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ZF OFDM Receiver for Underwater
Communications

Alain Y. Kibangou, Cyrille Siclet, and Laurent Ros

Abstract—In this paper, we propose a new scheme of transmis-
sion and reception of OFDM ( Orthogonal Frequency Division
Multiplexing) signals for underwater wireless communications.
The transmitter makes use of a kind of superimposed pilot
signals, which are used by the receiver for estimating both the
channel parameters (paths gain and delay) and the Doppler.
Then, the estimated parameters are used for estimating the
informative symbols in the zero forcing (ZF) sense. A new
estimation scheme based on the resolution of two harmonic
retrieval problems is proposed. Unlike standard methods, data
resampling and estimation of residual carrier frequency offset
are avoided. The efficiency of the proposed scheme is evaluated
by means of simulations.

Index Terms—Underwater acoustic communications, OFDM,
Doppler distorsion, Hankel matrix, Vandermonde decomposition,
Total least squares.

I. INTRODUCTION

Nowadays, a great interest is dedicated to study fleets of
autonomous underwater vehicles (AUV) working together to
reach a common objective such as a gradient search and
following for source detection. For this purpose derivation
of distributed, multi-vehicle co-ordination schemes and de-
velopment of efficient underwater acoustic communication
protocols are needed. For achieving high data rate and large
system capacity, Orthogonal Frequency Division Multiplexing
(OFDM) has been claimed to be an efficient communication
technology. It allows designing low complexity receivers to
deal with highly dispersive channels. This facts motivates the
use of OFDM in underwater environments.

Underwater acoustic channels are wideband in nature due
to the small ratio of carrier frequency to the signal band-
width, which introduces frequency-dependent Doppler shifts
[1]. They also exhibit several propagation paths.

In order to adequately recover the transmitted information,
algorithms at the receiver must include estimation and com-
pensation of the Doppler scaling factor, channel estimation,
and information symbols estimation. Several approaches have
been suggested in the literature for estimating the Doppler
scaling factor. They are based on the use of preamble and
postamble of a packet consisting of multiple OFDM blocks

Alain Y. Kibangou is with GIPSA-Lab, System control Department, Uni-
versity Joseph Fourier, CNRS, 961 rue de la Houille Blanche, B.P. 46- 38402
Saint Martin d’Hères, France (e-mail: Alain.Kibangou@gipsa-lab.grenoble-
inp.fr)
Cyrille Siclet and Laurent Ros are with GIPSA-Lab, Image and Signal
Department, University Joseph Fourier, CNRS, 961 rue de la Houille Blanche,
B.P. 46- 38402 Saint Martin d’Hères, France (e-mail: Cyrille.Sicletu@gipsa-
lab.grenoble-inp.fr, Laurent.Ros@gipsa-lab.grenoble-inp.fr)
This work was supported by the ANR and the EU funded projects CONNECT
and FeedNetBack

[1] or by exploiting correlation induced by the cyclic prefix
[2]. Then, the received signal is resampled by using a sampling
period related to the estimated Doppler scaling factor. It is also
necessary to estimate and compensate for the residual carrier
frequency offset (CFO) since the Doppler can vary between
consecutive OFDM blocks inside a given packet.

In this paper, the received data are processed block-by-
block. We make use of high resolution harmonic estimation
methods to estimate both Doppler scaling factor and channel
parameters (path gains and delays). The advantage of the
proposed scheme is to avoid data resampling and residual
CFO estimation and compensation. The estimated channel
parameters and Doppler are then used to build a channel matrix
that is used for estimating the informative symbols following
a zero forcing scheme.
Notation: We denote by V (x,N) the L× N Vandermonde
matrix with x∈CL as generator. Its first column is constituted
by 1s.

II. SIGNAL MODEL

The proposed receiver is based on block-by-block process-
ing. We assume that consecutive OFDM symbols are separated
by a sufficient guard interval in order to avoid intersymbol
interference. Moreover, the transmitter and the receiver clocks
are synchronized.

