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Abstract 

The periodicity of striae formation in the tropical scallop Comptopallium radula (Indo-West Pacific 

Ocean) was investigated with an in situ marking technique, using the calcein fluorochrome. To minimize 

scallop stress caused by excessive handling, in situ benthic chambers were used for marking experiments. 

Once marked, scallops (shell height range: 38.4-75.8 mm) remained on site in a large benthic enclosure 

and were collected at regular time intervals to count new striae formed after marking, over a period of 

3 months. A 3-hour exposure period with calcein (150 mg L-1) was sufficiently long to create a detectable 

mark in nearly all shells. It was however impossible to count the striae in 48.2 % of the shells (mainly 

large specimens) because of a very small growth after marking. Lack of significant mortality during the 

experiments indicated that tested calcein concentrations were not lethal. A decrease in shell growth rate 

was observed after marking but the respective impacts of calcein toxicity and changes in environmental 

conditions could not be discriminated. Our results suggest that in situ calcein marking inside benthic 

chambers is suitable for shell growth studies of scallops, provided the latter are not too old. After 

marking, the juvenile C. radula formed an average of one stria every 2.1 days in summer. Reports of 

2-day periodicity in biological rhythms are rare. Striae formation in C. radula may be controlled by an 

endogenous oscillator, synchronized by an environmental cue acting as a zeitgeber, such as seawater 

temperature or sea level pressure, both of which exhibit 2-day variations in the Pacific Ocean. As in many 

other scallop species, C. radula forms striae periodically under natural conditions, but this study shows 

that in pectinid juveniles, this periodicity can deviate from a daily cycle. These results suggest that C. 

radula shells have tremendous potential for recording environmental conditions during periods ranging 

from months to a few years and with a resolution of 2 days.
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Introduction 

New Caledonia is a group of islands situated in the South Pacific Ocean, 1500 km from 

Australia. The main island is surrounded by a barrier reef enclosing a 23 400 km² 

lagoon. Mining is the main local economic resource as New Caledonia is the 3rd largest 

nickel ore producer in the world and also produces other metals such as cobalt and 

chromium (Labrosse et al. 2000). Intensive open-cast mining on hilltops enhances 

terrigeneous and associated metal inputs to the lagoon. Recent studies dealing with 

bioaccumulation of trace metals in tissues of various marine organisms (Bustamante et 

al. 2000; Breau 2003) in the lagoon have been completed, however there is still a need 

for a high-resolution trace metal contamination proxy. 

Many studies have already focused on the potential of marine carbonate skeletons, 

especially bivalve shells such as cockles or mussels, to record environmental trace metal 

contamination (e.g., Price and Pearce 1997; Richardson et al. 2001). The study of such a 

potential in scallop shells (Mollusca; Bivalvia; Pectinidae) has been few studied even 

though periodically formed striae (see Richardson (2001) for terminology), that allow  

accurate dating of each part of the shell, have been described (Chauvaud et al. 1998; 

Lorrain 2002). Precise dating of the skeletal section of interest is a prerequisite to any 

study of shell records. Hence, before conducting a study on environmental tracers in the 

shell of a given species, it is necessary to know the age of each shell sub-sample and the 

species growth rate. 

Comptopallium radula (Linne, 1758) is a large (maximal shell height = 110 mm) 

sedentary scallop living under branching corals, especially Acropora sp., or on coralline 

fragments beds (Dijkstra 1984). In the New Caledonia lagoons, this species is 

frequently found in shallow muddy to sandy bays that are subject to significant metal 

inputs. As in many other scallops species (e.g., Pecten and Argopecten genera), the fine 
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microscopic concentric striae wrinkling the surface of its shell can be used to estimate 

growth rates (Fig. 1). 

Since Clark (1968), many studies have focused on the rhythm of striae formation in 

scallops. Most results have suggested a daily periodicity in CaCO3 deposition (Clark 

1968; Wrenn 1972; Clark 1975; Antoine 1978; Broom and Mason 1978; Helm and 

Malouf 1983; Hurley et al. 1987; Joll 1988; Parsons et al. 1993; Chauvaud 1998). 

