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Self-similarity driven color demosaicking
Antoni Buades, Bartomeu Coll, Jean-Michel Morel and Catalina Sbert

Abstract—Demosaicking is the process by which from a matrix
of colored pixels measuring only one color component per pixel,
red, green or blue, one can infer a whole color information at
each pixel. This inference requires a deep understanding of the
interaction between colors, and the involvement of image local
geometry. Although quite successful in making such inferences
with very small relative error, state of the art demosaicking
methods fail when the local geometry cannot be inferred from
the neighboring pixels. In such a case, which occurs when thin
structures or fine periodic patterns were present in the original,
state of the art methods can create disturbing artifacts, known
as zipper effect, blur, and color spots. The aim of this paper is to
show that these artifacts can be avoided by involving the image
self-similarity to infer missing colors. Detailed experiments show
that a satisfactory solution can be found, even for the most critical
cases. Extensive comparisons with state of the art algorithms will
be performed on two different classic image databases.

I. I NTRODUCTION

Digital color images are usually represented by three color
values at each pixel. There exist cameras performing three
spectral measurements per pixel. Such cameras split the light
and project it onto three distinct CCD’s or CMOS. But, each
one of these arrays requires its proper driving electronics, and
the resulting three color images have to be registered accu-
rately. These additional requirements make such acquisition
systems quite expensive. For this reason, most cameras use a
single matrix measuring a single color per pixel. The other
two colors must be interpolated from the neighboring pixels.
This interpolation is called demosaicking.

The selected color configuration of the sensor usually fol-
lows the Bayer color filter array (which we shall call Bayer
CFA, and abbreviate in CFA) [1]. Out of a group of four pixels,
two are green (in quincunx), one is red and one is blue. The
Bayer CFA provides equal horizontal and vertical sampling
frequency for each color. Its sub-sampling factor is 4 for the
red and blue, and2 for the green [2]. This paper treats the
Bayer CFA configuration, but the new-proposed algorithm is
easily adapted to other CFA configurations.

A comprehensive review of demosaicking algorithms is
available in [3], [4], [5]. The basic observation used in these
algorithms is that in the Bayer CFA configuration, a higher
resolution is obtained in the interpolated green channel. For
this reason, most methods first interpolate the green channel
and then use it to drive the interpolation of the red and blue
channels. The first algorithms proposing this strategy were
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Cok [6] and Hibbard et al. [7]. The first one interpolates the
green channel by bi-linear interpolation while the second one
uses anisotropic interpolation. The bi-linear interpolation is
not applied to each color separately. Colors are coupled by
interpolating the ratios (or differences) of the red and blue
channels to the green one. This conditional interpolation adds
the high frequencies of the green to the low frequencies of
the red and blue channels. Thus, the quality of the green
interpolation is crucial, and all posterior algorithms focus on
improving the quality of the green channel interpolation.

Conversely, the red and blue channels can be used for the
green channel interpolation. Hamilton-Adams [8] proposedto
correct the evaluation of the gradient based interpolationof
the green by taking into account the second order derivatives
of the sub-sampled red (blue) channel, thus, taking advantage
of the inter-channel correlation. This algorithm measureshow
flat the image is in the horizontal and vertical direction and
then interpolates either vertically or horizontally. The use of
the high frequencies of the sub-sampled red and blue channels
to interpolate the green channel is a key idea that has been
incorporated by all advanced algorithms.

Thus, recent algorithms have two clearly differentiated
steps. The first step reconstructs the green channel by using
the whole color information of the CFA mosaic image, usually
following the Hamilton-Adams [8] observations. The second
step interpolates the red and blue channels by combining their
low frequencies with the high frequencies obtained for the
green, as proposed by Cok [6]. Both steps suppose that the
three channels are highly correlated.

Most recently proposed algorithms modify the Hamilton-
Adams strategy and combine two directional averages by
selecting for each point the interpolated version with fewer
artifacts. In contrast with the Hamilton-Adams algorithm,the
decision between a horizontal or a vertical interpolation is
takena posteriori by looking at the directionally interpolated
images. For example Hirakawa et al. [9] interpolate vertically
and horizontally the image using the Hamilton-Adams strat-
egy. Once the color image has been interpolated vertically and
horizontally, they select at each pixel between the horizontally
and the vertically interpolated values by using a color image
homogeneity measure.

Menon et al. [10] use a similar strategy, but they choose
between the horizontal or vertical interpolation by looking
only at the green Hamilton-Adams interpolated channel. In
order to select between the two directional averages at a
given pixel, they compare the smoothness of the chromatic
components obtained by making the differencesred − green
and blue − green at pixels where red or blue values are
available. More precisely, in the horizontally interpolated
image the horizontal derivatives of the differencered−green
are computed (resp.blue − green). The direction with lower
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derivatives around the reference pixel is selected. After the
green channel has been interpolated in this way, the red
and blue differences with the green channel are bi-linearly
interpolated, following the Cok strategy.

In Zhang et al. [11], the chromatic componentsR−G and
B−G of the vertically and horizontally interpolated images are
filtered by a LMMSE algorithm. LMMSE algorithm is a linear
algorithm which averages each pixel with its neighboring ones
(with weights wi) and finally correcting the obtained value
depending on the variance of the pixels that gave performed
average (using the same weightswi) . The filtered chromatic
components by LMMSE are combined at each pixel depending
on these variances. Thus, the weight of the vertical (resp.
horizontal) interpolated value depends on the variance of the
chromatic components of the vertically (resp. horizontally)
interpolated image. Recently, Paliy et al. [12] modified the
Zhang et al. algorithm by introducing a new filtering strategy,
the LPA-ICI filtering [13]. A similar approach was presentedin
[14], where the variance of color differences is also used, but to
a priori decide between the horizontal or vertical interpolation.

