Julien Thébault 
email: julien.thebault@univ-brest.fr
  
Bernd R Schöne 
  
Nadine Hallmann 
  
Matthias Barth 
  
Elizabeth V Nunn 
  
  
Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica (northeast Iceland)

Keywords: bivalve, lithium, calcification, shell growth rate, weathering, Iceland

Inter-and intra-annual variations in lithium-to-calcium ratio were investigated with high temporal resolution in the aragonitic outer shell layer of juvenile Arctica islandica (Mollusca; Bivalvia) collected alive in 2006 off northeast Iceland. Li/Ca shell ranged between 7.00 and 11.12 µmol mol -1 and presented well-marked seasonal cycles with minimum values recorded at the annual growth lines; a general pattern was a progressive increase in Li/Ca shell from March to May, followed by a plateau in June, and a decrease down to minimum values in July-August. Li/Ca shell was correlated with δ 18 O shell -derived temperature but the strength of this relationship was weak (r 2 < 0.25; p < 0.05). It covaried significantly with microgrowth increment width and with the discharge from one of the closest rivers. Seasonal variations of Li/Ca shell in A. islandica may most likely be explained (1) by calcification rate, and/or (2) by significant river inputs of Li-rich silicate particles flowing to the sea as soon as snow melts. In the first case, Li/Ca shell may be a useful proxy for addressing seasonal variations of growth rate in bivalves that lack discernable microgrowth patterns. Abrupt decreases of Li/Ca shell may in turn help identify growth retardations due to harsh environmental conditions. Alternatively, if Li/Ca shell variations are linked to particulate Li inputs by rivers, this could be a new proxy for the intensity of mechanical weathering of Icelandic basalts, with interesting perspectives for the reconstruction of frequency and intensity of past jökulhlaups (subglacial outburst floods). Further works, including experimental studies, are needed to test these hypotheses.

INTRODUCTION

During the past sixty years, a large number of studies have focused on the use of elemental concentrations in marine sediment cores as proxies for past variations of environmental parameters. These parameters include, among others, temperature (proxies: Mg/Ca, Sr/Ca), alkalinity (Ba/Ca), dissolved inorganic carbon concentration (Cd/Ca), ocean circulation (Cd/Ca, Nd, Hf, Pb), biological productivity (BaSO 4 , Pa/Th, Be/Th, U) and sedimentation rate ( 230 Th, 210 Pb, 231 Pa/ 230 Th) (for thorough reviews, see: [START_REF] Wefer | Clues to ocean history: a brief overview of proxies, in Use of proxies in paleoceanography: examples from the South Atlantic[END_REF][START_REF] Henderson | New oceanic proxies for paleoclimate[END_REF]. However, the temporal resolution of such paleoceanographic reconstructions is low, generally coarser than decades. Therefore, efforts have been made to assess the potential of elemental content in marine biogenic carbonates, especially bivalve mollusk shells, as high-resolution proxies for environmental conditions (e.g. [START_REF] Stecher | Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells[END_REF][START_REF] Vander Putten | High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls[END_REF][START_REF] Thébault | Barium and molybdenum records in bivalve shells: geochemical proxies for phytoplankton dynamics in coastal environments?[END_REF].

Bivalve shells grow by accretion of calcium carbonate crystals, either in the form of calcite, aragonite, or both depending on the species (Pannella and MacClintock, 1968). Shell growth, however, does not occur continuously over a day, or over a year; instead, growth ceases periodically, on ultradian (several growth stops during a single day), circatidal (semidiurnal, ca. 12.4h), circadian (solar day, ca. 24h), circalunidian (lunar day, ca. 24.8h), or annual timescales [START_REF] Schöne | The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells[END_REF]. These growth stops result in the formation of so-called growth lines, which are enriched in organic matter and separate growth increments that represent equal time slices. These periodic growth lines can therefore be used to assign precise calendar dates to each successive increment of accreted shell material. This characteristic gives bivalve shells an outstanding potential for the high-resolution reconstruction of paleoenvironmental conditions, especially through geochemical analyses.

For example, skeletal oxygen isotope composition (δ 18 O) of many bivalve species (including scallops, mussels, and clams) has been extensively used since the pioneering work of [START_REF] Epstein | Revised carbonatewater isotopic temperature scale[END_REF] to infer paleotemperature variations, sometimes with an accuracy of less than 1°C [START_REF] Chauvaud | Shell of the Great Scallop Pecten maximus as a highfrequency archive of paleoenvironmental changes[END_REF][START_REF] Thébault | Reconstruction of seasonal temperature variability in the tropical Pacific Ocean from the shell of the scallop, Comptopallium radula[END_REF].

In the past decade, the elemental composition of bivalve shells has also been increasingly used for paleoenvironmental reconstructions. Bivalve shells are not exclusively made of CaCO 3 . Aside from Ca, a number of minor and trace elements are also incorporated within the shell during its formation, either in an interstitial location within the crystal lattice or as carbonates (substitution for Ca 2+ ; [START_REF] Okumura | Coprecipitation of alkali metal ions with calcium carbonate[END_REF], or even within the organic matrix [START_REF] Lingard | Method for the estimation of organic-bound and crystal-bound metal concentrations in bivalve shells[END_REF], which can represent up to 5% of the shell dry weight [START_REF] Marin | Molluscan shell proteins[END_REF]. The incorporation of these elements is known to be partly controlled by various environmental parameters, either physical (temperature, salinity), chemical (seawater elemental concentration, metallic contamination), or biological (primary production). Physiology, however, also exerts an important control on the chemical composition of bivalve shells [START_REF] Schöne | The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells[END_REF].