However, different growth periodicities have been observed in other bivalves. For 

example, in the Northern Quahog Mercenaria mercenaria, six different periodicities 

were identified (Pannella and MacClintock 1968; Kennish and Olsson 1975): annual 

(350-380 days), monthly (29 days), tidal (14 days), bi-daily (2 days), daily (1 day), and 

subdaily (< 1 day). Therefore, the cadence of calcification must be evaluated before a 

new scallop species can be used as an "environmental sentinel". 

Different methods have been used to assess the rhythmicity of striae formation in 

scallops, e.g., successive measurements (Clark 1968; Broom and Mason 1978), mark-

and-recovery experiments (Joll 1988), or chemical marking (Clark 1975; Hurley et al. 

1987; Parsons et al. 1993). Chemical techniques using fluorochromes (tetracyclines, 

alizarin red, xylenol orange, and calcein) have also been used for growth studies on fish 

(MacFarlane and Beamish 1987; Wilson et al. 1987; Monaghan 1993), gastropods 

(Pirker and Schiel 1993; Day et al. 1995; Moran 2000) and many other marine 

organisms (Rowley and MacKinnon 1995). Incorporation of fluorochromes into 

calcifying otoliths or shells produces an internal fluorescent mark and any subsequent 

growth can then be estimated readily. Compared to other chemicals (e.g., tetracycline), 

calcein appeared to induce little toxicity (Rowley and MacKinnon 1995). Despite recent 

experiments successfully using calcein as a growth marker in the brown mussel Perna 
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perna (Kaehler and MacQuaid 1999), this dye has received relatively little attention, 

especially with respect to bivalve growth studies. 

The objectives of the present study were: (1) to investigate the potential of calcein to 

study growth pattern in scallop shells and (2) to assess the periodicity of striae 

formation in C. radula. 

Methods 

Scallop collection and shell marking 

A preliminary study, using mark-and-recovery experiments (Lefort 1994), failed to 

identify the periodicity of striae formation in C. radula (Thébault, unpublished results) 

as almost all individuals stopped growing after tagging. As it is essential to minimize 

stress on the scallops during the experiments, we opted for an in situ shell marking 

experiment, using calcein. 

Scallops (n = 141) were collected by diving on 23/12/2002 (austral summer) near 

Nouméa, in the southwest lagoon of New Caledonia. Shell height of these specimens, 

measured a posteriori (see section 2.2), ranged from 38.4 to 75.8 mm. The individuals 

were randomly assigned to 6 batches in order to test the effects of calcein concentration 

and incubation time (Table 1). Coloured plastic tags were fixed on all shells with 

cyanocrylate glue (1 colour per batch). During these operations, scallops were exposed 

to air for less than 10 minutes. They were then placed in a large benthic enclosure (2 m 

× 1 m) near a natural bed of C. radula. Branching corals were positioned in the cage to 

mimic the biotope of the species. 

After allowing for a stress recovery period of 1 month, calcein marking was conducted. 

Each batch was carefully removed from the enclosure and placed in a benthic chamber 

made of a clear acrylic hemisphere fastened to a 0.2 m2 PVC base inserted into the 
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sediment and partly filled with ca. 7 L of air to prevent anoxia (Fig. 2). A gusher galley 

pump connected to a 12 V underwater power supply ensured a 5 L min-1 closed-circuit 

flow to homogenize the enclosed water (ca. 50 L). Calcein (Sigma-Aldrich Pty. Ltd., 

Australia - # C0875) stock solutions of 15, 30 and 60 g calcein L-1 were prepared in 1 L 

of Milli-Q water, with 105 g sodium bicarbonate added (to adjust the pH to 8.2). 

Calcein was then injected into the benthic chamber with a syringe through a clamp (Fig. 

2). After the marking period was finished (3 or 6 h, depending on the marking 

experiment), the scallops were carefully returned to the enclosure. Subsequently, 

3 scallops were randomly selected and removed from each of the 6 batches after 13, 20, 

27, 34, 48, 62, 69 and 91 days. 

Bottom-water temperature was measured during the experiment hourly with an EBRO 

Ebi-85 probe fixed to a bottom mooring. Salinity was recorded weekly using a Sea-Bird 

SBE 19 CTD profiler. Chlorophyll a concentrations were measured on bottom-water 

samples collected weekly with a 5 L Niskin bottle. 