Iterative algorithms have been proposed in [15], [16]. These
algorithms start with an initial condition and, following in a
wide sense the above commented strategies, iteratively force
the three color channels to have the same high frequencies.
Li [15] copies the second derivatives, while Gunturk et
al. propose an algorithm in the frequency domain. Visually
inspired algorithms have also been proposed in [2], [17].
These algorithms combine the three channels to obtain a
luminance image instead of interpolating the green channel.
This luminance image is obtained by combining the low and
high frequencies of the mosaic image. Then, the three channels
are reconstructed by using a bi-linear interpolation to the
differences with the luminance image.

All methods fail when the local geometry cannot be inferred
from the neighboring pixels. In such a case, which occurs (e.g.)
when thin structures or fine periodic patterns were present in
the original, local methods can create interpolation artifacts:
1) aliasing in the red and blue channels; 2) erroneously
interpolated structures, 3) the so calledzipper effect which
is defined in [18] as the creation of isolated and contrasted
points and 4) color spots.

The demosaicking method discussed in the present paper
will be, as all above methods, divided in two steps. In the first
self-similarity non local step the geometry is reconstructed,
and in the second step the colors updated by transferring
information from the green to the red and blue channels. The
second step, that we callchrominance regularity somehow
summarizes the observations underlying anterior algorithms.
But the first one, that we callself-similarity driven, is based
on a non-local estimate taking advantage of all image self-
similarities. It is crucial for the retrieval of fine geometric
structure close to the Nyquist frequency.

Similar self-similarity driven processes were introducedin
[19] for the scope of texture synthesis and later in [20], [21] as
a denoising algorithm (NL-means for non-local means.) The
only previous non local demosaicking attempt is Mairal et
al. [22]. We shall comment on this algorithm in the sequel.
The new demosaicking algorithm proposed here will be called

Self-similarity Driven Demosaicking (SDD) because of the
emphasis on the new way to perform a (single image) super-
resolution in the first step. The method used in this paper uses
an essential feature of many super-resolution methods, namely
to transport known samples to places where samples are
missing. In general, super-resolution involves several images
that are first co-registered, and then fused. In our case, there
is an internal registration between patches of the same image,
leading to fill in missing color values. Thus, the process is
essentially the same as in many classical super-resolution
algorithms, even though it involves a single image.

The present study focuses on the demosaicking by itself.
Let it be mentioned that demosaicking can be coupled with
denoising [23], [24], [25] and that movie demosaicking has
also been recently addressed in [26], [27], [28]. As pointedout
by an anonymous referee who stressed another interpretation
of the method proposed here: “The basic idea of the paper is
to first roughly interpolate the missing color samples and then
correct the interpolation errors by using the non-local mean
filtering. Actually, a very similar idea was used in [25]. In
[25], the CFA image is first initially interpolated by Hamilton-
Adams filters and the interpolation error is modeled as noise.
Then the interpolation noise is suppressed by using the MMSE
(minimum mean squared-error estimation) technique. Viewed
in that perspective, the main difference between [25] and
the proposed method in this paper is the denoising strategy:
MMSE in [25] and non-local means here.

The rest of the paper is organized as follows. Section II
gives a brief PDE interpretation of a main assumption of all
state of the art algorithms, namely the anisotropic regularity
of chromatic components. This interpretation will be involved
to justify the use of a median filter in the chromatic regularity
step.

The main step, namely the self-similarity driven demosaick-
ing (SDD) is described in Sections IV and IV-F. Section V
is dedicated to extensive quantitative and qualitative perfor-
mance evaluation of state of the art algorithms and of SDD.
Two databases, Kodak and IMAX, will be involved in these
comparisons for reasons that will be commented upon in the
conclusive section VI.

II. A PARTIAL DIFFERENTIAL INTERPRETATION

The partial differential interpretation will be given in a
continuous framework. The partial derivative∂u

∂x
(x) is the

derivative in thex direction atx := (x, y). In the discrete
framework this derivative at a pixelp = (i, j) is equivalent
to the differenceu(i + 1, j) − u(i, j). The second order
partial derivative ∂2u

∂x2 corresponds to the discrete difference
u(i+1, j)+u(i−1, j)−2u(i, j) centered at the pixelp = (i, j).
The operators we are interested in are the directional second
order derivatives

∂2
νu(x) :=

∂2

∂t2
[u(x + tν)](0),

namely the second derivative ofu at x in the ν direction. We
denote byDu = (∂u

∂x
, ∂u

∂y
) the image gradient. We shall need

the following results [29]:
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Theorem 1: Let u be aC2 function. Then the directional
second derivative ofu in the directionν of least variation of
u at x satisfiesν = Du⊥

|Du| and

∂2
νu(x) = |Du|curv(u)(x) :=

uxxu2
y − 2uxyuxuy + uyyu2

y

u2
x + u2

y

(x)

The termcurv(u) defined by the above formula is inter-
preted as the curvature of the image level lines. The directional
second derivative|Du|curv(u) is small in two cases: either
when the gradient is small, or when the gradient is large (on
an edge), but the edge is straight, in which case its curvature
vanishes. The next crucial theorem explains why applying to
an image a median filter is equivalent to enforce a small image
second derivative in its direction of least variation (see [29]).

Theorem 2: If u is aC3 function, then at each pointx where
Du(x) 6= 0,

medB(x,h)u − u(x) =
h2

6
|Du(x)|curv(u)(x) + o(h2)

=
h2

6
∂2

νu(x) + o(h2).

In other terms, applying tou a median filter on a small ball
B(x, h) is equivalent to a step of the mean curvature evolution
equation. This process reduces the directional laplacian of u in
its least variation direction. This directional laplacianis zero if
and only ifu is asymptotically equivalent to its median value.
This fact will be used in the sequel for the image chromatic
components(U, V ).

