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Abstract 
 
In condition monitoring a part of the information necessary for decision-making comes 
from scrutinizing a time measure or a transform of this measure. Frequency domain is 
commonly exploited; lag domain is not, albeit advantages of the autocorrelation 
function have long been known. In this paper, we dwell on the autocorrelation function 
in order to extract some interesting properties of the measure. We propose two 
indicators in order to characterize the periodicity of a signal. First is based on the non-
biased autocorrelation function and indicates a fundamental periodicity rate. Second is 
based on the biased autocorrelation and gives a dominant-power periodicity rate. The 
study of the 2D-plane defined by these two indicators allows the definition of regions 
attached to one type of periodicity from periodic to aperiodic through almost-periodic 
and quasi-periodic. Combined with an estimation of the correlation support, a final 
decision about the periodicity of the signal is given. In case of a periodic signal, a way 
of estimating the global signal ratio is proposed. These new outputs are valuable for 
initializing more complex processing. All the algorithms proposed are fully automatic, 
one click use! Relevance of these indicators is shown on real-world signals, current and 
vibration measures mainly. 
 
1.  Introduction 
 
In condition monitoring, a part of the information necessary for decision-making comes 
from scrutinizing a time measure or a transform of this measure. In this context, the 
frequency domain is commonly exploited. Oddly enough, it is not usual to consider the 
lag domain, whereas properties of this domain have long been known, specially for 
periodic signals(1). The autocorrelation or intercorrelation functions are most often used 
in system identification so as to extract the modes when the system is driven by a 
known input. For example, in the method of the random decrement vibration 
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signature(2), (3), the autocorrelation function is used because of its exact proportionality 
to the free vibration decay. Modal parameters can be estimated from cross-
correlations(4) .The correlation dimension of a nonlinear dynamical system provides an 
estimation of its number of degrees of freedom(5). 
 
In the lag domain, resonant modes are not separated as in the frequency domain but 
noise is separated from the different harmonics. Noise is here defined as a very wide 
band spectral signal in which the components of interest are embedded. Investigate this 
domain offers the opportunity of characterizing the type of harmonicity of the signal 
which presents a link with the property of periodicity. 
 
This paper focuses upon this interesting property of the autocorrelation function, its 
ability to characterize the periodicity property of a signal, and upon the link with the 
oscillating systems. 
 
Section 2 makes an attempt to clear up the notion of periodicity relative to harmonic 
oscillations with an extension to random processes. Beyond a classification, the object 
of this section is to highlight the key role of the autocorrelation function. In section 3, 
two indicators are proposed in order to characterize the periodicity of a signal. First is 
based on the non-biased autocorrelation function and indicates a fundamental 
periodicity rate. Second is based on the biased autocorrelation and gives a dominant-
power periodicity rate. Section 4 studies a 2D-plane defined by these two indicators, 
which allows the definition of regions attached to one type of periodicity from periodic 
to aperiodic through almost-periodic and quasi-periodic. Combined with an estimation 
of the correlation support, a final decision about the periodicity of the signal is given. In 
case of a periodic signal, a way of estimating the global signal ratio is proposed. These 
new outputs are valuable for initializing more complex processing. All the algorithms 
proposed are fully automatic, one click use! Section 5 shows relevance of these 
indicators on real-world signals, current and vibration measures mainly. 
 
2.  What is periodicity? 
 
2.1 Periodic signals 
 

Mathematically, a continuous signal ( )s t  locally defined on the set L2(ℜ ) of finite 

energy signals is fully periodic with period T, when the signal exactly satisfies  
 

� � � �� � � � �� � . (1)
 

 
For periodic signals, all the physical quantities, as amplitude and frequency, repeat at 
equal intervals. 
 
As examples, a simple harmonic oscillation referred to as one sinusoidal signal 
 
 � � � ���� �� � � ��� �� � , (2)
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with A the amplitude, ν=1/T the frequency and � the phase, is periodic. A sum of m 
harmonic oscillations of period Ti is also periodic if the Ti are rationally linearly 
dependent. Then, all oscillating systems without energy dissipation are concerned. 
 