Sample preparation and observation 

After sampling, the marked scallops were killed immediately and the soft parts 

discarded. Shells were air-dried, their final height was measured along the maximal 

growth axis (umbo-rim axis) with a vernier calliper (accuracy = 0.1 mm) and they were 

stored in the dark to prevent any fluorescence decrease (Wilson et al. 1987). Shells were 

sliced using a diamond-bladed rock saw (Fig. 1a) at the Aquatic Animals 

Sclerochronology Laboratory (Plouzané, France). Shell pieces were cleaned in 90 % 

acetic acid for 45-60 seconds, rinsed with water, air-dried and embedded in a polyester 

resin (Sody 33 - polymerisation time: 6 h at 30 °C - Escil, Chassieu, France) before 

being sagitally sectioned along the maximal growth axis using an Isomet low speed saw 

equipped with a diamond wafering blade (Buehler, Lake Bluff, IL, USA). The 600 µm 
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thick sections were polished with 0.33 µm calcined alumina powder (Escil, Chassieu, 

France). The shell slides were observed under a Leitz DM RBE fluorescence 

microscope (Leica Mikroskopie & Systeme GmbH, Wetzlar, Germany) equipped with 

an Osram 50-W high-pressure Hg lamp and with an I2/3 filter block: excitation filter 

BP450-490, dichroic mirror RKP510 and emission filter LP515. 

A marking quality index (MQI) was defined according to fluorescence intensity and 

length of the mark: 0 = no mark, 1 = detectable but faint or not surfacing mark, 2 = 

bright mark, 3 = long and very bright mark. The shell height at calcein marking, or 

initial shell height, was calculated as the difference between the final shell height and 

the shell increase since marking (Fig. 3). For each shell, the number of striae formed 

within this interval was counted by 3 different readers and then the mean length of the n 

increments (= a/n) preceding the calcein mark was compared with the mean length of 

the n increments between this mark and the ventral edge (= b/n) with nmax = 10 (Fig. 3). 

Statistical analyses 

ANOVAs were performed to check: (1) the differences in mean shell height of scallops 

for the 6 experiments and for the 8 post-marking sample periods and (2) if successful 

calcein markings were related to shell height. The influence of calcein concentration 

and immersion time on the marking quality index was tested using a two-way ANOVA. 

An ANCOVA was used to test whether there were significant differences between the 

slopes of the least-square linear regressions (number of new striae vs. number of days of 

growth) calculated for each of the 3 readers. Homogeneity of variances (for ANOVA) 

and residual variances (for ANCOVA) was tested with Bartlett's test (α = 0.01). All 

statistical analyses were performed according to Scherrer (1984).
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Results 

Calcein marking experiments 

Only 2 scallops out of 141 died during the 13 weeks following the calcein marking. The 

dead scallops (first recovered on 19/02/2003 and the second recovered on 24/04/2003) 

were from groups marked with a calcein concentration of 300 mg L-1 during 3 h and 

150 mg L-1 during 6 h, respectively. Moreover, 23 scallops lost their coloured plastic tag 

in the benthic enclosure. Mean initial shell height did not differ significantly for the 

6 experiments (Bartlett's test: BC = 3.12, df = 5; ANOVA: F = 0.26, df = 5 and 110, p = 

0.93) and for the 8 post-marking samples (Bartlett's test: BC = 2.73, df = 7; ANOVA: F 

= 1.18, df = 7 and 131, p = 0.32). The two-way ANOVA indicated no significant effect 

of calcein concentration and immersion time on the MQI (Table 2). However, an 

inverse relationship was found between MQI and initial shell height (i.e., age; Fig. 4, 

open diamonds). 

The counting of striae formed after the staining experiment was impossible for 48.2 % 

of the shells because of either the absence of a calcein mark (7 shells) or an insignificant 

growth after marking (presence of a disturbance mark resulting from the coalescence of 

striae around the calcein mark in 60 shells). The mean initial shell height of these 

67 scallops (66.3 mm) was significantly larger (Bartlett's test: BC = 0.48, df = 1; 

ANOVA: F = 124.93, df = 1 and 137, p < 0.01) than the rest of the experimental 

population (mean = 53.5 mm). Moreover, an inverse relationship was found between net 

shell accretion after marking (i.e., distance between the calcein mark and the ventral 

margin) and initial shell height of the scallops (Fig. 4, solid circles). For each of the 

72 remaining scallops, the mean length of the growth increments (i.e., mean inter-striae 

distance) after the marking experiment was smaller than before the calcein mark (Δ < 0 
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for all scallops; Fig. 5). For all 72 individuals, the average of the mean length of the 

increments decreased from 258 to 128.6 µm (mean decrease of 50.2 %). There was no 

significant relationship between the initial shell height and the decrease in mean length 

of the increments (linear regression analysis: r2 = 0.02, p = 0.33). 

