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Abstract9

In this paper we presented the analysis of two long time series of daily river

flow data, 32 years recorded in the Seine river (France), and 25 years recorded

in the Wimereux river (Wimereux, France). We applied a scale based decom-

position method, namely Empirical Mode Decomposition (EMD), on these

time series. The data were decomposed into several Intrinsic Mode Functions

(IMF). The mean frequency of each IMF mode indicated that the EMD

method acts as a filter bank. Furthermore, the cross-correlation between

these IMF modes from Seine river and Wimereux river demonstrated corre-

lation among the large scale IMF modes, which indicates that both rivers

are likely to be influenced by the same maritime climate event of North-

ern France. As a confirmation we found that the large scale parts have the

same evolution trend. We finally applied arbitrary order Hilbert spectral

analysis, a new technique coming from turbulence studies and time series

analysis, on the flow discharge of Seine river. This new method provides an

amplitude-frequency representation of the original time series, giving a joint
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pdf p(ω,A). When marginal moments of the amplitude are computed, one

obtains an intermittency study in the frequency space. Applied to river flow

discharge data from the Seine river, this shows the scaling range and char-

acterizes the intermittent fluctuations over the range of scales from 4.5 to 60

days, between synoptic and intraseasonal scales.

Key words: River flow, Empirical Mode Decomposition, Hilbert Spectral10

Analysis, scaling, intermittency11

1. Introduction12

A better understanding of river flow fluctuations is of sharp practical13

importance, e.g. for ecosystem studies (transport properties), and for flood14

understanding and forecasting. River flows fluctuate on many different scales:15

at small scales, river turbulence induces stochastic fluctuations and at larger16

scales (from days to years) the river flow fluctuations are the result of com-17

plex nonlinear interactions between rainfall processes, topography and geog-18

raphy (Schumm, 2005). They are also impacted by solar forcing and other19

large scale variations of the climate system (Mauas et al., 2008). Daily river20

flow time series thus show fluctuations possessing stochastic properties, as21

well as deterministic forcing resulting from seasonal or annual meteorological22

and climatic cycles.23

Since Hurst (Hurst, 1951) revealed the long-range dependent property in24

river flow, associated to a scaling property, researchers have tried different25

methods to characterize the (multi)scaling properties in river flows (Hurst26

et al., 1965; Tessier et al., 1996; Pandey et al., 1998; Jánosi and Gallas,27

1999; Kantelhardt et al., 2003, 2006; Livina et al., 2003a,b; Koscielny-Bunde28
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et al., 2006; Mauas et al., 2008). Below we quickly review the approaches29

undertaken in these studies.30

Tessier et al. (1996) analysized the relation between rainfall and river31

flow of 30 rivers and basins in France. They used the double trace moment32

technique to characterize the multifractal properties. They found that a33

scaling break occurs at a scale about 16 days. They argued that the rain34

field itself is the source of the river flow, therefore typical scales in the rain35

field will also be present in the river flow.36

Dahlstedt and Jensen (2005) investigated the Danube and the Missis-37

sippi river flows and levels by using finite-size-scaling hypothesis (Aji and38

Goldenfeld, 2001). They considered the river flow basin size L from differ-39

ent locations. They characterized the multiscaling properties of river flow40

and level records by considering the relative and general relative scaling41

(or Extended-Self-Similarity and Generalized Extended-Self-Similarity in the42

turbulent community). They found that the Fourier spectrum may be dif-43

ferent from location to location due to the size effect of the basin area.44

More recently, several authors applied the so-called detrended fluctua-45

tion analysis (DFA) and its multifractal version to describe the scaling and46

multiscaling properties of river flows (Kantelhardt et al., 2003; Livina et al.,47

2003a,a; Kantelhardt et al., 2006; Koscielny-Bunde et al., 2006; Livina et al.,48

2007; Zhang et al., 2008a,b). Livina et al. (2003a,b) argued that the climate49

is strongly forced by the periodic variations of the Earth with respect to50

the state of the solar system. The seasonal variations in the solar radiation51

cause periodic changes in temperature and precipitations, which eventually52

lead to a seasonal periodicity of river flows. The Fourier and structure func-53
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tion analyses are impacted by this strong periodicity (Livina et al., 2003a,b;54

