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Abstract

Consider two urns, A and B, where initially A contains a large number n of balls and B is

empty. At each step, with equal probability, either we pick a ball at random in A and place

it in B, or vice-versa (provided of course that A, or B, is not empty). The number of balls in

B after n steps is of order
√
n, and this number remains essentially the same after

√
n further

steps. Observe that each ball in the urn B after n steps has a probability bounded away from

0 and 1 to be placed back in the urn A after
√
n additional steps. So, even though the number

of balls in B does not evolve significantly between n and n+
√
n, the precise contain of urn B

does.

This elementary observation is the source of an interesting two-time-scale phenomenon which

we illustrate using a simple model of fragmentation-coagulation. Inspired by Pitman’s con-

struction of coalescing random forests, we consider for every n ∈ N a uniform random tree with

n vertices, and at each step, depending on the outcome of an independent fair coin tossing,

either we remove one edge chosen uniformly at random amongst the remaining edges, or we

replace one edge chosen uniformly at random amongst the edges which have been removed

previously. The process that records the sizes of the tree-components evolves by fragmentation

and coagulation. It exhibits subaging in the sense that when it is observed after k steps in the

regime k ∼ tn + s
√
n with t > 0 fixed, it seems to reach a statistical equilibrium as n → ∞;

but different values of t yield distinct pseudo-stationary distributions.
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1 Introduction

Aging refers to systems that seem to reach a statistical equilibrium in a certain regime de-

pending on two time-scales: the age of the system and the duration of the observation. If the

observation scale is much shorter that the age of the system scale, then the effect is, more

precisely, called subaging. It arises in a variety of models in random media; see for instance

Ben Arous and Černý [4] and references therein. The purpose of this note is to point out that

subaging occurs in a process which evolves by fragmentation and coagulation, and is related

to the work of Pitman [9] on coalescent random forests. It has its source in an elementary

random urn dynamic which we now describe.

1.1 A two-time-scale phenomenon

Consider two urns, say A and B, and assume that at the initial time A contains n balls and B

is empty. At each step k = 1, 2, . . ., we flip a fair coin. If head comes up then we pick a ball in

A uniformly at random and place it in B (provided of course that A is not empty, else we do

nothing). Similarly, if tail comes up then we pick a ball in B uniformly at random and place it

in A (provided of course that B is not empty, else we do nothing). Fix s, t > 0 arbitrarily. By

the invariance principle, the numbers of balls in B after ⌊tn⌋ steps and after ⌊tn+ s
√
n⌋ steps

are both close to
√
nRt, where Rt is a reflecting Brownian motion evaluated at time t, i.e.

has the distribution of the absolute value of an N (0, t)-variable. Precisely because B contains

about
√
n balls in that period, each ball in B after ⌊tn⌋ steps has a probability bounded away

from 0 and 1 to be selected and placed back in A during the next ⌊s√n⌋ steps. In other

words, even though the number of balls in B remains essentially unchanged between ⌊tn⌋ and

⌊tn+ s
√
n⌋ steps, the precise contain of urn B evolves significantly.

Now imagine a stochastic process governed by the contain of urn B. Suppose that the one-

dimension distributions of this process can be renormalized as n → ∞ in such a way that they

have a non-degenerate limit, say µr, when there are approximately r
√
n balls in B. Let n be

large, t > 0 fixed and let s vary. The process observed after ⌊tn+ s
√
n⌋ steps then seems to

be in statistical equilibrium, in the sense that its one-dimensional distributions do not change

much when s increases. More precisely the almost equilibrium law can be expressed as the

mixture
∫ ∞

0

µrP(Rt ∈ dr) .

However this is only a pseudo-stationarity as this almost equilibrium distribution depends on

the parameter t.

The rest of this work is devoted to the rigorous analysis of this two-time-scale phenomenon

in the special case when the stochastic process alluded above is a fragmentation-coagulation

process induced by a natural modification of Pitman’s coalescing random forests [9].
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1.2 Fragmentation-coagulation of random forests

Pitman considered the following random dynamics: one first picks a tree with n labeled vertices

uniformly at random, and one deletes its edges one after the other, also uniformly at random.

