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Self-similarity driven color demosaicking

Antoni Buades, Bartomeu Coll, Jean-Michel Morel and Catalsbert

Abstract—Demosaicking is the process by which from a matrix Cok [6] and Hibbard et al. [7]. The first one interpolates the
of colored pixels measuring only one color component per pixel, green channel by bi-linear interpolation while the second o
red, green or blue, one can infer a whole color information at uses anisotropic interpolation. The bi-linear interpokatis

each pixel. This inference requires a deep understanding of the t lied t h col telv. Col led b
interaction between colors, and the involvement of image local not applied to each color separately. Lolors are couple y

geometry. Although quite successful in making such inferences interpolating the ratios (or differences) of the red andeblu
with very small relative error, state of the art demosaicking channels to the green one. This conditional interpolatidisa

methods fail when the local geometry cannot be inferred from the high frequencies of the green to the low frequencies of
the neighboring pixels. In such a case, which occurs when thin the red and blue channels. Thus, the quality of the green

structures or fine periodic patterns were present in the original, . ¢ lation i ial d all teri lqorithms
state of the art methods can create disturbing artifacts, known Interpolation 1S crucial, and all posterior algorithms ascon

as zipper effect blur, and color spots. The aim of this paper is to improving the quality of the green channel interpolation.
show that these artifacts can be avoided by involving the image  Conversely, the red and blue channels can be used for the

self-similarity to infer missing colors. Detailed experiments show green channel interpolation. Hamilton-Adams [8] proposed
that a satisfactory solution can be found, even for the most critial correct the evaluation of the gradient based interpolatibn
cases. Extensive comparisons with state of the art algorithms will R .
be performed on two different classic image databases. the green by taking into account the second ord_er deriative
of the sub-sampled red (blue) channel, thus, taking adganta
of the inter-channel correlation. This algorithm measures
I. INTRODUCTION flat the image is in the horizontal and vertical direction and

Digital color images are usually represented by three coliten interpolates either vertically or horizontally. Theeuof
values at each pixel. There exist cameras performing thri&€ high frequencies of the sub-sampled red and blue ch&annel
spectral measurements per pixel. Such cameras split the litp interpolate the green channel is a key idea that has been
and project it onto three distinct CCD’s or CMOS. But, eaclicorporated by all advanced algorithms.
one of these arrays requires its proper driving electromind ~ Thus, recent algorithms have two clearly differentiated
the resulting three color images have to be registered acéteps. The first step reconstructs the green channel by using
rately. These additional requirements make such acaprisitithe whole color information of the CFA mosaic image, usually
systems quite expensive. For this reason, most cameras uéellawing the Hamilton-Adams [8] observations. The second
single matrix measuring a single color per pixel. The othétep interpolates the red and blue channels by combinirig the
two colors must be interpolated from the neighboring pixel¥w frequencies with the high frequencies obtained for the
This interpolation is called demosaicking. green, as proposed by Cok [6]. Both steps suppose that the

The selected color configuration of the sensor usually fdhree channels are highly correlated.
lows the Bayer color filter array (which we shall call Bayer Most recently proposed algorithms modify the Hamilton-
CFA, and abbreviate in CFA) [1]. Out of a group of four pixelsAdams strategy and combine two directional averages by
two are green (in quincunx), one is red and one is blue. TRelecting for each point the interpolated version with fewe
Bayer CFA provides equal horizontal and vertical samplingftifacts. In contrast with the Hamilton-Adams algorithtine
frequency for each color. Its sub-sampling factor is 4 fa tHlecision between a horizontal or a vertical interpolatien i
red and blue, an@ for the green [2]. This paper treats thedakena posteriori by looking at the directionally interpolated
Bayer CFA configuration, but the new-proposed algorithm ig1ages. For example Hirakawa et al. [9] interpolate veltica
easily adapted to other CFA configurations. and horizontally the image using the Hamilton-Adams strat-

A comprehensive review of demosaicking algorithms igdy. Once the color image has been interpolated verticatly a
available in [3], [4], [5]. The basic observation used inste horizontally, they select at each pixel between the hotegn
algorithms is that in the Bayer CFA configuration, a highegnd the vertically interpolated values by using a color ieag
resolution is obtained in the interpolated green channed. Flomogeneity measure.
this reason, most methods first interpolate the green channeMenon et al. [10] use a similar strategy, but they choose
and then use it to drive the interpolation of the red and bligtween the horizontal or vertical interpolation by loakin
channels. The first algorithms proposing this strategy we@@ly at the green Hamilton-Adams interpolated channel. In

order to select between the two directional averages at a
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derivatives around the reference pixel is selected. After tSelf-similarity Driven Demosaicking (SDD) because of the
green channel has been interpolated in this way, the rechphasis on the new way to perform a (single image) super-
and blue differences with the green channel are bi-lineanlgsolution in the first step. The method used in this papes use
interpolated, following the Cok strategy. an essential feature of many super-resolution methodselyam

In Zhang et al. [11], the chromatic componeifits- G and to transport known samples to places where samples are
B—G of the vertically and horizontally interpolated images armissing. In general, super-resolution involves severages
filtered by a LMMSE algorithm. LMMSE algorithm is a linearthat are first co-registered, and then fused. In our caseg the
algorithm which averages each pixel with its neighboring®nis an internal registration between patches of the samedmag
(with weights w;) and finally correcting the obtained valudeading to fill in missing color values. Thus, the process is
depending on the variance of the pixels that gave performessentially the same as in many classical super-resolution
average (using the same weights) . The filtered chromatic algorithms, even though it involves a single image.
components by LMMSE are combined at each pixel dependingThe present study focuses on the demosaicking by itself.
on these variances. Thus, the weight of the vertical (redpet it be mentioned that demosaicking can be coupled with
horizontal) interpolated value depends on the variancéef tdenoising [23], [24], [25] and that movie demosaicking has
chromatic components of the vertically (resp. horizogjall also been recently addressed in [26], [27], [28]. As poirtet
interpolated image. Recently, Paliy et al. [12] modified thBy an anonymous referee who stressed another interpretatio
Zhang et al. algorithm by introducing a new filtering strgteg of the method proposed here: “The basic idea of the paper is
the LPA-ICI filtering [13]. A similar approach was presentad to first roughly interpolate the missing color samples arhth
[14], where the variance of color differences is also usatl{d correct the interpolation errors by using the non-local mea
apriori decide between the horizontal or vertical interpolatioriiltering. Actually, a very similar idea was used in [25]. In

