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1. Introduction 
 

Drowsiness is the transition state between awakening and sleep during which a decrease of 
vigilance is generally observed. This can be a serious problem for tasks that need a sustained 
attention, such as driving. According to a report of the American National Highway Safety 
Traffic Administration (Royal, 2002) driver drowsiness is annually responsible for about 
56,000 crashes which is the reason why more and more researches have been developed to 
build automatic detectors of this dangerous state. 
Both behavioural and physiological modifications occur during drowsiness. Reaction time is 
slower, vigilance is reduced and information processing is less efficient, which can generate 
abnormal driving. Moreover, as drowsiness is the transition between awakening and sleep, 
it induces an increase of the number and the duration of blinks and yawns. Changes in 
cerebral activity also happen and can be observed thanks to electroencephalography. 
Researches on driver state monitoring has begun about thirty years ago and are still very 
active. The driver state monitoring systems can be classified into three kinds of system: 
those focusing on the vehicle behaviour, those focusing on the driver physical behaviour 
and those focusing on the driver physiological behaviour. 
The first systems developed were the ones using sensors monitoring the vehicle behaviour 
(O’Hanlon & Kelley, 1974, Klein et al., 1980). The main features studied are the steering 
wheel movements, the lateral position of the car on the road, the standard deviation of 
lateral position (SDLP) and the time to line crossing (TLC). The purpose is to detect an 
abnormal behaviour of the car, due to the driver drowsiness. The problems encountered by 
this kind of methods are that the features used depend on the shape of the road and how 
one drives, which may change a lot from one driver to another (Renner & Mehring, 1997).  
To overcome these problems, researches have focused on systems using sensors monitoring 
drivers’ awareness. One widespread technique to monitor the driver state is the use of a 
video camera. Indeed, a lot of information can be extracted from the driver face to monitor 
fatigue such as gaze, frequency and duration of eye blinking and yawning or percentage of 
eyelid closure. A lot of examples using camera to monitor the driver state can be found in 
the literature (Grace et al., 1998; Ji & Yang, 2001; Vural et al., 2007).  
These kinds of systems focus on the drivers' visual attention. Face, mouth and eye tracking 
algorithms are used to detect the face. Once the face, the eyes and the mouth are located, it is 
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easy to detect eye blinking or yawning and calculate their frequency and duration. 
Frequency and duration of yawning or eye blinking too high indicate a decrease of 
attention. The gaze can be calculated with the eyes and the face position (Smith et al., 2003) 
or using a stereoscopic camera (Ji et al., 2004). Then, it allows the driver to be warned when 
he is not looking at the road. 
However, many differences can be observed between drivers, which makes it hard to 
monitor fatigue with only one feature (Karrer et al, 2004). An interesting way of merging the 
different features (eye blinking, yawning, gaze...) is used by Ji et al. (Ji et al., 2006). They use 
probabilistic networks which allow all features to contribute to the decision of the level of 
attention. Moreover, external factors (weather, hour of the day, etc...) can contribute in these 
networks to determine the level of attention. 
However, video features are not the best indicators of drowsiness. According to Dinges 
(Dinges, 1995), the best indicators of fatigue are the physiological indicators. The 
electroencephalogram (EEG) and the electro-oculogram (EOG) are mainly used to study 
drowsiness. Yet, several researches have focused on other physiological indicators such as 
the electrocardiogram (ECG) to monitor drivers' heart rate (Törnros at al., 2000) or the 
drivers' temperature (Quanten et al., 2006). 
The EOG is the measurement of the resting potential of the retina. It gives an accurate 
measurement of eyes movements. Many features can be extracted from this information 
such as eyelid opening and closing parameters, blinks frequency, blinks amplitude, blinks 
duration... According to Galley et al. (Galley et al., 2004), EOG is a relevant measure to 
monitor fatigue since some extracted features are really sensitive to drowsiness. One of the 
most efficient features extracted is the PERCLOS (PERcentage of eyelid CLOSure). This 
feature has been defined by Wierwille (Wierwille et al., 1994). It is the percentage of eyelid 
closure over the time. Knippling (Knippling, 1998) showed that PERCLOS is a good 