At each step the tree-component containing the edge which is deleted splits into two smaller

trees, so after k ≤ n− 1 steps, we obtain a forest with k+ 1 trees, and the process terminates

after n−1 steps when all vertices are isolated. Pitman’s motivation for considering these edge-

deletion dynamics stems from its connexion with the additive coalescence. The latter governs

the evolution of a particle system in continuous times in which pairs of particles coalesce with

a rate proportional to the sum of their masses. More precisely, Pitman pointed out that

the process of the sizes of the tree-components in the forests resulting from the edge-deletion

dynamics is a Markovian fragmentation chain, and that time-reversal yields the discrete-time

skeleton of the additive coalescent started from n monomers (i.e. n atoms each having a unit

mass).

On the one hand, it is well-known from the work of Aldous [1] that the uniform random

tree on a set of n vertices can be rescaled (specifically edges by a factor 1/
√
n and masses

of vertices by a factor 1/n) and then converges weakly as n → ∞ towards the Continuum

Random Tree (for short, CRT). On the other hand, Evans and Pitman [7] proved that the

additive coalescent started from a large number of monomers possesses a scaling limit, which

is known as the standard additive coalescent. Roughly speaking, Aldous and Pitman [2]

put the pieces together: they showed that the properly rescaled edge-deletion procedure on

finite trees converges weakly to a Poissonian logging of the CRT. The latter induces the CRT

fragmentation of masses, denoted here by (Ft)t≥0, and in turn this yields the standard additive

coalescent upon time-reversal.

We consider in this work an evolution which combines edge-removal and edge-replacement,

and should be viewed as an avatar of the urn dynamic depicted in the first part. In this

direction it will be convenient to use marks on edges, agreeing that a mark on an edge means

that this edge has been removed, while the absence of mark means that this edge is present.

For each fixed n, we first pick a tree on n vertices uniformly at random and declare that

initially all edges have no mark. At each step we flip a fair coin. If head comes up then we

put a mark on one edge chosen uniformly at random amongst the un-marked edges (provided

of course that there still remains at least one edge without mark; else we do nothing), while

if tail comes up then we erase the mark of one edge chosen uniformly at random amongst the

marked edges (provided of course that there exists such an edge; else we do nothing). For

every integer k ≥ 0, we denote by F (n)
k the random forest which results from removing the

marked edges after the k-th step and by X
(n)
k the collection of the sizes of the tree-components

in F (n)
k rescaled by a factor 1/n and ranked in the decreasing order. In a technical jargon,

X
(n)
k is a random mass-partition, that is a decreasing sequence of positive real numbers with

sum 1. Plainly the addition of a mark corresponds to a fragmentation event and erasure to a

coalescence; in other words the chain (X
(n)
k )k∈N evolves by fragmentation and coagulation.
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Our purpose is to investigate the asymptotic behavior in distribution of X
(n)
k as k, n → ∞.

This is easy as far as only one-dimensional distributions are concerned. Indeed Donsker’s

invariance principle implies that when n is large, the number of marks after ⌊tn⌋ steps is

about
√
nRt, where (Rt : t ≥ 0) is a reflected Brownian motion. It then follows from results in

Aldous and Pitman [2] that for every fixed t > 0, X
(n)
⌊tn⌋ converges weakly as n → ∞ towards

FRt
, the CRT mass-fragmentation observed at the independent random time Rt.

It turns out that things are more subtle for finite-dimensional marginals. The simple rescaling

of times by a factor n is too crude and the asymptotic behavior in law is better revealed in

the finer regime tn+ s
√
n. Indeed our main result says that for every fixed t > 0, the process

(X
(n)

⌊tn+s
√
n⌋)s∈R converges weakly in the sense of finite-dimensional marginals towards some

non-degenerate stationary process with stationary law given by the distribution of FRt
. Thus

the fragmentation-coagulation process X(n) exhibits subaging, in the sense that this process

seems to reach a statistical equilibrium in the regime tn+ s
√
n when n is large and t fixed.

The plan of the rest of this note is as follows. Our main result is stated and proved in Section

2 after recalling some notions on the CRT. Finally Section 3 is devoted to some comments,

complements and open questions. Our approach owes much to the construction by Aldous and

Pitman of the standard additive coalescent via Poissonian cuts on the skeleton of a Continuum

Random Tree.

2 Main result

We start by recalling some elements on the CRT, refering the reader to Aldous [1], Evans [6]

and Le Gall [8] for background, and then state our main result.