Iterative algorithms have been proposed in [15], [16]. Ehe$25], the CFA image is first initially interpolated by Handitt-
algorithms start with an initial condition and, following ia  Adams filters and the interpolation error is modeled as noise
wide sense the above commented strategies, iterativety folhen the interpolation noise is suppressed by using the MMSE
the three color channels to have the same high frequencigsinimum mean squared-error estimation) technique. \iewe
Li [15] copies the second derivatives, while Gunturk eh that perspective, the main difference between [25] and
al. propose an algorithm in the frequency domain. Visualthe proposed method in this paper is the denoising strategy:
inspired algorithms have also been proposed in [2], [IMAMSE in [25] and non-local means here.

These algorithms combine the three channels to obtain arhe rest of the paper is organized as follows. Section I
luminance image instead of interpolating the green channgives a brief PDE interpretation of a main assumption of all
This luminance image is obtained by combining the low arstate of the art algorithms, namely the anisotropic regylar
high frequencies of the mosaic image. Then, the three ctanngf chromatic components. This interpretation will be irwea
are reconstructed by using a bi-linear interpolation to the justify the use of a median filter in the chromatic reguari
differences with the luminance image. step.

All methods fail when the local geometry cannot be inferred The main step, namely the self-similarity driven demosaick
from the neighboring pixels. In such a case, which occugs)e.ing (SDD) is described in Sections IV and IV-F. Section V
when thin structures or fine periodic patterns were presentis dedicated to extensive quantitative and qualitativefgper
the original, local methods can create interpolation @t#: mance evaluation of state of the art algorithms and of SDD.
1) aliasing in the red and blue channels; 2) erroneousfyo databases, Kodak and IMAX, will be involved in these
interpolated structures, 3) the so callégper effect which comparisons for reasons that will be commented upon in the
is defined in [18] as the creation of isolated and contrastednclusive section VI.
points and 4) color spots.

The demosaicking method discussed in the present paper
will be, as all above methods, divided in two steps. In thé firs
self-similarity non local step the geometry is reconstructed, The partial differential interpretation will be given in a
and in the second step the colors updated by transferriggntinuous framework. The partial derivati\%(x) is the
information from the green to the red and blue channels. Therivative in thez direction atx := (x,y). In the discrete
second step, that we cathrominance regularity somehow framework this derivative at a pixgl = (4,5) is equivalent
summarizes the observations underlying anterior algosth to the dlfferenceU(z + 1,7) — u(i,j). The second order
But the first one, that we cafielf-similarity driven, is based partial derivative2-% corresponds to the discrete difference
on a non-local estimate taking advantage of all image se{j(hq §)+u(i—1, ]) 2u(i, j) centered at the pixg = (i, ).
similarities. It is crucial for the retrieval of fine geomietr The operators we are interested in are the directional secon

II. A PARTIAL DIFFERENTIAL INTERPRETATION

structure close to the Nyquist frequency. order derivatives

Similar self-similarity driven processes were introduded 2
[19] for the scope of texture synthesis and later in [20]] @4 D*u(X) := —— [u(x + tv)](0),
a denoising algorithm (NL-means for non-local means.) The ot

only previous non local demosaicking attempt is Mairal etamely the second derivative afat x in the v direction. We

al. [22]. We shall comment on this algorithm in the sequetlenote byDu = (gg, ‘g“) the image gradient. We shall need

The new demosaicking algorithm proposed here will be calléde following results [29]



Theorem 1: Let v be aC? function. Then the directional
second derivative of. in the directionr of least variation of

. . €1
u at x satisfiesy = ﬁju and
|

1. Calculate horizontal gradient
AH = |G4 - GB| + |R5 — R3 + R5 — A7|
2. Calculate vertical gradient
AV =|G2 - G8|+|R5 — R1 + R5 — A9
3. IfAH> AV,
G5 = (G2 + G8)/2 + (A5 — A1 + A5 — R9)/4
Elseif AH <AV,
G5 = (G4 + G6)/2 + (A5 — A3 + A5 — A7)/4

Uz U2 — 2y U Uy + Uy U2
d%u(x) = | Dulcurv(u)(x) == —— il A& ]

(x)

The termcurv(u) defined by the above formula is inter-
preted as the curvature of the image level lines. The doeati
second derivativd Du|curv(u) is small in two cases: either _ _ _ _
when the gradient is small, or when the gradient is Iarge ((g}?géept.sitigr?mlIton-Adams scheme for the interpolation of a ynedue at
an edge), but the edge is straight, in which case its cumatur
vanishes. The next crucial theorem explains why applying to
an image a median filter is equivalent to enforce a small imagge| 5. First, a horizontal and a vertical oscillation meas

Theorem 2: If uis aC* function, then at each poistwhere  channels by adding the absolute value of the discrete green
Du(x) # 0, gradient to the absolute value of the red (or blue) discrete
B2 ) second derivative. This combination of estimates based on
€|DU(X)\CWU(U)(X) + o(h) different colors is necessary. Indeed, at the red pixel % onl

h? ) red pixels are available for computing a horizontal or aiealt
= g Oulx) +o(h%). second derivative. But since the neighboring pixels aremra
vertical and a horizontal gradient can be computed withrgree

U% + U% Else
G5 = (G2 + G8 + G4 + G6)/4

+(R5 - A1+ A5 — A9 + A5 — A3 + A5 — A7)/8

meds xnyu — u(X)

In other terms, applying to a median filter on a small ball

B(x, h) is equivalent to a step of the mean curvature evolutidjr% els.
L a P L ) This method results in the green channel inheriting the high
equation. This process reduces the directional lapladianio

. o T o - .. frequency (directional Laplacian) of the sub-sampled red o
its least variation direction. This directional laplaciarzero if " .

o . . ; : blue channels. Indeed, rewriting for example the horiZonta
and only ifu is asymptotically equivalent to its median Valuel‘nter olation. we aet
This fact will be used in the sequel for the image chromatic P ' 9
componentgU, V). ofi j)_g(i +1,j)+g(i—1,5)  uli—2,7) —2u(i,j) +u(i+2,j)

) 2 - 4 .