III. C HROMATIC REGULARITY IN PARTIAL DIFFERENTIAL

TERMS

The Hamilton-Adams strategy [8] contains a key observa-
tion describing the relations between the green channel andthe
other ones. In this algorithm the evaluation of the gradientat a
missing green pixel is corrected by the second order derivatives
of the red (blue) channel. More precisely, to estimate the green
value at a pixelp = (i, j), whereu(i, j) is known,u ∈ {b, r},
the method computes the following magnitudes, wherev, h
mean “vertical”, “horizontal” (see Fig. 1):

Dh = |g(i, j−1)−g(i, j+1)|+|2u(i, j)−u(i, j−2)−u(i, j+2)|,

Dv = |g(i−1, j)−g(i+1, j)|+|2u(i, j)−u(i−2, j)−u(i+2, j)|.

These magnitudes measure how flat the image is in the vertical
and horizontal direction. IfDh < Dv the new green value is
obtained by a horizontal interpolation

g(i, j) = (g(i − 1, j) + g(i + 1, j))/2

+(2u(i, j) − u(i − 2, j) − u(i + 2, j))/4.

If Dv < Dh, a vertical interpolation is applied,

g(i, j) = (g(i, j − 1) + g(i, j + 1))/2

+(2u(i, j) − u(i, j − 2) − u(i, j + 2))/4.

In the case that neither the horizontal nor vertical direction
prevails, the new green value at pixelp = (i, j) is computed
as the average of the two previous values. Fig. 1 shows the
geometric situation. The aim is to interpolate the green value at

Figure 1. Hamilton-Adams scheme for the interpolation of a green value at
a red position.

pixel 5. First, a horizontal and a vertical oscillation measure
are computed. This oscillation measure combines two color
channels by adding the absolute value of the discrete green
gradient to the absolute value of the red (or blue) discrete
second derivative. This combination of estimates based on
different colors is necessary. Indeed, at the red pixel 5 only
red pixels are available for computing a horizontal or a vertical
second derivative. But since the neighboring pixels are green, a
vertical and a horizontal gradient can be computed with green
pixels.

This method results in the green channel inheriting the high
frequency (directional Laplacian) of the sub-sampled red or
blue channels. Indeed, rewriting for example the horizontal
interpolation, we get

g(i, j)−
g(i + 1, j) + g(i − 1, j)

2
= −

u(i − 2, j) − 2u(i, j) + u(i + 2, j)

4
.

(1)
Interpreting the above finite differences as differential opera-
tors and using Theorem 1, this can be rewritten as

Chrominance regularity assumption
Let u = r or b. Then

|D(g − u)|curv(g − u) = 0.

In other terms, g − u has a zero second derivative in its least
variation direction.

Of course the least variation is only computed between the
horizontal and vertical direction. Now, the underlying smooth-
ness assumption has no reason to give a privilege to horizontal
and vertical directions. As mentioned in the introduction,the
Hirakawa et al. [9], Chung et al. [14], Menon et al. [10], and
Zhang et al. [11] algorithms all involve the above step in that
they try to select a least variation interpolation direction for
the chromatic components.

IV. SELF-SIMILARITY DRIVEN COLOR SUPER-RESOLUTION

All above mentioned algorithms do not involve the recent
progress in image structure implicit in the Efros-Leung algo-
rithm. This algorithm takes advantage of image self-similarity
to recreate textures from small samples. By comparing the im-
age with itself, it recovers missing values by transportingthem
from places where they are known. The assumption underlying
the proposed demosaicing algorithm is the following:
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Figure 2. The pixel q3 in the hat has the same noisy grey level as
the reference pixelp. However, a comparison of the patches aroundp

andq3 shows that these pixels have different models, while the pixels
q1 andq2 obey the same model asp. Thus, patch comparison allows
one to infer the color model at a given pixel by using information
contained far enough in the image. This key image property was first
used by Efros and Leung [19] and opens the way to a self-similarity
driven demosaicking.

Color information present in the raw image is redundant, and
can be transported from pixels where it is known to pixels
where it is missing based on local similarities.

A similar principle has already be briefly tested for
demosaicking. Mairal et al. [22] proposed to adapt to
demosaicking a denoising and inpainting algorithm based on
a sparse representation obtained from a learned dictionaryof
image patches. They obtained excellent demosaicking results
on some examples by this completely non-local strategy. The
method is nonetheless rather a demonstration of the power
of K-SVD classification and sparse representations, than a
realistic demosaicking algorithm. Indeed, the dictionarymust
be learned for each image.

The Efros-Leung method cannot be applied to demosaicking
without a strong revision. The first one is that a careful
interpolation must proceed at the first steps with averages,as
was proposed in the NL-means algorithm. Thus, we shall start
with a short explanation of this denoising algorithm.

A. Non local denoising (NL-means algorithm)

The NL-means algorithm [20], [30] denoises a pixelx by
averaging the values of all pixels whose Gaussian neighbor-
hood looks like the neighborhood ofx.

NL[u](x) =
1

C(x)

∫
Ω

e−
1

h2

R

R2 Ga(t)|u(x+t)−u(y+t)|2 dt u(y) dy,

(2)
wherex ∈ Ω, C(x) =

∫
Ω

e−
1

h2

R

R2 Ga(t)|u(x+t)−u(y+t)|2 dtdy
is a normalizing constant,Ga is a Gaussian kernel andh
acts as a filtering parameter. The parameterh controls the
decay of the exponential function and therefore the decay of
the weights as a function of the Euclidean distances. NL-
means is a generalized neighborhood filter. Neighborhood
filters restore a pixel by taking an average of the values of
neighboring pixels. These filters where invented and reinvented
several times in image processing under various names: Lee
[31] (sigma-filters), Yaroslavsky [32] (neighborhood filters),

Figure 3. The right-hand side of each pair shows the weight
distribution used to estimate the central pixel of the left image by the
NL-means algorithm. White pixels are similar to the central pixel of
the left-hand image and have a high weight in the average.

