M correspond to the number of deriv-
atives of the out- and input signal, respectively. To obtain 
the values of N and M, the a priori knowledge about oscil-
lators can be used. 

The function f( ) describes the nonlinear behavior of the 
system. After defining the inputs, outputs, and the number 
of their derivatives, this function needs to be found for the 
particular system under observation. 

B. The Van der Pol-Oscillator 

To get a first impression of nonlinear oscillations de-
scribed in state space, the Van der Pol-equation is consi-
dered. It describes the voltage v(t) at the output of a triode 
oscillator in form of a second order differential equation 
(N = 2, Ny = 1). The nonlinear triode characteristic of this 
oscillator is approximated by a polynomial. The definition 
of the associated state variables is given by  
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The explicit knowledge of )(tv&& allows us to define 
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Because Nu = 0, equations (5) and (6) do not describe 
an input-output relationship, but an oscillation starting at 
the unstable singular point )(tx& = 0. If a small disturbance 
occurs in this state, the oscillator will leave the singular 
point and follow a trajectory into a stable, attractive limit 
cycle (cf. Fig. 1). The disturbance starting the oscillator 
can be numerical inaccuracy, or noise added to one of the 
components of x(t). 
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Fig.1. Plot of the trajectory of a Van der Pol-oscillator, simu-
lated in VHDL-AMS. Singular point )(tx&  = 0 for x(t) = 0. 

C. Neural Networks 

To obtain a flexible model, the function f( ) is described 
by a single layer perceptron ANN [6]. The approximation 
theorem states that such a network can approximate any 
nonlinear function f( ) arbitrarily well, provided the num-
ber of neurons (i.e. nodes) is large enough [6]. The per-
ceptron consists of Nin input neurons, Nh neurons in a hid-
den layer, and Nout output neurons (cf. Fig. 2). While the 
value nin of an input node represents the associated input 
signal at a certain time, the values of the nodes in the two 
other layers (nh, nout) are calculated according to Fig. 2 by 
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respectively. The weights iw, lw and biases ib, lb are the 
parameters of the ANN. The employed tansig( ) – function  
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has an output range of [−1, +1]. Therefore the outputs of 
the ANN need to be normalized. Note that the inputs of 
the neural networks in our model correspond to the argu-
ments of f( ) which do not necessarily coincide with the 
inputs of the system. The process of finding the weights 
and biases of the ANN is called training. To train, a set of 
input and output time series that are related by the un-
known function f( ), is used to adjust the weights and bi-
ases to minimize the error between the calculated value of 
the output neurons and the given output time series. 
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Fig. 2.  Schema of a single layer perceptron. The neuron values 
are calculated according to (7) and (8). 



III. COMPLETE MODEL OF THE OSCILLATOR 

The first step in building the model of the oscillator is 
to define its order N as well as its number of inputs and 
outputs. From analogy with the Van der Pol-equation, 
which was sufficient to capture the dynamics of an oscil-
lator, N = 2 is choosen. We consider a single ended oscil-
lator, thus Ny = 1. To be able to start up the oscillator by 
noise, we define one input (Nu = 1). The last line of (4) in 
this particular model is thus given by 

( ),)(),(),()(x 212 tutxtxft =&                   (10) 

with the output voltage being v(t) = x1(t) and its derivative 
)()( 2 txtv =& . The white gaussian noise for u(t) is generat-

ed by the VHDL-AMS code presented in [7]. Because the 
noise is injected to the LC tank structure, it is converted 
into 1/f2 phase noise. Note that this noise source is virtual, 
however, its variance σ1 can be used as a fitting parameter 
to model the overall effect of all noise sources that contri-
bute to the phase noise in the 1/f2 region.  

IV. TRAINING THE NEURAL NETWORK 

To make the ANN to represent the nonlinear function 
f( ), an appropriate set of training data needs to be gener-
ated. This is done by simulating the oscillator circuit in the 
device level simulator ADS. The ANN is trained by the 
Back Propagation Algorithm [6] using the Matlab Neural 
Network Toolbox. Note that the training procedure as-
sumes perfect reproduction of the output signal by the 
ANN by using inputs x1(t) and x2(t) that are related to the 
training goal rather than to the actual output of the ANN.  
The key to a well trained ANN is a training data set which 
densely covers the whole input space. Such a data set is 
easy to generate for independent inputs, by varying them 
systematically over the desired range of values. However, 
in the oscillator model the input x2(t) of the ANN is both 
the derivative of x1(t) and the integral of )(2 tx& . Their val-
ues cannot be varied separately. 
 

2 4 6 8

-1

-0.5

0

0.5

1

1.5

x 10
12

 x1( t )

 x
2( t

 )

2 4 6 8

-1

-0.5

0

0.5

1

1.5

x 10
12

 x1( t )  
Fig. 3.  Input space of training signal for sparse (left) versus 
dense (right) training data set. 

When using noise for the signal u(t) during the training 
process, only the original trajectory of the system is accu-
rately reproduced by the ANN. This is problematic, be-
cause then the region in the state space outside of the limit 
cycle is not well defined and the gaps between two lines 
of the limit cycle are too large. The result is a weak mod-
el, where f( ) is only known on the exact trajectory: Small 
errors could lead the simulator to part from the trajectory 
and end up in an undefined or unstable state. To avoid 
this, we inject a signal u(t) of a non negligible amplitude 
(as opposed to the weak noise signal). By doing so, f( ) is 
known to the ANN for a much larger number of argu-
ments (cf. Fig. 3). This yields more robust models.  