Kantelhardt et al., 2003; Koscielny-Bunde et al., 2006). According to these55

authors, the DFA approach is an efficient method to eliminate the trend56

effects.57

Koscielny-Bunde et al. (2006) found that the Hurst numberH varies from58

river to river between 0.55 ∼ 0.95 in a non-universal manner independent of59

the size of the basin. They found that at large time scales, Fq(s) scales as60

sh(q), and they further proposed a simple function form with two parameters61

a and b, h(q) = 1/q − [ln aq + bq]/[q ln(2)] to describe the scaling exponent62

h(q) of all moments (Kantelhardt et al., 2003). Kantelhardt et al. (2006)63

also found that the Hurst number H estimated from 99 precipitation and64

42 river runoff records data are not consistent with the hypothesis that the65

scaling is universal with an exponent close to 0.75 (Hurst et al., 1965; Peters66

et al., 2002).67

We consider here a method devoted to deal with any nonlinear time series,68

which has never been applied to river flow data. In this paper, we apply69

the empirical mode decomposition (EMD) and the arbitrary order Hilbert70

spectral analysis (HSA) (Huang et al., 2008), which is an extended version71

of Hilbert-Huang transform, on river flow discharge fluctuations data. The72

arbitrary order HSA is a new methodology, which provides the joint pdf73

of the instantaneous frequency ω and the amplitude A, to characterize the74

scale invariant properties directly in amplitude-frequency space (Huang et al.,75

2008). We first introduce the EMD and arbitrary order HSA methodology in76

section 2. We then present two long records of river flow discharge data from77

the Seine river and the Wimereux river in section 3. The analysis results are78
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presented in section 4. Section 5 is a discussion and section 6 summarizes79

the main results of this paper.80

2. Methodology81

2.1. Empirical Mode Decomposition82

The starting point of the EMD is that most of the signals are multi-83

components, which means that there exist different scales simultaneously84

(Cohen, 1995; Huang et al., 1998, 1999). The signal can be considered as a85

superposition of fast oscillations to slower ones at a very local level (Rilling86

et al., 2003; Flandrin and Gonçalvès, 2004). Time series analysis methods87

generally consider a characteristic scale explicitly or implicitly. For example,88

the Fourier analysis characterizes the scale by the length of one period of89

sine (or cosine) wave. Then an integration operator is applied to extract the90

components information. Fourier analysis is thus an energy based method:91

only when the component contains enough energy, it can be detected by92

such method (Huang et al., 1998; Huang, 2005). The characteristic scale for93

the present EMD approach is defined as the distance between two successive94

maxima (or minima) points. This scale based definition gives the EMD a95

very local ability (Huang et al., 1998, 1999). According to the above defi-96

nition of a characteristic scale, the so-called Intrinsic Mode Function (IMF)97

is then proposed to approximate the mono-component signal, which satis-98

fies the following two conditions: (i) the difference between the number of99

local extrema and the number of zero-crossings must be zero or one; (ii) the100

running mean value of the envelope defined by the local maxima and the101

envelope defined by the local minima is zero.102
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The Empirical Mode Decomposition algorithm is proposed to extract the103

IMF modes from a given time series (Huang et al., 1998, 1999; Flandrin104

et al., 2004). The first step of the EMD algorithm is to identify all the local105

maxima (resp. minima) points for a given time series x(t). Once all the106

local maxima points are identified, the upper envelope emax(t) (resp. lower107

envelope emin(t)) is constructed by a cubic spline interpolation. The mean108

between these two envelopes is defined as m1(t) = (emax(t) + emin(t))/2. The109

first component is estimated by h1(t) = x(t)−m1(t). Ideally, h1(t) should be110

an IMF as expected. In reality, however, h1(t) may not satisfy the condition111

to be an IMF. We take h1(t) as a new time series and repeat the shifting112

process j times, until h1j(t) is an IMF. We thus have the first IMF component113

C1(t) = h1j(t) and the residual r1(t) = x(t) − C1(t) from the data x(t).114

The shifting procedure is then repeated on residuals until rn(t) becomes a115

monotonic function or at most has one local extreme point. This means that116

no more IMF can be extracted from rn(t). Thus, with this algorithm we117

finally have n− 1 IMF modes with one residual rn(t). The original data x(t)118

is then rewritten as119

x(t) =
n−1∑
i=1

Ci(t) + rn(t) (1)

A stopping criterion has to be introduced in the EMD algorithm to stop the120

shifting process (Huang et al., 1998, 1999; Rilling et al., 2003; Huang et al.,121

