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Abstract  —  This paper describes an approach to model 
the transient and steady state behavior of differential 
microwave oscillators at the system level. Furthermore, 
phase noise characteristics can be emulated by the 
resulting models. The mathematical structure consist of a 
set of algebraic and differential equations that are solved 
by a VHDL-AMS interpreter. The nonlinearity occurring 
in the oscillator is described by multi-layer perceptron 
artificial neural networks (ANNs). In particular, it is 
shown how to model accurately the two mutually 
dependent outputs of differential oscillators without 
having an input signal as (phase) reference. The 
presented methodology can be employed independently 
of the used technology and the initial complexity of the 
oscillators. 

1. INTRODUCTION 

Behavioral modeling is indispensable, if the 
simulation of a large System on Chip is desired and a 
transistor level simulation would be too complex. 
Especially if the considered circuits are of mixed 
signal type, the hardware description language VHDL-
AMS [1] is perfectly suited for this task, since it 
contains both analog and digital modeling capabilities. 
The goal of this kind of model is the order-reduction 
of an existing transistor level model rather than the 
model extraction from measurement results. 

In [2] and [3] methodologies to model the input-
output relationship of nonlinear microwave circuits 
using ANNs are described. However, this is done in 
the context of large signal network analysis, where the 
output of the circuit is related to a well known signal 
exciting the input. The modeling of noise and an 
implementation in a description language like VHDL-
AMS is not considered there. 

 Reference [4] describes how the behavior of a 
single-ended microwave oscillator can be accurately 
modeled using VHDL-AMS. The presented approach 
uses a nonlinear differential equation similar to the 
Van-der-Pol equation, but employs an ANN instead of 
the polynomial to describe the nonlinearity. This 
works well for single-ended oscillators. It fails 
however, if mutually dependent outputs have to be 
modeled (like in the case of a differential oscillator), 
because the model doesn’t take into account their 
internal dependency if extended to several outputs.  

The approach presented in this paper overcomes the 
limitations of the previously mentioned work by using 
a system state that is different from the output and its 
derivatives, but can be expressed as a linear 
combination of them. This state is mapped to each one 
of the two outputs, yielding not only the differential 
mode but also the common mode behavior of the 
oscillator. 

2. MODEL EQUATIONS 
A nonlinear, time invariant dynamical system can be 
represented by a state equation 

                        ( ))(),()( ttt uxx Φ=&            (1) 

and an output equation 

                            ( ))()( tt xy Ψ= ,            (2) 

together constituting the state space representation of 
the system [e.g. 5]. Hereby, u(t) is a vector containing 
the inputs of the system and y(t) is a vector containing 
its outputs at each time instant t. The vector function 
Φ( ) in (1) contains any nonlinearity present in the 
dynamic evolution of the system states. Ψ( ) is a 
nonlinear function mapping these states to the outputs 
of the system. The order N of the original system is 
given by the number of its states, physically 
represented by the number of independent energy 
storages.  

Building a black box model implies that the internal 
physical states of a system are either not known or not 
of interest. Using less system states than physically 
present reduces the complexity of the model. This is 
the main interest in behavioral modeling. While in [4] 
the two system equations were merged to one, here the 
distinction between the states and outputs of the 
system, i.e. between equations (1) and (2), is kept. 
This is due to the fact that in the case of differential 
oscillators the dominant system states xn(t) are not 
equivalent to the outputs or their derivatives.  

When considering the simplified equivalent circuit 
of the differential oscillator in figure 1, two 
dominating energy storages, constituting the LC tank, 
are identified. Thus, the state vector x(t) contains two 
elements: 
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Note that it is not sufficient to model only the 
differential voltage vdiff(t), because the system outputs  
vx(t) and vy(t) contain important information like DC 
operating point and common mode oscillations that 
result from the transistors leaving their desired 
operating region. Thus, it is necessary that equation 
(2) maps the system state, represented by the vector 
x(t), to the output voltages of the oscillator (indicated 
in figure 1) which are combined to the output vector 
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As stated before, an oscillator is not a classical 
input-output system. In fact, the evolution in time of 
its outputs depends mainly on the system state. 
However, to start the oscillation it is necessary to 
deviate the system from its (unstable) singular point 

)(tx&  = 0. This can either happen due to mathematical 
inaccuracy, without defining any implicit input of the 



system, or more controlled by adding an artificial 
input. The advantage of the latter is that this input, 
placed wisely, can be used to introduce and thus 
emulate phase noise in the 1/f2 region [4]. The 
differential voltage source vin in figure 1 can be used 
as such an input. If a white Gaussian noise voltage is 
generated by this source, it is filtered by the LC tank 
and thus exhibits the characteristic slope of 
20dB/decade. To include this voltage source in the 
proposed model, the input vector u(t) is defined by 

  [ ])()( in tvt =u .            (5) 

 Having defined the inputs, states and outputs of the 
model, the next step is to find a means to describe the 
nonlinear functions Φ( ) and Ψ( ). 