The model under consideration exhibits a sufficiently 
small mean square training error, if about ten neurons are 
used in the hidden layer. Further increase of the number of 
neurons does not increase the quality of the ANN, since 
the task of finding the appropriate weights and biases be-
comes more difficult. The output an accurately trained net 
is compared to the training signal in Fig. 4. 
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Fig. 4.  Solid line: given training data. Marker “o”: Output of 
trained ANN with ten neurons. 

V. IMPLEMENTATION IN VHDL-AMS 

VHDL-AMS permits to enter differential equations on 
defined quantities (e.g. analog values like voltages or cur-
rents) using the ’dot directive to indicate derivatives. To 
implement the model, the state space equations (3) and (4) 
with (10) as last line, as well as equations (7) and (8) for 
the neural network are entered. To enable the ANN to 
reflect the whole output range of f( ), the voltages and 
their derivatives need to be normalized to [−1, 1]. The 
voltage of the first noise source described in chapter III is 
assigned to u(t), the one of the second noise source is add-
ed to v(t). 

Two special properties of an oscillator at millimeter 
wavelengths need to be taken into account: First, because 
of the two very different time constants of the model eq-
uations, they need to be solved by a numerically stable 
integration algorithm. The optimum stability is achieved 
by Gears algorithm of second order. Secondly, because 



)(tv&  has a completely different order of magnitude than 
v(t) for an oscillator at 60 GHz (cf. Fig. 3), two different 
tolerances have to be used for that quantity and its deriva-
tive. Only the VHDL-AMS simulator SMASH (by Dol-
phin Integration) is able to deal with this problem. It im-
plements the VHDL-AMS directive tolerance, which 
enables the user to specify different tolerances for differ-
ent equations. 

Before simulating the oscillator model it is necessary to 
verify that the simulators initial value for the DC-part of 
v(t) is located inside the limit cycle. Outside this limit 
cycle the model differs from the original and yields addi-
tional (invalid) operating points. 

VI. MODELING RESULTS 

To efficiently convert an ADS device level model to a 
behavioral model in VHDL-AMS, various software tools 
were created. The training data is generated by ADS and 
exported to Matlab, where the ANN is repeatedly trained 
starting from a large number of different, random initial 
conditions. The ANN yielding the lowest mean squared 
error is selected and saved. The VHDL-AMS model reads 
its weights and biases to parameterize the ANN-equations. 
In Fig. 5 the output waveform achieved by a VHDL-AMS 
model of a 60 GHz Colpitts oscillator using ten neurons is 
compared to the original ADS output. The DC operation 
point of 5.0 V corresponds exactly to the original. The 
two signals differ in the transient region, because the or-
der N of the VHDL-AMS model is much smaller than the 
number of internal states Nx. If the transient is to be simu-
lated more accurately, N needs to be increased. The steady 
state is reproduced very accurately: The frequency is 
61.08 GHz instead of 61.22 GHz in the original circuit, 
and the voltage range is 2.32 V to 7.71 V instead of 
2.30 V to 7.73 V. These results are obtained when using a 
maximum time step of 10 fs in SMASH. If the maximum 
time step is set to 100 fs, the amplitude accuracy dimi-
nishes, yielding a voltage range of 2.34 V to 7.64 V. The 
benefit is the decrease of simulation time for a signal of 2 
ns from 6.8 s to 1.6 s. 
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Fig. 5.  Solid line: VHDL-AMS response, dashed line: ADS 
response (original circuit)  
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Fig. 6. Phase noise spectrum calculated from the model output 
vout(t) in steady state 
 
The phase noise generated by the VHDL-AMS model is 
shown in Fig. 6. One can clearly distinguish between the 
flat region and the 1/f2 region. The two asymptotes of 
Fig. 6 can be shifted by adjusting the variances σ1 and σ2 
of the two noise sources employed in the model. 

VII. CONCLUSION  

This paper presented a methodology to model a nonlinear 
oscillator in VHDL-AMS using an ANN, including 
the capability of simulating phase noise. The output re-
produces faithfully the behavior of the original circuit. 
The presented example models a very basic oscillator, but 
can be enhanced by also taking into account other proper-
ties of the circuit like an external load resistance or the 
voltage controlled variation of the frequency. 

ACKNOWLEDGEMENT 

This work was supported by the French National Research 
Agency ANR, under project RadioSoC (No JC05-60832).  
 

REFERENCES 
[1] “IEEE standard VHDL analog and mixed-signal extensions: Std. 
 1076.1-1999,” 1999. 
[2]  D. Schreurs, “Overview of RF large-signal modelling techniques 
 based on time-domain large-signal measurements,” GA 2002. 
[3]  Y. Fang, M. Yagoub, W. Fang, Q. Zhang: “A new macromodeling 
 approach for nonlinear microwave circuits based on recurrent neu-
 ral networks,” IEEE Trans. Microwave Theory & Techn., Vol. 48, 
 No.  12, pp. 2335–2344, December 2000. 
[4]  J. Xu, M. Yagoub, et al., “Neural-based dynamic modeling of  non
 linear microwave circuits,” IEEE Trans. Microwave Theory & 
 Techn., Vol. 50, No. 12, pp. 2769–2780, December 2002. 
[5]  J. Wood, D. Root, and N. Tufillaro, “A behavioral modeling ap-
 proach to nonlinear model-order reduction for RF/microwave ICs 
 and  systems,” IEEE Trans. Microwave Theory & Techn., Vol. 52, 
 pp. 2274–2284, 2004. 
[6]  S. Haykin, “Neural Networks - A Comprehensive Foundation”, 2nd 
 ed.Upper Saddle River, New Jersey: Prentice-Hall, Inc., 1999. 
[7]  E. Normark et al., “VHDL-AMS behavioral modeling and simula-
 tion of a π/4 DQPSK transceiver system”, BMAS 2004, p.119–124. 


