
HAL Id: hal-00449475
https://hal.science/hal-00449475v1

Submitted on 26 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to build web self-services by functional profiles?
Benjamin Chevallereau, Alain Bernard

To cite this version:
Benjamin Chevallereau, Alain Bernard. How to build web self-services by functional pro-
files?. New Technologies, Mobility and Security (NTMS), Dec 2009, Cairo, Egypt. pp.1-3,
�10.1109/NTMS.2009.5384664�. �hal-00449475�

https://hal.science/hal-00449475v1
https://hal.archives-ouvertes.fr

How to build web self-service by functional profiles?
Benjamin Chevallereau
Ecole Centrale de Nantes

IRCCyN
Nantes, France

benjamin.chevallereau@irccyn.ec-nantes.fr

Alain Bernard
Ecole Centrale de Nantes

IRCCyN
Nantes, France

mailto:alain.bernard@irccyn.ec-nantes.fr

Abstract—Companies, institutions, and local authorities look
for virtualizing all provided services to obtain more profit in
terms of productivity, profitability, quality of service,
traceability… The main issues are the identification of problems
to solve and the choice of adapted solutions. To build these ones,
functional and technical profiles must communicate to
understand precisely the domain, the problem, and the expected
features… This paper provides a framework composed of three
contributions which aims at simplifying the building of web self-
service by functional profiles. The first part deals with a language
to specify functional needs using the main concept of goal. This
language must be as simple as possible but not limiting. The
second one is the tool to use this language and, finally, the last
section is a set of interpretations to ease the communication
between all involved people. To automate a great part of
recurrent tasks, all the proposed approach complies with model
driven methodology.

Index Terms—Generation, model driven engineering,
requirements engineering, web self-service.

I. WHAT IS WEB SELF-SERVICE?
EB self-service is a category of electronic support that
allows customers, employees and citizens to access

information and perform routine tasks over the Internet,
without requiring any direct interaction with a representative
of an enterprise. Web self-service is widely used in customer
relationship management (CRM), employee relationship
management (ERM) and especially in e-government.

When it is specific to Web-enabled employee interactions,
the practice is known as employee self-service (ESS). When it
is specific to Web-enabled customers, it is called customer
self-service (CSS). For employees and customers, self-service
offers 24 hour-a-day support, and immediate access to
information without having to wait for an email response or a
returned telephone call. Ultimately the success of Web self-
service is based on the quality and the quantity of information
available and the ease with which it can be accessed.

Deploying Web self-service applications results in benefits
for company by many ways. The most prominent motivation
is a lower cost, as compared with telephone or email service
by a company representative.

Yet such projects typically involve web content
management (WCM), search, and enterprise content
management (ECM) technologies. None of these technologies
are simple to procure, develop, implement, or run. And if you
get things wrong, then self-service and automation can
backfire, destroying customer loyalty, and boosting exception-

handling costs, rather than reducing expenses.
Defining a web self-service is typically a task that must be

carry out by functional profile and more precisely by
customers. This definition is therefore used to write a
technical specification usable by developers to build the
system. This translation is a very important step and can
generate troubles.

II. TOOLBOX TO BUILD WEB SELF-SERVICE
The proposed approach aims to overcome communication

problems between technical and functional experts by
organizing needs specification in a common language and by
providing a mechanism to improve information exchange
between stakeholders (Fig. 1). It is composed of (a) a
metamodel or a language for functional needs, (b) a modeler
adapted to functional experts and finally (c) a set of automatic
interpretation, i.e. model transformation, generation and post-
processing task.

A. Language
The language is composed of three main concepts and five

main links. The definition of a web-self service is represented
as a goal tree. Next, this tree is completed by a set of agents
representing future user profiles and a set of entities defining
data managed during the web self-service. Entities must be
linked between them by relationship. Each agent must be
responsible of a non-empty set of goals and each goal is linked
to data by a strategy. It represents necessary rights on the
information system to achieve this goal. The last link deals
with the sequentiality between goals, by defining which goal
must be achieved before another one.

B. Modeler
A graphical tool was built to use this language. This one

W

Fig. 1. Global schema of our proposition.

978-1-4244-6273-5/09/$26.00 ©2009 IEEE

Authorized licensed use limited to: University of Nantes. Downloaded on January 21, 2010 at 11:25 from IEEE Xplore. Restrictions apply.

used the toolkit defined in the TOPCASED1 project and was
customized so as to be used by functional profiles. However
this first version of the tool provides a too technical
environment (Fig. 2).

It is why a more adapted and user-friendly tool was created.

This modeler is usable through a traditional web browser (Fig.
3). Thus a functional expert can easily define its required web
self-service. Moreover the model can be retrieved and
exported towards a technical environment for developers.