Micro-analytical techniques (e.g. laser ablation coupled to an ICP-MS system = LA-ICP-MS; [START_REF] Craig | An assessment of calibration strategies for the quantitative and semi-quantitative analysis of calcium carbonate matrices by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)[END_REF] allow the accurate measurement of tens of elements archived in biogenic carbonates within a few seconds. Their abiding improvement considerably increases the probability of discovering new paleoenvironmental proxies. With the exception of a few studies (e.g. [START_REF] Lindh | Environmental history told by mussel shells[END_REF][START_REF] Carriker | Ontogenetic trends of elements (Na to Sr) in prismatic shell of living Crassostrea virginica (Gmelin) grown in three ecologically dissimilar habitats for 28 weeks: a proton probe study[END_REF][START_REF] Dick | Is the umbo matrix of bivalve shells (Laternula elliptica) a climate archive?[END_REF] however, most investigations on the geochemical composition of bivalve shells have only dealt with a few elements (mainly Sr, Mg, Ba, and some trace metals including Mn, Pb, Zn, and Cd).

Lithium is a trace element that (1) is easily measurable using mass spectrometers, (2) has been demonstrated to present an interesting potential as a paleoceanographic proxy in some marine biogenic carbonates [START_REF] Delaney | Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[END_REF][START_REF] Delaney | Lithium-to-calcium ratios in modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF][START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]Marriott et al., 2004a,b;[START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering?[END_REF][START_REF] Montagna | Li/Ca ratios in the Mediterranean non-tropical coral Cladocora caespitosa as a potential paleothermometer[END_REF], and (3) has 6

surprisingly not yet been analyzed in bivalve shells. One of the first studies dealing with Li/Ca ratios in marine biogenic carbonates suggested that this ratio in foraminiferal calcite was partly controlled by the Li/Ca ratio of the growing medium [START_REF] Delaney | Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[END_REF]. This was later confirmed by [START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering?[END_REF] who demonstrated that Li/Ca in foraminifera could be used to reconstruct past changes in the Li/Ca ratio of seawater, which could be interpreted in terms of continental silicate weathering rate. Several studies have also highlighted significant inverse relationships between temperature and Li/Ca in foraminifera [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]Marriott et al., 2004a), in calcitic brachiopods [START_REF] Delaney | Lithium-to-calcium ratios in modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF], in coralline aragonite (Marriott et al., 2004b;[START_REF] Montagna | Li/Ca ratios in the Mediterranean non-tropical coral Cladocora caespitosa as a potential paleothermometer[END_REF], and in inorganic calcite (Marriott et al., 2004b). It has finally been suggested that the main factor controlling Li incorporation in foraminifera is not temperature but calcification rate [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]Marriott et al, 2004a). Because calcification rate may be a function of CO 3 2-concentration in the oceans, it has been suggested that the Li/Ca ratio in foraminifera could be a potential proxy of past atmospheric CO 2 [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF].

Here, we present for the first time Li/Ca records in bivalve mollusk shells. We have focused on juvenile ocean quahogs Arctica islandica (Linnaeus, 1767) collected alive in 2006 off the coast of northeast Iceland, probably one of the last pristine ecosystems in the North Atlantic. A. islandica has all the characteristics necessary for paleoceanographic reconstructions. First, it produces circadian and annual growth patterns in its aragonitic shell (Schöne et al., 2005a). Second, it holds the longevity record for bivalves and may in fact be the longest-lived non-colonial animal, living up to 4 centuries (Schöne et al., 2005b;Wanamaker et al., 2008a). Third, it exhibits a broad biogeographic distribution centered around Iceland, inhabiting the continental shelves on both sides of the North Atlantic, in Europe from the Barents Sea to the Bay of Cadiz in Spain, and in North America from Newfoundland to Cape Hatteras [START_REF] Thorarinsdóttir | Fishery biology and biological reference points for management of ocean quahogs (Arctica islandica) off Iceland[END_REF]. Fourth, this species has been intensively studied for its anatomy, behavior, physiology, biology, and ecology [START_REF] Witbaard | Tree of the sea: The use of the internal growth lines in the shell of Arctica islandica (Bivalvia, Mollusca) for the retrospective assessment of marine environmental change[END_REF]. And finally, several studies have already highlighted that shells of A. islandica provide multi-proxy records of environmental variables. Changes in environmental parameters are recorded in variations of growth rates [START_REF] Marchitto | Precise temporal correlation of Holocene mollusk shells using sclérochronologie[END_REF][START_REF] Schöne | North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk[END_REF]Schöne et al., 2005b), stable isotope composition [START_REF] Weidman | The long-lived mollusc Arctica islandica: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean[END_REF][START_REF] Schöne | Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea), Palaeogeogr[END_REF]Schöne et al., 2005a,b,c;Wanamaker et al., 2008b) and trace element concentrations [START_REF] Epplé | High-resolution climate reconstruction for the Holocene based on growth chronologies of the bivalve Arctica islandica from the North Sea[END_REF][START_REF] Toland | A study of sclerochronology by laser ablation ICP-MS[END_REF][START_REF] Liehr | The ocean quahog Arctica islandica L.: a bioindicator for contaminated sediments[END_REF].

The aims of this paper are (1) to analyze the behavior of Li/Ca in A. islandica aragonitic shells (inter-and intra-annual variability) using variations of the oxygen isotope composition of these shells as chronological checks, (2) to review the different processes that may explain the temporal variations of this ratio, and (3) to assess if Li/Ca could be a promising addition to the arsenal of proxies already used in bivalve shells.