3. ARTIFICIAL NEURAL NETWORKS 

Multi-layer perceptron neural networks with a single 
hidden layer are capable of approximating any 
nonlinear function arbitrary well, provided the number 
of neurons (i.e. nodes) of the ANN is large enough [5].  
However, for functions exhibiting a strong 
nonlinearity and locally varying behavior, like Φ( ) in 
the case of the considered oscillator, it is more 
efficient (in terms of nodes necessary to get a certain 
accuracy) to introduce a second hidden layer. 

In figure 2 a perceptron with two hidden layers is 
sketched. The nonlinear behavior of the nodes is 
introduced by the tansig- function 
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which exhibits a smooth transition from the lower 
limit -1 of its function value to the upper limit +1. The 
outputs of the ANN need to be normalized to their 
maxima in order not to violate these limits. Using the 

tansig-function, the value of the kth neuron of a layer 
is calculated by 
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with nin(j) being the jth neuron of the precedent layer 
of N neurons, w(j,k) being the weight assigned to the 
path from this neuron to the current one, and b(k) its 
bias value. The weights, biases and normalization 
factors completely characterize the ANN. 
The process of finding the weights and biases in order 
to constitute a desired function is called training. To 
train the net, a data set that represents arguments and 
their corresponding function values at different times t 
is used. The goal is to minimize the error between the 
response of the ANN and the training time series by 
adjusting the weights and biases accordingly. The 
ANNs presented in this paper were trained by different 
back-propagation algorithms [5] already implemented 
in the Matlab Neural Networks Toolbox. 

4. CREATING Φ( ) AND Ψ( ) 

Equation (1) relates the values of )(tx  and )(tu  
to )(tx& for each t, using the nonlinear vector function 
Φ( ). While the derivative of the first state of the 
system, )(1 tx& , is equivalent to x2(t), the part of the 
function to calculate )()( diff2 tvtx &&& =  is highly 
nonlinear and thus implemented by an ANN with two 
hidden layers. The input nodes of this ANN are 
assigned to x1(t), x2(t) and u(t). 

The state x(t) of the system can be interpreted as the 
trajectory on which the differential mode oscillation 
develops. The direction in which this trajectory 
advances is given by )(tx& . To assure that the model 
state develops on the trajectory traced by the original 

 
Figure 1: Simplified schematic of the differential Colpitts 

oscillator used to demonstrate the modeling approach. 
 

 
Figure 2: Schema of a perceptron artificial neural network 

with two hidden layers 
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system, it is important that the nonlinear function is 
approximated very well by the ANN at any relevant 
point x(t). Any small deviation of )(tx& that causes the 
system to leave this trajectory makes the model fail. 
That renders the training of this ANN much more 
important than in the case where an input-output 
relation dominates the system behavior, and the 
training accuracy only influences the accuracy of the 
model, but not its functionality. 

An ideal training consists of sweeping all relevant 
input constellations of the ANN by varying each input 
independently. However, this is not possible in the 
present case, because the inputs x1(t) and x2(t) are 
mutually dependent, and the output is the derivative of 
x2(t). To nevertheless create a proper training data set, 
several startups with different signals provided to the 
vin input are simulated in a transistor level simulator 
(e.g. ADS, Spice). The signals )(in tv , x1(t), x2(t),  

)()( 21 txtx =& and )(2 tx& resulting from these simulations 
are recorded and used to train the ANN. 

Since this training data set is the only information 
that is used in the process of creating the oscillator 
model, its accuracy is essential. The derivatives used 
for training have to be computed using a very small 
time step (about a tenth of the time step used for a 
normally accurate simulation), because every 
inaccuracy present here will result in an error inherent 
in the VHDL-AMS model even if the ANNs perfectly 
reproduce the training data. A small error in the 
derivative of x(t) would accumulate in a run of the 
final VHDL-AMS model, yielding a substantial error 
in the transient response and the steady state output 
voltage. 

Used to approximate the state equation of the 
differential Colpitts oscillator sketched in figure 1, an 
ANN with 10 neurons in the first hidden layer and 5 
neurons in the second hidden layer yields a very low 
mean square error (MSE) of 2.8E-6. In figure 3 both 

the trajectory of the signal used to train the ANN and 
the function provided by the ANN is displayed. 
Excellent agreement is observed. 