Let T be a Brownian CRT; in particular T is almost surely a compact metric space which has

the structure of a real tree. Extremities of T are called leaves; in other words a ∈ T is a leaf

means that if a lies on some path joining two points b, c in T , then necessarily a = b or a = c.

The subset of leaves is totally disconnected; its complement is referred to as the skeleton. One

endows T with a probability measure µ carried by the subset of leaves and with a sigma-finite

length measure λ carried by the skeleton. More precisely the distance between to points in T ,

say a, b, is given by λ([a, b]), where [a, b] stands for the path joining a to b in T .

We next introduce marks on the skeleton of T that appear and disappear randomly as time

passes at some constant rate. Specifically, we fix a parameter r > 0 and introduce a Poisson

point process on R× (0,∞)× T with intensity

1

2
ds⊗ 1

2r
e−u/2rdu⊗ dλ .

An atom (s, u, x) should be interpreted as follows: at time s a mark appears at location x

on the skeleton and is erased at time s + u. In words, on any portion of the skeleton with

length measure ℓ, marks appear with rate ℓ/2 and the lifetime of each mark is exponentially

distributed with expectation 2r, independently of the other marks. For every s ∈ R, we denote
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by Mr,s the random point measure on the skeleton of T induced by the marks present at time

s. It is immediate to check that for each fixed s, conditionally on T , Mr,s is a Poisson point

measure on the skeleton of T with intensity rλ.

Following Aldous and Pitman [2], for every s ∈ R we use the atoms of the Poisson random

measure Mr,s to decompose the set of leaves of T . More precisely, we decide that two leaves

belong to the same component if and only if Mr,s has no mass on the path that joins those

leaves (note that the probability of this event is exp(−rℓ) where ℓ is the length of the path

between those two leaves). The components are closed in the subset of leaves, and we denote

by Yr,s the sequence of their µ-masses ranked in the decreasing order. We stress that for every

s ∈ R, Yr,s has the same distribution as Fr, the CRT mass-fragmentation evaluated at time

r, which was mentioned in the Introduction and is described in Theorem 4 of [2].

Recall from the Introduction the construction of the fragmentation-coagulation chain X
(n)
k .

We are now able to state

Theorem 1 For each fixed t > 0, the fragmentation-coagulation process

(X
(n)

⌊tn+s
√
n⌋)s∈R

converges weakly in the sense of finite dimensional distributions as n → ∞ towards the mixed

process

(YRt,s)s∈R,

where Rt denotes a random variable on (0,∞) which is independent of the preceding processes

and has the distribution of a reflected Brownian motion at time t, viz.

P(Rt ∈ dr) =

√

2

tπ
exp

(

−r2

2t

)

dr , r > 0 .

The rest of this section is devoted to the proof of Theorem 1; the scheme of the argument is

adapted from Aldous and Pitman [2]. We first recall the formulation of the convergence of

uniform random trees towards the CTR via reduced trees.

Given T , we sample a sequence U1, . . . of i.i.d. random leaves according to the law µ, and

for every integer i ≥ 1, we denote by R(∞, i) the subtree reduced to the first i leaves, i.e.

the smallest connected subset of T containing U1, . . . , Ui. The reduced tree R(∞, i) is a

combinatorial tree (simple graph with no cycles) with leaves labeled by 1, . . . , i and some

unlabeled internal nodes. The paths between two adjacent internal nodes or between a leaf

and an adjacent internal node are called edges. The lengths of edges are given by the length

measure λ on T , and the joint distribution of the shape and the edge-lengths is described by

Lemma 21 in [1].

For every integer n ≥ 2, we also consider a uniform random tree Tn on a set of n vertices, say

{1, . . . , n}, and assign length 1/
√
n to every edge. For every 1 ≤ i ≤ n, we denote by R(n, i)

the sub-tree reduced to the first i vertices. We agree that internal nodes with degree 2 are
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discarded, so that the edge-length between two adjacent vertices in R(n, i) is (1+ j)/
√
n with

j the number of internal nodes with degree 2 lying on the path connecting these vertices. It

has been shown by Aldous (see (49) in [1] or Lemma 9 in [2]) that for every fixed i,

R(n, i) =⇒ R(∞, i) as n → ∞ , (1)

in the sense of weak convergence of the joint distributions of shape and edge lengths.