MATERIAL AND METHODS

Study area

Our study site is located in Þistilfjörður (northeast Iceland; 66°10.751'N -15°21.296'W), 1 km off the southwestern edge of Langanes Peninsula and 3 km away from

Hafralónsá estuary (Fig. 1). 2a). We chose young specimens because A. islandica grows fairly rapidly during early ontogenetic stages [START_REF] Jones | Sclerochronology: Reading the record of the molluscan shell[END_REF][START_REF] Weidman | The long-lived mollusc Arctica islandica: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean[END_REF][START_REF] Jones | Isotopic determination of growth and longevity on fossil and modern invertebrates[END_REF][START_REF] Kilada | Validated age, growth, and mortality estimates of the ocean quahog (Arctica islandica) in the western Atlantic[END_REF] and young shells therefore provide the highest temporal resolution in carbonate records.

Immediately after dredging, the soft parts were discarded and the right and left valves kept frozen until analysis. The left valves of shells A55 and A56 were gently rinsed with deionized water and air-dried. Each valve was mounted on a Plexiglas cube using a two-part methacrylat glue (plastic welder, Gluetec GmbH & Co. KG, Germany) and embedded in a two-part metal-epoxy resin (Wiko, Germany) to strengthen the shell and to avoid shell fracture during sawing (Fig. 2b). Two immediately adjacent, 2.6-mm-thick sections were cut from each valve perpendicular to the growth lines along the axis of maximum growth using a low-speed precision saw (Isomet 1000, Buehler Ltd., IL, USA) equipped with a 0.4 mm thick diamond-coated blade cooled and kept wet using de-ionized water (Fig. 2c). These "mirroring" sections were then mounted on glass slides, manually ground with ca. 12 µm and 8 µm SiC powder, and polished with 1 µm Al 2 O 3 powder to visualize the internal growth 10 patterns. Thick sections were ultrasonically rinsed with de-ionized water between each grinding/polishing step to remove any adhering grinding powder. Thick section "A" was used for isotopic analyses and thick section "B" for trace elemental analyses. Once geochemical analyses were done, these thick sections were cleaned with ethanol before being etched in the so-called Mutvei's solution for 25 minutes at 37-40°C in order to resolve inter-and intraannual growth lines and increments (see Schöne et al. (2005d) for a detailed description of this method). Finally, the sections were gently rinsed with de-ionized water and air-dried.

Microgrowth increment width was subsequently measured using the image analysis software Panopea (© 2004 Peinl and Schöne). High-resolution photographs of these four sections were taken using a Nikon Coolpix 995 digital camera attached to a Wild Heerbrugg M3Z stereozoom microscope. Photo stitching software (Photoshop Elements 2.0) was then used to assemble the 25-30 photographs taken for each section into a single, high-resolution picture.

Isotopic analyses

The oxygen isotope ratio ( 18 O/ 16 O) of marine biogenic carbonate is controlled by temperature and the oxygen isotope composition of the seawater from which it precipitates [START_REF] Mccrea | On the isotopic chemistry of carbonates and a paleotemperature scale[END_REF][START_REF] Epstein | Revised carbonatewater isotopic temperature scale[END_REF]. Therefore, shells of our two A. islandica specimens were sampled for isotopic analyses in order to reconstruct variations in the bottom-water temperatures these animals experienced during their life. Aragonite samples (48 and 50 samples on shells A55 and A56 respectively) were collected in thick sections "A" using a micro-drill (Minimo C121, Minitor Co. Ltd., Japan) equipped with a 0.3 mm tungsten carbide drill bit (model H52.104.003, Gebr. Brasseler GmbH & Co. KG, Germany). Samples were taken in the outer shell layer along an axis running from the ventral margin and toward the youth portions of the shells. Holes drilled in these sections were ca. 350 µm in diameter.

Aliquots of shell aragonite weighing between 38 and 125 µg (mean = 80 µg) were analyzed at the University of Frankfurt using an automated Gas Bench II carbonate device interfaced with a Thermo Finnigan MAT 253 isotope ratio mass spectrometer. Shell isotopic data are expressed in conventional delta (δ) notation [START_REF] Epstein | Revised carbonatewater isotopic temperature scale[END_REF] relative to the VPDB standard. The in-house standard used was a Carrara marble (δ 18 O Carrara = -1.74 ‰ VPDB) calibrated against NBS19. The isotopic value used for this calibration was δ 18 O NBS19 = -2.20

‰ VPDB (for more details, see [START_REF] Fiebig | High-precision oxygen and carbon isotope analysis of very small (10-30 μg) amounts of carbonates using continuous flow isotope ratio mass spectrometry[END_REF]. Repeated analyses of this standard yielded a reproducibility (1σ) of 0.07 ‰ VPDB.

To temporally align aragonite samples taken between two annual growth lines, we compared the temperature reconstructed from our δ 18 O shell records (hereafter referred as T δ18O )

with seasonal variations of seawater temperature measured at 20 m depth at station LA1. To this end, we used the empirically determined paleothermometry equation of [START_REF] Grossman | Oxygen and carbon isotope fractionation in biogenic aragonite; temperature effects[END_REF]; equation 1 in their paper). A modification of this equation was, however, required as their water values were reported in VSMOW minus 0.27 ‰ [START_REF] Hut | Consultants' group meeting on stable isotope reference samples for geochemical and hydrological investigations[END_REF]. Once corrected, their This resulted in an absolute uncertainty on T δ18O of ± 0.95°C.