2003; Huang, 2005). However, this is beyond our topic here: for more details122

about the EMD method, we refer to Huang et al. (1998, 1999); Rilling et al.123

(2003); Huang et al. (2003); Flandrin et al. (2004); Flandrin and Gonçalvès124

(2004); Huang (2005); Rilling and Flandrin (2008).125
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2.2. Hilbert Spectra Analysis126

Having obtained the IMF modes from the EMD algorithm, one can apply127

the associated Hilbert Spectral Analysis (HSA) (Cohen, 1995; Long et al.,128

1995; Huang et al., 1998, 1999) to each IMF component Ci to extract the129

energy-time-frequency information from the data. The Hilbert transform is130

written as131

C̃i(t) =
1

π
P

∫
∞

0

Ci(t
′)

t− t′
dt′ (2)

where P means the Cauchy principle value (Cohen, 1995; Long et al., 1995).132

From this, we can construct the analytic signal, Ci(t), defined as133

Ci(t) = Ci(t) + jC̃i(t) = Ai(t)e
jθi(t) (3)

in which Ai(t) = |Ci(t)| = [Ci(t)
2 + C̃2

i (t)]
1/2 and θi(t) = arctan(C̃i(t)/Ci(t)).134

Hence the corresponding instantaneous frequency can be defined as135

ωi =
dθi(t)

dt
(4)

The original signal is then finally represented as (excluding the residual rn(t))136

137

x(t) = RP
N∑
i=1

Ai(t)e
jθi(t) = RP

N∑
i=1

Ai(t)e
j

R

ωi(t) dt (5)

where RP means real part. This approach allows Frequency-Modulation and138

Amplitude-Modulation simultaneously (Huang et al., 1998, 1999). Then the139

Hilbert spectrum H(ω, t) = A2(ω, t) is introduced, representing the energy140

in a time frequency space, and we define the Hilbert marginal spectrum as141

h(ω) =

∫
∞

0

H(ω, t) dt (6)
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This is similar to the Fourier spectrum, since its corresponds to the energy142

associated to the frequency (Huang et al., 1998, 1999).143

The combination of EMD and HSA is also sometimes called Hilbert-144

Huang transform. It provides an alternative powerful tool to analysize non-145

stationary and nonlinear time series. The main advantage of EMD over146

traditional approaches is its complete self-adaptiveness and its very local147

ability both in physical space and frequency space. Therefore it is especially148

suitable for nonlinear and nonstationary time series analysis (Huang et al.,149

1998, 1999). Since its introduction, this method has attracted a large inter-150

est (Huang, 2005). It has been shown to be an efficient method to separate151

a signal into a trend and small scale fluctuations on a dyadic bank (Wu152

and Huang, 2004; Flandrin et al., 2004; Flandrin and Gonçalvès, 2004); it153

has also been applied to many fields including physiology (Su et al., 2008),154

geophysics (Jánosi and Müller, 2005), climate studies (Solé et al., 2007), me-155

chanical engineering (Chen et al., 2004), acoustics (Loutridis, 2005), aquatic156

environment (Schmitt et al., 2007, 2008) and turbulence (Huang et al., 2008),157

to quote a few.158

2.3. Arbitrary Order Hilbert Spectral Analysis159

HSA represents the energy-time-frequency information H(ω, t) at a very160

local level. We can then define the joint pdf p(ω,A) of the instantaneous161

frequency ω and the amplitude A for all the IMF modes (Long et al., 1995;162

Huang et al., 2008). Thus the corresponding Hilbert marginal spectrum is163

rewritten as164

h(ω) =

∫
∞

0

p(ω,A)A2 dA (7)
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The above equation is no more than the second order statistical moment. In165

a recent paper we have generalized the above definition into arbitrary order166

moment, which is written as (Huang et al., 2008)167

Lq(ω) =

∫
∞

0

p(ω,A)Aq dA (8)

where q ≥ 0. In case of scale invariance we can write168

Lq(ω) ∼ ω−ξ(q) (9)

where ξ(q) is the corresponding scaling exponent. Due to the integration,169

ξ(q) − 1 corresponds to ζ(q) the scaling exponent of structure functions,170

which is classically written as171

〈∆xqτ 〉 ∼ τ ζ(q) (10)