We then add and erase marks randomly on Tn as explained in the Introduction. For each

integer k ≥ 0, we denote by M(n)
k a random point measure on Tn that assigns a unit mass

to each marked edge after k steps, and for every i ≤ n by M(n,i)
k the restriction of M(n)

k to

R(n, i). Similarly, we also denote by M(∞,i)
r,s the restriction of the Poisson point measure Mr,s

to the reduced tree R(∞, i). The key to Theorem 1 lies in the following limit theorem which

can be viewed as a multi-dimensional extension of Equation (18) in [2]. Essentially it is a

consequence of the law of rare events combined with the convergence of reduced trees. Recall

that the reduced trees are defined by their shapes and edge-lengths, and that the set of shapes

of trees with i vertices is finite. The reduced trees R(n, i) and R(∞, i) should thus be viewed

as random variables with values in some Polish space, and weak convergence of random point

measures should be understood in this setting.

Lemma 1 Fix t > 0 and an integer i. The process of random point measures on the reduced

trees

(M(n,i)

⌊tn+s
√
n⌋,R(n, i))s∈R

converges weakly in the sense of finite dimensional distributions as n → ∞ towards the mixed

process of point measures on the reduced CRT

(M(∞,i)
Rt,s

,R(∞, i))s∈R,

where Rt denotes a random variable on (0,∞) which is independent of the preceding processes

and has the distribution of a reflected Brownian motion at time t, viz.

P(Rt ∈ dr) =

√

2

tπ
exp

(

−r2

2t

)

dr , r > 0 .

Proof: We first deal with the one-dimensional convergence in the statement, rephrasing (and

slightly developing) the argument for Equation (18) in [2].

By Skorohod’s representation, we may assume that the convergence (1) for the reduced trees

holds almost surely and not merely in distribution. Thus with a probability close to 1 when

n is large, the shape of R(n, i) coincides with that of R(∞, i), and the edge lengths of R(n, i)

and of R(∞, i) are close. We denote by N
(n)
k the total number of marks on Tn after k steps

and consider a sequence (rn)n∈N of integers with rn ∼ r
√
n for some r > 0. We first work for

each n conditionally on the event that N
(n)

⌊tn+s
√
n⌋ = rn.
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Recall that Tn has n−1 edges, each of length 1/
√
n, so the number of edges in a segment of Tn

is
√
n times the length of that segment. We stress that when n is large, the number of edges in

the reduced tree R(n, i) is of order
√
n = o(n) and the number of marked edges in R(n, i) of

order O(1) = o(rn). This is important to justify the claims of asymptotic independence which

will be made below.

As (n− 1)−1rn
√
n ∼ r, it follows from the law of rare events that when n is large, the number

of marked edges after ⌊tn+s
√
n⌋ steps on a segment in Tn is approximately Poisson distributed

with parameter given by r times the length of that segment, and further to disjoint segments

correspond asymptotically independent Poisson variables. This entails that the conditional

distribution of M(n,i)

⌊tn+s
√
n⌋ converges weakly as n → ∞ towards a Poisson random measure on

R(∞, i) with intensity rλ, i.e.

L
(

M(n,i)

⌊tn+s
√
n⌋ | N

(n)

⌊tn+s
√
n⌋ = rn

)

=⇒ M(∞,i)
r,s , (2)

where the notation L(Z | Λ) refers to the conditional law of the variable Z given the event Λ.

We next present the main lines of the argument for extending (2) to multi-dimensional con-

vergence by analyzing the evolution of the random point measures as s increases. It is readily

checked that with probability one

N
(n)

⌊tn+(s+s′)
√
n⌋ ∼ rn ∼ r

√
n

uniformly for s′ ≥ 0 in an arbitrary bounded interval. Thus for every k = nt + O(
√
n), each

atom of M(n,i)
k has a probability close to 1/(2rn) ∼ 1/(2r

√
n) to be erased at the next step,

where the factor 1/2 accounts for the probability that head turns up when the fair coin is

flipped. The probability that a given atom of M(n,i)

⌊tn+s
√
n⌋ has not been erased after ⌊s′√n⌋

further steps is close to

(1− 1/(2rn))
⌊s′√n⌋ ∼ exp(−s′/(2r))

when n is large; in other words if one unit of time corresponds to
√
n steps, each atom of

M(n,i)

⌊tn+s
√
n⌋ is removed after a time which is approximately exponentially distributed with

mean 2r. A similar argument shows that asymptotically, each atom of M(n,i)

⌊tn+s
√
n⌋ is removed

or not after ⌊s′√n⌋ more steps independently on the other atoms.