During the experiments, bottom-water temperature ranged from 25.4 to 29.3 °C, salinity 

from 35.01 to 35.74 and chlorophyll a concentration from 0.45 to 1.30 µg L-1. The mean 

temperature in the month preceding the calcein marking was 27.8 °C vs. 26.8 °C in the 

following month. Monthly averaged chlorophyll a concentrations also decreased from 

1.42 to 0.59 µg L-1 after the marking experiment. No significant difference in salinity 

was found before and after the marking experiment. 

Periodicity of striae formation 

A green calcein mark was detectable on 72 scallops (Fig. 6). For each of the 3 readers, 

the number of new striae formed after the staining experiment was plotted against the 

number of days (Fig. 7a-c). The linear regression analysis performed for each set of data 

indicated a highly significant relationship for each reader (p < 0.01). The slopes ranged 

from 0.47 to 0.52 (p < 0.01) and intercepts were not significantly different from 0 (p > 

0.05), indicating that C. radula formed 1 stria every 1.9-2.1 days, depending on the 

reader. Furthermore, an ANCOVA showed no significant difference between the 

3 slopes (Bartlett's test: BC = 1.55, df = 2; ANCOVA: F = 1.40, df = 2 and 169, p = 

0.25). Inter-reader differences were assessed by calculating the relative standard 

deviation (RSD) for each of these 72 scallops: RSD ranged from 0 to 38.9 % (mean = 

10.6 %). 

When the results of the 3 different readers were pooled, a highly significant linear 

relationship (r2 = 0.91, p < 0.01) was observed between the average number of new 

striae and the number of days of growth (Fig. 7d). The slope was highly significant (p < 
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0.01) whereas the intercept was not (p = 0.23). On average, C. radula formed 1 stria 

every 2.1 ± 0.2 days (95 % confidence interval). Inter-individual variability was quite 

important, especially for the 1st post-marking sample (13 days, RSD = 42 %). For the 

7 other times, RSD values ranged from 13 to 22 %. 

As striae production has sometimes been related to the increment of shell growth (i.e., 

relationship between the number of striae formed per day and the shell growth rate; 

Owen et al. 2002), we also investigated the relationship between striae number and the 

shell increment (net accretion) deposited between the calcein mark and the ventral 

margin, at each of the 8 sampling dates (Fig. 8). Details on the linear regression analysis 

performed at each of these dates are given in Table 3. There was a large variation in the 

strength and significance of each of these 8 relationships, r2 ranging from 0.15 to 0.88, 

and p from < 0.01 to 0.40. When scallops which have experienced an important stress 

after marking were removed from the linear regression analyses (i.e., 12 specimens in 

the 1st, 2nd, and 3rd post-marking samples with net accretion < 0.05 mm; open circles on 

Fig. 8), then the p-value for these 3 samples were 0.30, 0.10, and 0.16, respectively. 

Depending on the significance level (α = 0.01 or 0.05), these 8 relationships may be 

considered as significant or not. Large variations were also observed in slopes and 

intercepts of the 8 relationships. Intercepts were significantly different from 0 (p < 0.01, 

except for the 4th post-marking sample: p > 0.05). Finally, it appears that only 

19 scallops out of 72 (26.4 %) formed more striae than expected under the hypothesis of 

a 2-day periodicity of striae formation (Fig. 8, solid diamonds). 
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Discussion 

Effects of calcein concentration and immersion time 

The marking quality in C. radula shell was independent of the calcein concentrations 

and immersion times tested in this study. A calcein concentration of 150 mg L-1 was 

sufficient to produce an internal fluorescent mark. This result is in good agreement with 

previous fluorochrome studies demonstrating that calcein solutions of 100 to 150 mg L-1 

were sufficient to mark otoliths (Wilson et al. 1987), gastropod shells (Moran 2000) or 

bivalve shells (Kaehler and MacQuaid 1999). 

Minimum immersion times tested in previous studies varied from 2 h (Wilson et al. 