Other examples of periodic signals are inharmonic oscillations, such as relaxation 
waves, that can be square wave or sawtooth, i.e. non-sinusoidal signals which can be 
decomposed in sum of sinusoidal or harmonic oscillations of pulsations multiple of a 
given pulsation refered to as the fundamental pulsation. 
 
2.2 Quasi-periodic signals 
 
Always in the case of continuous functions locally defined on the set L2(ℜ ) of finite 
energy signals, quasi-periodic signals are a generalization of periodic signals (see Figure 
1). A signal sqp(t) is quasiperiodic(6) with m periods T1, ..,Tm when 
 
 ( ) ( ) ( ) ( ){ }1 2, , ...,qp ms t g s t s t s t= , (3) 

 

where g: ℜ m→ ℜ  is continuously differentiable and the m signals ( )is t  are continuous 

periodic signals with respect to each period Ti. All the periods are required to be strictly 
positive and to be rationally linearly independent. This last constraint is the fundamental 
property of the quasi-periodic signals, which differentiates from periodic signals. 
 
Quasi-periodic signals possess the following properties: addition and multiplication of 
quasi-periodic signals yield quasi-periodic ones. If m=2, the signal is said bi-periodic.  
 
Therefore, an obvious example of quasi-periodic signals is the sum of m harmonic 
signals defined by (2) with all ratios of period Ti being irrational. 
 
2.3 Almost-periodic and pseudo-periodic signals 
 
In the case of continuous functions, almost-periodic signals are a generalization of 
quasi-periodic signals and then of periodic signals (see Figure 1). A signal sap(t) is 

almost-periodic(7) if every sequence ( )aps t Tε+  of translations of ( )aps t , for all ε>0, has 

a subsequence that converges uniformly for Tε in (-�,+�), that is 
 

 ( ) ( )0, such that .ap apT s t T s tε εε ε∀ > ∃ + − <  (4) 

 
There are several ways of defining classes of almost-periodic functions, based on 
notions of closure, of an almost-period and of translation. Each of these classes can be 
obtained as a closure, with respect to some metric, of the set of all finite trigonometric 
sums. (4) is the original definition proposed by H. Bohr (1947). 
 
In oscillating systems, a quasi-sinusoidal oscillation is a usual denomination for 
oscillator variation close to a sine variation. According to definition (4) and in spite of 
its name, such an oscillation is not quasi-periodic but almost-periodic. That is the case 
of a Wien bridge oscillator. 
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Another example of almost-periodic signals is given by signals referred to as being 
pseudo-periodic signals (See Figure 1). A pseudo-periodic signal(8) is defined locally on 
the set L2(ℜ ) of finite energy signals, such that all linear combinations of the translated 
signals have equivalent norm in L2(I), and L2(J), as soon as intervals I and J are long 
enough. The lower bound of I and J is referred to as the pseudo-period. Paley and 
Wiener has shown that a pseudo-periodic signal is an almost-periodic function(8). 
 
In other words, a pseudo-periodic signal can be decomposed into a periodic function 
along with a set of parameters that define the deviations of the pattern from true 
periodicity(9),(10). Let s(t) be a real valued continuous function with compact support in 
[0,T], a pseudo-periodic signal spp(t) is 
 

 � � � �� �� � � �
�

� � � � �� �� ��  (5) 

 
where s(t) is called the template function for spp(t).The �i are called the stretching 
parameters or scale frequencies, and represent the lengthening or shortening of the 
periods. The �i are called the translation parameters in time, and allow nonuniform 
timing of the process, for instance, an acceleration or deceleration in a system. The mi 
adjust the amplitude. In a musical context, the �i correspond to the pitch of the 
waveform while the �i correspond to the rhythm in which the waveforms appear. The 
template function plays a role analogous to that of a mother wavelet, while the 
stretching parameter is analogous to a scale factor. However, the template functions do 
not need to be orthogonal and do not form a basis, rather, they form a frame(10). 
 

 
Figure 1. Periodic, quasi-periodic, almost and pseudo-periodic signals. 
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The most simple example is a damped harmonic oscillation also referred to as pseudo-
sinusoidal oscillation, 
 

 � � � ���� �
�

��� � �� �
�

�� �
�

� � , (6) 

 
without scaling factor and time translation but with a damping parameter 1/�, which 
modifies the amplitude of the periodic sine preventing signal spp(t) to be periodic. All 
oscillating systems with energy dissipation are concerned. 
 