1
IIl. CHROMATIC REGULARITY IN PARTIAL DIFFERENTIAL . - . . . 1)
TERMS Interpreting the above finite differences as differentipém@-

] ) tors and using Theorem 1, this can be rewritten as
The Hamilton-Adams strategy [8] contains a key observa-

tion describing the relations between the green channeitend Chrominance regularity assumption
other ones. In this algorithm the evaluation of the gradirst Let uw = r or b. Then

missing green pixel is corrected by the second order darést
of the red (blue) channel. More precisely, to estimate tleegr

value at a pixep = (i, j), whereu(s, j) is known,u € {b,7}, n other terms, g — u has a zero second derivative in its least
the method computes the following magnitudes, wherk  variation direction.

mean “vertical”, “horizontal” (see Fig. 1):

|D(g — u)|curv(g —u) = 0.

Of course the least variation is only computed between the
Dy, = [g(i,j—1)=g(i, j+1)|+|2u(i, j)—u(i, j—2)—u(i, j+2)|, horizontal and vertical direction. Now, the underlying sitie
N . SN o .| hess assumption has no reason to give a privilege to hoaizont
Dy = |g(i—1,7)—g(i+1, 5)[+]2u(i, j) —u(i—2, j) —u(i+2, j)|. and vertical directions. As mentioned in the introductite
These magnitudes measure how flat the image is in the vertietllakawa et al. [9], Chung et al. [14], Menon et al. [10], and
and horizontal direction. ID,;, < D, the new green value is Zhang et al. [11] algorithms all involve the above step irnt tha
obtained by a horizontal interpolation they try to select a least variation interpolation directfor

. . . . . the chromatic components.
g(i,j) = (gli—1,5)+g(i+1,5))/2 P
+(2u(i, j) —u(i —2,7) —u(i +2,7))/4.

If D, < Dy, a vertical interpolation is applied,

V. SELF-SIMILARITY DRIVEN COLOR SUPERRESOLUTION

g(i,5) = (g(i,j—1)+g(i,j+1))/2 All above mentioned algorithnl"ns do nr?t in;/olve the reclent
. . . progress in image structure implicit in the Efros-Leungoalg
+(2u(i, 7) —u(@ 5 = 2) —ulij +2))/4, rithm. This algorithm takes advantage of image self-sirtila
In the case that neither the horizontal nor vertical dietti to recreate textures from small samples. By comparing the im
prevails, the new green value at pixel= (4,j) is computed age with itself, it recovers missing values by transporthmm
as the average of the two previous values. Fig. 1 shows tlnem places where they are known. The assumption underlying
geometric situation. The aim is to interpolate the greenezat the proposed demosaicing algorithm is the following:



Figure 2. The pixel¢s in the hat has the same noisy grey level agigure 3
the reference pixep. Howeyer, acomparison of the patch_es aropnd istribution used to estimate the central pixel of the left image by the
andgs shows that these pixels have different models, while the pixgl§ _,eans algorithm. White pixels are similar to the central pixel of

¢ andqg obey the same model @ST.hUS' p.atch comparispn allovysthe left-hand image and have a high weight in the average.
one to infer the color model at a given pixel by using information

contained far enough in the image. This key image property was first
used by Efros and Leung [19] and opens the way to a self-similarity

driven demosaicking. Smith and Brady (SUSAN filter) [33], and more recently

Tomasi and Manduchi [34] (bilateral filter). Neighborhood

filters perform well in presence of moderate noise, but the
comparison of the grey level or color values at a single
pixel is no more robust when these values get noisier. This
drawback is overcome by the non-local-means algorithnt, tha
not only compares the grey level or color in a single point

A similar principle has already be briefly tested fo ; .
demosaicking. Mairal et al. [22] proposed to adapt t%ut the whole patch around them. This patch comparison

. . S . rmi reliable similarity m re involving pixel i
demosaicking a denoising and inpainting algorithm based Be ts a reliable similarity measure involving pixels win

n . ; .
: . . can fall far away from each other (see Fig. 2). This permits

a sparse representation optalned from a Iearned.dlc.:tmfary non-local stra{egy and the systématic %se) of all Eossible

image patches. They obtained excellent demosa'Ck'ngtses'“?]elf-predictions the image can provide, in the spirit ofc&fr

on some examples by this completely non-local strategy. Tﬁe '

method is nonetheless rather a demonstration of the po and Leung [19]. The patch comparison also makes weight

wer . . . X
of K-SVD classification and sparse representations, thand%trIbUtlonS in the mean computing the denoised valuetadap

o . . L to'the local geometry of the image, as shown in Fig. 3. For a
realistic demosalckln'g algorithm. Indeed, the dictionamyst more exhaustive description of NL-means and neighborhood
be learned for each image.

The Efros-Leung method cannot be applied to demosaickiBflgt;;':(;rrstc&:rEgo‘iJl ([:3?8]1 parison with other denoising algorithms we
without a strong revision. The first one is that a carefu ' '
interpolation must proceed at the first steps with averages,

was proposed in the NL-means algorithm. Thus, we shall start

with a short explanation of this denoising algorithm. B. Monochromatic self-similarity driven super-resolution

The right-hand side of each pair shows the weight

Color information present in the raw image is redundant, and
can be transported from pixels where it is known to pixels
where it is missing based on local similarities.