1987) to 17 h (Fujikura et al. 2003). Immersion time is likely to depend on the shell 

growth rate of each species because the transfer of ions or calcein through the mantle 

epithelium is quicker in rapidly growing organisms (Day et al. 1995). A 3-hour 

incubation period in the benthic chamber was sufficient to create a detectable mark on 

C. radula because of its rapid growth rate (reaching ca. 60-70 mm for the first year, 

Thébault, unpublished data). 

Calcein toxicity 

Important lethal effects of calcein marking have been observed in the larvae and 

juveniles of walleyes, Stizostedion vitreum (Brooks et al. 1994). In C. radula, natural 

mortality has been estimated at 0.47 (Lefort 1994). Therefore, the losses observed in the 

enclosure (1.4 % over 3 months) may be attributed to natural mortality rather than to a 

lethal effect of calcein. Previous studies have indicated that calcein induces very little 

toxicity, with no effect on growth rate (Rowley and MacKinnon 1995), but the absence 

of lethal effects does not imply absence of toxicity here. On the other hand, high calcein 
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concentrations (> 250 mg L-1) have been demonstrated to induce behavioural stress in 

juvenile striped bass, Morone saxatilis (Bumguardner and King 1996). In C. radula, the 

50.2 % mean decrease in increment length observed after the staining experiment could 

be related to calcein toxicity. It is also possible that the temperature and chlorophyll a 

concentration decreases in the month following the calcein marking influenced the shell 

growth rate. Other investigators have already demonstrated that scallop growth is 

controlled by many environmental parameters including temperature and food 

availability (Broom and Mason 1978; Wallace and Reisnes 1985; Wilson 1987; 

Chauvaud et al. 1998; Laing 2000). 

Relationship between marking success and initial shell height 

Our results suggest an age-dependant effect on the success of calcein marking because 

the MQI was lower in large (i.e., old) scallops than in small ones. Moreover, the larger 

the scallops were, the smaller the growth after marking was. This inverse relationship 

reflects a decrease in the rate of shell accretion throughout the life span, an ontogenetic 

change widely recognized in the life history of many organisms that grow by accretion. 

This feature may be partly related to reproductive status. C. radula is known to spawn 

year round with an initial sexual maturity size of ca. 60 mm (Lefort and Clavier 1994). 

Hence it is likely that the largest scallops included in the staining experiments could 

have allocated a part of their energy to reproduction at the expense of shell growth. Low 

growth rates could reduce the transfer of calcein through the mantle epithelium: a 3 or 

6 hour immersion in calcein was probably insufficient to produce an internal fluorescent 

mark in the larger scallops. 

The marking technique used in this study appears as a satisfactory method for the 

investigation of striae formation in scallop shells. However, if the range of initial shell 

height is large, one can only expect half the scallops to recover and grow satisfactorily 
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after marking. Consequently, only small juvenile scallops should be used in such 

studies, in order to increase the marking success. 

Periodicity of striae formation 

Our results show that juvenile C. radula formed 1 stria every 2.1 days (2-day 

periodicity or bi-daily pattern). However, the number of new striae formed after 

marking was variable for scallops collected on the same date. Visual identification and 

counting of scallop striae has an important subjective component that may lead to 

significant inter-reader discrepancies. For C. radula, relative standard deviations 

calculated for each shell analysis were low and the average RSD of 10.6 % indicated 

that inter-reader discrepancy was not very important in our study and that all 3 readers 

counted approximately the same number of striae on each shell. 

However, all 3 readers sometimes encountered troubles in deciding whether a structure 

observed after the calcein mark was a stria or not, because of either an odd morphology 

or a strangely small spacing with the immediately preceding or following structure (see 

for example the shell area inside the dashed line on Fig. 6). Such structures may be 

striae, calcification anomalies, or exogenous elements such as sand grains or fouling 

organisms. These ambiguities partly account for the low variability in the number of 

new striae formed after marking for scallops collected on the same date, and are mainly 

due to the method of counting. Actually, accurate identification and counting of scallop 

striae is much more difficult on a sagital section of a shell (side view of each stria) than 

on the external surface of the valves when each stria is observed as a whole. Striae 

splitting into two "sub-striae" were observed on some C. radula shells (see for example 

the area inside the dashed line on Fig. 1b). Such anomalies cannot be detected on a 

sagital section when they are easily identified on the external surface of the valves. It is 

obvious that the observation of shells on a sagital section is not the best method for an 
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accurate counting of scallop striae. It is however the only way to proceed when using 

calcein marking as this dye cannot be observed on the external surface of the valves. 