indicator of drowsiness that increases with fatigue. 
Electroencephalography measures the electrical activity of the brain from electrodes placed 
over the scalp. Drowsiness appears into the EEG spectrum by an increase of activity in the 
frequency bands [8-12]Hz (alpha band) and [4-8]Hz (theta band) predominantly in the 
parietal and central regions of the brain. In the same time, a decrease of activity in the band 
[12-26]Hz (beta activity) can also be observed, as beta activity increases with cognitive tasks 
and active concentration. This has been shown in several studies (Santamaria & Chiapa, 
1987; Akerstedt & Gillberg, 1990; Kay et al., 1994). EEG is so efficient in detecting drowsiness 
that it is often used as a reference indicator. In this case, the reference is built by expert 
doctors who visually observe the proportion of alpha and theta activity on a short-time 
window as in (Muzet et al., 2003). The analysis is done off-line and is time consuming. 
In order to make the analysis of drowsiness in an automatic way, the EEG power spectrum 
can be computed using Fast Fourier Transform or using wavelets Transform but none of 
these techniques seems better than the other. The number of EEG channels used to monitor 
drowsiness fluctuates from a few to about thirty. The advantage of using a large number of 
EEG channels is to obtain spatial information on how the EEG energy is shifting from one 
frequency band to another (Makeig et al., 1996; Lin et al., 2005b). However, using only a few 
EEG channels is faster and easier to compute.  
The features obtained from EEG can be used in many ways.  Several studies proposed to 
monitor some ratios between different EEG power bands. De Waard and Brookhuis (De 
Waard & Brookhuis, 1991) suggest to monitor the ratio between the alpha activity and the 
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theta activity on the beta activity [(alpha+theta)/beta] (beta band: [12-26]Hz) which 
increases with driver drowsiness. Drowsiness decision can be made using EEG features 
used as inputs to a classifier. Ben Khalifa et al. (Ben Khalifa et al., 2004) used a connexionist 
method to detect drowsiness. They proposed to use a single parieto-occipital channel (P4-
O2) to avoid ocular frontal artefacts. Relative power in the [1- 23]Hz band is computed using 
a short term fast Fourier transformation and divided in twenty three sub-bands of 1Hz. 
These features are then used as entries in a linear vector quantization (LVQ) neural network 
to detect artefacted states and in a self organizing map (SOM) neural network to classify 
states into two states: awake and drowsy. Lin et al. (Lin et al., 2005a) applied Principal 
Component Analysis (PCA) on the whole spectrum of a 2-channels EEG. A fast Fourier 
transform is then computed on the principal component to extract the power in 10 EEG 
bands from 1 to 40Hz. These features are used for training a linear regression model which 
estimates the driving performance, i.e. the deviation between the car and the centre of the 
road, assuming that driving performances are correlated with driver’s alertness. They also 
used the two principal components obtained using an independent component analysis 
(ICA) on a 33-channels EEG instead using a PCA on a 2-channels EEG with their linear 
regression model to improve their estimation of driving performance. Most recently, Rosipal 
et al. (Rosipal et al., 2007) used hidden Gaussian mixture model to monitor drowsiness. A 
hierarchical Gaussian mixture model (hGMM) with two mixture components at the lower 
hierarchical level is used. Each mixture models the data density distribution of one of the 
two drowsiness cornerstones/classes represented by 4-second long EEG segments with low 
and high drowsiness levels. The spectral content of each EEG segment is transferred into a 
compact form of autoregressive model coefficients. Their study is performed on a large 
number of drivers. 
However, even if some on-line techniques exist, they seem hard to implement: they either 
need to be trained on numerous data previously recorded on a driver or they require a large 
number of EEG channels. Yet, the fact that EEG is used as a drowsiness reference by expert 
doctors in physiological studies proves the utility of an on-line driver drowsiness detection 
system using EEG. 
In this paper, we propose to develop a system to detect driver drowsiness that uses as few 
EEG channels as possible that works on-line and that does not need to be trained. Indeed, it 
seems that a relatively simple drowsiness detection system for drivers would be easier to 
implement in a car. 
The method proposed is described in section 2. The results obtained on a significant 
database of 40 EEG recordings from 20 drowsy drivers are shown and discussed in section 
3. Finally, conclusions and perspectives are presented. 