C. Interpretation
In order to improve the reliability of the communication

process, the automation of interpretations is proposed. These
automated interpretations aim at increasing the quality of
needs specification by reducing as much as possible human
misunderstanding. Moreover, they reduce the time spent to
explain, illustrate and communicate the specification among
the different stakeholders. Indeed when many stakeholders are
involved, that can cost. Of course, it is not possible to use a

1 TOPCASED project aims to provide a development toolkit dedicated to

critical and embedded systems, software and hardware. The subproject used is
TOPCASED-MF, which is the modeling framework of the TOPCASED
project. http://www.topcased.org/

unique communication support with all stakeholders. It is why
the modeler proposes interpretations of needs specification to
different domains using different visualizations.

The mechanism of interpretation is decomposed in three
steps (Fig. 4). The source of an interpretation is a model of
needs specification matching with the language defined
previously. The first step is a model transformation using ATL
(ATLAS Transformation Language)[1]. This language is a
hybrid model transformation language that allows both
declarative and imperative constructs to be used in
transformation definitions. The target metamodel is specific to
the interpretation. The next step is the generation step. This is
achieved with generation templates using Acceleo[2]. Finally,
the last step executes a post-processing using ANT scripts. An
interpretation can be represented as a triplet composed of a
transformation model linked with the target metamodel, a set
of generation templates and a set of scripts.

III. EXAMPLE
We can see on the figure 5 a partial needs specification for a

conference organization system. The current example is
focused on the paper submission process. First the goals and
the agents are defined and modeled. The goal “Manage
submissions” is composed of two sub-goals: “Submit a paper”
under the responsibility of the author and “Review a paper”
under the responsibility of the reviewer. The reviewer and the
author are represented with the concept of agents defined as a

Fig. 4. Interpretation mechanism.

Fig. 2. Modeler provided to use the language.

Fig. 3. Web modeler provided to use the language.

Fig. 5. Simple part of an example for a conference organization.

Authorized licensed use limited to: University of Nantes. Downloaded on January 21, 2010 at 11:25 from IEEE Xplore. Restrictions apply.

future user profile in the new software. Then information
around the objects involved by these goals is gathered and
modeled, with some entities, some relations to link them and
some attributes to characterize them. The figure shows two
entities: “Paper” and “Report”. After defining the goals and
the objects, it is possible to link them with the concept of
strategy. In order to meet functional needs of each agent, we
can define a path in the information structure for each goal
under agents’ responsibility composed of a set of privileges. A
path can be seen as a partial view on the future information
system. The paper submission has a simple path: the author
enters in the software by the concept of “Paper” and can
create one or many instances. The reviewing path of an article
is slightly more complex: the reviewer enters in the software
by the concept of “Report” and can navigate in the software to
select the article concerned by his review.

A. Model transformation
This model can be interpreted to get models adapted to the

different stakeholders (developers, users, managers,
customers…). In this example, we demonstrate an
interpretation to get a set of conceptual model. The first
deduced model is the workflow model (Fig. 6). If we want to
implement a process on an information system, we must
define a workflow. This workflow conforms to the notation
jPDL2. Each process defined in the requirements model can be
transformed as workflow model.

From the entity-relationship part is deduced a data model

(Fig. 7). This model supports a detailed design process. Each
entity is transformed into a class and each relationship into an
association.

Once the data and workflow models are obtained, form
models can be deduced to make the link between them. Each
user task in the workflow model is connected to a form linked
to data.

B. Generation
The next step is the generation. Software can be entirely

generated. The data model is used to configure an ECM

2 jBPM Process Definition Language :
http://docs.jboss.org/jbpm/v3/userguide/jpdl.html

platform like Alfresco. The workflow model is used to
configure the jBoss jBPM and forms model are used to
generate XForms. All components are technically linked and
can be used directly to test and to integrate.

IV. CONCLUSION
This paper proposes some tools to ease the design and the

development of software. This example is focused on the
modeling and the generation of web self-service. The two
main goals are to improve the communication between experts
and to make more productivity profits. The first one is solved
by a proposition of simple language and the set of
interpretations allowing transforming a model using this
language to another technological space. We use model driven
environment to give an answer to the second goal. All
translations, transformations, generations… used concepts
including in MDE.

REFERENCES
[1] F. Jouault and I. Kurtev, “Transforming Models with ATL, ”, satellite

events at the MoDELS 2005 Conference, pp. 128–138, 2006.
[2] Obeo: Acceleo Generator. http://www.acceleo.org

Fig. 7. Class model.

Fig. 6. Workflow model.

Fig. 8. Generation step.

Authorized licensed use limited to: University of Nantes. Downloaded on January 21, 2010 at 11:25 from IEEE Xplore. Restrictions apply.