Li/Ca shell analyses

Li/Ca ratios were analyzed in thick sections "B" using LA-ICP-MS at the University of

Mainz. An Agilent 7500ce quadrupole ICP-MS (Agilent Technologies Inc., CA, USA) coupled to a UP-213 laser ablation system (New Wave Research, CA, USA) was used with the parameters listed in Table 1. Aragonite samples (n = 332 in each shell) were ablated in the outer shell layer from the ventral margin toward the youth portions of the shells at a constant distance from the shell surface (400 µm). The diameter of the laser spots was 80 µm and the distance between the centers of two successive spots was 100 µm (i.e. 20 µm between edges of two successive spots). During acquisition, signal intensities were recorded for 7 Li, 43 Ca and 44 Ca. The intensity of the isotope of interest was systematically normalized against the 43 Ca signal (internal standard) in order to correct for laser beam energy drift, focus variation at the sample surface, and ICP-MS detection drift (see [START_REF] Pearce | A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[END_REF]. The glass reference material NIST SRM 612 was used as a calibration standard with the values of [START_REF] Pearce | A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[END_REF]. Precision (degree of reproducibility) and accuracy (degree of veracity) of the applied method were controlled by repeated analyses of the glass reference material NIST SRM 614 (Li concentration value taken from [START_REF] Kurosawa | Trace element analysis of NIST SRM 614 and 616 glass reference materials by Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry[END_REF]. For each shell, the sequence of analyses was as follows: (NIST612) ×2 + shell ×2 + (shell ×15 + NIST614 + shell ×15 + NIST612) ×11 + NIST612. Data processing (including instrumental drift correction and normalization) was performed using GLITTER v.4 software (Macquarie Research Ltd., Australia; [START_REF] Van Achterbergh | Data reduction software for LA-ICP-MS, in Laser ablation-ICPMS in the earth sciences: principles and applications[END_REF], following the methods of [START_REF] Longerich | Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[END_REF].

Li/Ca detection limit at the 99% confidence level was calculated by GLITTER using

Poisson counting statistics and was 0.243 µmol mol -1 . Repeated measurements of NIST SRM 614 (n = 22) yielded a precision of 1.9 % (% RSD). Accuracy was extremely good with a Li concentration value in NIST SRM 614 of 1.687 ± 0.007 µg g -1 compared with the recommended value of 1.69 ± 0.026 µg g -1 (means ± standard errors).

Statistical analyses

Two different statistical tests were used to compare the means of two independent samples: Student's t-test (large samples: min(n 1 , n 2 ) ≥ 30) and Mann-Whitney U-test (small samples: min(n 1 , n 2 ) < 30). An analysis of covariance (ANCOVA; α = 0.05) was used to test whether there were significant differences between the slopes of the least-square linear regressions (Li/Ca shell vs. T δ18O ) calculated for each of the two shells. Homogeneity of residual variances was tested with Bartlett's test (α = 0.01). No data were excluded. All statistical analyses were performed according to [START_REF] Scherrer | Biostatistiques[END_REF].

RESULTS

δ 18 O shell profiles

In each shell, δ 18 O shell profile showed cyclical oscillations in phase with the main growth lines that were revealed after the immersion of shell sections in Mutvei's solution (Fig. 3).

This confirms the annual periodicity of these growth lines. Seven main growth lines were observed in both shells, suggesting that both specimens settled on the seafloor in 1999.

Isotopic data covered four full years of growth (2002)(2003)(2004)(2005) and the beginning of year 2006.

δ 18 O shell values ranged from 1.64 to 3.51 ‰ in shell A55 and from 1.73 to 3.45 ‰ in shell A56. Annual minima ranged from 1.64 to 2.15 ‰, whereas annual maxima varied 14 between 2.92 and 3.51 ‰ (Table 2). Seasonal δ 18 O shell cycles were strongly right-skewed with minimum/maximum values occurring shortly before/after the annual growth lines (Fig. 3).

These δ 18 O shell values were converted into temperature (T δ18O ) using Eq. ( 1) and a δ 18 O water value of -0.55 ‰ (Fig. 3). Annual minimum temperatures recorded by the shells 2). Mean annual maxima in shells A55 (8.4°C) and A56 (8.7°C) did not differ significantly

(Mann-Whitney U = 5, n 1 = n 2 = 4, p > 0.05).
The offsets between T δ18O and T LA1 (0.3°C and 0.6°C for average annual minima and maxima respectively) are within the ± 0.95°C uncertainty on T δ18O , so it is reasonable to assume that the whole annual range of seawater temperature was recorded by the shells.

Li/Ca shell profiles

For both specimens, Li/Ca shell profiles showed cyclical variations with minimum values recorded exactly at the annual growth lines (Fig. 3). A general tendency of the seasonal Li/Ca shell variations was a progressive increase after the annual line, followed by a plateau and then a decrease down to minimum values. Maximum Li/Ca shell values tended to occur earlier during the growing season than δ 18 O shell minima (i.e. before temperature maxima; Fig. 3).

Li/Ca shell ranged from 7.00 to 9.40 µmol mol -1 in shell A55 (mean = 8.37 µmol mol -1 ; Fig. 3a) and from 6.91 to 11.12 µmol mol -1 in shell A56 (mean = 9.23 µmol mol -1 ; Fig. 3b).

Mean Li/Ca shell ratio was significantly higher in shell A56 than in shell A55 (t-test t = 16.87,

n 1 = n 2 = 332, p < 0.01).
Annual minimum values ranged from 7.00 to 7.29 µmol mol -1 in shell A55 (mean [2001][2002][2003][2004][2005] = 7.16 µmol mol -1 ; σ = 0.12 µmol mol -1 ), and from 7.10 to 7.64 µmol mol -1 in shell A56 (mean [2002-2005] = 7.44 µmol mol -1 ; σ = 0.23 µmol mol -1 ; Table 3). Mean annual minima in shells A55 and A56 did not differ significantly (Mann-Whitney U = 3, n 1 = 5, n 2 = 4, p > 0.05).

Annual maxima ranged from 9.08 to 9.40 µmol mol -1 in shell A55 (mean [2001][2002][2003][2004][2005] = 9.30 µmol mol -1 ; σ = 0.13 µmol mol -1 ), and from 10.03 to 11.12 µmol mol -1 in shell A56

(mean [2002][2003][2004][2005] = 10.46 µmol mol -1 ; σ = 0.22 µmol mol -1 ; Table 3). Mean annual maximum in shell A56 was significantly higher than in shell A55 (Mann-Whitney U = 0, n 1 = 5, n 2 = 4, p < 0.05).

