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Abstract

In condition monitoring a part of the informatioeagssary for decision-making comes
from scrutinizing a time measure or a transfornmthid measure. Frequency domain is
commonly exploited; lag domain is not, albeit adeges of the autocorrelation

function have long been known. In this paper, weltdan the autocorrelation function

in order to extract some interesting propertiestittd measure. We propose two
indicators in order to characterize the periodiatya signal. First is based on the non-
biased autocorrelation function and indicates a dmehtal periodicity rate. Second is
based on the biased autocorrelation and gives andotrpower periodicity rate. The

study of the 2D-plane defined by these two indiatlows the definition of regions

attached to one type of periodicity from periodicaperiodic through almost-periodic

and quasi-periodic. Combined with an estimationthed correlation support, a final

decision about the periodicity of the signal isayivIn case of a periodic signal, a way
of estimating the global signal ratio is propos€&tese new outputs are valuable for
initializing more complex processing. All the algbms proposed are fully automatic,

one click use! Relevance of these indicators isvshon real-world signals, current and
vibration measures mainly.

1. Introduction

In condition monitoring, a part of the informatioecessary for decision-making comes
from scrutinizing a time measure or a transfornthod measure. In this context, the
frequency domain is commonly exploited. Oddly erfgugis not usual to consider the
lag domain, whereas properties of this domain Hang been known, specially for
periodic signal®’. The autocorrelation or intercorrelation functi@re most often used
in system identification so as to extract the modéen the system is driven by a
known input. For example, in the method of the ramnddecrement vibration



signatur& @ the autocorrelation function is used becausesoéxact proportionality
to the free vibration decay. Modal parameters can elsémated from cross-
correlation§” .The correlation dimension of a nonlinear dynaingystem provides an
estimation of its number of degrees of freefam

In the lag domain, resonant modes are not sepasataed the frequency domain but
noise is separated from the different harmonicssélas here defined as a very wide
band spectral signal in which the components aredt are embedded. Investigate this
domain offers the opportunity of characterizing tilee of harmonicity of the signal
which presents a link with the property of periaiyic

This paper focuses upon this interesting propertyhef autocorrelation function, its
ability to characterize the periodicity property afsignal, and upon the link with the
oscillating systems.

Section 2 makes an attempt to clear up the notfgmedodicity relative to harmonic
oscillations with an extension to random procesBeyond a classification, the object
of this section is to highlight the key role of thetocorrelation function. In section 3,
two indicators are proposed in order to characteite periodicity of a signal. First is
based on the non-biased autocorrelation functiod ardicates a fundamental
periodicity rate. Second is based on the biasedcatrelation and gives a dominant-
power periodicity rate. Section 4 studies a 2D-pldeéned by these two indicators,
which allows the definition of regions attachedtwe type of periodicity from periodic
to aperiodic through almost-periodic and quasiguid. Combined with an estimation
of the correlation support, a final decision abitwt periodicity of the signal is given. In
case of a periodic signal, a way of estimatingglobal signal ratio is proposed. These
new outputs are valuable for initializing more cdexpprocessing. All the algorithms
proposed are fully automatic, one click use! Sect® shows relevance of these
indicators on real-world signals, current and Jilma measures mainly.

2. What is periodicity?
2.1 Periodic signals

Mathematically, a continuous signa(t) locally defined on the sdt*(Z7) of finite
energy signals is fully periodic with peridd when the signal exactly satisfies

s(t):s(t+T). (1)

For periodic signals, all the physical quantitias,amplitude and frequency, repeat at
equal intervals.

As examples, a simple harmonic oscillation refetoeds one sinusoidal signal

s(t) :Asin(27wt+<p), (2)



with A the amplitude v=1/T the frequency ang the phase, is periodic. A sum wf
harmonic oscillations of period; is also periodic if theTl; are rationally linearly
dependent. Then, all oscillating systems without@pndissipation are concerned.

Other examples of periodic signals are inharmorscillations, such as relaxation
waves, that can be square wave or sawtooth, iresmusoidal signals which can be
decomposed in sum of sinusoidal or harmonic osicta of pulsations multiple of a
given pulsation refered to as the fundamental poisa

2.2 Quasi-periodic signals

Always in the case of continuous functions localbfined on the set?(/) of finite
energy signals, quasi-periodic signals are a génatian of periodic signals (see Figure
1). A signals,y(t) is quasiperiodi® with m periodsT, .. T, when

se()=ofs(9. s(d. s O} 3)

whereg: /" [Jis continuously differentiable and thesignalss (t) are continuous

periodic signals with respect to each pefladAll the periods are required to be strictly
positive and to be rationally linearly independdirtiis last constraint is the fundamental
property of the quasi-periodic signals, which diéstiates from periodic signals.