On the other hand, at each step, a mark appears on an un-marked edge with probability close

to 1/(2(n − rn)) ∼ 1/(2n). Recalling that any given mark is also erased at each step with

probability close to 1/(2r
√
n), and neglecting the event of multiple appearances and erasures

of a mark whose probability is of lower order, we deduce that the probability that an edge
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with no mark after ⌊tn+ s
√
n⌋ steps be marked after ⌊s′√n⌋ further steps is

⌊s′√n⌋
∑

j=1

1

2n

(

1− 1

2r
√
n

)j

=
r√
n

(

(

1− 1

2r
√
n

)

−
(

1− 1

2r
√
n

)⌊s′√n⌋+1
)

∼ r√
n

(

1− exp

(

− s′

2r

))

.

It then follows from the law of rare events that for any given segment of R(n, i) with length ℓ

(i.e. with ℓ
√
n edges), the number of marked edges after ⌊tn+ (s+ s′)

√
n⌋ steps which were

un-marked after ⌊tn+ s
√
n⌋ steps is approximately Poisson with parameter

rℓ

(

1− exp

(

− s′

2r

))

.

Further, one checks readily that the evolutions of marks on a given finite sequence of disjoint

segments are asymptotically independent.

Putting the pieces together, this shows that when n is large, the distribution ofM(n,i)

⌊tn+(s+s′)
√
n⌋

givenM(n,i)

⌊tn+s
√
n⌋ is close to that of a measure obtained fromM(n,i)

⌊tn+s
√
n⌋ by removing each atom

with probability 1− exp(−s′/(2r)) independently one of the others (i.e. by thinning), and fur-

ther adding an independent Poisson measure on R(n, i) with intensity r (1− exp (−s′/2r))λ.

Comparing with the evolution of the random point measure M(∞,i)
r,s when s increases, we see

that (2) can be extended as follows: for every s′ ≥ 0 we have

L
((

M(n,i)

⌊tn+s
√
n⌋,M

(n,i)

⌊tn+(s+s′)
√
n⌋

)

| N (n)

⌊tn+s
√
n⌋ = rn

)

=⇒
(

M(∞,i)
r,s ,M(∞,i)

r,s+s′

)

.

An iteration based on the obvious Markov property of the processes of the radom measures

involved (in the case of (M(∞,i)
r,s )s∈R, this Markov property follows from the absence of memory

of the exponential variables that specify the lifetime of the marks) enables us to conclude that

L
(

(

M(n,i)

⌊tn+s′
√
n⌋

)

s′≥s
| N (n)

⌊tn+s
√
n⌋ = rn

)

=⇒
(

M(∞,i)
r,s′

)

s′≥s
, (3)

in the sense of finite dimensional distributions.

All that we need now is to get rid of the conditioning in (3), which is straightforward. Indeed

Donsker’s invariance principle shows that there is the weak convergence

1√
n
N

(n)

⌊tn+s
√
n⌋ =⇒ Rt ,

where Rt is a random variable distributed as in the statement. On the other hand, it is easy

seen from the construction of the random point measures Mr,s that the finite-dimensional

distributions of the process
(

M(∞,i)
r,s′

)

s′≥s
depend continuously on the parameter r. We derive
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from above that
(

M(n,i)

⌊tn+s′
√
n⌋

)

s′≥s
=⇒

(

M(∞,i)
Rt,s′

)

s′≥s

in the sense of finite dimensional distributions, which is our claim. �

We now explain how Theorem 1 follows from Lemma 1, focussing on one-dimensional distri-

butions as the multi-dimensional case is similar but with heavier notation.

For every integers n, k ≥ 1, we denote by Π
(n)
k the random partition of {1, . . . , n} induced by

the marks on edges of Tn after k steps, that is the blocks of Π
(n)
k are characterized by the

property that there is no mark on the paths connecting two vertices in the same block. By

definition, X
(n)
k is the sequence of the sizes of the blocks of Π

(n)
k ranked in the decreasing order

and rescaled by a factor 1/n.