where ∆xτ = |x(t+ τ) − x(t)| is the amplitude of the increments at scale τ .172

We provide here some comments on the arbitrary order HSA methodol-173

ogy. If one represents the structure function analysis in Fourier space, one174

may find that it measures the scale invariance by an indirect way, which is175

influenced by the trend or strong large scales. The increment operates the176

data on very local level in the physical domain, but nevertheless, it is still177

a global operator in the frequency domain. On the contrary, the present178

methodology has completely self-adaptiveness and very local ability both in179

the physical and frequency domains (Huang et al., 2008).180

3. Seine River and Wimereux River181

The Seine river is the third largest river in France. Its length is 776 km,182

and its basin is 78650 km2. It is economically important for France, with 25%183
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Figure 1: The river flow discharge time series of (a) Seine River, recorded from 1 January

1976 to 28 April 2008, (b) Wimereux river, recorded from 1 January 1981 to 27 May 2006.

The data illustrate clear strong annual cycles with huge fluctuations. The total lengths

are 11828 and 9278 data points for the Seine river and the Wimereux river, respectively.

of its population as well as 40% of its industry and agriculture concentrated184

in and around it (Dauvin, 2007). The flow data is provided by the Service de185

Navigation de la Seine (SNS). This corresponds to daily flow data Q ( m3s−1),186

recorded from 1 January 1976 to 28 April 2008. There are 11828 data values,187

with some missing values due to interruptions for maintenance or because of188

the failure of measuring devices. Due to the local ability of HSA approach,189

which is performed through spline interpolation, the missing values in the190

time series do not change the results, since the method can be applied even191

for irregular sampling. The data are shown in Fig. 1 (a), demonstrating192

some large fluctuations at all scales. The mean and standard deviation of193

the discharge are 488 m3s−1 and 349 m3s−1, respectively. This figure shows a194
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England

France

Bay of Seine

Le Havre

Wimereux

English Channel

Figure 2: A map showing the location of the Seine river and the Wimereux river, in the

eastern English Channel. The distance between them about 300 km.

complex and stochastic behavior, with a visible strong annual cycle.195

The Wimereux river is a small river in the North of France. Its length196

is 22 km, and its basin is 78 km2. It can have strong fluctuations due to197

fast increase of the flow in case of heavy rain. The daily flow discharge is198

recorded from 1 January 1981 to 27 May 2006, with a total length of 9278199

points values with some missing, see Fig. 1 (b). The mean and standard200

deviation of the discharge data are 1.02 m3s−1 and 1.73 m3s−1.201

Figure 2 shows the location of these two rivers, where the Seine river is202

represented as a solid line. The Wimereux river is too small to be displayed203

in the same figure. The difference between these two rivers is clear: the Seine204

river is a real big one, and the Wimereux river is much smaller and strongly205

influenced by the local rainfall conditions. The distance between them is206
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about 300 km, see Fig. 2. Both of them are affected by the same large scale207

climatic factors and belong to the marine west coast climate of Northern208

France. This climate is found on the west coast of middle latitude regions209

and can be quite humid. Indeed it is subject to western wind bringing impor-210

tant variability intermittent clouds, important precipitation and temperate211

temperatures. The direct estimation of the cross correlation between these212

two recorded data is about 0.256, a value that may be contaminated by the213

small scale uncorrelated fluctuations. We will apply to these two data sets214

by the EMD method in the following section.215

4. Results216

4.1. EMD results217
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Figure 3: IMF modes (excluding the residual) from EMD for the Seine river. Here the

data are taken from 1 January 1976 to 28 April 2008. The characteristic scale is increasing

with the mode index number n.
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Figure 4: IMF modes from EMD for the Wimereux river. Here the data are taken from

1 January 1981 to 27 May 2006.

After the application of the EMD method, the original data is separated218

into several IMF modes. We then represent the IMF modes in Fig. 3 and219

Fig. 4 for the Seine river and the Wimereux river, respectively. For display220

convenience, we exclude the residual for the Seine river. Graphically, one221

can see that the characteristic scale is increasing with the mode index n.222

Let us note that the number of IMF modes is produced by the algorithm223

and depends on the length and the complexity of the data. In practice,224

based on the dyadic filter bank property of the EMD method, this number225

is usually less than log2(N), where N is the length of the data (Flandrin and226

Gonçalvès, 2004; Flandrin et al., 2004; Wu and Huang, 2004; Huang et al.,227

2008). First, we estimate the mean frequency ω of each IMF mode. We use228

the following three definitions of mean frequency ω. The first one is proposed229
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Figure 5: Representation of the mean frequency ω vs the mode index n in log-linear view:

(a) Seine river, (b) Wimereux river, where the mean frequency ω are estimated by using

Eqs. (11) (#), (12) (�) and (13) (×), respectively. An exponential law is observed for

each representation. The straight line is the least square fit of the data.