As a consequence, mean annual amplitude in shells A55 (2.14 µmol mol -1 ) and A56

(3.02 µmol mol -1 ) were significantly different (Mann-Whitney U = 0, n 1 = 5, n 2 = 4, p < 0.05).

Annual amplitude ranged from 2.01 to 2.32 µmol mol -1 in shell A55, and from 2.76 to 3.63 µmol mol -1 in shell A56 (Table 3).

Li/Ca shell in both shells was statistically correlated with the δ 18 O shell -derived temperature (p < 0.05 for both specimens; Fig. 4). An ANCOVA showed no significant difference between slopes of the two linear regressions (Bartlett's test: B C = 5.52, df = 1; ANCOVA: F = 0.02, df = 1 and 95). The strength of these correlations was, however, extremely weak with determination coefficients ranging from 0.11 (shell A56) to 0.25 (shell A55). The difference in intercept values (ca. 1 µmol mol -1 ) reflects the difference in annual maxima between shell A56 and shell A55.

The comparison of Li/Ca shell variations with daily shell growth rates was difficult because we were unexpectedly unable to resolve microgrowth structures over the whole shell sections despite etching with Mutvei's solution. Nevertheless, 22 groups of 3-5 microgrowth increments were quite clearly revealed in the A56 shell portion formed in 2004. The average increment width in each of these 22 batches was calculated and plotted with the A56 Li/Ca shell record for year 2004 (Fig. 5a). Although the number of increment data was limited, our data showed that Li/Ca shell covaried with microgrowth increment width, which ranged from 24-28 µm near the annual lines to 43 µm in the first half of the 2004 growing season (average = 32.3 µm). A simple linear regression indicated that microgrowth increment width explained 53% of the Li/Ca shell variability in shell A56 (p < 0.001; Fig. 5b). Note that all geochemical and shell growth data obtained on specimens A55 and A56 can be retrieved in the auxiliary material.

DISCUSSION

Seasonal timing of geochemical records in shells

The present study is the first to investigate Li/Ca records in bivalve shells. Li/Ca shell seasonal variations in our two Arctica islandica specimens were well-marked, presenting a 1.3-to 1.6-fold range over a given growing season (Fig. 3). The inter-annual variability between ontogenetic ages 3 to 8 was far less pronounced than intra-annual variability.

Combined analyses of Li/Ca shell and δ 18 O shell , and reconstruction of seawater temperature from δ 18 O shell allowed us to estimate the seasonal timing of Li/Ca shell variations.

T δ18O variations (average annual range = 3.1 -8.5°C) showed that the whole annual range of seawater temperature (2.8 to 7.9°C at 20 m depth at LA1) was recorded by the shells (Table 2). This implies that A. islandica shells did not stop growing because of thermal stress.

Conversely, the position of the annual growth breaks between minimum and maximum δ 18 O shell (i.e. between maximum and minimum temperatures, recorded in August and March, respectively) suggests that shells stopped growing between September and February. The average microgrowth increment width measured in shell A56 was 32.3 µm at ontogenetic age 6, i.e. similar to the value calculated by Schöne et al. (2005a) for North Sea specimens (31.5 µm at ontogenetic age 4). This suggests that shell growth lasted ca. 185 days to achieve the 5.96 mm width of the 2004 annual increment. This result supports the hypothesis of a ca. 6month growth break between September and February. As minimum temperatures were recorded by δ 18 O shell , shells did not stop growing because of harsh winter conditions. Schöne et al. (2005a) showed that A. islandica specimens from the North Sea stopped growing from early September to mid-November and described this growth break as a spawning biocheck.

In Iceland, A. islandica spawning activity peaks in June-July, whereas gametogenesis occurs from January to May [START_REF] Thorarinsdóttir | Annual gametogenic cycle in ocean quahog, Arctica islandica from north-western Iceland[END_REF]. Therefore, the annual growth breaks found in our specimens cannot be attributed to reproductive activity. Moreover, our specimens were likely juveniles as in Icelandic waters, only 10% of A. islandica of 40 mm shell length are mature [START_REF] Thorarinsdóttir | Fishery biology and biological reference points for management of ocean quahogs (Arctica islandica) off Iceland[END_REF]. Therefore, the origin of these annual growth breaks remains unclear. Their investigation, however, is far beyond the goals of this paper.

The most important point is that the timing of the growing season determined by T δ18O variations allowed us to conclude that Li/Ca shell increases from March to May, i.e. right after the annual line, stays roughly stable in June, and then decreases in July-August.

Processes potentially involved in Li/Ca shell seasonal variations

The shape of Li/Ca shell variations is very similar in shells A55 and A56 and as such this ratio likely responds to environmental variations or to variations of a physiological process synchronized within a given population by genetic and/or exogenous factors. Based on published literature on Li/Ca ratios in CaCO 3 structures, the following parameters may provide plausible hypotheses to explain the Li/Ca shell variations in A. islandica: temperature, calcification rate, and Li/Ca ratio in seawater. Their potential influence on the shell geochemistry will be discussed in light of the evidence presented here. A fourth hypothesis will also be put forward: the influence of suspended Li-rich particles originating from the mechanical weathering of basaltic rocks.