In the transmission scheme considered in this paper, the
signal s(.), results on the superposition of two OFDM sig-
nals s0(.) and s1(.), i.e. s(t) = s0(t)+ s1(t). The information
contained in s0(.) is known to the receiver and will serve
to estimate the channel parameter, whereas s1(.) contains the
informative symbols unknown to the receiver. The transmitted
bandpass signal is then given by:

s(t) =
1

∑
i=0

si(t), with si(t) = Re

{
∑

k∈Ki

ck,ie j2π fk,itΠTi(t− τ̄i)

}

where:
• Ki = {−Ki/2, · · · ,Ki/2−1}, Ki being the number of

subcarriers used for transmitting the learning sequence
{ck,0}, if i = 0, or the informative sequence {ck,1}, if
i = 1.

• fk,i = fc +k∆ fi, are the subcarrier frequencies, ∆ fi being
the frequency spacing between two consecutive subcarri-
ers and fc is the (central) carrier frequency.

• ΠTi(t) = 1 if t ∈ [0,Ti] and 0 otherwise.
• τ̄0 = 0 whereas τ̄1, which will be defined later, stands for

the delaying operation of the informative signal s1(.) with
respect to the learning signal s0(.).
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The signal bandwidth equals B = K1∆ f1 = K1/T1. We assume
that less subcarriers are used for transmitting the pilot se-
quence than the informative one, i.e. K0 < K1. Moreover, we
have ∆ f0 = B/K0, meaning that the frequency spacing in s0 is
more important than in s1(.).
The signal s(.) is transmitted to the receiver through an
underwater acoustic channel modeled as:

h(t,τ) =
P

∑
p=1

Ap(t)δ (t− τp(t)),

where Ap(t) and τp(t) are respectively the real-valued gain
and the delay associated with the pth propagation path. In
addition, the following assumptions are adopted:
• All paths are affected by a similar Doppler scaling factor

a such that
τp(t) = τp−at.

• The path delays τp, the gains Ap, and the Doppler scaling
factor a are constant over the block duration T = T0 +T1 +
Tg− τ̄1.

• The maximal path delay τp is known and the guard inter-
val Tg is sufficiently large to avoid interference between
consecutive blocks. We have

Tg > max{τp}= τmax.

The analytic representation of the received signal y(t) is then
given by:

y(t) =
1

∑
i=0

∑
ki∈Ki

P

∑
p=1

cki,iApΠTi((1+a)t− τp− τ̄i)

×e− j2π fki,iτpe j2π fki,i(1+a)t . (1)

Assuming that the bounds of the path delays, τmin
1 and τmax,

and that of the Doppler scaling factor are known2. We get:

τmin ≤ τp ≤ τmax, λmin ≤ 1+a≤ λmax.

Therefore, for t ∈ (T0+τmax
λmin

,T ) and τ̄1 ≥ λminT −τmax−T1, we
get the signal part conveying the informative data:

y1(t) = ∑
k1∈K1

hk1(t)ck1,1 (2)

with

hk1(t) =
P

∑
p=1

ApΠT1((1+a)t− τp− τ̄1)e
− j2π fk1 ,1τp e j2π fk1,1(1+a)t

(3)
By sampling the received signal at the period Te ≥ 1

B , equation
(2) can be written in matrix form as follows:

y = Hc (4)

where y, H, and c contain respectively the samples of received
signal corresponding to t ∈ (T0+τmax

λmin
,T ), the channel matrix,

whose entries are defined in (3), and the informative symbols.

1The knowledge of the minimal path delay is difficult. Therefore, we get
the absolute minimum τmin = 0.

2λmax and λmin are related to the maximal and minimal velocities of the
underwater vehicles, which can be a priori known.

Therefore, if the channel parameters and the Doppler factor
are known, the ZF receiver is obtained by solving

ĉ =
(
HHH

)−1 HHy. (5)

In the following section, we derive a joint channel and Doppler
estimation method.

III. DOPPLER AND CHANNEL ESTIMATION

Let us select t0 and t1 such that

τmax

λmin
≤ t0 < t1 ≤ T0 + τmin

λmax
. (6)

For t ∈ [t0, t1], the received signal can be written as:

y(t) = ∑
k0∈K0

ck0,0Bk0e j2π fk0 ,0(1+a)t (7)

with

Bk0 =
P

∑
p=1

Ape− j2π fk0 ,0τp . (8)

In discrete-time, we get:

yn = ∑
k0∈K0

ck0,0Bk0e j2π fk0 ,0(1+a)nTe . (9)