2.4 Periodicity for stochastic processes 
 
The previous definitions valid for deterministic signals can be extended to stationary 
stochastic processes but the equalities are true in a mean square sense(11). Let x(t) be a 
stationary stochastic process. x(t) is fully periodic with period T, when it satisfies  
 

 � �
�

� � � � �	 A � � A �� � � , (7) 

 
where T is the smallest number satisfying (7), E{.} being the expected value. If (7) 
holds, then 
 
 � � � �A AB � B� �� � , (8) 

 
for every lag �, �� 	 , of its autocorrelation function � � � � � �� �	CB 	 A � A �� �� � , the 

superscript * denoting the conjugate. Therefore, it is of interest to observe that the 
autocorrelation function of a periodic stochastic process is also periodic pointing out 
that Rx(�) is a deterministic function. It is then straightforward to extend all previous 
definitions to stochastic processes by the following: definition of the periodicity in time 
in a mean square sense and equivalent definition than for deterministic processes with 
true equalities in lag domain. 
 
As example, a laser light is a stochastic process, whose emitted frequency is dirturbed 
by a phase noise due to the finite spectral linewidth of the laser. This process having a 
narrow band spectrum relatively to the emitted frequency is pseudo-periodic. 
 
In oscillating systems as rotating systems, vibrations contain sums of periodic signals 
which are not linearly dependent or rational in general. These signals are most often 
almost periodic. When measuring one vibration of a part of a system, the measure can 
be periodic. But, in many cases, even if the physical system leads to deterministic 
signals, a random noise often disturbed the measure, hence the interest of considering 
the autocorrelation function in order to define periodicity indicators. 
 
3.  Two periodicity indicators 
 
Two indicators computed on the autocorrelation function are proposed. Besides the 
interesting property of the autocorrelation function face to periodicity as noticed in the 
previous section, another one is attractive for our purpose. When a signal is embedded 
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in a noise uncorrelated with the signal and with a spectral band wider than the signal of 
interest, in the lag domain, signal is alone for every lag greater than the noise correlation 
support, a helpful property for estimating the signal periodicity. In addition, estimating 
the autocorrelation function from a time signal requires no smoothing as it is in the dual 
frequency domain. 
 
Let r(t) be a stationary stochastic process, the sum of either a stochastic or deterministic 
signal x(t) embedded into noise n(t), 
 
 � � � � � �C � A � D �� � , (9) 

 
n(t) being white or a lightly colored. For �� � , � �CB �  is the sum of the power of signal 

x(t), Px, and of noise n(t), Pn, 
 
 � � � � � �� � �C A D A DB B B E E� � � � , (10) 

 
If n(t) is white and x(t) is fully periodic with period T: 

- For �� A , � �CB �  is fully periodic with period T 

 � � � � � � an integerAC A AB B B F� F� � �� � � . (11) 

- For F�� � , � �CB �  is equal to the signal power Px 

 � � � ��C A AB F� B E� �  (12) 

- For F�� 	  and �� 	 , � �CB � is equal to � �AB �  and lower to Px 

 � � � �C A AB B E� �� B  (13) 

 
The periodicity or aperiodicity of x(t) is unknown and has to be determined. Making use 
of the autocorrelation function leads to estimate first a fundamental periodicity of signal 
x(t) and second a dominant-power periodicity. An estimation of the signal to noise ratio 
of the signal is also deduced. 
 
3.1 Fundamental-frequency test 
 
3.1.1 The general principle 
From (12), lags multiple of the periodicity period of a signal match to the maxima of the 
autocorrelation function of the noisy observation. The fundamental-frequency test 
proposed is based upon this property and consists of detecting autocorrelation function 
maxima at regular intervals and with equal amplitude. The autocorrelation function 
being estimated, equation (12) becomes an approximation and the detection should 
include the statistical dispersion of the autocorrelation estimation. 
 