 
2. Drowsiness detection method 
 

After a short presentation on EEG and how drowsiness appears in EEG, the drowsiness 
detection method is presented step by step. 

 
2.1 EEG and drowsiness 
An electroencephalogram is a measurement of the electrical activity of the brain from 
electrodes placed on the scalp (Blinowska & Durka, 2006), according to the international 10-
20 system shown in fig. 1. 
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Fig. 1. 10-20 system 
 
EEG is described in term of rhythmic activity and transients. The rhythmic activity is 
divided into frequency bands: delta (δ) activity ([0.5-4]Hz), theta (θ) activity ([4-8]Hz), alpha 
(α) activity ([8-12]Hz), beta (β) activity ([12-26]Hz) and gamma (γ) activity (over 26Hz). Most 
of the time, only the range [1-30]Hz is used because activity below or above this range is 
likely to be artefactual (under standard clinical recording techniques).  
Drowsiness is characterized by an increase of alpha and theta activities, predominantly in 
the parietal (P) and central (C) regions of the brain, and a slowdown of blinks and eye 
movements (Akerstedt & Gillberg, 1990; Kay et al., 1994; Muzet et al., 2003). Even if different 
scales of drowsiness classification exist, none of them are standardized and there are no 
standardized rules to differentiate the levels of drowsiness (as the Rechtschaffen and Kales 
rules (Rechtschaffen & Kales, 1968) for the study of sleep). This may be due to the quite 
recent interest on drowsiness compared to the sleep analysis and the difficulty to collect 
drowsiness data. 
 

Objective 
sleepiness score 

αααα and θθθθ cumulative  
duration 

Blinks and eye 
movements 

0 Negligible Normal 
1 Less than 5s Normal 
 
2 

Less than 5s 
or 

Less than 10s 

Slow 
 

Normal 
 
3 

Less than 10s 
or 

More than 10s 

Slow 
 

Normal 
4 More than 10s Slow 

Table1. OSS Criteria 
 
There are two kinds of scales: subjective sleepiness scales like the Karolinska Sleepiness 
Scale (KSS) (Akerstedt & Gillberg, 1990) which allows drivers to directly evaluate their own 
drowsiness and Objective Sleepiness Scales (OSS) which is used by expert doctors to 
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evaluate drivers’ drowsiness after driving. The OSS used in this study is the five levels scale 
from 0 (awake) to 4 (very drowsy) developed by Muzet (Muzet et al., 2003). Decisions are 
made every 20s and depend on the length of alpha and theta bursts as well as on the speed 
of eyes movements and blinks. The different criteria are presented in table 1. This scale is 
used by doctors to make decisions.  
  
2.2 Method Principle 
The purpose is to design a drowsiness detection algorithm which can work on-line, inspired 
by the OSS. The overview of the detection method is shown in fig. 2. First the EEG power 
spectrum is computed using a Short Time Fourier Transform (STFT) to calculate the relative 
power into the different EEG bands every second. Then, the relative power of the alpha 
band is median filtered using a sliding window to reject abnormal values. A Means 
Comparison Test (MCT) is computed at last to compare the energy to a reference level, 
learnt at the beginning of the recording while the patient is not supposed to be drowsy. 
MCT is normalized. A common threshold of detection can be proposed taking into account 
the acceptable level of false alarms and validated using experiments which has been 
presented in (Picot et al., 2008). Concomitantly, a Variances Comparison Test (VCT) is 
computed on the raw EEG data to detect high amplitude artefacts. Information on the 
occurrence of artefacts can be used as an index of reliability on the “drowsy decision”.  
 

 
Fig. 2. Drowsiness detection method 

 
2.2.1 EEG Power Spectrum 
The EEG power spectrum is computed using a Short Time Fourier Transform (STFT). The 
power spectrum is computed every second on a window of two seconds using Welch's 
periodogram method (Welch, 1967). The overlapping window between the previous and 
next value is 1 second. Then, the relative powers in each band are calculated as the ratio of 
the power in one band and the power of the whole EEG spectrum. Only the range [1-30]Hz 
is used because activity below or above this range is likely to be artefactual. For example the 
α relative power is calculated as follows: 
 

power

power
owerrelative_p EEG

α
α =  (1) 

 
The relative power in the bands α ([8-12]Hz) , θ ([4-8]Hz) and β([12-26]Hz) are named αrel, 
θrel  and βrel respectively. 
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2.2.2 Median filtering 
Median filtering is used to smooth the αrel signal and to reject abnormal values. The median 
is the value separating the higher half of a population from the lower half. Compared to the 
mean, the median is known for its robustness towards outliers, as far as the number of 
outliers is lower than half the length of the population. Here, the median of the relative 
powers is calculated every second, before performing MCT, using a sliding window of 10s. 