As pointed out in [27], super-resolution and demosaicking
are two instances of a same problem: Both of them address the
The NL-means algorithm [20], [30] denoises a pixeby gjiasing issue. Let: denote an aliased grey level image and
averaging the values of all pixels whose Gaussian neighbggsume we want to duplicate its number of pixels by inserting

hood looks like the neighborhood &f a quincunx grid. This is exactly the situation we are in, sinc

1 L u o 2 we wish to interpolate the green channel in the CFA mask.
NL[u)(x) = o(x) /Q e ne Jr GoOROCD Oy y) ay, Let Q,, denote the subset of the image grid where the values

) , (2) of u are available. A first move, common to most algorithms,

wherex € Q, C(x) = [, e~z Jee GaDlu+D—uy+Odl gy g 1o interpolate the missing pixels by a classical alganith
is a normalizing constant;7, is a Gaussian kernel and be it bi-linear, median or anisotropic interpolation. Tiislds
acts as a filtering parameter. The paramétecontrols the a first estimateuy. This first rough approximation is blurry
decay of the exponential function and therefore the decay aid can have erroneous structures and artifacts. In order to
the weights as a function of the Euclidean distances. Nterrect the interpolated values, a variant of the NL-means
means is a generalized neighborhood filter. Neighborhoathorithm can be applied, that averagesby pixels belonging
filters restore a pixel by taking an average of the values taf 2, and transports this averagaly to pixels not belonging
neighboring pixels. These filters where invented and reitaet to €, (unknown values). This conjunction of averaging and
several times in image processing under various names: ltesportation is in essence what is proposed here. Theowind
[31] (sigma-filters), Yaroslavsky [32] (neighborhood fik® distances are computed on the initial estimage(thus using

A. Non local denoising (NL-means algorithm)



the interpolated values). The adaptation of formula (2) is

1 -1 u —Uu 2
NLU( = s /Q ¢~ 7 Jiz CaM oD —uo (4Dt o
’ 3)

wherex is the new-interpolated pixek(¢ €2,) and C(x) is
the normalization factor.

=Y

C. A sdf-similarity driven strategy

The essential difference with NL-means is that the fing

aim is not to denoise, but instead tofer high frequency Figure 4. Gray interpolation experiment for various decreasing
. . . . Igu .
information by transportation from known pixels to unknown values of the parametel. From left to right: initial image, bi-

pixels. In the qenOiSing case averaging pixels is a Way fthear interpolation, median based interpolation, anisotropic interpo-
reduce oscillations due to noise, and the value of the réenlu lation and the result of the similarity driven demosaicking algorithm
parameterh depends on the noise standard deviation. In offir the decreasing sequences of values fior{4,1}, {16,4,1},
case instead, the value dfshould tend to zero, since we dot32 1% 47;2} a”ddf[64’32’ 16,4,1}. The initial condition is always
not want to reduce the oscillations but to transfer or comy y§lven by the median.
known values to pixels where they are unknown.

If the initial guessuo has several artifacts or EITON€OUS ity a similar color Gaussian neighborhood 4. In other
structures (which it is usually the case), then looking fqr

. . . . rms, color inter-correlation is enforced by computing th
similar pixels and copying their grey level values can Iea§

; ) . stance in the three-channel image. As mentioned before, i
to the reinforcement of these artifacts. For this reasoa, t 9

loorithm i rse to fine. It first reconstructs the lar rder to gradually correct the erroneous structures affdcg
algo S coarse o Tine. T 1irst reconstructs the fa gie_eesc f uy a coarse to fine strategy that refines at each step the
structures and iteratively refines the search by reducieg t

value ofh. This amounts to applying the formula (3) iteratively milarity search by reducing the value bfis crucial,

with a decreasing sequence of valueshoMhen h is large We should note that the similarity driven demosaicking
g seq 9 algorithm might reduce some small oscillations caused by

the interpolated values are blurry but refiable, and wheis noise. This reduction is not drastic, since first a small @alu

fhn;?ril the algorithm propagates values rather than aveIagil} 1, ends the process, meaning that in the final iteration only

. . L . . . pixels having extremely similar windows around are avetlage
F|gur¢ 4 dlsplays' thg apphcaﬂqn of this algorlthm to the Ing\nd second denoising is not performed for known colors.
terpolation of the missing green pixels of an image. We digpl

this application for various sequences with decreasingegl
of h. This experiment shows that an iterative procedure & Implementation details

necessary to reconstruct the erroneous interpolatedistesc o computational purposes the search for similar pixels is
of the initial condition. Only when the initial smoothing iS astricted to aearch window with size(2xS+1)x (2xS+1)
strong enough, foh = 32 or 64, the global stru_ctur_e domi- 5round each pixel. Even if many similar pixels can be found
nates the erroneous local one._Thls reco_nstructlon is cordpas,, away, there is usually enough information kept by taking
to the one performed by classical algorithms which are Oﬂ%{‘large search window. In all experimentsia x 15 pixels
used to interpolate the green channel, namely the bi-lin€qd5,ch window was used.
?nterpolat?on, the median interpolation and the anisoop The window comparison is performed by a flat Euclidean
interpolation. distance on @ x 3 neighborhood. This window has shown
to be robust 47 values) and small enough to take care of
D. Adaptation to the mosaicked image details and fine structure. When dealing with grey image super
The previous one-image self-similarity driven supeﬂ’-esc"u“o” or noisy images, the size of the window should

resolution method is easily adapted to the incomplete col}creéase to have a robust comparison. This is not considered
image. Each channel is restored by averaging the original Ci this paper, that deals with good quality color images.
values, the window distances being computed on the initial The gaussian kernek, introduced in the general algorithm
color imageu,. The averaging process reads formulation (4) is only necessary as the size of the window

increases. With the smallx 3 window used here, the gaussian

NL[u(x) = 1 / ¢~z Jz2 GaOluoXth—uo(y+DI7dt, yweight is unnecessary. Thus, the implemented algorithm is
Cu(X) Jo just a simplest discrete version of formula (4). It compudes
weighted sum of pixels in &5 x 15 neighborhood around the

with w € {r, 9,0}, X ¢ €2, and reference pixel. The discrete formula is

Culx) = / ¢ itz Jia G uo O+ —un (Y40t gy
Qo

1 -1 U —UuQ 2
o _ . NL[u|(p) = . Z e 77 Stew | o(P+1)—uo(Q+1)]| u(q)
The missing values of each channel at a pairgre interpo- u(P) ges,
lated by averaging original CFA values of the same channel (5)