Similarly, for every s ∈ R, we denote by Π
(∞)
r,s the random partition of N such that two integers

j, j′ belong to the same block of Π
(∞)
r,s if and only if there is no atom of the independent mixed-

Poisson random measure Mr,s on the path in T from the leaf Uj to the leaf Uj′ . Plainly the

random partition Π
(∞)
r,s is exchangeable and the asymptotic frequencies of its blocks are given

by Yr,s, i.e. the sequence of the µ-masses of the connected components of the CRT T cut at

the atoms of Mr,s.

For every integer i ≤ n, we also denote by Π
(n,i)
k (respectively by Π

(∞,i)
r,s ) the restriction of Π

(n)
k

(respectively of Π
(∞)
r,s ) to the first i vertices. Plainly these restricted partition only depend

on the reduced tree R(n, i) and R(∞, i), and the marks on their edges after k steps and the

atoms of the random measure M(∞,i)
r,s , respectively. Lemma 1 implies that for every i, in the

obvious notation, when n → ∞ there is the weak convergence

Π
(n,i)

⌊tn+s
√
n⌋ =⇒ Π

(∞,i)
Rt,s

. (4)

Repeating the argument of Aldous and Pitman for proving Theorem 3 in [2] enables us to

conclude from (4) and the preceding observations that

X
(n)

⌊tn+s
√
n⌋ =⇒ YRt,s ,

which is the one-dimensional version of Theorem 1. The multidimensional case is similar, using

the full strength of Lemma 1.

3 A comment, a complement, and an open question

The stationary limiting process (YRt,s)s∈R which appears in Theorem 1 is expressed as a

mixture. The mixing variable Rt may be thought of as the effective age of the system as it

represents the intensity of cuts along the skeleton of the CRT. In this direction, we note that

the variables Rt are stochastically increasing with t. We also mention that Rt can be recovered

from a sample of YRt,s. Indeed, it follows easily from Theorem 4 in Aldous and Pitman [2]

and the law of large numbers for Poisson processes that if Ft(i) denotes the i-th largest term
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of Ft, the CRT fragmentation of masses observed at time t, then with probability one

Ft(i) ∼
2

πt2i2
as i → ∞ .

Equivalently

Yr,s(i) ∼
2

πr2i2
as i → ∞ ,

where Yr,s(i) denotes the i-th largest term of Yr,s and we conclude that

Rt = lim
i→∞

√

2

πYRt,s(i)i
2

a.s.

We used uniform random trees Tn merely to stick to Pitman’s original framework [9]. Nonethe-

less the same results hold if we replace Tn by any other sequence of discrete random tree which

converges to the Brownian CRT after rescaling edge lengths by a factor 1/
√
n and masses of

vertices by a factor 1/n (for instance critical Galton-Watson trees with finite variance and

conditioned to have total size n). In the same vein, the results of this note can be extended

to certain sequences of so-called birthday trees. Indeed, Camarri and Pitman [5] have estab-

lished the weak convergence of suitably rescaled birthday trees towards certain Inhomogeneous

Continuum Random Trees. On the other hand, dynamics of edge-deletion for birthday trees

bears the same connection to the additive coalescence as uniform random trees, except that

the initial distribution of masses is inhomogeneous. The asymptotic behavior of the latter has

been characterized by Aldous and Pitman [3], in the study of the entrance boundary of the

additive coalescence. We thus have all the ingredients needed to apply the arguments of the

present work to this more general setting. Of course, the limiting processes will then have

different distributions.

Our aim in this work was to point at the phenomenon of subaging in a fragmentation-

coagulation process. The model that we used for this purpose is easy to deal with although

somewhat artificial. There are other discrete models for the evolution of random forests which

may be more natural, but are also much harder to investigate. Here is an example, which

inspired by the subtree prune and regraft algorithm; see Chapter 9 of Evans [6]. We now work

with rooted forests on n vertices, that is each tree has one distinguished vertex that serves as

the root. At each step we flip a fair coin. With probability 1/2 we delete an edge chosen uni-

formly at random in this forest. This disconnects the tree containing that edge into two rooted

subtrees. With probability 1/2, we create a new edge between a vertex chosen uniformly at

random and the root of a tree chosen uniformly at random amongst the trees to which the

chosen vertex does not belong. Our result suggests that a similar subaging phenomenon might

occur at the same scale as in the present study. Proving or disproving this property would be

interesting, but does not seem easy.
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