Temperature

Several studies have found a significant inverse relationship between Li/Ca in CaCO 3 structures and temperature in coralline aragonite (Marriott et al., 2004b;[START_REF] Montagna | Li/Ca ratios in the Mediterranean non-tropical coral Cladocora caespitosa as a potential paleothermometer[END_REF], in foraminiferal calcite [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]Marriott et al., 2004a), in calcitic brachiopods [START_REF] Delaney | Lithium-to-calcium ratios in modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF], and in inorganic calcite (Marriott et al., 2004b). We also found relationships with temperature in A. islandica aragonitic shells but these were positive, not negative (Fig. 4). Unlike these previous studies, our findings agree with thermodynamic calculations predicting that Li concentration in CaCO 3 structures should decrease with decreasing temperature [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]. According to [START_REF] Okumura | Coprecipitation of alkali metal ions with calcium carbonate[END_REF], Li is incorporated in the crystal structure of aragonite in substitution of Ca, leading to the formation of lithium carbonate (Li 2 CO 3 ) crystals. [START_REF] Smith | Solubility of lithium carbonate at elevated temperatures[END_REF] showed that the solubility of Li 2 CO 3 increases with decreasing temperature. In other words, crystallization of Li 2 CO 3 becomes easier as temperature rises (an almost linear relationship between 0 and 30°C; [START_REF] Smith | Solubility of lithium carbonate at elevated temperatures[END_REF]. Although statistically significant (p < 0.05), the strength of our temperature-Li/Ca shell relationships is extremely weak (0.11 < r 2 < 0.25). The weakness of this relationship is particularly obvious for the 2003 Li/Ca shell record in shell A56 where an important offset can be seen between Li/Ca shell and δ 18 O shell (Fig. 3b). Our findings suggest that if temperature-dependant solubility of Li 2 CO 3 really plays a role on Li/Ca shell in A. islandica, this influence is extremely weak.

Calcification rate

Many authors have suggested that the main factor controlling Li incorporation in foraminiferal calcite could be calcification rate, which may itself correlate partly with temperature [START_REF] Delaney | Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[END_REF][START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]Marriott et al, 2004a). According to [START_REF] Carré | Calcification rate influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms[END_REF], crystal growth rate strongly influences incorporation of Sr, Ba, Mn, and Mg in aragonitic shells of two Peruvian bivalve species (Mesodesma donacium and Chione subrugosa). However, they did not investigate Li/Ca shell ratios. Our own results seem to support these findings. Indeed, we found a relatively strong relationship between microgrowth increment width and Li/Ca in A. islandica shells (Fig. 5). Although microgrowth increment width represents the dorso-ventral linear extension of the shell per unit time and may slightly differ from the absolute calcification rate (see [START_REF] Gillikin | Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells[END_REF] for elaboration), our results suggest that Li/Ca shell may increase as a direct response of increasing calcification rate.

Another argument in favor of this hypothesis is the difference observed in the range of Li/Ca variations in shells A55 and A56; although these two specimens appeared to have grown at an equivalent annual rate from 1999 to 2006, it can be assumed that A56 reached higher daily growth rates in summer than A55, explaining the difference in annual Li/Ca shell maxima between these two shells. The mechanisms involved in these vital effects are unknown and any discussion on that subject would be highly speculative due to the scarcity of studies dealing with the formation of Li 2 CO 3 crystals within aragonitic structures. Identification of these mechanisms would require biomineralization and/or inorganic precipitation experiments. [START_REF] Delaney | Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[END_REF] and [START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering?[END_REF] suggested that Li/Ca ratio in calcitic foraminifera was directly controlled by the Li/Ca of the growing medium. Could possible variations of Li/Ca seawater over A. islandica growing season have an influence on the shell geochemistry? Li is essentially conservative in seawater with an almost constant concentration of 26 µmol L -1 and a Li/Ca seawater ratio of ca. 2310 µmol mol -1 [START_REF] Li | A compendium of geochemistry: From solar nebula to the human brain[END_REF]. It has no significant involvement in biological activity or scavenging by particles [START_REF] Stoffyn-Egli | Mass balance of dissolved lithium in the oceans[END_REF]. Given the long residence times of Li (1.5 million years; [START_REF] Huh | Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget[END_REF] and Ca (1 million year; Broecker and Peng, 1982), the Li/Ca ratio of the global ocean has probably not changed over the Holocene [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF]. The two major sources of Li to the ocean are (1) high-temperature basalt-seawater reactions, and (2) river input from the weathering of continental crust [START_REF] Hoefs | Lithium isotope composition of quaternary and tertiary biogene carbonates and a global lithium isotope balance[END_REF]. In hydrothermal systems near the mid-ocean ridges, Li is leached from oceanic basalts at temperatures >250°C [START_REF] Hoefs | Lithium isotope composition of quaternary and tertiary biogene carbonates and a global lithium isotope balance[END_REF]. Although the mid-Atlantic ridge runs right through Iceland, it is unlikely that such high temperatures could be reached at shallow coastal locations. Moreover, it is hardly conceivable that Li leaching from this ridge would follow a seasonal pattern; it is rather roughly constant throughout the year. Therefore, high-temperature hydrothermal circulation can certainly not explain Li/Ca shell seasonal variations.

Li/Ca seawater

Seasonal variations of riverine inputs may, however, have a local influence on Li/Ca ratios in coastal waters. Intensities of chemical and mechanical weathering of silicate rocks like basalts are usually expressed in terms of fluxes of dissolved and suspended materials, respectively [START_REF] Gislason | Direct evidence of the feedback between climate and weathering[END_REF]. [START_REF] Gislason | Direct evidence of the feedback between climate and weathering[END_REF] nmol L -1 (range: 1.54-1250 nmol L -1 ) and a Li/Ca river ratio ranging from 31 to 2461 µmol mol -1 (average = 563 µmol mol -1 ). This dissolved Li concentration range is similar to that 21 measured by [START_REF] Vigier | The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland[END_REF] in the major Icelandic rivers (range: 3-317 nmol L -1 ; average = 86.5 nmol L -1 ). These values may be slightly higher in July, ie. at the annual air temperature maximum. According to [START_REF] Delaney | Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[END_REF], a 1.8 to 2.6-fold increase of the average Li/Ca seawater ratio is necessary to observe a 1.3 to 1.6-fold increase of Li/Ca in calcitic foraminifera. This relationship can probably not be applied to A. islandica shells because of their aragonitic structure. Nevertheless, it highlights that Li/Ca seawater must increase significantly to induce a 1. 