Quasi-periodic signals possess the following prigper addition and multiplication of
guasi-periodic signals yield quasi-periodic onésn+2, the signal is said bi-periodic.

Therefore, an obvious example of quasi-periodiaasg is the sum ofm harmonic
signals defined by (2)ith all ratios of period; being irrational.

2.3 Almost-periodic and pseudo-periodic signals

In the case of continuous functions, almost-pedosignals are a generalization of
quasi-periodic signals and then of periodic sigrnalse Figure 1). A signaky(t) is

almost-periodi€ if every sequencs,, (t+T,) of translations ofs,,(t), for all €>0, has
a subsequence that converges uniformlyrfan (-o,+), that is

Oe 0T, such thaﬁsap@{ T gp(% £ (4)

There are several ways of defining classes of ahpesodic functions, based on
notions of closure, of an almost-period and of gfation. Each of these classes can be
obtained as a closure, with respect to some maelfithe set of all finite trigonometric
sums. (4) is the original definition proposed byBéhr (1947).

In oscillating systems, a quasi-sinusoidal osddlatis a usual denomination for

oscillator variation close to a sine variation. Aating to definition (4) and in spite of

its name, such an oscillation is not quasi-peridalit almost-periodic. That is the case
of a Wien bridge oscillator.



Another example of almost-periodic signals is giy®nsignals referred to as being
pseudo-periodic signals (See Figure 1). A pseudimgiie signa is defined locally on
the setL?() of finite energy signals, such that all linear camaltions of the translated
signals have equivalent norm lifi(l), and L?(J), as soon as intervalsandJ are long
enough. The lower bound d¢fandJ is referred to as the pseudo-period. Paley and
Wiener has shown that a pseudo-periodic signai mlmost-periodic functidf.

In other words, a pseudo-periodic sighal can beoriposed into a periodic function
along with a set of parameters that define the almns of the pattern from true

periodicity® %), Let gt) be a real valued continuous function with compagiport in
[0,T], a pseudo-periodic signgyy(t) is

s, (1) = zl:mis(ait + 68;) (5)

where s(t) is called the template function fap(t).The a; are called the stretching
parameters or scale frequencies, and represenietigghening or shortening of the
periods. Theps; are called the translation parameters in time, altmv nonuniform
timing of the process, for instance, an accelenationdeceleration in a system. Time
adjust the amplitude. In a musical context, thecorrespond to the pitch of the
waveform while thes; correspond to the rhythm in which the waveformpesp. The
template function plays a role analogous to thataofnother wavelet, while the
stretching parameter is analogous to a scale faldimwvever, the template functions do
not need to be orthogonal and do not form a bestiser, they form a frant@.

Aperiodic

Quasi-periodic
XO)=g{x8), .. Xat)}
X;i{t) periodic

Pseudo-periodic

Equivalent norms of all
linear translated
combinations

Periodic
x(l) =x(t+T)

Ex: sum of harmonics

\ With inearly dependent / & :ril Ti ir;a,t,i onal Ex: sum of damped
periods —X- SUIT OF NArmonics sinusoids, narrow-band
with iinearly independent signals
periods

Almost-periodic
Ve, T, [ x(t+T,)—x(®) |< €

Ex: sum of sinusoids

Figure 1. Periodic, quasi-periodic, almost and pseudo-periodic signals.



The most simple example is a damped harmonic atoifl also referred to as pseudo-
sinusoidal oscillation,

spp(t) —ac sin(2m/t—|—g0), (6)

without scaling factor and time translation buthwd damping parametertlivhich
modifies the amplitude of the periodic sine preirenisignals,y(t) to be periodic. All
oscillating systems with energy dissipation arecesned.

2.4 Periodicity for stochastic processes

The previous definitions valid for deterministigsals can be extended to stationary
stochastic processes but the equalities are traentean square sefist Let x(t) be a
stationary stochastic procesgét) is fully periodic with periodrl, when it satisfies

E{at +T) -2} =0, 7)

where T is the smallest number satisfying (EX.} being the expected value. If (7)
holds then

R (r+T)=R,(7), (8)

for every lagr, 7= 0, of its autocorrelation functiom® ()= E{z(t)z*(t— 1)}, the

superscript * denoting the conjugate. Therefores ibf interest to observe that the
autocorrelation function of a periodic stochastiogess is also periodic pointing out
that Ry(z) is a deterministic function. It is then straighmtfard to extend all previous
definitions to stochastic processes by the follgwidefinition of the periodicity in time

in a mean square sense and equivalent definitian tbr deterministic processes with
true equalities in lag domain.