)



with w € {r,g,b}, p ¢ ©, and V. EXPERIMENTS

Culp) = Y o777 Eeew luo@rh-un(@DIF This section is devoted to a detailed performance compari-
“ ’ son. Experiments are performed on simulated mosaic images
from the Kodak collection [35], which is widely used for
where W is the 3 x 3 discrete window centered &b, 0). that purpose (see Figure 5). As requested by several referee
we also incorporate experiments with the IMAX collection
1 recently introduced in [5] (see Figure 6). Images in both
F. Implementing chromatic regularity databases take integer color values between 0 and 255.
Images in the Kodak collection have fewer color saturated

In contrast with all mentioned algorithms the similarity " b hallenging bv their Nvquist f .
driven algorithm does not involve at this point any colof€9/ons, but are challenging by their Nyquist requencuiet

regularization step. Indeed, it merely transports coldues that threaten strong aliasing. The IMAX d_atabase has many
from known to unknown positions. In case of error, thi ore saturated colors and edges separating colored regions

: : . : : . : his strong difference is illustrated by the following &Hts:
involves a high risk of impulse noise. Typically, impuls i A
noise can be corrected by a very localx( 3 median filter), erhe mean saturation of the Kodak databaskbisvhile for the

which will be added as a second step to SDD. Theore AX database it is30. The mean value of the gradient of the

1 and 2 explain why this second step amounts to applyiﬁ romatic components 875 in the Kodak database while it

the Hamilton-Adams assumption on chrominance regularif .6'21 in IMAX. At a first sight images in the IMAX database

But, since the similarity driven super-resolution stepsfith e\?vm more natgrarl] thzn |ma|ges- 'Q the Kodadk- databaﬁe. h
all color channels, the chromatic regularity assumptiam foa e compared the best algorithms according to the three

applied to the chrominanc@/, V) instead of the differences reviews [4], [3.]’ [5]: Hamilton-Adams, Hirakawa et al., Gun
red — green andblue — green. Recall that turk et al., Li et al., Chung et al., Menon et al., Zhang

et al.,, and Paliy et al. Each algorithm in the comparative
Y=a,r+a,94+a b U=r—-Y, V=>b-Y, experiments is used with its default parameters as givehen t
corresponding papers. We implemented all algorithms, xce
with a, = 0.299, a, = 0.587 anda;, = 0.114. Notice that the for the Hirakawa et al., Zhang et al. and Paliy et al. for which
green dominates in this linear combination. This coordinad Matlab code was downloaded from their respective web
system aims at separating the geometric information coatiai pages® 2 4. For the proposed algorithm SDD the very same
in Y from the chromatic informatiort/, V', and gives more value of the parameters was also fixed once and for all: The
importance to the green channel. color comparison window i8 x 3 pixels, the search window
zone is15 x 15 pixels, and the decreasing sequence for
Chromatic regularity Step (CR) is h' = {16,4,1}. The Hamilton-Adams algorithm was used
. . as initial guessu, for the SDD algorithm. Most compared
1) Decompose th? color image 'nFO the YUV qomponemglgorithms actually also initialize with Hamilton-Adamer
2) Perfqrm a median of .th.e coordmatHsanqv n "’.‘3 x equivalently start by selecting a direction interpolattbat is
3 ne_|ghborhood obtaml_ng]o and V. This median is an improvement of Hamilton-Adams. In other terms, all com-
applied to all the p|_xels independently of the CFA mas‘f)ared algorithms improve directly or indirectly on Hamiito
3) Recompos&’l,Vy into the RGB components. _ rAdams. Thus, these respective improvements are the main
4) Put back the original values of the CFA mask at plxe(?bject of the comparison. Probably the most striking featur
where they are known. is that this improvement is effective on the Kodak database
but not at all on the IMAX database.
A brief summary of the results would be as follows. Zhang
et al. and Paliy et al. are confirmed as the best algorithms in
The final method alternates each iteration of the seflerms of mean square error for the Kodak basis. Paliy et al.
similarity driven algorithm with the chromatic regularisfep s slightly better than Zhang et al. for the Kodak database.
CR(u). This final strategy can be algorithmically describedpp and Menon et al. are slightly behind in terms of mean
by the following pseudo-code which takes as input the valugguare error. From the visual viewpoint en Kodak, however,
of the CFA mask/, there is not much difference between Menon, SDD, Paliy, and
Zhang. But, Paliy and SDD look slightly better, having a bit
less zipper effect.
In Li et al. [5] review, Paliy et al. is pointed out as the best

geu

G. The proposed demosaicking algorithm

u0 <- Initial _Interpolation(l);

for hin {16,4,1} do { algorithm on Kodak but it is concluded that, in terms of mean
u <- NL_h(u0); We use 400 x 400 pieces of IMAX images which were kindly prodide
u <- CR(u); by X. Li
uo <- u; ’Hirakawa et al. algorithm downloaded from http://www.cseai.edu/”
} xinl/source.html
3Zhang et al. algorithm downloaded from http://Awww4.comypaedu.hk/
~cslzhang/

Qut put <- u; “Paliy et al. algorithm dowloaded from http://www.cs.tut.fasip/



[10] also perform well.

Zipper effect

Due to the configuration of the CFA mask, the green channel
has one of every two pixel values fixed in each row and each
column. When a demosaicking algorithm fails to interpolate
the green channel, the interpolating artifacts only affibet
Figure 5. Ten images of the Kodak collection [35]. Critical detailsynknown pixe| values. Therefore, the interp0|ation actiésare

extracted from these images will be used for comparative tes“%anifested as artificial "on-off” image patterns. This effe
They contain challenging details close to the Nyquist frequency. was called "zipper effect” in [18]. The zipper effect at a

pixel is detected and numerically evaluated as an increase
or a decrease of its contrast with respect to its most similar
neighboring pixels, when passing from the original image
to the demosaicked one. In other terms, zipper results in a
coherent creation of local minima or maxima on a line or a
grid. The percentage of pixels being affected by this atifa
gives a zipper effect indicator for the tested algorithmsré/
precisely:
Figure 6. Twelve images of the IMAX collection. They have much 1) For each pixep in the original image, identify the pixel
more color contrast than the Kodak database. Critical details extracted p* with minimum color distance within the set of eight
from these images will be used for comparative testing. neighboring pixelsAug(p) = |luo(p) — uo(p*)||.