 
2.2.3 Means Comparison Test 
The method of MCT is inspired by Ragot (Ragot et al., 1990) and is applied on the relative 
powers in the alpha band. A moving window is compared to a fixed reference window as 
shown in fig. 3.  
 

 
Fig. 3. Illustration of the windows for the MCT 
  
The classical MCT has quite restrictive conditions due to the fact that the theoretical 
variances are unknown. Let us consider two independent populations of length n1 and n2, 

whose means are 1x  and 2x  and whose variances are s12 and s22. Then, the variable: 
 


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follows a 2-nn 21 +  liberty degrees Student law. The equality of the two means can be 

tested by a bilateral test with a confidence threshold λ: -t1-λ/2 < t < t1-λ/2. 
If the two populations have the same length n (i.e. n1=n2=n) and their theoretical variances 
are equal, (2) can be formulated as: 
 

n
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x-x
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(3) 
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So, the variable t follows a n-1 liberty degrees Student law. 
Moreover, if the populations are large enough, i.e. if n1 and n2 are equal or greater than 20, 
the test is performed with the variable: 
 

2

2
2

1

2
1

21

n

s

n

s

x-x
u

+

=  
(4) 

 
which then follows a centred reduced normal law. The means equality is then tested by a 
bilateral test with a confidence threshold λ: -u1-λ/2 < u < u1-λ/2. Furthermore, the theoretical 
variances equality is no longer necessary. 
Here, the test is computed on the relative power signals calculated every second. The 
reference, calculated from the fixed window, is calculated at the beginning of a recording 
with the assumption that, before driving, the driver is not drowsy. The mean value 
calculated during this period provides a reference for the not drowsy stage. The mean 
values calculated on line are compared to this “not drowsy” reference value.  The length of 
the fixed reference window is n1=60s and the one of the moving window is n2=30s, so n1 and 
n2 are greater than 20 as αrel is calculated every second. Hence, the formula (4) can be used. 
The threshold λ fixes the percentage of false alarms expected. The higher the threshold, the 
lower the percentage of false alarms. In this study, λ is empirically chosen and discussed in 
section 3. 

 
2.3 Artefact detection 
An artefact is an electric perturbation of the EEG signal due to patient movements or 
measurement problems. Artefacts pollute the whole EEG band and it is quite impossible to 
extract reliable EEG information when an artefact occurs. There are several types of 
artefacts. They may be due to ocular movements, face muscles movements or measurement 
devices problems such as electrode unstuck. 
The proposed solution to detect high-amplitude artefacts corresponding to electrode 
unstuck is to apply a Variances Comparison Test (VCT) on the EEG. Artefact values are 
around mV whereas EEG signal values are around µV. High-amplitude artefacts pollute the 
whole EEG band as shown in the red box on the spectrogram in fig. 4.  
The method of VCT is inspired by Ragot (Ragot et al., 1990) and is directly applied on the 
raw EEG. The principle is the same than the MCT: the variance of a moving window is 
compared to the variance of a reference window. Let us consider two independent 
populations with normal distributions. Their lengths are n1 and n2 and their experimental 
variances are s12 and s22. Then, the variable: 
 

2
2

2
1

s

s
F =  (5) 

 
follows a Fisher law with k1=n1-1 and k2=n2-1 liberty degrees. The variances equality is then 
tested by a bilateral test with a confidence threshold λart: F λart /2 < F < F1- λart /2. 
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Fig. 4. Example showing a high-amplitude artefact 
 
Here, the test is computed on the raw EEG data every 10s. A moving window is compared 
to a fixed reference window as shown in fig. 3. The reference variance is calculated on an 
artefact-free time window lasting one minute, chosen at the beginning of the recording,. 
Then, a moving window of 10s is compared to this reference every 10s. The threshold λart is 
empirically chosen and discussed in section 3.  
The goal is to detect the artefact, not to reject it. As the system is working on a minimal 
number of EEG channels, it is not possible to recover lost EEG information of the artefact 
since missing information cannot be found somewhere else. Nevertheless, detecting the 
occurrence of an artefact provides information on the signal quality: whenever an artefact is 
detected, the concomitant relative power extracted from EEG should not be used to evaluate 
drowsiness. 