As example, a laser light is a stochastic proceb®se emitted frequency is dirturbed
by a phase noise due to the finite spectral lindwaf the laser. This process having a
narrow band spectrum relatively to the emitted dietry is pseudo-periodic.

In oscillating systems as rotating systems, vibreticontain sums of periodic signals
which are not linearly dependent or rational in gqah These signals are most often
almost periodic. When measuring one vibration ke of a system, the measure can
be periodic. But, in many cases, even if the plafsgystem leads to deterministic
signals, a random noise often disturbed the meaberece the interest of considering
the autocorrelation function in order to defineipéicity indicators.

3. Two periodicity indicators
Two indicators computed on the autocorrelation fiomc are proposed. Besides the

interesting property of the autocorrelation funitface to periodicity as noticed in the
previous section, another one is attractive formunpose. When a signal is embedded



in a noise uncorrelated with the signal and wipactral band wider than the signal of
interest, in the lag domain, signal is alone fogrgudag greater than the noise correlation
support, a helpful property for estimating the sigperiodicity. In addition, estimating
the autocorrelation function from a time signaluiegs no smoothing as it is in the dual
frequency domain.

Letr(t) be a stationary stochastic process, the sum lodredt stochastic or deterministic
signalx(t) embedded into noisgt),

r(t) = () +n(t), (9)

n(t) being white or a lightly colored. Far=0, R (r) is the sum of the power of signal
X(t), Px, and of noisa(t), Py,

R (0)=R,(0)+R, (0)=P +P, (10)

T

If n(t) is white andk(t) is fully periodic with periodr:
- For7>0, R () is fully periodic with periodr

R (7)=R,(7)=R,(7+kT), k anintegel. (11)
- Forr=kT, R (7) is equal to the signal powEy
R (KT) = R (0) = P, (12)
- Forr=#kT andr =0, R (7)is equal toR, () and lower tdP,
R(r)=R,(7)<P, (13)

The periodicity or aperiodicity of(t) is unknown and has to be determined. Making use
of the autocorrelation function leads to estimat & fundamental periodicity of signal
X(t) and second a dominant-power periodicity. An ediionaof the signal to noise ratio
of the signal is also deduced.

3.1 Fundamental-frequency test

3.1.1 The general principle

From (12), lags multiple of the periodicity periotla signal match to the maxima of the
autocorrelation function of the noisy observatiorhe fundamental-frequency test
proposed is based upon this property and consigistecting autocorrelation function
maxima at regular intervals and with equal ampbtud@he autocorrelation function
being estimated, equation (12) becomes an apprdximand the detection should
include the statistical dispersion of the autodatien estimation.

The non-biased estimate of the autocorrelationtiangs used in order to define a ratio
Ctun, Which will be equal tdl for a full periodic signal an@ for an aperiodic signal.
Finally, the fundamental frequency of signé) is estimated with the confidence of
Cwunx100% and, in case of a periodic signal, a signal ieematio is estimated.



3.1.2 The algorithm
Let i [m] be the non-biased discrete estimatiomafr),

ﬁy,[m]:Nimir[n]r*[n—m} 0<m<N-1, (14)

n=m

with N the length of signaln] sampled afFs. In order to avoid both noise lag support
of a possible non-white noise and high variancthefestimation in the high lag values,
the test is applied within a lag support definedath step of the algorithm.

The algorithm steps are:

1. Computer

T1max

the maximum of the autocorrelation functiexthin [m,, m, |support,

erax = Rr [mmax] / Mpax = arg Imax Rr [m] :
me|mg,, mb}

The choice of values,, andm, isin 3.1.4.

and P

ninit !

2. Setp

T init

initial settings ofP, and P, respectively, and check thaf

max

is not associated to noise,

P R ... from(12)andp,, =R (0)-P

zinit T 'rmax x init

from (10),

7‘[ n ] not aperiodic

. > JN .

T max < Cb x Umax Wlth Uma.x = |N - m |B) inat
- max
'r'[ n] random noise

The choice of value, is in 3.1.4.