The task of generating the output function Ψ( ) is 
less critical: Because it isn’t used in the differential 
equation of the oscillator, small inaccuracies won’t 
accumulate. A perceptron with one hidden layer that 
maps )(diff tv and )(diff tv& to vx(t) and vy(t) is sufficient 
here. Nevertheless, excellent agreement, quantified by 
a MSE of 4.8E-6, can be achieved using only three 
nodes. This shows that the nonlinearity described by 
this ANN is much weaker than the one in Φ( ). 

 
5. VHDL-AMS IMPLEMENTATION 

 
The state and output equations (both including ANNs) 
have to be entered according to the VHDL-AMS 
syntax when implementing the model. The program 
code consists of the following parts: 
• Initialization: Load weights and biases as well as 

normalization constants of the two ANNs from 
Matlab data files. 

• Definitions: Define states, inputs and outputs of 
the system as well as all nodes of the ANNs to 
constitute continuous-time VHDL-AMS 
quantities. The generate directive helps to 
facilitate this task. 

• Neuron equations: Formulate simultaneous 
statements (using the == operator of VHDL-
AMS) that define the neuron values for both 
ANNs according to equation (7) 

• Differential equations: Relate the quantity )(tv diff  
and their time derivatives by the ‘dot directive 
according to equation (1). Normalization factors 
need to be taken into account. 

• Excitation at the vin port: The oscillation can 
either be started by a short, transient pulse or a 
Gaussian noise signal (cf. [4]). 

 
Figure 3: Trajectory from ADS-simulation used for training (black line) versus function represented by the ANN (surface) 



After implementing the VHDL-AMS code described 
above, the generated model has to be compiled and 
solved. This is done by the VHDL-AMS simulation 
tool SMASH (by Dolphin Integration). Two important 
issues have to be addressed in the solution process: 
First, for an oscillator working at microwave 
frequencies (or even at mm-waves like 60 GHz in the 
present example) the voltages have a largely different 
order of magnitude compared to their derivatives. It is 
thus necessary to specify their absolute tolerances 
independently. To the best of the author’s knowledge 
this feature is only available within the SMASH 
simulation environment.  

Secondly, it is important to use a stable and efficient 
numerical algorithm like Gear’s [6]. Otherwise the 
model requires prohibitively small time steps or 
doesn’t converge at all. 

Additionally, it is necessary to limit the search 
domain for the DC operating point to the area of the 
state space that is covered by training data. Otherwise 
it’s possible that the ANNs provoke additional, 
deceptive operating points. 

6. VHDL-AMS SIMULATION OUTPUTS 

To show the performance of the VHDL-AMS model, 
the approach presented in this paper is applied to a 
differential Colpitts oscillator, whose simplified 
structure is sketched in figure 1. Note that the 
schematic in this figure doesn’t represent the real 
complexity that is contained in an integrated oscillator. 
This could contain output buffers and matching 
circuitry as well as a multitude of parasitic capacitors 
and resistors extracted from the integrated circuit 
layout.  
From the complex, accurate transistor level ADS 
model of this oscillator, selected output data is 
recorded and exported to Matlab. It is subsequently 
used to train the ANNs employing the Matlab neural 
network toolbox. The parameters characterizing these 
ANNs are read by the VHDL-AMS code when being 
compiled by the SMASH simulation environment. 
Excited by a tiny pulse at the artificial input vin, the 
model yields the differential outputs vx(t) and vy(t) in 
figure 4. The difference between VHDL-AMS model 
and reference data is so small that it can only be 
clearly seen in the zoomed view. 

This shows the capability of the model to reproduce 
nonlinear transient and steady state in excellent 
agreement with the low level simulation data. The 
VHDL-AMS model exhibits an oscillation frequency 
of fVHDL-AMS = 67.47 GHz versus fADS= 67.52 GHz 
obtained by the ADS simulation. The voltage swing is 
0.99V to 4.82V for the VHDL-AMS model versus 
0.98V to 4.86V for the ADS simulation. The DC 
operating point at 2.75 V was exactly reproduced. All 

these results were obtained using Gear’s algorithm and 
a fixed time step of 10fs in both the ADS and the 
VHDL-AMS simulations.  

7. CONCLUSION 

An approach for modeling differential oscillators in 
VHDL-AMS was presented. It faithfully reproduces 
the behavior of the original circuit in transient and 
steady state, and incorporates phase noise and 
common mode of the oscillator. Thus it is ideally 
suited for simulations that require good accuracy, but 
cannot afford the computational complexity of circuit 
level models. 
The model is based on the reduced state space 
representation of the circuit, employing artificial 
neural networks to reproduce its nonlinear behavior. 
ANNs using a second hidden layer proofed useful in 
describing the strongly nonlinear behavior of an 
oscillator exhibiting a nonzero common mode 
component. 
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Figure 4: Output voltages vx(t) and vy(t) generated by the 
VHDL-AMS model (solid lines) versus original ADS data 

(full plot: dotted, zoomed plot: markers).  
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