The non-biased estimate of the autocorrelation function is used in order to define a ratio 
Cfun, which will be equal to 1 for a full periodic signal and 0 for an aperiodic signal. 
Finally, the fundamental frequency of signal r(t) is estimated with the confidence of 
Cfun×100 % and, in case of a periodic signal, a signal to noise ratio is estimated. 
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3.1.2 The algorithm 
Let B

CB �C D
E F  be the non-biased discrete estimation of � �CB � , 

 CB 	
�

C
D �

B � C D C D �
� � �

C D C D C D� �E F E F E F�
�     10 −≤≤ Nm , (14) 

 
with N the length of signal r[n] sampled at Fs. In order to avoid both noise lag support 
of a possible non-white noise and high variance of the estimation in the high lag values, 
the test is applied within a lag support defined at each step of the algorithm. 
 
The algorithm steps are: 
 
1. Compute DEFCB

�

 the maximum of the autocorrelation function, within A� �� �C D
� �E F

support, 

DEF DEF DEF
A

B B B� E�� DEF
� �

C C C
� � �

B B � � B �
C D�� �E F

C D C D� �E F E F . 

The choice of values ��  and ��  is in 3.1.4. 

 

2. Set B
A �D��E  and B

D �D��E , initial settings of AE  and 
DE  respectively, and check that DEF

B
CB  

is not associated to noise, 

DEF
B B
A �D�� CBE �  from (12) and � �B B B�D �D�� C A �D��E B E� �  from (10), 

DEFDEF
B

C D D�� ���C�����

C �

C D C�D��� D����

B � �

C D
E F

C D
E F

A
�

�
  with DEF

DEF

B
� �D��

�
E

� �
� �

�
 

The choice of value cb is in 3.1.4. 
 

3. Compute the lag set ξ such that autocorrelation values are close to B
A �D��E , i. e; in an 

amplitude interval defined from the standard deviation of the estimator, and within 

A� �� �C D
� �E F

support, 

� �B B B B BA � � �� � � A �D�� � ��� A �D�� C � A �D�� � ��� A �D��� � � E � � � E B � E � � � E� � �C D C D C D� � � � � � � �� � E F E FE F
 

with � �
� � � �

�

� �

� �B B B B�E� C D �D�� A �D�� D �D��

� � �
� B � E E E

� � � �

�
�C D C D� � �E F E F
� �

, standard deviation 

for all lags multiple of the signal period, given in (13) when noise is white from statistics 
(12) of estimator (14).  
The set ξ makes sense only if card ξ = J ≥ Jmin. 
The choice of parameters �� , �� , c, cech and Jmin is discussed in 3.1.4.  

 
4. Evaluate the fundamental-periodicity coefficient Cfun defined as the percentage of 
elements of ξd being close to the presumed signal fundamental period BC

��D
� , subject to a 

± toler tolerance, ξd being defined as the set of distances between consecutive lags of � , 

and B
��D
�  being estimated from the median 

�
�����  of ξd, 



8 
 

( )d

1

1

1

1

J

fun j
j

C
J

Medd ξδ
−

=

= −
− �  with ( ) d

1

0

if u toler Med
u

otherwise

ξδ
<�

= �
�

 

and � �C� A C C� � � � � �� � � � � �D� � �� ��� � � � � � �  
�

B �� � �
��D �� � ����  

The choice of tolerance parameter toler is discussed in 3.1.4. 
 
3.1.3 A by-product: estimation of a global signal ratio 
When the fundamental frequency has been estimated, the estimation of signal and noise 
powers, BAE  and B

DE respectively, are finally adjusted from elements of ξ, 

 
C

CB B B B BE�� �
�

A C � D C A
�

E B � E B E
� �

C D C D� � �E FE F� ,with mj ∈  ξ. (15) 

 
Hence, the signal to noise ratio SNR of the observed signal is estimated as 
 � �B BC� ��� A D��B E E� , (16) 

this ratio having a sense only if the confidence ratio Cfun is close to 100%. 
 
3.1.4 The by-default values 
Fundamental-frequency test needs the setting of 9 parameters which has been chosen 
according to the investigation of real-world and synthetic signals in a significant data 
bank: 
- A� �� �C D

� �E F
, a lag support within which DEF

B
CB is computed: ma = 5%N; mb = 50%N; in 

any case, ma>0 and mb ≤ 50%N. 
- cb, a tolerance factor applied to DEF�  of DEF

B
CB : cb = 3. 