Smith and Brady (SUSAN filter) [33], and more recently
Tomasi and Manduchi [34] (bilateral filter). Neighborhood
filters perform well in presence of moderate noise, but the
comparison of the grey level or color values at a single
pixel is no more robust when these values get noisier. This
drawback is overcome by the non-local-means algorithm, that
not only compares the grey level or color in a single point
but the whole patch around them. This patch comparison
permits a reliable similarity measure involving pixels which
can fall far away from each other (see Fig. 2). This permits
a non-local strategy and the systematic use of all possible
self-predictions the image can provide, in the spirit of Efros
and Leung [19]. The patch comparison also makes weight
distributions in the mean computing the denoised value adapt
to the local geometry of the image, as shown in Fig. 3. For a
more exhaustive description of NL-means and neighborhood
filters and a comparison with other denoising algorithms we
refer to [20], [30].

B. Monochromatic self-similarity driven super-resolution

As pointed out in [27], super-resolution and demosaicking
are two instances of a same problem: Both of them address the
aliasing issue. Letu denote an aliased grey level image and
assume we want to duplicate its number of pixels by inserting
a quincunx grid. This is exactly the situation we are in, since
we wish to interpolate the green channel in the CFA mask.
Let Ωu denote the subset of the image grid where the values
of u are available. A first move, common to most algorithms,
is to interpolate the missing pixels by a classical algorithm,
be it bi-linear, median or anisotropic interpolation. Thisyields
a first estimateu0. This first rough approximation is blurry
and can have erroneous structures and artifacts. In order to
correct the interpolated values, a variant of the NL-means
algorithm can be applied, that averagesonly pixels belonging
to Ωu and transports this averageonly to pixels not belonging
to Ωu (unknown values). This conjunction of averaging and
transportation is in essence what is proposed here. The window
distances are computed on the initial estimateu0 (thus using
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the interpolated values). The adaptation of formula (2) is

NL[u](x) =
1

C(x)

∫
Ωu

e−
1

h2

R

R2 Ga(t)|u0(x+t)−u0(y+t)|2 dt u(y) dy,

(3)
wherex is the new-interpolated pixel (x /∈ Ωu) and C(x) is
the normalization factor.

C. A self-similarity driven strategy

The essential difference with NL-means is that the final
aim is not to denoise, but instead toinfer high frequency
information by transportation from known pixels to unknown
pixels. In the denoising case averaging pixels is a way to
reduce oscillations due to noise, and the value of the resolution
parameterh depends on the noise standard deviation. In our
case instead, the value ofh should tend to zero, since we do
not want to reduce the oscillations but to transfer or copy the
known values to pixels where they are unknown.

If the initial guessu0 has several artifacts or erroneous
structures (which it is usually the case), then looking for
similar pixels and copying their grey level values can lead
to the reinforcement of these artifacts. For this reason, the
algorithm is coarse to fine. It first reconstructs the large scale
structures and iteratively refines the search by reducing the
value ofh. This amounts to applying the formula (3) iteratively
with a decreasing sequence of values ofh. Whenh is large
the interpolated values are blurry but reliable, and whenh is
small the algorithm propagates values rather than averaging
them.

Figure 4 displays the application of this algorithm to the in-
terpolation of the missing green pixels of an image. We display
this application for various sequences with decreasing values
of h. This experiment shows that an iterative procedure is
necessary to reconstruct the erroneous interpolated structures
of the initial condition. Only when the initial smoothing is
strong enough, forh = 32 or 64, the global structure domi-
nates the erroneous local one. This reconstruction is compared
to the one performed by classical algorithms which are often
used to interpolate the green channel, namely the bi-linear
interpolation, the median interpolation and the anisotropic
interpolation.

D. Adaptation to the mosaicked image

The previous one-image self-similarity driven super-
resolution method is easily adapted to the incomplete color
image. Each channel is restored by averaging the original CFA
values, the window distances being computed on the initial
color imageu0. The averaging process reads

NL[u](x) =
1

Cu(x)

∫
Ωu

e−
1

h2

R

R2 Ga(t)‖u0(x+t)−u0(y+t)‖2 dt u(y) dy,

(4)
with u ∈ {r, g, b}, x /∈ Ωu and

Cu(x) =

∫
Ωu

e−
1

h2

R

R2 Ga(t)‖u0(x+t)−u0(y+t)‖2 dtdy.

The missing values of each channel at a pointx are interpo-
lated by averaging original CFA values of the same channel

Figure 4. Gray interpolation experiment for various decreasing
values of the parameterh. From left to right: initial image, bi-
linear interpolation, median based interpolation, anisotropic interpo-
lation and the result of the similarity driven demosaicking algorithm
for the decreasing sequences of values forh, {4, 1}, {16, 4, 1},
{32, 16, 4, 1} and {64, 32, 16, 4, 1}. The initial condition is always
given by the median.

with a similar color Gaussian neighborhood inu0. In other
terms, color inter-correlation is enforced by computing the
distance in the three-channel image. As mentioned before, in
order to gradually correct the erroneous structures and artifacts
of u0 a coarse to fine strategy that refines at each step the
similarity search by reducing the value ofh is crucial.

We should note that the similarity driven demosaicking
algorithm might reduce some small oscillations caused by
noise. This reduction is not drastic, since first a small value
of h ends the process, meaning that in the final iteration only
pixels having extremely similar windows around are averaged,
and second denoising is not performed for known colors.

E. Implementation details

For computational purposes the search for similar pixels is
restricted to asearch window with size(2∗S+1)×(2∗S+1)
around each pixel. Even if many similar pixels can be found
far away, there is usually enough information kept by taking
a large search window. In all experiments a15 × 15 pixels
search window was used.

The window comparison is performed by a flat Euclidean
distance on a3 × 3 neighborhood. This window has shown
to be robust (27 values) and small enough to take care of
details and fine structure. When dealing with grey image super-
resolution or noisy images, the size of the window should
increase to have a robust comparison. This is not considered
in this paper, that deals with good quality color images.