2) Compute the color difference between the same pair of

pixels p andp* in the demosaicked image Au(p).

3) Computey = Aug(p) — Au(p). A pixel p is affected
square error, none of the algorithms that attempted to iagoro by the zipper effect ifp| > 4.
the original Hamilton-Adams actually works satisfacmin - rapjes |11 and IV give the zipper effect ratio of the compared

IMAX ! Even worse, the best mean square error would B@ethods for all images with detection threshéle- 2.5. The

as good as ever by interpolating independently each channgl)ne\ effect is commonly created when the red and blue

We shall see that on the IMAX database, SDD and Hamiltogpannels have high frequencies that are different from the

Adams are much better in MSE, but that, as far as zipper effetben ones (at such points the red or blue second derivatives

is concerned, Hamilton-Adams does not perform well. are different from the green ones). For this reason, zipipecte
concentrates on the edges separating colored regions.

Creation of color artifacts Algorithms that impose the smoot_hness of the chromatic
components (Zhang et al. and Paliy et al.) and the SDD

Natural scenes contain large grey regions. False colors (%pibit a higher performance in the Kodak datgbe}ge. The
be created in these zones by demosaicking algorithms. RJQCS glgorlthm (Gunturk_ et al) [16] shows a significantly
excellent way to evaluate and quantify this artifact is tplgp higher zipper effect since 'F assumes that coIo'r responses a
the algorithms to completely grey images. For that purpibse, equal. The Homogeneity directed algorithm (Hirakawa gt al.
images of Fig. 5 were converted into grey images. The bdgl and the directional algorithm witla posteriori decision
demosaicking result for the grey image would be obtainéwenon et al) reduce.the POCS zlpper effgct, since they
by simply settingr — g — b, one of these three valueschoose between a horizontal and a vertical interpolation to

being known at each pixel. Thus, every deviation from grey fgduce ;he numbder Ogcreateild Irreﬁ]U(ljarI::es. i
actually an error. Algorithms creating colors from greyunc For the IMAX database all methods have a similar zipper

a high risk of creating wrong color spots. To evaluate trgk ri effect except the SDD algorithm which exhibits a higher

for all algorithms, the mean saturation of the demosaick@§formance. Even the Hamilton-Adams algorithms exhibits
image was computed (Tables | and Il). The saturation OfaaS|m|Iar performance to Zhang et al. and Paliy et al. in this

(r,9,b) color is computed as its Euclidean distance in the 3pftaPase. As we mentioned at the beginning of this section,
Euclidean color space to the grey axis definedrby g — b the chromatic components of these images are not as smooth

as those of the Kodak database.
Tables | and 1l show that the methods creating less false

colors are Zhang et gl. [11] _and Paliy et al. [5]. This meangean square error

that very few color artifacts will be created by these methiod

grey zones of the images. Since images in the Kodak databas&he mean square error (MSE) is defined)as ; (u(i, j) —

have very few color saturated region, these methods hawg, j))?, where @ is the reconstructed image and the

a very good performance in this database. SDD, the POGSfginal. Along with the peak signal-to-noise ratio it iseth
algorithm (Gunturk et al.) [16] and the demosaicking wittmost common quality measurement. These measures are of
directional filtering anda posteriori decision (Menon et al.) course only computable on simulated mosaics, starting &rom




Hamilton-  Hirakawa  Gunturk Li Chung Menon Zhang Paly SDD
-Adams et al. et al. et al. et al. etal. etal
1 2.52 2.02 1.53 241 2.60 1.87 1.33 091 1.71
2 0.76 0.58 0.47 0.72 0.79 0.50 0.30 031 054
3 1.82 1.45 1.15 1.75 1.87 1.13 0.78 0.61 1.26
4 0.76 0.60 0.49 0.72 1.08 0.58 0.34 0.34 0.61
5 2.61 2.06 1.64 251 2.73 1.99 1.45 1.04 161
6 1.01 0.82 0.63 0.96 1.06 0.75 0.53 0.51 0.74
7 1.09 0.88 0.67 1.04 1.18 0.82 0.55 0.51 0.86
8 1.46 1.16 0.90 1.39 1.49 1.09 0.76 0.67 1.05
9 1.49 121 0.92 1.42 1.44 1.11 0.75 0.64 1.13
10 0.71 0.57 0.45 0.67 0.75 0.53 0.33 0.34 057
Avg 1.42 1.14 0.89 1.36 15 1.04 0.71 059 1.01
Table |

EVALUATION OF THE CREATION OF FALSE COLORS DEMOSAICKING METHODS ARE APPLIED TO THE GREY LEVEL VERSION OFMAGES IN THE KODAK
DATABASE AND THE MEAN SATURATION OF DEMOSAICKED IMAGES IS DEPLAYED (SEE THE TEXT FOR MORE DETAILS.