- A� �� �C D
� �E F

, a lag support within which ξ is computed: mc = 5%N; md = 60%N; in any 

case, A A� � � �� � � �C D C D�� � � �E F E F
. 

- c, a tolerance factor applied to � ��E� C� B �� C D C D�E F E F
�

 in order to estimate ξ: c=2. 

- cech, a tolerance factor applied to B
A �D��E  in order to take sampling effects into account: 

cech=0.05; in any case 0.05 ≤ cech ≤ 0.1. 
-Jmin, the minimal number of detected maxima : Jmin = 3. 
-toler, a tolerance factor applied to the median of ξd , i.e; to the presumed period, in 
order to compute the fundamental-periodicity coefficient: toler = 10%. 
 
3.2 Dominant frequency test 
 
3.2.1 The general principle 
This second indicator, in addition to the first one, aims at estimating the periodicity of 
the dominant-power signal part. The theoretical principle is to determine the periodicity 
of the smoothed autocorrelation function, the smoothing being set so as to highlight the 
dominant-power harmonic. Unlike the first test, the autocorrelation function estimator 
should have a low variance so the biased estimator is prefered. 

 
The autocorrelation function is filtered by a low-pass filter bank. For each filtered 
function, a periodicity ratio is computed; the suitable filter is the one given the first a 
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maximum ratio for a decreasing filter order (more and more narrow filter). A final one 
denoted as Cdom is selected such that the dominant-power frequency of signal r(t) is 
estimated with the confidence of Cdom×100 %. 

 
3.2.2 The algorithm 
For sake of simplicity, the notation B

CB �C D
E F  is kept while designing in this algorithm the 

biased estimation of the autocorrelation. Let BF
CB �C D
E F  be the filtered biased discrete 

estimation of � �CB � , � �je

�
C

� �C

�

CB �

�
�D �F F

C
D�

B � ��� C D � �
� �

�
�

��

�

C D
� �

C D C D� �� �E F E F� �
� �E F

� , (17) 

 

with N the length of signal r[n] sampled at Fs, f the frequency variable, and � �F� �
 
a 

filter bank defined from a window W(f) raised to power k belonging to a filter power set. 
The choice of window W(f) and of the filter power set is in 3.2.3. 
 
The algorithm steps are: 
 
1. Compute for each k the lag set F�  corresponding to minimal autocorrelation values 

within ��A ��
C D
� �E F

 support, 

��A

BE��D��
� �

F F
� C

� �

� B ��
C D�� �E F

� �� �� �� �C D� �� �E F� �� �� �� �

. 

The set F�  makes sense only if card F�  =J’ ≥ �
D���  

The choice of parameters ���  and �
D���  is in 3.2.3. 

 

2. Evaluate for each F�  a ratio � ����
� F  defined as the percentage of elements of F

��  being 

close to the presumed signal dominant-power period BC
���
� , subject to a ± toler’ 

tolerance, F��  being defined as the set of distances between consecutive lags of F� , and 

B
���
�  being estimated from the mean �F

�

���D
�

 of F�� , 

( ) ( )
d

' 1

1

1

' 1
k

J

dom j
j

C k d Mean
J ξ

δ
−

=

= −
− �  with ( )

'1

0

k
d

if u toler Mean
u

otherwise

ξδ
<�

= �
�

 

and � �C� A C � CF F
� � � � � �� � � � � �D� � �� ��� � � � � � � , � �B �� � �F

��� �
�� F � ���D

�
 

The choice of tolerance parameter toler’ is discussed in 3.2.3. 
 
3. Determine the dominant-power periodicity coefficient Cdom by selecting the 
maximum of � ����

� F  at the lowest filter order k, and then the corresponding periodicity 

frequency, 

� �
D��� �
DEF

��� ���
F

� � F�  and � �
D��� �

B B E�� DEF �
��� ��� ���

F
� � � F

� � !�  !  !" #
. 
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3.2.3 The by-default values 
As for the previous one, the dominant-power frequency test needs the setting of 5 
parameters which has been chosen according to the investigation of real-world and 
synthetic signals in a significant data bank: 
1. W(f), the window function for the filter bank is a Blackman-Harris 4T. 
2. Filter power set = [0, 1, 2, 3, 4, 6, 8, 11, 15, 20, 30, 40, 60, 100, 200, 400]; 
3. ��A ��

C D
� �E F

, a lag support within which D�� F
C
B �C D

E F
�

 are computed: ma = 1%,N; it could be 

100% but the computation time can then be very long.  
4. �

D��� , the minimal number of detected maxima : �
D���  = 4. 