This may explain why 19 scallops out of 72 seemed to have more striae (average = 

+2.2 striae) than expected under the hypothesis of a bi-daily periodicity of striae 

formation. A large number of shells also presented less striae than expected under this 

assumption. It is likely that low growth rates observed just after the staining experiment 

resulted in the coalescence of striae, thus lowering the number of individualized (i.e., 

countable) striae. This initial disturbance could be responsible for a decrease in the 

intercept value of the regression line, without having a significant effect on the slope 

(i.e., on the periodicity of striae formation). 

Finally, the low variability observed around the striae/days regression line can be 

explained and cannot be used as evidence against the periodic formation of C. radula 

striae. Such variability has also been observed in some other studies dealing with the 

periodicity of scallop striae formation (Antoine, 1978; Parsons et al. 1993). 

In their study dealing with the scallop Pecten maximus, Owen et al. (2002) suggested 

that striae production is related to the increment of shell growth and not to any form of 

periodicity, thus confirming the results of Gruffydd (1981) on the same species. They 

finally concluded that it was probably fortuitous that in some experiments (e.g., Clark 

1968) a daily periodicity of striae production occurred in some pectinid species. In order 

to check whether the assumption of Owen et al. (2002) could be true in C. radula, we 

investigated the relationship between the number of striae and the increment of shell 

growth deposited after the calcein mark (Fig. 8 and Table 3). Some relationships were 

strong and significant. However, this is not an evidence of the truthfulness of their 

hypothesis: if striae were formed periodically, scallops strongly stressed by calcein 

marking may have formed less individualized (i.e., countable) striae and added less new 
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shell material than scallops whose stress recovery was quicker. Their hypothesis could 

be checked if slopes were approximately the same from a post-marking sample to the 

next one, which was not true in our study (e.g., slope of 0.90 and 3.56 striae mm-1 for 

the 3rd and 4th post-marking samples, respectively, whereas these two sampling dates 

were separated by 7 days only). Moreover, their assumption implies that intercepts of 

the regression lines should be close to 0. This was not the case in our study. Finally, 

careful scrutiny of Fig. 8 indicates that a large number of scallops have formed as many 

striae as scallops which have deposited far less new shell material. Consequently, our 

results do not support the hypothesis of Owen et al. (2002). 

The 2-day periodicity of striae formation in C. radula has also been confirmed by an 

independent geochemical method (Thébault et al. in prep.). Since the pioneer works of 

Epstein et al. (1953), the oxygen isotopic composition (δ18O) of marine biogenic 

carbonates is indicative of the temperature and oxygen isotopic composition of the 

ambient seawater from which it is precipitated. Calcite samples drilled along the 

maximal growth axis of the shell of 6 juvenile C. radula specimens were analysed for 

their oxygen isotopic composition. A very good agreement was found between seawater 

temperature and δ18Oshell calcite when dates were affiliated to each calcite sample by 

backdating from the harvest date and considering a 2-day periodicity of striae 

formation. This excellent relationship has led to the establishment of a new 

paleotemperature equation predicting seawater temperature with a mean absolute 

accuracy of 1.0 °C (Thébault et al. in prep.), thus providing another evidence of the bi-

daily periodicity of striae formation: if striae were not produced bi-daily, there would be 

large differences between predicted temperature and measured temperature. 
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Origin of the 2-day periodicity 

In the plant and animal kingdoms, rhythmic activities are generally assumed to be 

controlled by endogenous oscillators, synchronized by environmental cues acting as 

zeitgebers (Aschoff et al. 1982). In marine bivalves, diurnal, tidal and seasonal cycles 

are thought to be responsible for growth rhythms as a result of changes in 

environmental factors (Rosenberg and Jones 1975). However, although the bivalve shell 

ultimately reflects these cycles, this signal transfer is neither passive nor immediate, and 

may involve a "rhythmic" tissue in the organism (Thompson 1975). If the organism 

maintains its growth rhythm in the presence or absence of these environmental cycles, it 

is said to have a "biological clock" (Thompson 1975). 