 
2.4 Method relevance 
The whole algorithm can be applied on-line. However, the sliding window of 10s used for 
median filtering induces a delay of 5s and the sliding window of 30s used for the MCT 
induces a delay of 15s. The artefact detection is computed in parallel with a sliding window 
of 10s which induces a delay of 5s.  So, the decision provided by the algorithm is delayed by 
20s from the signals recording. This latency in the decision will be taken into account when 
comparing the results to the expert's decisions.   
The general purpose of this algorithm is the detection of drowsiness. The MCT detects α 
bursts, which are indicators of drowsiness as seen in section 1. The reference is calculated on 
a fixed window chosen at the beginning of the signal, supposing that the driver is 
completely awake when he starts driving. So, the mean calculated on the moving window is 
compared to a wakefulness reference. If the bilateral test is higher than the threshold, the 
driver is then considered as drowsy, otherwise he is considered as awake. Fig. 6 shows how 
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the signal is processed in the detection system. First the relative power in the α band (b) of 
the EEG (a) is calculated. Then, it is smoothed by median filtering (c). A MCT is performed 
(d) on the filtered signal and is thresholded to make the decision awake or drowsy (e). 
 

 
Fig. 6. Signal processing from EEG to drowsiness detection 
 
High-amplitude artefacts pollute the EEG signals and generate isolated high abnormal 
values on the whole EEG band of the power spectrum. A median filter is used to smooth the 
α relative power signal and to reject abnormal isolated values to avoid false detection. 
Moreover, a VCT is calculated on the raw EEG signal to detect the occurrence of high-
amplitude artefacts polluting the whole EEG band. The detection of these high-amplitude 
artefacts does not allow rejecting them but provides information on the quality of signal 
around this point. It means that if artefacts are found on a part of the signal, decisions on 
drowsiness in this part tend to be less reliable than if not.  
The point with detecting α bursts in EEG signal is the difficulty to define a common 
threshold for all drivers because of the large inter-individual differences (Karrer et al., 2004). 
Here, the level of αrel power in the “awake” state is learned on each driver from the 
reference window. Moreover, the output of MCT is a variable following a centred reduced 
normal law. So, the threshold used in the bilateral test has statistical meaning and is the 
same for all drivers.  
In the same way, as the output of the VCT is a variable following a Fisher distribution, the 
threshold used to detect high-amplitude artefacts has a statistical meaning and is the same 
for all drivers. 

 
3. Results and discussion 
 

3.1 Database 
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The database used for the evaluation of the method has been provided by the CEPA (Centre 
d’Etudes de Physiologie Appliquée) from Strasbourg (France) using the driving simulator 
PAVCAS (“Poste d'Analyse de la Vigilance en Conduite Automobile Simulée”). PAVCAS is 
a moving base driving simulator composed of a mobile base with four liberty degrees 
(vertical and longitudinal movements, swaying and pitching) and a real-time interactive 
visualization unit. The visualisation unit reproduces very well the driving conditions on a 
freeway by day or night. Images are shown on five screens in front of the vehicle and are 
arranged in semicircle. 
The database is composed of forty recordings from twenty subjects. Each subject was 
recorded while driving for 90 minutes, a first time perfectly rested and a second time 
suffering from sleep deprivation (the subject had slept 4 hours only) in diurnal conditions. 
The database is thus composed of 60 hours of driving data. Each recording includes four 
EEG channels (left frontal (F3), central (C3), parietal (P3) and occipital (O1)), one EOG 
channel and a video of the driver's face. Objective sleepiness was evaluated on each 
recording by an expert doctor using the scale described in section I. Data acquisition of 
physiological signals was performed at 250Hz. 

 
3.2 Technical validation 
 

 
Fig. 9. Comparison between expert decision (a and b) and system decision (c) 
 
The method proposed in this chapter provides a binary decision [awake; drowsy] while the 
database has been manually labelled using five levels. Moreover, the expert classified non 
overlapping intervals of 20s (epochs) while the automatic system makes a decision every 
second. To compare our results with the expert's decision, the following validation 
technique was used. The five expert decision levels were converted into a binary decision by 
considering as drowsy any decision superior or equal to 1 in the expert's scale as shown in 
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fig. 9. This figure shows the expert decision on a five levels scale (a) and on a binary scale (b) 
and the drowsiness detection obtained using our system (c). 
Furthermore, each 20s epoch classified by the expert was directly compared to the system 
decision: if during the 20s interval, the system classifies at least 1s as “drowsy”, then the 
decision for the epoch was “drowsy”. Else it was “awake”. 
Epochs were then compared one by one and classified according to the table of confusion 2. 
 