Hamilton-  Hirakawa  Gunturk Li Chung Menon Zhang Paly SDOD
-Adams et al. et al. et al. et al. etal. etal
1 1.66 1.35 1.03 1.59 1.85 1.26 0.82 0.67 1.18
2 2.26 1.78 1.32 2.15 2.63 1.60 0.93 057 161
3 0.98 0.76 0.61 0.93 1.32 0.76 0.41 0.28  0.87
4 1.48 1.16 0.89 1.41 1.88 1.09 0.62 0.38 1.20
5 0.62 0.49 0.41 0.59 0.91 0.48 0.22 0.17  0.67
6 1.13 0.92 0.70 1.07 151 0.86 0.45 0.30 091
7 0.73 0.59 0.48 0.70 1.11 0.57 0.29 0.25 0.72
8 0.56 0.46 0.38 0.53 0.73 0.43 0.23 0.24 053
9 0.63 0.51 0.42 0.60 0.72 0.50 0.31 0.32 0.56
10 0.77 0.62 0.51 0.73 0.80 0.61 0.39 0.37 0.68
11 1.10 0.86 0.67 1.04 1.28 0.81 0.42 0.39 0.93
12 1.11 0.92 0.70 1.07 1.19 0.83 0.54 0.50 0.91
Avg. 1.09 0.87 0.68 1.03 1.33 0.82 0.47 0.37 0/9
Table Il

EVALUATION OF THE CREATION OF FALSE COLORS DEMOSAICKING METHODS ARE APPLIED TO THE GREY LEVEL VERSION OMMAGES IN THE IMAX
DATABASE AND THE MEAN SATURATION OF DEMOSAICKED IMAGES IS DEPLAYED (SEE THE TEXT FOR MORE DETAILS.

Hamilton- Hirakawa  Gunturk Li Chung Menon Zhang Paly SDOD
-Adams et al. et al. et al. et al. et al. et al.
1 2.90 2.61 2.38 2.70 3.26 221 1.70 1.28 2.03
2 1.15 1.29 1.06 1.02 1.30 0.85 0.58 0.46 0.51
3 1.96 1.88 1.54 1.75 2.37 1.26 0.91 0.84 1.38
4 0.83 121 1.39 0.76 2.13 0.83 0.62 0.45 0.41
5 291 2.42 2.79 2.79 3.29 2.52 1.91 159 1.84
6 1.78 2.74 141 1.36 1.98 1.44 0.82 0.84 0.71
7 1.61 2.13 0.87 1.22 1.83 1.15 0.69 0.70  1.00
8 1.79 2.08 1.34 1.54 1.94 1.44 0.95 0.94 1.05
9 141 1.75 141 1.30 1.69 1.36 1.00 1.04 1.04
10 1.00 1.58 1.06 0.85 1.15 1.03 0.57 0.57 0.52
Avg 1.73 1.96 1.53 1.53 2.09 141 0.98 0.87 1.05
Table 111

ZIPPEREFFECT INRGB COORDINATES FOR THEKODAK COLLECTION (6=2.5).

Hamilton-  Hirakawa  Gunturk Li Chung Menon Zhang Paly SDD
-Adams et al. et al. et al. et al. etal. etal
1 0.26 0.17 0.55 0.41 0.36 0.34 0.23 0.19 0.11
2 0.09 0.07 0.12 0.12 0.11 0.10 0.10 0.12  0.05
3 0.30 0.31 0.57 0.38 0.41 0.40 0.35 0.37 0.18
4 0.19 0.18 0.30 0.23 0.25 0.22 0.19 0.25 0.12
5 0.32 0.33 0.65 0.40 0.40 0.43 0.40 0.36 0.17
6 0.15 0.16 0.26 0.18 0.18 0.19 0.17 0.19 0.07
7 0.14 0.16 0.24 0.16 0.17 0.18 0.15 0.14  0.06
8 0.12 0.16 0.27 0.14 0.17 0.20 0.16 0.15 0.06
9 0.13 0.18 0.27 0.16 0.18 0.20 0.16 0.14 0.07
10 0.10 0.14 0.13 0.11 0.14 0.13 0.10 0.11  0.06
11 0.10 0.17 0.14 0.10 0.12 0.13 0.09 0.11  0.02
12 0.09 0.10 0.18 0.12 0.12 0.12 0.11 0.11  0.07
Avg 0.17 0.17 0.31 0.21 0.22 0.22 0.18 0.19 0.09
Table IV

ZIPPEREFFECT INRGB COORDINATES FOR THEIMAX COLLECTION (§=2.5).



known original image. MSE does not necessarily reflects the
visual quality of the output image [19], [36]. It remains &k
same an inescapable quality criterion. Note that the rarige o
the pixel values in our tests [§255].

Table V shows that Zhang et al. and Paliy et al. perform
slightly better in terms of MSE than Gunturk et al, Menon et @
al. and SDD. As we mentioned the Zhang et al. and Paliy et  Adams
al. algorithms are also the ones creating less false colbesnw e
applied to grey zones of images. Despite its good performanc '
in MSE, the Gunturk et al. and Menon et al. algorithms
introduce more zipper effect.

However, for the IMAX database (table VI) the Hamilton-
Adams and SDD give the best MSE. Indeed, the strong zipper
effects of Zhang et al. and Paliy et al. increase the MSE. This (d) Li et al. (€) Chung etal. (f) Menon et al.
zipper effect is mainly concentrated near edges, and theref
a serious perceptual interference. The SDD MSE is coherent
with a low zipper effect.

Hamilton- (b) Hirakawa et al. (c) Gunturk et al.

Computation time

The computational cost of SDD lies in the computation
of patch distances. For each pixel the distance d¢f a 3
color patch with patches contained inax 15 neighborhood gigyre 7. Aliasing and color. The first four algorithms present
must be computed. There is fortunately a restriction, thatany color aliasing and spots since they are not able to correctly
the color channel in each compared pixel must be differe¢gfioose between a horizontal or vertical interpolation. The four last

from the one known at the current pixel. The total cost gorithms reconstruct accurately the original. This figure shows

5 - . : . that the recent directional filters improve the original homogeneity
27 % g % 22_5 =~ 2109 op.eratlons per p'_xel'_Th'$ DUtS_SDD jirected algorithm of Hirakawa et al. SDD yields a result comparable
a computational cost higher than basic directional filtars} (o the best directional filters and Zhang et al. and Paliy et al.

comparable to more sophisticated algorithms. Multi-resoh
and preselection strategies can actually be used to further
accelerate these patch comparisons, as proposed in [20], [3ne fails because of an excessive color frequency copy from
one channel to the others, while the directional filters seem
Visual quality fail because of the inability to interpolate diagonal patse
] ] Finally, figure 10 shows the strong zipper effect of most