Reports of 2-day long, or bi-daily, biological rhythms in nature are unusual (Pannella 

and MacClintock 1968). M. mercenaria is the only species in which a 2-day periodicity 

of growth pattern formation has been observed (Pannella and MacClintock 1968; 

Kennish and Olsson 1975). Bi-daily variations of meteorological and oceanographic 

parameters, including sea surface temperature and swell height and direction, have been 

observed in the Pacific Ocean (Kenyon 1996). For some of these parameters, e.g., sea 

level pressure and wind velocity, the amplitudes of the 2-day variations were larger than 

that of the diurnal signals. A traveling nearly 2-day wave (T = 2.1 days) has also been 

observed in the atmosphere (Craig et al. 1980; Salby 1981; Hagan et al. 1993). Spectral 

analysis of the seawater temperature data in Nouméa identified a 2.1 day periodicity 

(Thébault, unpublished data). However, the amplitude of this bi-daily pattern is weak 

compared to the diurnal and semi-diurnal signals. Thus, it is unlikely that seawater 

temperature is the zeitgeber controlling the periodicity of striae formation in C. radula 

through an endogenous oscillator. Another environmental factor such as sea level 

pressure or wind velocity may act as this zeitgeber. Sea level pressure has already been 
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identified to control activity rhythms of crabs (Palmer 1975). At this time, further data 

acquisition is required in order to analyze the spectra of these parameters in New 

Caledonia. 

Comptopallium radula in the pectinid family 

A daily periodicity of striae formation has been suggested for many scallop species. In 

the genus Pecten, such a periodicity has been demonstrated to exist in juveniles of 

P. diegensis (Clark 1968) and P. vogdesi (Clark 1975) as well as in juveniles and adults 

of P. maximus (Antoine 1978; Chauvaud 1998). In the Argopecten genus, daily 

formation of striae has been suggested for A. irradians (Wrenn 1972; Clark 1975; Helm 

and Malouf 1983), A. gibbus and A. circularis (Clark 1975). The same periodicity has 

also been identified in other genera, e.g., juveniles of Amusium balloti (Joll 1988), 

juveniles of Chlamys opercularis (Broom and Mason 1978) and larvae and post-larvae 

of Placopecten magellanicus (Hurley et al. 1987; Parsons et al. 1993). 

However, deviations from this daily rhythm have sometimes been observed when 

scallops were maintained under experimental or semi-natural conditions out of their 

benthic habitat (Clark 1975; Broom and Mason 1978; Gruffydd 1981; Helm and Malouf 

1983; Owen et al. 2002). Results of these studies, conducted on three different pectinid 

genera (i.e., Pecten, Argopecten, and Chlamys), might indicate inter-taxon differences. 

But they might have also been distorted because of severe experimental stress on 

scallops. For this reason, results from studies performed in unrealistic growing 

conditions are difficult to compare with results from studies carried out on wild 

populations in their natural habitat and may not be used to disprove the assumption of a 

periodic formation of striae by scallops. It is obvious that our treatment was also 

stressful as animals were subjected to calcein marking inside benthic chambers and then 

held in enclosures. However, marking was performed in situ, for short periods of time, 
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without removing scallops from seawater, and benthic enclosure was probably large 

enough to limit cage effects. All these precautions were taken to limit stress as much as 

possible. 

Our results demonstrated that under these experimental conditions, C. radula striae are 

formed periodically, and are in good agreement with other studies dealing with scallop 

shell growth. However, our study shows that a daily periodicity of striae formation is 

not a characteristic trait of pectinidae. Clark (1975) has discussed that great differences 

in the response of organisms to environmental variables exist, and data acquired from 

one set of organisms cannot necessarily be applied to another, even if they are closely 

related. 

Implications for further studies 

Many analytical techniques now exist for high-resolution chemical analysis of selected 

areas of biogenic carbonates, e.g., LA-ICP-MS (Richardson et al. 2001) and TXRF 

(Mages et al. 2004). A quantitative description of the periodicity of striae formation in 

C. radula makes possible the accurate affiliation of a formation date to each stria by 

backdating from the collection date, as long as striae are counted on the external surface 

of the valve (more accurate counting). Thus it will now be possible, using chemical 

analyses of the shells and our growth studies, to reconstruct the temporal evolution of 

contaminant trace metals present in C. radula shells, over periods ranging from several 

months to years, in the lagoon. 
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Table 1 Description of the six marking experiments conducted on scallops in benthic chambers. 