 Expert decision 

 
 

Automatic 
decision 

 awake drowsy 

awake True Negative 
(TN) 

False Negative 
(FN) 

drowsy False Positives 
(FP) 

True Positive 
(TP)  

Table 2. Table of confusion 
 
The true positive rate (TPrate) or detection rate is the ratio between the number of true 
”drowsy” automatic decisions and the number of “drowsy” expert decisions. The false 
positive rate (FPrate) is the ratio between the number of false “drowsy” automatic decisions 
and the number of “awake” expert decisions. They are calculated according to (6) and (7). 
 

FNTP
TP

TPrate +
=  (6) 

TNFP
FP

FPrate +
=  (7) 

 
The results are displayed as Receiver Operating Characteristic (ROC) curves (Hanley & 
McNeil, 1982), plotting TPrate in function of FPrate. The purpose is to have the highest TPrate 
with the lowest FPrate. 

 
3.3 Results using alpha relative power 
 

3.3.1 Results without artefact detection 
The drowsiness detection algorithm was applied on the whole database, with a decision 
threshold λ (defined in section 2.4) varying from 1.5 to 5, on each of the four EEG channels. 
The results presented in fig. 10 are those obtained when the MCT is applied on the alpha 
relative power without considering artefact detection. “Star” markers correspond to the P3 
channel, “circle” markers to the F3 channel, “square” markers to the C3 channel and 
“triangle” markers to the O1 channel. The head at the bottom right of Fig.10 reminds the 
reader of the position of each channel. For each channel, the results represented with the 
markers the further on the right corresponds to the smallest λ and those with the markers 
the further on the left to the biggest λ. It is coherent: increasing λ diminishes the FPrate while 
decreasing the TPrate. 
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Fig. 10. Results obtained using different EEG channels 
 
It is obvious from fig. 10 that the results are better when the P3 parietal channel is used, 
which is in concordance with results from the literature: drowsiness is characterized by an 
increase of α activity predominately in the parietal region of the brain. Indeed, results 
obtained with EEG recorded by C3, F3 or O1 are only slightly better than those that would 
be obtained with a random classifier. In the following sections, only the results obtained on 
P3 channel are shown.  
The optimal result on P3 are TPrate=82,1% and TPrate=19,2% with λ=3. However changing the 
threshold does degrade the performances (TPrate=85,1% and TPrate=23,5% with λ=1,5 and 
TPrate=76,9% and TPrate=14,8% with λ=5), which proves that the method is not sensitive to 
the threshold value. 

 
3.3.2 Results with artefact detection  
An example of artefact detection is shown on fig. 11.  The first signal (a) is the EEG raw data. 
The signal (b) is the result of the VCT. The dotted line corresponds to the threshold λart=6. 
The last signal (c) shows the result of the artefact detection (dotted line): when “zero” no 
high amplitude artefact is detected and when “one”, an artefact is detected. The dotted line 
boxes underline high-amplitude artefacts.  
First, this example shows that the detected artefacts correspond to high-amplitude electric 
perturbations of the EEG signal. As high-amplitude artefacts have not been evaluated by an 
expert on the dataset, it is not possible to quantify the performances of the artefact detection 
method. Nevertheless, a visual check of all the recordings shows that all the apparent high-
amplitude artefacts have been detected. Fig. 12 shows the number of artefacts detected in 
the database (total number and corresponding percentage on the database) in function of the 
value of the threshold λart (used for artefact detection).  
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Fig. 11. Example of high amplitude artefact detection 
 
It can be seen in fig. 12 that if the threshold is too small (λart<5), detection is really sensitive 
and a lot of points are rejected. Visually, this means a lot of false alarms. When increasing 
λart, the number of artefacts detected decreases quickly till λart=6, which visually seems an 
appropriate threshold. Indeed, for this threshold value, all the visible high-amplitude 
artefacts are detected without false alarms. At this point, one can see that high-amplitude 
artefacts represent only a small part of the dataset: about 2%. 
 