3. Compute the lag sef such that autocorrelation values are closeto, , i. e; in an

amplitude interval defined from the standard deeratof the estimator, andithin
|m,, m, | support,

§ = { mj € [mc’ my ] / PT it — € J[m]’] - Cﬁ(‘,hp.r init < Rr(mj) S PT init Cecn s init

with o[m] = fvar(& [m]) = 200 B, B +

(N —m) (N —m)
for all lags multiple of the signal period, givent®when noise is white from statistics
12 of estimator (14).

The seté makes sense onlfycard { = J = Jnin.
The choice of parameters,, m, , C, Cechand ninis discusseth 3.1.4.

Jrco[m].}f P }

=

p? standard deviation

n init !

4. Evaluate the fundamental-periodicity coefficigtt,, defined as the percentage of
elements ofy being close to the presumed signal fundamentéad)qbe/fm , Subject to a

* toler tolerance &y being defined as the set of distances betweerecatige lags of ,
and f/ being estimated from the medianadgl of &,



J1 1 if u<toler Me

C, = 5(/d;-Med, |} with 5(u) = Med,
J-144 0 otherwise

and¢, —{ d; /dy=m;, —m;, m; € and 1<j<J —1} fﬁm :F;/Medg(l

The choice of tolerance parametigler is discusseth 3.1.4.

3.1.3 A by-product: estimation of a global signaiio
When the fundamental frequency has been estimttedstimation of signal and noise
powers, P, and P, respectively, are finally adjusted from elementd,of

R[ ;| and P =R [0]- P ,withm [7& (15)

&IH
H'M%

Hence, the signal to noise raBRof the observed signal is estimated as
SNR = 10log(P, /P, ), (16)
this ratio having a sense only if the confidend®r@s,, is close to 100%.

3.1.4 The by-default values

Fundamental-frequency test needs the setting cdr@npeters which has been chosen
according to the investigation of real-world anahtetic signals in a significant data
bank:

- [m,, m, |, a lag support within whicti_ is computedm, = 5%N; m, = 50%N; in

rmax

any casem,>0 andm, <50%N.

- Cp, @ tolerance factor applied tQ, of R, _:c,=3.

- [m,..m, |, & lag support within whiclf is computedme = 5%N; my = 60%N; in any
case,[ma, mb} C [mc, md] .
- ¢, a tolerance factor applied tdm] = \/var(R, [m]) in order to estimaté: c=2.

- Cech @ tolerance factor applied @ , , in order to take sampling effects into account:

nit
Ceci=0.05; in any casB.05< Cecps0.1
-Jmin, the minimal number of detected maxim&,;;, = 3

-toler, a tolerance factor applied to the medianpf i.e; to the presumed period, in
order to compute the fundamental-periodicity caéfit: toler = 10%.

3.2 Dominant frequency test

3.2.1 The general principle

This second indicator, in addition to the first paans at estimating the periodicity of
the dominant-power signal part. The theoreticatgple is to determine the periodicity
of the smoothed autocorrelation function, the shiogt being set so as to highlight the
dominant-power harmonic. Unlike the first test, th@ocorrelation function estimator
should have a low variance so the biased estingafmefered.

The autocorrelation function is filtered by a loass filter bank. For each filtered
function, a periodicity ratio is computed; the abie filter is the one given the first a



maximum ratio for a decreasing filter order (monel anore narrow filter). A final one
denoted asCqomis selected such that the dominant-power frequericgignal r(t) is
estimated with the confidence Gfipn<100 %.

3.2.2 The algorithm
For sake of simplicity, the notatioR [m| is kept while designing in this algorithm the

biased estimation of the autocorrelation. Left/m| be the filtered biased discrete

N— 2

—

estimation ofR (), &*[m]=FFT rn] e W (1)1, (17)

N F:s n=0

with N the length of signailn] sampled afs, f the frequency variablend w*(f) a

filter bank defined from a windoW/(f) raised to powek belonging to a filter power set.
The choice of windowV(f) and of the filter power set ia 3.2.3.

The algorithm steps are:

1. Compute for eaclk the lag set¢* corresponding to minimal autocorrelation values
within [0, m;] support,

& = m; —argmlan[ } .
m; 6[(] ml

The sete® makes sense onlfcard ¢t =3’ > J

min

The choice of parameters, and ., isin3.2.3.

2. Evaluate for eaclf” aratioC,,, (k) defined as the percentage of elementg;obeing
close to the presumed signal dominant-power penjp;qm, subject to at toler’
tolerance,¢; being defined as the set of distances betweerecatige lags of¢*, and
fm being estimated from the mearvan " of ¢,

Caom(K) =7 125(‘(1_

j=1

) s(u 1 if u<to|er'Mear}k
with d
(v)= 0 otherwise

m, €& and 1<j<J'-1}, ] (k) =F,/Mean,

and¢f ={d /d =m

j+1 T My

The choice of tolerance parametigler’ is discusseth 3.2.3.