Experiment Concentration 
(mg L-1) 

Immersion  
time (h) 

Number of 
scallops 

A 
B 
C 
D 
E 
F 

150 
300 
600 
150 
300 
600 

3 
3 
3 
6 
6 
6 

23 
24 
23 
24 
24 
23 

 

 

 

Table 2 Average marking quality index for each of the six experiments. The two-way variance analysis 

indicated the absence of significant effect of calcein concentration or immersion time on MQI. 

MQI Two-way analysis of variance 
Experiment 

Mean s.d. 
 

Effect Sum of square df F-ratio p-value 

A 
B 
C 
D 
E 
F 

1.50 
1.37 
1.78 
1.74 
1.75 
1.60 

0.82 
0.68 
1.04 
0.65 
0.74 
0.63 

 

Calcein  
concentration 

 
Immersion  

time 

0.486 
 
 

0.697 

2 
 
 
1 

0.39 
 
 

1.12 

0.678 
 
 

0.293 

 

 

 

Table 3 Coefficients and parameters of the linear regression analyses performed for the 8 post-marking 

samples between the number of new striae and the shell increment deposited after the calcein mark (see 

Fig. 8). 

Linear regression analysis (new striae vs. net accretion) Post-marking 
sample n slope intercept r² p-value 

1 
2 
3 
4 
5 
6 
7 
8 

17 
14 
7 
4 
7 
8 

10 
5 

4.45 
1.76 
0.90 
3.56 
1.99 
2.47 
2.55 
1.92 

3.53 
6.97 
10.78 
9.50 
15.72 
19.18 
20.73 
30.98 

0.52 
0.33 
0.15 
0.77 
0.83 
0.61 
0.46 
0.88 

< 0.01 
0.03 
0.40 
0.12 

< 0.01 
0.02 
0.03 
0.02 
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Figure legends 

Fig. 1 a Photograph of the left valve of the shell. Dashed line delimits the shell piece embedded in resin. 

Arrow indicates the maximal growth axis along which shell pieces were sagitally sectioned. b Image 

(scanning electron microscopy) of striae taken along the maximal growth axis and showing 1 stria 

splitting into 2 "sub-striae" (dashed line). 

Fig. 2 Diagram of a benthic chamber designed for calcein marking. 

Fig. 3 Drawing of a sagitally sectioned left valve of a shell. The variation in growth rate was assessed by 

measuring the mean length of the n increments (i.e., inter-striae distance) preceding (= a/n) and following 

(= b/n) the calcein mark. Here, n = 10. 

Fig. 4 Mean MQI (open diamonds) and mean net accretion (i.e., distance between the calcein mark and 

the ventral margin; solid circles) for each of 7 size classes of C. radula (initial shell height of 

139 scallops). 

Fig. 5 Difference (Δ) between the mean length of increments before and after the calcein mark, plotted vs. 

initial shell height. A decrease of the mean length of increments was observed after the calcein marking 

for all scallops (Δ < 0) but the initial shell height did not influence the importance of this decrease. 

Fig. 6 Photograph of sagitally sectioned shell viewed with I2/3 block filter. This shell (initial shell height 

= 55.2 mm) was marked for 3 hours in a 600 mg L-1 calcein solution and collected 20 days later. The 

bright green calcein mark (a) is readily identifiable and allows for exact counting of new striae (indicated 

by arrows). On this shell, 10 new striae were formed beyond calcein marking, suggesting a 2-day 

periodicity of striae formation. Dashed line delimits an area where the exact number of actual striae (2, 3, 

or 4) is difficult to assess. 

Fig. 7 Relationship between the number of new striae formed after the calcein marking and the number of 

days of growth between the calcein marking and the post-marking collection. a-c Data collected by each 

of the 3 readers. d Pooled data indicating that C. radula formed 1 stria every 2.1 days. 

Fig. 8 Relationship between the number of striae and the shell increment (net accretion) deposited 

between the calcein mark and the ventral margin, at each of the 8 sampling dates. Dashed lines indicate 

the number of striae that should have been counted under the hypothesis of a 2-day periodicity of striae 
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formation. Solid diamonds represent scallops that have formed more striae than expected under this 

assumption. Open circles represent scallops whose net accretion after marking was < 0.05 mm. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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