Suspended Li-rich basaltic particles

A fourth hypothesis could be put forward to explain Li/Ca shell seasonal variations: the possible influence of weathered basaltic particles carried by rivers. Seasonal variations of Sandá River discharge were obtained from the Hydrological Service of the Icelandic National Energy Authority (http://www.os.is/; Fig. 6). These data show that discharge roughly follows the same seasonal pattern as Li/Ca shell , with values ranging from ca. 10 m 3 s -1 in fall and winter to ca. 35 m 3 s -1 in June (long term average). Could these variations in river discharge induce large changes in the flux of suspended particles? [START_REF] Gislason | Direct evidence of the feedback between climate and weathering[END_REF] described and quantified a direct relationship between river discharge and mechanical weathering (expressed as suspended inorganic material (SIM) flux) in 8 river catchments in northeast Iceland.

Depending on which of their 8 discharge-SIM flux equations is used for calculation, the 350% seasonal increase in river discharge would induce a 350 to 4900% increase in SIM flux over a year. Therefore, high loads of suspended basaltic particles probably flow to the sea with Icelandic rivers as soon as the snow melts, reaching a peak roughly at the same time as the et al., 2006) in comparison to seawater (δ 7 Li seawater = 32‰; [START_REF] Huh | Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget[END_REF]. If indeed Li incorporation in shells is linked to Li-rich particle inputs by rivers, then shell aragonite must have a δ 7 Li several per mil lighter than seawater.

Conclusions

Lithium is likely incorporated in A. islandica aragonitic shells as lithium carbonate Li 2 CO 3 , i.e. Li + substitutes for Ca 2+ at the site of calcification in the extrapallial fluid. Several explanations could account for the observed seasonal variations in Li/Ca ratio in shells:

1 -The significant positive relationship found between δ 18 O shell -derived temperature and Li/Ca shell suggests that seasonal Li/Ca shell variations could be linked to increasing solubility of Li 2 CO 3 with decreasing temperature in the extrapallial fluid. However, the strength of this relationship is so weak that temperature-dependant solubility of Plexiglas cube and embedding in metal-epoxy resin, left valves were cut along the axis of maximum growth using a low-speed saw. c) Two "mirroring" sections were cut in each shell, one for isotopic analyses (thick section "A") and the other one for Li/Ca determination (thick section "B"). 

  ranged from 1.8 to 4.4°C (mean [2002-2006] = 3.1°C; σ = 1.0°C; Table2). Mean annual minima in shells A55 (3.0°C) and A56 (3.3°C) were not significantly different from each other (Mann-Whitney U = 8.5, n 1 = n 2 = 5, p > 0.05). Annual maximum temperatures recorded by the shells ranged from 7.7 to 9.9°C (mean [2002-2005] = 8.5°C; σ = 0.8°C; Table

  found a relationship between air temperature and chemical weathering rate in 8 northeastern Iceland river catchments. Air temperature in Iceland starts increasing in March and reaches maxima in July. Intensity of chemical weathering may therefore follow the same general pattern as Li/Ca shell . Pogge von Strandmann et al. (2006) analyzed the chemical composition of 25 Icelandic rivers in September 2003 and August 2005 and found an average dissolved Li concentration of 87.5

Fig. 2 .

 2 Fig. 2. Preparation of Arctica islandica shells for geochemical analyses. a) Right valve

Fig. 3 .

 3 Fig. 3. Temporal variations (2000-2006) of Li/Ca shell ratio (grey circles), δ 18 O shell (black triangles; inverted scale), and δ 18 O shell -derived seawater temperature (T δ18O , grey area)

Fig. 4 .

 4 Fig. 4. Correlations between δ 18 O shell -derived seawater temperature (T δ18O ) and Li/Ca shell

Fig. 6 .

 6 Fig. 6. Long term smoothed daily averages of Sandá River discharge (data obtained
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  δ18O is seawater temperature (in °C) reconstructed from δ 18 O shell , and δ 18 O shell and δ 18 O water are the oxygen isotope composition of aragonite and water expressed in ‰ relative to the VPDB and VSMOW standards respectively. We used an average δ 18 O water value of -0.55 ‰ VSMOW. In order to estimate the uncertainty on T δ18O , i.e. half the difference between IRMS + δ 18 O water max. -δ 18 O water min. ) / 2 (Eq. 2)

	Uncertainty = 4.34 × (2 ε	
	equation translates to:	
	T δ18O = 19.43 -4.34 (δ 18 O shell -δ 18 O water )	(Eq. 1)
	where T upper and lower bounds, we applied the following formula using (1) the uncertainty in
	δ 18 O shell value given by IR-MS (ε IRMS = ±0.07 ‰), and (2) the estimated range of δ 18 O water
	(min. = -0.7 ‰ ; max. = -0.4 ‰):	
	12	