3. Determine the dominant-power periodicity coefiit Cyom by selecting the
maximum ofc, (k) at the lowest filter ordek, and then the corresponding periodicity

frequency,

C,pm = max C’dam( ) and fm = fdm [arg max C’dom( )] .

min(k) min(k)



3.2.3 The by-default values

As for the previous one, the dominant-power fregyetest needs the setting of 5
parameters which has been chosen according tontrestigation of real-world and
synthetic signals in a significant data bank:

1. W(f), the window function for the filter bank is a Bkacan-Harris 4T.

2. Filter power set = [0, 1, 2, 3, 4, 6, 8, 11, 26, 30, 40, 60, 100, 200, 400];

3. [o, m;}, a lag support within whichuin &* [m| are computedm, = 1%,N,; it could be
100% but the computation time can then be very.long

4.7 ., the minimal number of detected maxima ; = 4.

5. toler’, a tolerance factor applied to the mean¢bf i.e; to the presumed period, in
order to compute the periodicity coefficietdter’ = 10%;

4. A 2D planefor afinal decision

4.1 Correlation tests and periodicity
Signals in condition monitoring are complex and ea&hibit many type of periodicities.
The aim of this paper is to assess the periodmityperty of a signal with a simple and
fast algorithm. The method proposed is a classifipawhich classes are characteristic
regions in a 2D space defined from the two peribdimoefficients suggested in section
3. Figure 2 shows this space where the region itiefincomes from the investigation of
real-world and synthetic signals in a significaatalbank.

100%, F
_—_— ©

Almost-periodic

50% 9

Aperiodic

Furdarertal frequency coefficient

0 20%% 0% 120%0

Daminarnt-powsz r trequency coetticient

Figure 2. A first hypothesis about the periodicity of a signal.

4.2 The meaning of a correlation support
From the non-biased estimator of the autocorreidiimction (see (14)), the correlation
support is estimated as the maximum lag being grélaan a threshold defined from the
standard deviation of the estimator corresponding Wwhite noise only,

max {m/ RT [m] >C U[m]}

cor _sup

me[0,N] , (18)
if My sup > 0,7N then My up = N
with 0[] ~ N [0}2 as in section 3.1.2 with = 0, see also (15)The so-

(V)
defined threshold” o m| represents a limit above which the estimated autelation

no longer corresponds to the white noise hypothdsie durationm

cor __sup

corresponds

10



then to a rough estimate of the correlation supfusrthe positive lags. Due to the high
variance of the autocorrelation estimate, a cdiigelasupport greater than 70%N is set
to N. In the same way as in 3.1.4 and 3.2.3, thg-@efault value has been set to 4.

Figure 3 shows along the lag axis how we have ddfithe signal spectral band

relatively to the correlation support. Thus, fivengplementary intervals have been
defined along this axis.

Correlation support
Wide band MNarrow band Very
band

Figure 3. Correlation support and size of the signal spectral band.

4.3 Thefinal decision

Figure 4. Classification of signals according to the periodicity test proposed.
Region numbers come from the periodicity 2D-space (Figure 2) and interval
numbersfrom the correlation support (Figure 3).

The addition of the correlation support informatedfows us to refine the estimation of

the prevailing periodicity of the analysed sigridure 4 shows the final classification
proposed in order to link the 4 regions definedignre 2 and the 5 intervals defined in

11



figure 3. As previously stated, the validation ha&en investigated in a significant data
bank of real-world and synthetic signals, as showthe next section.

5. Resultson simulations & real-world signals

The aim of this section is to apply the indicatpreposed on simulated and real-world
signals in order to estimate the signal periodigityaccordance with the definitions of
section 2. All results are summed up in Table 1 Balole 2.

For all simulated signals, the classification iddpendent of the noise level, this result
was expected according to the autocorrelation stgb@ white noise. It is less true for
very low signal to noise ratio, around -10 dB, &mdthe damped sine. For the harmonic
family, the fundamental frequency is estimated af#me fondamental is not present.

For real-world signals, the results obtained amamyging with expert point of view.
The fundamental frequency and power-dominant onebeasimilar or within the same
range, which is the case for signals 6 and 7. Iherotcases the results are
complementary.