 
Fig. 12. Number of artefact detected in function of λart 
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Results obtained when no decision is made if artefacts are detected are displayed in fig. 13 
with “circle” markers. The threshold used for the artefact detection is λart =6. “square” 
markers represent the results obtained without considering the artefact detection. 
 

 
Fig. 13. ROC curve for drowsiness detection when artefact detection is used 
 
It is obvious in fig. 13 that results are slightly improved: TPrate is a bit increased while FPrate 
is a bit decreased. Using the threshold λ=3, results increase from TPrate=82,1% and 
FPrate=19,2% to TPrate=82,4% and FPrate=18,3%. So, artefact detection decreases the number of 
false decisions. The fact that results are only slightly increased can be explained by the fact 
that high-amplitude artefacts represent about 2% only of the dataset.  
Artefact detection will be taken into account in the following sections.  

 
3.4 Results using other features than alpha relative power 
Results presented in section 3.3 are now compared to results obtained with other features 
proposed in the literature. The results are displayed in fig. 14.  Results from section 3.3, 
obtained using MCT on the median filtered αrel signal, are represented by “star” markers. 
“Square” and “circle” markers represent results obtained using MCT and median filtering 
respectively on θrel and βrel signals. Note that β activity increases with cognitive tasks and 
active concentration, so drowsiness is characterized by a decrease of the β activity. So, the 
detection algorithm using β as the main feature consider the driver as “drowsy” when the 
output of the MCT is lower than the threshold –λ (varying from -5 to -1).  “Triangle” 
markers correspond to results obtained with the combined signals αrel|θrel. Decisions are 
made independently on αrel and on θrel and then merged with a logical OR. The optimum 
threshold λ=3 was used for αrel. Displayed results are obtained with a threshold varying 
from 1,5 to 5 for θrel detection. The idea to use both αrel and θrel is inspired by table 1, where 
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it is assumed that drowsiness is characterized by an increase of the activity in one of the two 
frequency bands α and θ.  “Hexagram” markers represent the (α+θ)/β feature. This feature 
has been suggested by De Waard and Brookhuis (De Waard & Brookhuis, 1991). As α and θ 
activity are supposed to increase with drowsiness whereas β activity is supposed to 
decrease, this feature should be increasing with drowsiness. In this case, MCT is computed 
on the sum of the signals αrel and θrel divided by the βrel signal and only one threshold is 
used to make the decision. 

 
Fig. 14. ROC curves  using different features for drowsiness detection 
 
 
The best results are obtained with the drowsiness detection algorithm applied on the αrel 
signal (TPrate=82,4%, FPrate=18,3%). Since the algorithm was tested with the same threshold 
on data recorded from 20 different persons, this tends to show that the method can be 
applied on different persons without adapting the tuning parameter.  
The results obtained with αrel|θrel show that θrel is not relevant to detect drowsiness since 
the number of false positive increases tremendously when this information is added. This is 
confirmed by the results obtained with θrel only. The (α+θ)/β ratio and βrel give correct 
results (TPrate=76,2% and TPrate=32,1% for (α+θ)/β and TPrate=75,9% and TPrate=24,1% for 
βrel)  but worse than the results obtained with the αrel information only.  
Now, if we compare the results obtained with the literature, the results obtained are as good 
as those found when using a trained algorithm.  Lin et al.  (Lin et al., 2005a) proposed to 
monitor driving performance, i.e. the capacity to maintain the car in the middle of the road  
computing a linear regression model on a 2-channels EEG. They obtained a correlation of 
r=0,88 between their model and the driving performances when the model is trained and 
tested on the same session. The correlation decreases to r=0,7 when trained and tested on 
different sessions. So, this method needs to be tuned for each driver as the model estimated 
for one driver does not work so well on another. Lin et al. increase these results using ICA 
on a 33-channel EEG (Lin et al., 2005a) to compute their linear regression model and obtain a 
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correlation of r=0,88 between their estimation and the driving performances on the testing 
session. Nevertheless, this model needs to be trained on a large amount of data and has been 
tested on 5 drivers only. Ben Khalifa et al. (Ben Khalifa et al., 2004) obtained 92% of true 
drowsiness detections by training a neural network on a the EEG spectrum of the P4-O2 
channel but this result is obtained on the training set and decreases to 76% of true detections 
on the validation set. Moreover, these results are obtained on a set of only 4 drivers. At least, 
Rosipal et al. (Rosipal et al., 2007) obtained about 77% of true detections of drowsiness states 
by using hGMM on the spectral content of EEG transferred into a compact form of 
autoregressive model coefficients. This study has been performed on a large number of 
drivers and needs a period of training. 
The advantage of the method proposed in this paper is that it does not need to be trained or 
adapted. The same threshold can be used for all drivers. Moreover, as the method has been 
tested on huge dataset, the results can be considered significant. 