Inside the observation window defined by the bounds (6), the
received signal can be viewed as a mixture of K0 complex val-
ued harmonics with constant magnitudes. As a consequence,
the magnitudes ck0,0Bk0 and the phases 2π fk0,0(1 + a)Te can
be obtained by solving a harmonic retrieval problem. From
(8), one can note that the magnitude Bk0 can also be viewed
as a mixture of P harmonics. So, for estimating both the
Doppler scaling factor, the channel gains and delays, we have
to solve two harmonic retrieval problems. In the literature, the
harmonic retrieval problem have been extensively studied [3]–
[8]. In this paper, we derive new estimators by making use of
HTLS (Hankel Total Least Squares) [8], [9], a high resolution
method. In the sequel, we first give the main guidelines for
solving the harmonic retrieval problem before deriving our
estimators.

A. Harmonic retrieval using HTLS [8]

Let us consider the samples zq such that zq =
K
∑

k=1
αke jϕkq,q =

q0, · · · ,q0 +N−1. By setting N = L+M−1, L > Q, M ≥ Q,
we first build the Hankel matrix Z∈CL×M having respectively
as first column and last row the vectors

Z.1 =
(

zq0 zq0+1 · · · zq0+L−1
)T

and
ZL. =

(
zq0+L−1 zq0+L · · · zq0+N−1

)
.

It admits the two following decompositions (10) and (11):

Z = Sdiag(ααα)TT . (10)

with ααα = (α1, · · · ,αK)T , ST = V (φφφ ,L), TT = V (φφφ ,M), φφφ =(
e jϕ1 , · · · ,e jϕK

)T , and

Z = UΣΣΣVH , (11)
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where U ∈ CL×K , V ∈ CM×K , and ΣΣΣ ∈ CK×K contain respec-
tively the left and right singular vectors and the singular
values of Z. From (10) and (11), we deduce that U and S
generate the same subspace. Hence, it exists a nonsingular
matrix Q ∈ CK×K such that U = SQ. The Vandermonde
matrix S possesses the shift-invariance property expressed as:
Sdiag(φφφ) = S̄, where the line on the bottom (resp. on the top)
of a matrix stands for deleting the first (resp. the last) row. We
also have:

U = SQ, Ū = S̄Q

By combining these two above equations, we get:

Ū = UQ−1 diag(φφφ)Q. (12)

Hence, the poles e jϕk are the eigenvalues of ΦΦΦ =
Q−1 diag(φφφ)Q. Therefore, we have to estimate ΦΦΦ and then
deducing its eigenvalues. ΦΦΦ is estimated by solving Ū = UΦΦΦ
in the total least squares sense. We get:

Φ̂ΦΦ =−W12W−1
22 (13)

where

W =
(

W11 W12
W21 W22

)
∈ C2K×2K

is the matrix containing the right singular vectors of(
U Ū

)
.

Once the poles estimated, the magnitude αk can be obtained
as the least squares solution of the vectorized Vandermonde
decomposition (10):

vec(Z) = (T¯S)ααα, (14)

where ¯ denotes the Khatri-Rao product, the poles in S and
T being replaced by their estimated values.

B. Doppler scaling factor estimation

Let us consider the N samples yn, n = n0, · · · ,N +n0−1, of
the received signal yn as given in (9). Herein, the pole and the
magnitude of the involved harmonics are φk0 = e j2π fk0,0(1+a)Te

and αk0 = ck0,0Bk0 e j2π fk0,0(1+a)n0Te .
Let us denote by φ̂k0 the estimated poles using the HTLS
algorithm. If the sampling period Te is chosen such that

Te ≤ 1
2λmax max{ fk0,0}

then the angle of φ̂k0 , denoted ∠φ̂k0 , belongs to [−π,π]. In
fact, the estimated eigenvalues equal the actual poles up to a
permutation. For removing such an ambiguity, the estimated
eigenvalues can be sorted with their pulsation in an ascending
order. Therefore, we deduce the following estimator for the
Doppler scaling factor:

â =−1+
1

K0
∑

k0∈K0

∠φ̂k0

2π fk0,0Te
(15)

C. Path delays and gains estimation

Let us denote α̂k0 the magnitudes obtained by solving (14),
where the poles in S and T have been replaced by their
estimated values. We get:

B̂k0 =
c∗k0,0∣∣ck0,0

∣∣2 α̂k0 e− j2π fk0 ,0(1+â)n0Te , k0 ∈K0. (16)

Note that we can rewrite Bk0 , defined in (8), as

Bk0 =
P

∑
p=1

Ape− j2π f−K0/2,0τpe− j2πk0∆ f0τp , k0 ∈K0.