In general, a low performance in one of the previougethods in the IMAX database, where edge colors predom-
three numerical criteria also entails a rejection by a humgiuie  Such edge colors are rare in the Kodak database.
visual inspection. In spite of this, none of these criter@ ¢ gomehow, the Kodak database focuses on the reconstruétion o
fully replace human evaluation, because of the very diverggninance high frequencies in grey regions, while the IMAX
geometric situations in images, and of the varying visughiapase challenges the ability of algorithm to keep up with

impact of each error, depending on the context. For thisorgas|or edges. Only SDD and Hamilton-Adams are able to give
a human visual evaluation still is the most important citer 5 reasonable solution.

to judge the performance of demosaicking algorithms. This
performance must be evaluated on edges, textures, andiario
kinds of geometric details such as corners, diagonals, and
fine patterns. Figures 7, 8, 9 and 10 furnish a wide-rangingThe new-proposed demosaicking algorithm takes advantage
comparative visual quality assessment of demosaickedamagf self-similarities in natural images to interpolate bgrts-
Figure 7 illustrates how the recently developed directionporting known values to missing values. Many experiments
filters and the homogeneity directed algorithm (Hirakawa eh two different databases have shown that it is possible
al.) [9] are able to restore a grey and nearly vertical higlo restore thin and fine periodic structures without creptin
frequency pattern. This figure also illustrates how the POGSpper effects in others. An important feature of the new-
algorithm (Gunturk et al.) [16] outperforms the successiiatroduced method is that it can extend immediately to mavie
approximation algorithm (Li) [15]. In the case of a movie, the search window can be extended
Figure 8 points out how all algorithms fail near the corner$p involve several successive frames, thus providing more
or when patterns with several orientations meet, even thougatches, and a much more obvious self-similarity. Furthakw
the image region is mainly grey. Only Paliy et al. and SDWill focus on acceleration issues to apply the same ideas to
give a fully visually acceptable solution in that case. F&g@ real-time video processing. The complementary comparativ
illustrates the strong residual zipper effect left by the®D experiments asked by several of our seven referees haveashow
algorithm (Gunturk et al.) and all directional filters. Thesfi a disturbing disparity in algorithm performance depending

(g9) Zhang et al.  (h) Paliy et al. (iy SbD

VI. CONCLUSION



10

Hamilton-  Hirakawa  Gunturk Li Chung Menon Zhang Paly SDD
-Adams et al. et al. et al. et al. et al. et al.
1 26.91 20.06 10.60 2220 2757 14.12 9.16 5.85 1552
2 6.18 5.06 5.37 5.68 7.01 4.36 3.48 2.94 4.27
3 20.73 11.43 8.98 17.29 18.82 8.27 6.14 5.25 11{64
4 5.41 5.85 453 4.87 9.75 4.29 3.78 3.27 4.72
5 40.36 27.54 18.57 33.97 3851 21.94 16.20 12.68 21.36
6 6.09 5.17 4.52 5.33 7.41 3.87 3.18 2.93 4.78
7 9.41 7.83 5.24 7.98 10.45 6.02 4.35 4.34 7.01
8 12.01 9.73 6.69 10.22  13.55 7.04 5.14 4.62 8.41
9 15.86 15.37 12.47 1426  17.08 12.16 9.33 9.26 1376
10 4.43 4.55 4.55 4.12 6.41 3.71 3.08 2.68 4.35
Avg 14.74 11.2 8.15 1259 15.66 8.58 6.38 5.38 9.58
Table V
MEAN SQUARE ERRORS INRGB COORDINATES FOR THEKODAK COLLECTION.
Hamilton-  Hirakawa  Gunturk Li Chung Menon  Zhang Paliy SDD
-Adams et al. et al. et al. et al. et al. et al.
1 98.22 13341 168.22  139.10 11490 110.10 105.92 101.56 1200.
2 92.18 120.15 143.72 12245 11497 10555 101.52 145.03 41700.
3 43.52 63.94 80.79 49.43 54.19 53.38 47.65 49.22 42|31
4 47.27 63.62 79.40 50.83 59.50 55.03 48.55 64.22 49(44
5 33.43 59.51 74.19 39.44 43.60 49.15 46.02 36.85 33|15
6 40.07 60.17 76.64 44.37 53.87 51.91 47.01 52.09 40|79
7 21.99 31.73 43.67 24.60 30.92 27.79 25.99 23.32 21|54
8 11.60 14.81 21.30 12.83 14.74 13.50 12.80 10.51 9.55
9 8.33 9.83 11.67 8.72 10.52 9.42 8.43 7.86 6.85
10 8.09 10.04 10.22 8.31 9.83 9.04 8.28 8.25 7.85
11 28.73 42.81 44.98 30.34 36.07 33.57 32.74 33.80 30{54
12 25.08 28.23 37.56 25.73 28.64 25.39 24.77 24.09 23|61
Avg 38.21 53.18 66.03 46.35 47.65 45.32 42.47 46.4 3885
Table VI

MEAN SQUARE ERRORS INRGB COORDINATES FORIMAX COLLECTION.

the choice of the benchmark database. It seems that masf L. zhang and X. Wu, “Color demosaicking via directionadar mini-
algorithms have been designed to keep up with the presence Mum mean square-error estimatiofiyiage Processing, |EEE Transac-
of Nyquist frequencies in grey image regions of the Kodallf2
database. Unfortunately these sharp algorithms have a muc “Spatially adaptive color filter array interpolation for iseless and

poorer behavior in presence of the color edges of the IMAX
tﬂ?tAND TECHNOLOGY, vol. 17, no. 3, p. 105, 2007.
[

database. Thus, it seems that the creation of a database
would retain all disturbing features and respect actualgigna

statistics is strongly needed.
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Figure 8. Wrong directions. This figure shows how difficult it is for
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Figure 10. Zipper effect on IMAX images. Most methods present

a strong zipper effect on color edges that makes the demosaicked
image not a reasonable solution to the demosaicking problem. Only
the SDD algorithm and Hamilton-Adams are able to give a reasonable
solution.