 
3.5 Results merging alpha and beta relative powers 
From the previous section, the best results are obtained when αrel or βrel are used as features, 
which naturally gives the idea to merge these two features to increase the decision reliability 
The technique used to merge αrel and brel is fuzzy logic, which is based on the theory of 
fuzzy sets developed by Zadeh (Zadeh, 1965). Let us consider µDr(αrel) and µDr(βrel), the 
membership functions, which represent the membership degree of αrel and βrel, 
independently considered, to the “drowsy” state. The purpose is to make a decision Dr(αrel, 
βrel) using both µDr(αrel) and µDr(βrel),. The driver is considered to be drowsy if both the 
decision made using αrel and the decision made using βrel is “drowsy”. This is expressed 
thanks to the t-norm product as follows:  
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Note that µAw(.) is the membership function of the “awake” state and is the complementary 
of µDr(.). The denominator is used here to normalize Dr(αrel,βrel)  between 0 and 1.  
One has to define the membership function µDr(αrel) and µDr(βrel). A study of the probability 
of being drowsy in function of the MCT’s threshold λ on αrel and βrel, P(dr|αrel)  and P(dr|-
βrel), is displayed in fig. 15. The “square” markers line displays the experimental P(dr|αrel) 
and the “circle” markers line displays the experimental P(dr|-βrel). Probabilities are 
calculated as the percentage of true drowsiness detections obtained on periods when the 
relative power is over λ. 
The membership function µDr (αrel) and µDr (βrel) are then designed from the results 
presented in fig. 15. As αrel and βrel have a very similar behaviour, the same membership is 
used for αrel and βrel. This membership function is presented in fig. 16. 
The driver is considered as “drowsy” when Dr(αrel,βrel) is larger than 0.5 The results 
obtained with this method are shown in fig. 17 with the “circle” markers. They are 
compared to the results obtained using the MCT on αrel only (“square” markers).    
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Fig. 15.  Experimental probabilities of being drowsy in function of threshold λ 
 

 
Fig. 16. Membership function in function of threshold λ 
 
Results are improved using this fuzzy logic approach since FPrate is increased and FPrate is 
decreased. The results obtained with this method are TPrate=84,6% and FPrate=17,9% 
(TPrate=82,4% and FPrate=18,3% with λ=3 when using only αrel information). This means that 
the βrel information is relevant to detect drowsiness when combined with αrel. Moreover, 
compared to the method proposed in section 3.5, there is no need to select an appropriate 
detection threshold for αrel and βrel. The fuzzy approach increased the detection reliability.  
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Fig. 17. Performances obtained using  αrel, βrel and (αrel, βrel) merged with fuzzy logic  

 
4. Conclusion  
 

An algorithm to detect on line drivers’ drowsiness from a P3 EEG channel has been 
presented in this paper. This algorithm is based on a means comparison test (MCT) applied 
on the EEG relative power calculated in the alpha band and in the beta band. The results of 
the MCT test are then merged using fuzzy logic. The algorithm can operate on-line with a 
short delay and does not need to be tuned. Performances obtained on a large data set 
recorded from 20 different drivers are 84,6% of true detection and 17,9% of false detection 
using the parietal EEG channel only. A high-amplitude artefact detection system has been 
developed and combined to the drowsiness detector. It enables periods of time when the 
EEG signal is unreliable to be detected on line. No decision is made by the drowsiness 
detector while the artefact detector classifies the EEG signal as unreliable. The artefact 
detector is tuned by a single threshold whose value is independent of the driver. 
 
The next step of this work is to add an ``eye blinks and yawn'' detection system thanks to a 
high frame rate camera and to merge the decisions to obtain a highly reliable automatic 
drowsiness detector. Fuzzy logic could be a first step to merge this information. 
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