The gaussian kernelGa introduced in the general algorithm
formulation (4) is only necessary as the size of the window
increases. With the small3×3 window used here, the gaussian
weight is unnecessary. Thus, the implemented algorithm is
just a simplest discrete version of formula (4). It computesa
weighted sum of pixels in a15× 15 neighborhood around the
reference pixel. The discrete formula is

NL[u](p) =
1

Cu(p)

∑
q∈Ωu

e
− 1

h2

P

t∈W
‖u0(p+t)−u0(q+t)‖2

u(q),

(5)
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with u ∈ {r, g, b}, p /∈ Ωu and

Cu(p) =
∑

q∈Ωu

e−
1

h2

P

t∈W
‖u0(p+t)−u0(q+t)‖2

,

whereW is the3 × 3 discrete window centered at(0, 0).

F. Implementing chromatic regularity

In contrast with all mentioned algorithms the similarity
driven algorithm does not involve at this point any color
regularization step. Indeed, it merely transports color values
from known to unknown positions. In case of error, this
involves a high risk of impulse noise. Typically, impulse
noise can be corrected by a very local (3 × 3 median filter),
which will be added as a second step to SDD. Theorems
1 and 2 explain why this second step amounts to applying
the Hamilton-Adams assumption on chrominance regularity.
But, since the similarity driven super-resolution step fills in
all color channels, the chromatic regularity assumption can be
applied to the chrominance(U, V ) instead of the differences
red − green andblue − green. Recall that

Y = ar r + ag g + ab b, U = r − Y, V = b − Y,

with ar = 0.299, ag = 0.587 andab = 0.114. Notice that the
green dominates in this linear combination. This coordinate
system aims at separating the geometric information contained
in Y from the chromatic informationU, V , and gives more
importance to the green channel.

Chromatic regularity Step (CR)

1) Decompose the color image into the YUV components.
2) Perform a median of the coordinatesU andV in a 3×

3 neighborhood obtainingU0 and V0. This median is
applied to all the pixels independently of the CFA mask.

3) RecomposeY U0V0 into the RGB components.
4) Put back the original values of the CFA mask at pixels

where they are known.

G. The proposed demosaicking algorithm

The final method alternates each iteration of the self-
similarity driven algorithm with the chromatic regularitystep
CR(u). This final strategy can be algorithmically described
by the following pseudo-code which takes as input the values
of the CFA mask,I,

u0 <- Initial_Interpolation(I);

for h in {16,4,1} do {
u <- NL_h(u0);
u <- CR(u);
u0 <- u;

}

Output <- u;

V. EXPERIMENTS

This section is devoted to a detailed performance compari-
son. Experiments are performed on simulated mosaic images
from the Kodak collection [35], which is widely used for
that purpose (see Figure 5). As requested by several referees,
we also incorporate experiments with the IMAX collection
1 recently introduced in [5] (see Figure 6). Images in both
databases take integer color values between 0 and 255.

Images in the Kodak collection have fewer color saturated
regions, but are challenging by their Nyquist frequency details,
that threaten strong aliasing. The IMAX database has many
more saturated colors and edges separating colored regions.
This strong difference is illustrated by the following statistics:
The mean saturation of the Kodak database is15 while for the
IMAX database it is30. The mean value of the gradient of the
chromatic components is1.75 in the Kodak database while it
is 6.21 in IMAX. At a first sight images in the IMAX database
seem more natural than images in the Kodak database.

We compared the best algorithms according to the three
reviews [4], [3], [5]: Hamilton-Adams, Hirakawa et al., Gun-
turk et al., Li et al., Chung et al., Menon et al., Zhang
et al., and Paliy et al. Each algorithm in the comparative
experiments is used with its default parameters as given in the
corresponding papers. We implemented all algorithms, except
for the Hirakawa et al., Zhang et al. and Paliy et al. for which
a Matlab code was downloaded from their respective web
pages2 3 4. For the proposed algorithm SDD the very same
value of the parameters was also fixed once and for all: The
color comparison window is3 × 3 pixels, the search window
zone is15 × 15 pixels, and the decreasing sequence forh
is h = {16, 4, 1}. The Hamilton-Adams algorithm was used
as initial guessu0 for the SDD algorithm. Most compared
algorithms actually also initialize with Hamilton-Adams,or
equivalently start by selecting a direction interpolationthat is
an improvement of Hamilton-Adams. In other terms, all com-
pared algorithms improve directly or indirectly on Hamilton-
Adams. Thus, these respective improvements are the main
object of the comparison. Probably the most striking feature
is that this improvement is effective on the Kodak database
but not at all on the IMAX database.

A brief summary of the results would be as follows. Zhang
et al. and Paliy et al. are confirmed as the best algorithms in
terms of mean square error for the Kodak basis. Paliy et al.
is slightly better than Zhang et al. for the Kodak database.
SDD and Menon et al. are slightly behind in terms of mean
square error. From the visual viewpoint en Kodak, however,
there is not much difference between Menon, SDD, Paliy, and
Zhang. But, Paliy and SDD look slightly better, having a bit
less zipper effect.

In Li et al. [5] review, Paliy et al. is pointed out as the best
algorithm on Kodak but it is concluded that, in terms of mean

1We use 400 x 400 pieces of IMAX images which were kindly provided
by X. Li

2Hirakawa et al. algorithm downloaded from http://www.csee.wvu.edu/̃
xinl/source.html

3Zhang et al. algorithm downloaded from http://www4.comp.polyu.edu.hk/
˜cslzhang/

4Paliy et al. algorithm dowloaded from http://www.cs.tut.fi/˜ lasip/
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Figure 5. Ten images of the Kodak collection [35]. Critical details
extracted from these images will be used for comparative testing.
They contain challenging details close to the Nyquist frequency.

Figure 6. Twelve images of the IMAX collection. They have much
more color contrast than the Kodak database. Critical details extracted
from these images will be used for comparative testing.

square error, none of the algorithms that attempted to improve
the original Hamilton-Adams actually works satisfactorily on
IMAX ! Even worse, the best mean square error would be
as good as ever by interpolating independently each channel!
We shall see that on the IMAX database, SDD and Hamilton-
Adams are much better in MSE, but that, as far as zipper effect
is concerned, Hamilton-Adams does not perform well.