Provided, K0 ≥ 2P, we can solve this harmonic retrieval
problem using the HTLS method, the poles and the magnitudes
being e− j2π∆ f0τp and Ape− j2π f−K0/2,0τp respectively.
Let us denote β̂p the estimated harmonic magnitudes using
HTLS. We can then estimate the gains Ap as the magnitudes

Âp =
∣∣∣β̂p

∣∣∣ . (17)

We also deduce θp = β̂p

|β̂p| = e− j2π f−K0/2,0τp .

The estimation of the path delays is a more complicate task.
Indeed, we cannot guarantee that 2π∆ f0τp belongs to [−π,π].
As a consequence, we cannot directly deduce the value of the
path delays from the angle of the entries ψ̂p of β̂ββ . However,
it exists an integer m0 such that

∠ψ̂p =−2π∆ f0τp +2πm0.

For different integers m, we define a set of possible path delays
τp,m such that τp,m < Tg:

τp,m =− ∠ψ̂p

2π∆ f0
+

m
∆ f0

and θp,m = e− j2π f−K0/2τp,m .

Let us now consider the square distance

κp,m =
∣∣θp−θp,m

∣∣2 =
∣∣∣∣1− e− j2π f−K0/2

m′−m
∆ f0

∣∣∣∣
2

(18)

After few manipulations, it can be shown that this square
distance is minimal only for τp,m = τp, the actual path delay:

τ̂p = argminκp,m. (19)

IV. SIMULATION RESULTS

In these simulations, the range of frequency used by the
underwater vehicles was [15kHz− 28kHz]. We considered
Doppler scaling factor lower than 10−3, meaning that the
maximal relative speed was 1.5 m/s. The carrier frequency
was set equal to fc = 21 kHz, whereas the guard interval
was Tg = 10 ms. We used K0 = 16 sub-carriers for the
learning sequence and K1 = 512 for the informative one.
The duration of the learning sequence was T0 = 2Tg whereas
that of the informative sequence was T1 = 46.54 ms. The
sampling frequency was 1/Te = 56.056 kHz. We made use
of the QPSK modulation. All the results presented below are
averaged values over 100 independent Monte Carlo runs. The
additive noise was a complex valued white Gaussian noise.
The paths gain and delay of the simulated channel are depicted
in figure 1.
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Figure 1. Paths gain and delay of the simulated channel.

We evaluate the performance of the derived ZF receiver in
terms of BER (Bit Error Rate). Figure 2 and 3 depict the
mean of the BER for channels with P = 4 and P = 6 for two
different values of the Doppler scaling factor. We compare the
performance of the equalization method when the Doppler and
the channel parameters are estimated by the method proposed
herein and with the ideal case, i.e. the actual parameters are
used for constructing the channel matrix. In the ideal case, by
increasing the SNR, we get better performance for a channel
with P = 6 than that with P = 4. Since, the first channel has
more propagation paths, the received signal is more redundant
and therefore allows improving the informative sequence esti-
mation. When using the estimated parameters, we don’t have
the same behaviour. Indeed, with the same amount of data, the
parameter estimation is degraded by increasing the number of
propagation paths. Moreover, the gap in performance between
the ideal case and the estimated one increases with the number
of propagation paths.
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Figure 2. BER obtained with the proposed estimation method (a = 6.67×
10−4).
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Figure 3. BER obtained with the proposed estimation method (a = 3.33×
10−4).

V. CONCLUSION

In this paper, we have presented a new zero-forcing OFDM
receiver for underwater acoustic communications. In the pro-
posed scheme, each OFDM symbol is constituted by a the
superposition of two OFDM sub-blocks characterized by dif-
ferent number of subcarriers. The first OFDM sub-block is
used for estimating the channel parameters and the Doppler
scaling factor. The estimation methods are based on high
resolution methods for solving harmonic retrieval problems.
Then, the estimated parameters are used for retrieving the
informative symbols according to the Zero forcing criterion.
The proposed scheme is particularly efficient for moderate
to high SNR. Robustness to noise, for lower levels of SNR,
should be investigated. Extension to multiusers underwater
communications is under investigation.
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