  3 to 1.6-fold increase of Li/Ca in biogenic carbonates. Given that the maximum Li/Ca river ratio measured by Pogge von Strandmann et al. (2006) was only 1.1fold higher than Li/Ca seawater , seasonal variations of basalt chemical weathering and dissolved Li flux can hardly explain the full variability of Li/Ca shell in A. islandica.
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  Li/Ca shell annual maximum. These river particles have a highLi content (several ppm;[START_REF] Pogge Von Strandmann | Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain[END_REF], ca. 1 order of magnitude larger than in shells. Although the freshwater inputs likely flow as a thin surface layer (ca. 10 meters thickness; cf.Assthorsson, 1990;[START_REF] Andrews | Late Holocene (ca. 4 ka) marine and terrestrial environmental change in Reykjarfjördur, north Iceland: climate and/or settlement?[END_REF], it is likely that suspended material carried by rivers can cross the halocline and settle on the seafloor, thus modifying the chemistry of bottom waters.Consequently, these Li-rich particles may significantly increase Li/Ca shell , either directly (if ingested, transferred to the internal fluids, and then incorporated within the shell during biomineralization) or indirectly if they weather after deposition on the seafloor. This hypothesis could be tested in further studies through analyses of the lithium isotope composition of A. islandica shells. SIM originating from the weathering of basaltic material has a very low δ 7 Li value (δ 7 Li SIM = -1.3 to 7.5‰ in Icelandic rivers; Pogge von Strandmann

Table 1 .

 1 Li 2 CO 3 cannot possibly be the main factor controlling Li/Ca shell variations; 2 -Given the strong and significant positive relationship found between Li/Ca shell and microgrowth increment width, Li/Ca shell may partly be controlled by variations in calcification rate. As this rate is also partly controlled by temperature, it is difficult to make conclusions about the exact importance of Li 2 CO 3 solubility in Li/Ca shell variations; 3 -Sandá river discharge and Li/Ca shell presented an intriguing similarity in their seasonal variations. As soon as snow melts in spring, mechanical weathering of basaltic rocks gains intensity due to the increased river discharge, leading to a massive flow of Li-rich silicate particles into the ocean. This phenomenon reaches a peak at the same time as Li/Ca shell . We therefore suggest that this massive input of Li could be trapped in the shell, thus impacting Li/Ca shell .If indeed Li/Ca shell is mainly controlled by calcification rate, then this ratio may be useful to address seasonal variations in growth rate of bivalve species in which daily growth increments and lines are not easily discernable. In turn, abrupt decreases of Li/Ca shell may be helpful to identify growth retardations, for instance related to the occurrence of toxic phytoplankton blooms in coastal ecosystems. Alternatively, if Li/Ca shell in A. islandica is controlled by river inputs of Li-rich silicate particles, it may then be used a proxy for the intensity of mechanical weathering of Icelandic basaltic rocks. This could have exciting perspectives, e.g. to get a better insight about the frequency and intensity of past jökulhlaups (subglacial outburst floods). It may also be interesting to analyze the geochemical composition of recent A. islandica shells from the south-east coast of Iceland, where a huge jökulhlaup flowed under the Vatnajökull glacier in 1996 because of the subglacial eruption of the Grímsvötn Volcano. In any event, it is clear from our work that further studies, including δ 7 Li shell analyses and experiments under controlled conditions, are needed to better understand Li/Ca shell variations in bivalve shells and to determine if this could be a useful proxy for paleoecological reconstructions. LA-ICP-MS operating conditions.

			TABLES	
	Laser:		ICP-MS:	
	New Wave Research UP-213	Agilent 7500ce	
	Crystal	Nd:YAG	RF power	1200 W
	Wavelength	213 nm	Plasma gas flow	15 L min -1
	Laser mode	Q-switched	Auxiliary gas flow	1 L min -1
	Laser power	0.2 mJ	Carrier gas flow	0.65 L min -1
	Repetition rate 10 Hz	Optional gas flow	75% He
	Pit diameter	80 µm	Acquisition mode	Pulse counting
	Ablation time	60 s	Acquisition time	120 s
	Background	60 s	Dwell time	10 ms

Table 2 .

 2 Annual amplitudes of δ 18 O shell and T δ18O of specimens A55 and A56 over the period 2002-2006. T δ18O were calculated using Eq. (1) using a mean δ 18 O water value of -0.55 ‰. The uncertainty in temperature reconstruction from δ 18 O shell is ± 0.95 °C.

	Year	Shell	δ 18 O shell (‰VPDB) Min. Max.	T δ18O (± 0.95°C) Min. Max.
	2002	A55 A56	2.12 2.08	3.51 3.23	1.8 3.0	7.8 8.0
	2003	A55 A56	2.06 1.93	3.29 2.92	2.8 4.4	8.1 8.7
	2004	A55 A56	2.15 1.73	3.46 3.21	2.0 3.1	7.7 9.5
	2005	A55 A56	1.64 1.96	3.05 3.45	3.8 2.1	9.9 8.5
	2006	A55 A56	--	2.92 2.98	4.4 4.1	--

Table 3 .

 3 Annual minima, maxima, and amplitude of Li/Ca shell values of specimens A55 and A56 over the period 2001-2005. Map of northeastern Iceland showing Langanes Peninsula between Þistilfjörður and Bakkaflói. Arctica islandica specimens were collected by dredging in Þistilfjörður at 30 m water-depth (black dot). Temperature and salinity data used in this paper were measured off Langanes Peninsula by the Marine Research Institute of Reykjavik (CTD station LA1, 20 m water depth, black cross). Seasonality of freshwater inputs in Þistilfjörður were assessed using river discharge data collected at Sandá River gauging station (black square).

	Year	Shell	Min. Li/Ca shell	Max. Li/Ca shell	Annual amplitude
	2001	A55 A56	7.26 -	9.40 -	2.13 -
	2002	A55 A56	7.29 7.64	9.29 10.42	2.01 2.77
	2003	A55 A56	7.00 7.50	9.08 10.26	2.08 2.76
	2004	A55 A56	7.08 7.10	9.39 10.03	2.32 2.92
	2005	A55 A56	7.15 7.50	9.30 11.12	2.15 3.63
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