Creation of color artifacts

Natural scenes contain large grey regions. False colors can
be created in these zones by demosaicking algorithms. An
excellent way to evaluate and quantify this artifact is to apply
the algorithms to completely grey images. For that purpose,the
images of Fig. 5 were converted into grey images. The best
demosaicking result for the grey image would be obtained
by simply settingr = g = b, one of these three values
being known at each pixel. Thus, every deviation from grey is
actually an error. Algorithms creating colors from grey incur
a high risk of creating wrong color spots. To evaluate this risk
for all algorithms, the mean saturation of the demosaicked
image was computed (Tables I and II). The saturation of a
(r, g, b) color is computed as its Euclidean distance in the 3D
Euclidean color space to the grey axis defined byr = g = b.

Tables I and II show that the methods creating less false
colors are Zhang et al. [11] and Paliy et al. [5]. This means
that very few color artifacts will be created by these methods in
grey zones of the images. Since images in the Kodak database
have very few color saturated region, these methods have
a very good performance in this database. SDD, the POCS
algorithm (Gunturk et al.) [16] and the demosaicking with
directional filtering anda posteriori decision (Menon et al.)

[10] also perform well.

Zipper effect

Due to the configuration of the CFA mask, the green channel
has one of every two pixel values fixed in each row and each
column. When a demosaicking algorithm fails to interpolate
the green channel, the interpolating artifacts only affectthe
unknown pixel values. Therefore, the interpolation artifacts are
manifested as artificial ”on-off” image patterns. This effect
was called ”zipper effect” in [18]. The zipper effect at a
pixel is detected and numerically evaluated as an increase
or a decrease of its contrast with respect to its most similar
neighboring pixels, when passing from the original image
to the demosaicked one. In other terms, zipper results in a
coherent creation of local minima or maxima on a line or a
grid. The percentage of pixels being affected by this artifact
gives a zipper effect indicator for the tested algorithms. More
precisely:

1) For each pixelp in the original image, identify the pixel
p∗ with minimum color distance within the set of eight
neighboring pixels∆u0(p) = ‖u0(p) − u0(p∗)‖.

2) Compute the color difference between the same pair of
pixels p andp∗ in the demosaicked imageu, ∆u(p).

3) Computeϕ = ∆u0(p) − ∆u(p). A pixel p is affected
by the zipper effect if|ϕ| > δ.

Tables III and IV give the zipper effect ratio of the compared
methods for all images with detection thresholdδ = 2.5. The
zipper effect is commonly created when the red and blue
channels have high frequencies that are different from the
green ones (at such points the red or blue second derivatives
are different from the green ones). For this reason, zipper effect
concentrates on the edges separating colored regions.

Algorithms that impose the smoothness of the chromatic
components (Zhang et al. and Paliy et al.) and the SDD
exhibit a higher performance in the Kodak database. The
POCS algorithm (Gunturk et al.) [16] shows a significantly
higher zipper effect since it assumes that color responses are
equal. The Homogeneity directed algorithm (Hirakawa et al.)
[9] and the directional algorithm witha posteriori decision
(Menon et al.) reduce the POCS zipper effect, since they
choose between a horizontal and a vertical interpolation to
reduce the number of created irregularities.

For the IMAX database all methods have a similar zipper
effect except the SDD algorithm which exhibits a higher
performance. Even the Hamilton-Adams algorithms exhibits
a similar performance to Zhang et al. and Paliy et al. in this
database. As we mentioned at the beginning of this section,
the chromatic components of these images are not as smooth
as those of the Kodak database.

Mean square error

The mean square error (MSE) is defined as
∑

i,j(u(i, j) −

ũ(i, j))2, where ũ is the reconstructed image andu the
original. Along with the peak signal-to-noise ratio it is the
most common quality measurement. These measures are of
course only computable on simulated mosaics, starting froma
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Hamilton- Hirakawa Gunturk Li Chung Menon Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.

1 2.52 2.02 1.53 2.41 2.60 1.87 1.33 0.91 1.71
2 0.76 0.58 0.47 0.72 0.79 0.50 0.30 0.31 0.54
3 1.82 1.45 1.15 1.75 1.87 1.13 0.78 0.61 1.26
4 0.76 0.60 0.49 0.72 1.08 0.58 0.34 0.34 0.61
5 2.61 2.06 1.64 2.51 2.73 1.99 1.45 1.04 1.61
6 1.01 0.82 0.63 0.96 1.06 0.75 0.53 0.51 0.74
7 1.09 0.88 0.67 1.04 1.18 0.82 0.55 0.51 0.86
8 1.46 1.16 0.90 1.39 1.49 1.09 0.76 0.67 1.05
9 1.49 1.21 0.92 1.42 1.44 1.11 0.75 0.64 1.13
10 0.71 0.57 0.45 0.67 0.75 0.53 0.33 0.34 0.57

Avg 1.42 1.14 0.89 1.36 1.5 1.04 0.71 0.59 1.01

Table I
EVALUATION OF THE CREATION OF FALSE COLORS. DEMOSAICKING METHODS ARE APPLIED TO THE GREY LEVEL VERSION OFIMAGES IN THE KODAK

DATABASE AND THE MEAN SATURATION OF DEMOSAICKED IMAGES IS DISPLAYED (SEE THE TEXT FOR MORE DETAILS).

Hamilton- Hirakawa Gunturk Li Chung Menon Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.