Table 1. Resultson simulations & real-world signals

Signal F, N Periodicity hypothesis n°

Room Acoustics |Impulse response 16000 Hz| 32762| Wide band aperiodic and embedded in significant noise 1
Lidar current  [Heterodyne current-coherent laser radar | 40500 Hz| ~ 81 200| Very wide band aperiodic and embedded in significant noise | 2
Magnetism Barkhausen noise 200 000 Hz| 40000/ Wide band aperiodic and embedded in significant noise 3
Bioacoustics Dolphin whistles 15324 Hz| 270 336 Very wide band aperiodic and embedded in significant noise | 4
Hydroacoustics |Boat passing 5000 Hz| 100000 Almost -periodic 5
Vibratory 1 Hydraulic noise in nuclear reactor pump 102 400 Periodic and embedded in significant noise 6
Vibratory 2 Hydraulic noise in oil station 50 000 Quasiperiodic and embedded in significant noise 7
Vibratory3 Vehicle cell 20491 Hz| 420045 Quasiperiodic and embedded in significant noise 8
Vibratory 4 Rotating machine 6365 Hz[ 65536 Quasiperiodic and embedded in low noise. 9
Simulated 2_SW_periodic_80dB 1000 Hz| 100 000 Periodic and embedded in low noise 10
2_SW_periodic_0dB 1000 Hz| 100 000 Periodic and embedded in significant noise 11
2_SW_quasi_no_noise 1000 Hz| 100 000 Quasiperiodic and embedded in low noise 12
2_SW_quasi_-10dB 1000 Hz| 100 000 Quasiperiodic and embedded in significant noise 13
Damped_sine_80dB 1Hz[ 10000 Almost-periodic embedded in significant noise 14
Damped_sine_0dB 1Hzl 10000 Wide band periodic and embedded in significant noise 15
Harmonics_no_noise_freq_fun_50Hz 1000 Hz| 10000 Periodic and embedded in low noise. 16
Harmonics_10dB_freq_fun_50Hz 1000 Hz| 10 000 Periodic and embedded in significant noise 17

6. Conclusions

A signal classification according to the signalipéicity is proposed. Autocorrelation
domain is exploited in order to estimate charasterifrequencies with a confident
level. Classes are currrently chosen from the itiyaigon of real-world and synthetic
signals in a significant data bank. An improvemenild be obtained by making profit
of Monte Carlo simulations. Another lead to purswmild be the using of fuzzy logics
in order to avoid nonlinear thresholds in the cldesnition.

12



Table 2. Itemswhich lead to conclusions of Table 1.

Regifm l:n_ZD Interval along
n° Ffun Cfun f dom C dom SNR periodicity m .o sup lag axis
space

1 492,31 Hz 6,9% 1656,96 Hz 31,3% 17,46 dB 3 1,6% 5

2 1760,87 Hz 8,1% 5389,93Hz 40,2% -18 dB 3 0,0% 5

3 26 666,67 Hz 14,3% 13 123,36 Hz 40,0% -12,33dB 3 25,4% 4

4 901,41 Hz 5,4% 273,43 Hz 58,7% -21,28 dB 3 3,3% 5

5 undefined 0,0% 472,08 Hz 48,4% undefined 3 60,5% 2

6 2857,14 Hz 100,0% 2821,78 Hz 100,0% -7,10dB 1 100,0% 1

7 46,88 Hz 59,3% 46,77 Hz 100,0% 3,22 dB 2 100,0% 1

8 1,33 Hz 41,2% 351,76 Hz 91,6% 2,41 dB 2 100,0% 1

9 344,05 Hz 14,2% 46,97 Hz 100,0% 12,99 dB 2 100,0% 1
10 111,11 Hz 100,0% 109,88 Hz 100,0% 19,06 dB 1 100,0% 1

11 111,11 Hz 100,0% 109,99 Hz 100,0% -0,09dB 1 100,0% 1
12 22,22 Hz 69,0% 109,98 Hz 100,0% 16 dB 2 100,0% 1
13 38,46 Hz 21,6% 109,98 Hz 100,0% -10,2dB 2 100,0% 1
14 0,29 Hz 46,2% 0,30 Hz 69,0% 3,75 dB 3 36,0% 3
15 0,29 Hz 46,0% 0,30 Hz 69,0% -2,86dB 3 26,6% 4
16 50,00 Hz 100,0% 49,38 Hz 100,0% 73,35 dB 1 100,0% 1
17 50,00 Hz 100,0% 49,38 Hz 100,0% 9,99 dB 1 100,0% 1
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