5. toler’, a tolerance factor applied to the mean of F
�� , i.e; to the presumed period, in 

order to compute the periodicity coefficient: toler’ = 10%; 
 
4.  A 2D plane for a final decision 
 

4.1 Correlation tests and periodicity 
Signals  in condition monitoring are complex and can exhibit many type of periodicities. 
The aim of this paper is to assess the periodicity property of a signal with a simple and 
fast algorithm. The method proposed is a classification, which classes are characteristic 
regions in a 2D space defined from the two periodicity coefficients suggested in section 
3. Figure 2 shows this space where the region definition comes from the investigation of 
real-world and synthetic signals in a significant data bank. 

 
Figure 2. A first hypothesis about the periodicity of a signal. 

 
4.2 The meaning of a correlation support 
From the non-biased estimator of the autocorrelation function (see (14)), the correlation 
support is estimated as the maximum lag being greater than a threshold defined from the 
standard deviation of the estimator corresponding to a white noise only,  
 

 
� �����

�A

���� ����

B� DEF ��

�� �A�  !"�

��C C
� �

��C ��C

� � B � � �

� � � �

�
C D�E F

C D C D� AE F E F

$ �
, (18) 

with 
� �

��

�
B �C

�
B

�

� �

�

C D C D�E F E F
�

 as in section 3.1.2 withB �AE � , see also (15). The so-

defined threshold � �� C D
E F  represents a limit above which the estimated autocorrelation 

no longer corresponds to the white noise hypothesis. The duration ������C�  corresponds 
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then to a rough estimate of the correlation support for the positive lags. Due to the high 
variance of the autocorrelation estimate, a correlation support greater than 70%N is set 
to N. In the same way as in 3.1.4 and 3.2.3, the C by-default value has been set to 4. 
 
Figure 3 shows along the lag axis how we have defined the signal spectral band 
relatively to the correlation support. Thus, five complementary intervals have been 
defined along this axis. 
 

 
 

Figure 3. Correlation support and size of the signal spectral band. 
 
4.3 The final decision 
 

 
Figure 4. Classification of signals according to the periodicity test proposed. 
Region numbers come from the periodicity 2D-space (Figure 2) and interval 

numbers from the correlation support (Figure 3). 
 
The addition of the correlation support information allows us to refine the estimation of 
the prevailing periodicity of the analysed signal. Figure 4 shows the final classification 
proposed in order to link the 4 regions defined in figure 2 and the 5 intervals defined in 
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figure 3. As previously stated, the validation has been investigated in a significant data 
bank of real-world and synthetic signals, as shown in the next section. 
 
5. Results on simulations & real-world signals 
 
The aim of this section is to apply the indicators proposed on simulated and real-world 
signals in order to estimate the signal periodicity in accordance with the definitions of 
section 2. All results are summed up in Table 1 and Table 2. 
 
For all simulated signals, the classification is independent of the noise level, this result 
was expected according to the autocorrelation support of a white noise. It is less true for 
very low signal to noise ratio, around -10 dB, and for the damped sine. For the harmonic 
family, the fundamental frequency is estimated even if the fondamental is not present. 
 
For real-world signals, the results obtained are complying with expert point of view. 
The fundamental frequency and power-dominant one can be similar or within the same 
range, which is the case for signals 6 and 7. In other cases the results are 
complementary. 
 

Table 1. Results on simulations & real-world signals 
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6. Conclusions 
 
A signal classification according to the signal periodicity is proposed. Autocorrelation 
domain is exploited in order to estimate characteristic frequencies with a confident 
level. Classes are currrently chosen from the investigation of real-world and synthetic 
signals in a significant data bank. An improvement could be obtained by making profit 
of Monte Carlo simulations. Another lead to pursue would be the using of fuzzy logics 
in order to avoid nonlinear thresholds in the class definition. 
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Table 2. Items which lead to conclusions of Table 1.  
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