1 1.66 1.35 1.03 1.59 1.85 1.26 0.82 0.67 1.18
2 2.26 1.78 1.32 2.15 2.63 1.60 0.93 0.57 1.61
3 0.98 0.76 0.61 0.93 1.32 0.76 0.41 0.28 0.87
4 1.48 1.16 0.89 1.41 1.88 1.09 0.62 0.38 1.20
5 0.62 0.49 0.41 0.59 0.91 0.48 0.22 0.17 0.67
6 1.13 0.92 0.70 1.07 1.51 0.86 0.45 0.30 0.91
7 0.73 0.59 0.48 0.70 1.11 0.57 0.29 0.25 0.72
8 0.56 0.46 0.38 0.53 0.73 0.43 0.23 0.24 0.53
9 0.63 0.51 0.42 0.60 0.72 0.50 0.31 0.32 0.56
10 0.77 0.62 0.51 0.73 0.80 0.61 0.39 0.37 0.68
11 1.10 0.86 0.67 1.04 1.28 0.81 0.42 0.39 0.93
12 1.11 0.92 0.70 1.07 1.19 0.83 0.54 0.50 0.91

Avg. 1.09 0.87 0.68 1.03 1.33 0.82 0.47 0.37 0.9

Table II
EVALUATION OF THE CREATION OF FALSE COLORS. DEMOSAICKING METHODS ARE APPLIED TO THE GREY LEVEL VERSION OFIMAGES IN THE IMAX

DATABASE AND THE MEAN SATURATION OF DEMOSAICKED IMAGES IS DISPLAYED (SEE THE TEXT FOR MORE DETAILS).

Hamilton- Hirakawa Gunturk Li Chung Menon Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.

1 2.90 2.61 2.38 2.70 3.26 2.21 1.70 1.28 2.03
2 1.15 1.29 1.06 1.02 1.30 0.85 0.58 0.46 0.51
3 1.96 1.88 1.54 1.75 2.37 1.26 0.91 0.84 1.38
4 0.83 1.21 1.39 0.76 2.13 0.83 0.62 0.45 0.41
5 2.91 2.42 2.79 2.79 3.29 2.52 1.91 1.59 1.84
6 1.78 2.74 1.41 1.36 1.98 1.44 0.82 0.84 0.71
7 1.61 2.13 0.87 1.22 1.83 1.15 0.69 0.70 1.00
8 1.79 2.08 1.34 1.54 1.94 1.44 0.95 0.94 1.05
9 1.41 1.75 1.41 1.30 1.69 1.36 1.00 1.04 1.04
10 1.00 1.58 1.06 0.85 1.15 1.03 0.57 0.57 0.52

Avg 1.73 1.96 1.53 1.53 2.09 1.41 0.98 0.87 1.05

Table III
ZIPPEREFFECT IN RGB COORDINATES FOR THEKODAK COLLECTION (δ=2.5).

Hamilton- Hirakawa Gunturk Li Chung Menon Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.

1 0.26 0.17 0.55 0.41 0.36 0.34 0.23 0.19 0.11
2 0.09 0.07 0.12 0.12 0.11 0.10 0.10 0.12 0.05
3 0.30 0.31 0.57 0.38 0.41 0.40 0.35 0.37 0.18
4 0.19 0.18 0.30 0.23 0.25 0.22 0.19 0.25 0.12
5 0.32 0.33 0.65 0.40 0.40 0.43 0.40 0.36 0.17
6 0.15 0.16 0.26 0.18 0.18 0.19 0.17 0.19 0.07
7 0.14 0.16 0.24 0.16 0.17 0.18 0.15 0.14 0.06
8 0.12 0.16 0.27 0.14 0.17 0.20 0.16 0.15 0.06
9 0.13 0.18 0.27 0.16 0.18 0.20 0.16 0.14 0.07
10 0.10 0.14 0.13 0.11 0.14 0.13 0.10 0.11 0.06
11 0.10 0.17 0.14 0.10 0.12 0.13 0.09 0.11 0.02
12 0.09 0.10 0.18 0.12 0.12 0.12 0.11 0.11 0.07

Avg 0.17 0.17 0.31 0.21 0.22 0.22 0.18 0.19 0.09

Table IV
ZIPPEREFFECT IN RGB COORDINATES FOR THEIMAX COLLECTION (δ=2.5).
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known original image. MSE does not necessarily reflects the
visual quality of the output image [19], [36]. It remains allthe
same an inescapable quality criterion. Note that the range of
the pixel values in our tests is[0255].

Table V shows that Zhang et al. and Paliy et al. perform
slightly better in terms of MSE than Gunturk et al, Menon et
al. and SDD. As we mentioned the Zhang et al. and Paliy et
al. algorithms are also the ones creating less false colors when
applied to grey zones of images. Despite its good performance
in MSE, the Gunturk et al. and Menon et al. algorithms
introduce more zipper effect.

However, for the IMAX database (table VI) the Hamilton-
Adams and SDD give the best MSE. Indeed, the strong zipper
effects of Zhang et al. and Paliy et al. increase the MSE. This
zipper effect is mainly concentrated near edges, and therefore
a serious perceptual interference. The SDD MSE is coherent
with a low zipper effect.

Computation time

The computational cost of SDD lies in the computation
of patch distances. For each pixel the distance of a3 × 3
color patch with patches contained in a15×15 neighborhood
must be computed. There is fortunately a restriction, that
the color channel in each compared pixel must be different
from the one known at the current pixel. The total cost is
27 × 5

8 × 225 ≃ 2109 operations per pixel. This puts SDD at
a computational cost higher than basic directional filters,and
comparable to more sophisticated algorithms. Multi-resolution
and preselection strategies can actually be used to further
accelerate these patch comparisons, as proposed in [20], [37].

Visual quality

In general, a low performance in one of the previous
three numerical criteria also entails a rejection by a human
visual inspection. In spite of this, none of these criteria can
fully replace human evaluation, because of the very diverse
geometric situations in images, and of the varying visual
impact of each error, depending on the context. For this reason,
a human visual evaluation still is the most important criterion
to judge the performance of demosaicking algorithms. This
performance must be evaluated on edges, textures, and various
kinds of geometric details such as corners, diagonals, and
fine patterns. Figures 7, 8, 9 and 10 furnish a wide-ranging
comparative visual quality assessment of demosaicked images.

Figure 7 illustrates how the recently developed directional
filters and the homogeneity directed algorithm (Hirakawa et
al.) [9] are able to restore a grey and nearly vertical high
frequency pattern. This figure also illustrates how the POCS
algorithm (Gunturk et al.) [16] outperforms the successive
approximation algorithm (Li) [15].

Figure 8 points out how all algorithms fail near the corners,
or when patterns with several orientations meet, even though
the image region is mainly grey. Only Paliy et al. and SDD
give a fully visually acceptable solution in that case. Figure 9
illustrates the strong residual zipper effect left by the POCS
algorithm (Gunturk et al.) and all directional filters. The first

(a) Hamilton-
Adams

(b) Hirakawa et al. (c) Gunturk et al.

(d) Li et al. (e) Chung et al. (f) Menon et al.

(g) Zhang et al. (h) Paliy et al. (i) SDD

Figure 7. Aliasing and color. The first four algorithms present
many color aliasing and spots since they are not able to correctly
choose between a horizontal or vertical interpolation. The four last
algorithms reconstruct accurately the original. This figure shows
that the recent directional filters improve the original homogeneity
directed algorithm of Hirakawa et al. SDD yields a result comparable
to the best directional filters and Zhang et al. and Paliy et al.

one fails because of an excessive color frequency copy from
one channel to the others, while the directional filters seemto
fail because of the inability to interpolate diagonal patterns.

Finally, figure 10 shows the strong zipper effect of most
methods in the IMAX database, where edge colors predom-
inate. Such edge colors are rare in the Kodak database.
Somehow, the Kodak database focuses on the reconstruction of
luminance high frequencies in grey regions, while the IMAX
database challenges the ability of algorithm to keep up with
color edges. Only SDD and Hamilton-Adams are able to give
a reasonable solution.

VI. CONCLUSION

The new-proposed demosaicking algorithm takes advantage
of self-similarities in natural images to interpolate by trans-
porting known values to missing values. Many experiments
on two different databases have shown that it is possible
to restore thin and fine periodic structures without creating
zipper effects in others. An important feature of the new-
introduced method is that it can extend immediately to movies.
In the case of a movie, the search window can be extended
to involve several successive frames, thus providing more
patches, and a much more obvious self-similarity. Further work
will focus on acceleration issues to apply the same ideas to
real-time video processing. The complementary comparative
experiments asked by several of our seven referees have shown
a disturbing disparity in algorithm performance dependingon
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Hamilton- Hirakawa Gunturk Li Chung Menon Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.

1 26.91 20.06 10.60 22.20 27.57 14.12 9.16 5.85 15.52
2 6.18 5.06 5.37 5.68 7.01 4.36 3.48 2.94 4.27
3 20.73 11.43 8.98 17.29 18.82 8.27 6.14 5.25 11.64
4 5.41 5.85 4.53 4.87 9.75 4.29 3.78 3.27 4.72
5 40.36 27.54 18.57 33.97 38.51 21.94 16.20 12.68 21.36
6 6.09 5.17 4.52 5.33 7.41 3.87 3.18 2.93 4.78
7 9.41 7.83 5.24 7.98 10.45 6.02 4.35 4.34 7.01
8 12.01 9.73 6.69 10.22 13.55 7.04 5.14 4.62 8.41
9 15.86 15.37 12.47 14.26 17.08 12.16 9.33 9.26 13.76
10 4.43 4.55 4.55 4.12 6.41 3.71 3.08 2.68 4.35

Avg 14.74 11.2 8.15 12.59 15.66 8.58 6.38 5.38 9.58

Table V
MEAN SQUARE ERRORS INRGB COORDINATES FOR THEKODAK COLLECTION.

Hamilton- Hirakawa Gunturk Li Chung Menon Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.

1 98.22 133.41 168.22 139.10 114.90 110.10 105.92 101.56 100.12
2 92.18 120.15 143.72 122.45 114.97 105.55 101.52 145.03 100.47
3 43.52 63.94 80.79 49.43 54.19 53.38 47.65 49.22 42.31
4 47.27 63.62 79.40 50.83 59.50 55.03 48.55 64.22 49.44
5 33.43 59.51 74.19 39.44 43.60 49.15 46.02 36.85 33.15
6 40.07 60.17 76.64 44.37 53.87 51.91 47.01 52.09 40.79
7 21.99 31.73 43.67 24.60 30.92 27.79 25.99 23.32 21.54
8 11.60 14.81 21.30 12.83 14.74 13.50 12.80 10.51 9.55
9 8.33 9.83 11.67 8.72 10.52 9.42 8.43 7.86 6.85
10 8.09 10.04 10.22 8.31 9.83 9.04 8.28 8.25 7.85
11 28.73 42.81 44.98 30.34 36.07 33.57 32.74 33.80 30.54
12 25.08 28.23 37.56 25.73 28.64 25.39 24.77 24.09 23.61

Avg 38.21 53.18 66.03 46.35 47.65 45.32 42.47 46.4 38.85

Table VI
MEAN SQUARE ERRORS INRGB COORDINATES FORIMAX COLLECTION.

the choice of the benchmark database. It seems that most
algorithms have been designed to keep up with the presence
of Nyquist frequencies in grey image regions of the Kodak
database. Unfortunately these sharp algorithms have a much
poorer behavior in presence of the color edges of the IMAX
database. Thus, it seems that the creation of a database that
would retain all disturbing features and respect actual image
statistics is strongly needed.
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Figure 9. Zipper on vertical edges. This figure illustrates the zipper
effect provoked by the POCS algorithm (Gunturk et al.) and by all
directional filters. The first one occurs because of erroneous color
frequency copying, while the other ones fail because they are not fit
to correctly interpolate diagonal patterns.
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(g) Zhang et al. (h) Paliy et al. (i) SDD

Figure 10. Zipper effect on IMAX images. Most methods present
a strong zipper effect on color edges that makes the demosaicked
image not a reasonable solution to the demosaicking problem. Only
the SDD algorithm and Hamilton-Adams are able to give a reasonable
solution.