Table 1: The mean period (in days) of each IMF mode (excluding the residual) of the

Seine river and the Wimereux river, respectively. Here the mean period is estimated as

T = 1/ω, where ω is calculated by Eq. (11). The 8th and 9th IMF modes of the Seine river

and Wimereux river, respectively, are close to the annual cycle.

IMF 1 2 3 4 5 6 7 8 9 10 11 12 13

Seine 3 8 19 33 55 86 185 358 452 869 1823 5551

Wimereux 5 9 16 25 36 58 103 182 376 574 2149 2785 3125

by Huang (Huang et al., 1998), which is written as230

ωi =

∫
∞

0
fSi(f) df∫

∞

0
Si(f) df

(11)

where Si(f) is Fourier spectrum of Ci. It is an energy weighted average in231

Fourier space. The second one is given by Flandrin (Flandrin et al., 2004;232

Flandrin and Gonçalvès, 2004), which is written as233

ωi =
N

0 − 1

L0
(12)

where N
0 is the zero-crossing number, and L

0 is the distance between the234

first and last zero-crossing. The third one is introduced here for the first235
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annual cycle shows a strong correlation with a coefficient ρws(9, 8) = 0.426. The coefficient
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time, and is defined as236

ωi =

∫
∞

0
ωhi(ω) dω∫

∞

0
hi(ω) dω

(13)

where hi(ω) is the Hilbert marginal spectrum for the ith mode. This definition237

is similar to the first one: it is an energy weighted measurement of the238

mean frequency in Hilbert space. We then represent the mean frequency ω239

estimated by these three definitions (11) (#), (12) (�) and (13) (×) for240

each mode in Fig. 5 for (a) the Seine river, and (b) the Wimereux river.241

One can see that the two energy weighted estimators give almost the same242

mean frequency. However, they are slightly smaller than the zero-crossing243
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Figure 7: Most correlated IMF modes: (a) the annual cycle mode for the Seine river (thin

solid line) and the Wimereux river (thick solid line), (b) the reconstruction of the large

scale part for the Seine river (thin solid line) and the Wimereux river (thick solid line). We

took the IMF modes 11 ∼ 12 from the Seine river and 11 ∼ 13 from the Wimereux river,

which means periods larger than 3 years, to reconstruct the large scale part. Graphically,

they have the same evolution trend on range 1 January 1981 to 28 May 2006.

based estimator. Graphically, all these three estimators suggest the following244

exponential law245

ω(n) ∼ γ−n (14)

where γs ≃ 1.88, γw ≃ 1.62 are estimated by using the least square fitting246

for the Seine river and the Wimereux river, respectively. This result implies247

that the mean frequency of a given mode is γ times larger than the mean248

frequency of next one. We notice that these values are significantly different249

from 2, which would correspond to a dyadic filter bank, which are reported250

for white noise (Wu and Huang, 2004), fractional Gaussian noise (Flandrin251

et al., 2004; Flandrin and Gonçalvès, 2004) and turbulence time series (Huang252
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et al., 2008). However, it still indicates that the EMD algorithm acts a filter253

bank here.254

We list the mean period T (in days) in Table 1, where T = 1/ω. Since255

the three above mentioned mean frequency estimators give almost the same256

value, we thus only present the value estimated by Eq. (11). One can find257

that the EMD approach captures the annual cycle, which is the 8th and 9th
258

mode for the Seine river and Wimereux river, respectively. Both rivers belong259

to the same climate and it is expected that large scale modes are correlated.260

However, the data at daily scale are not (the cross-correlation at this scale261

is 0.256); this is due to the influence of small scales. The cross-correlation262

between two IMF modes is defined as263

ρws(i, j) =
〈Cw,iCs,j〉

〈C2
w,i〉

1/2〈C2
w,i〉

1/2
(15)

where 〈·〉 means ensemble average. The corresponding cross-correlation ρws(i, j)264

is then plotted in Fig. 6, where the most correlated modes are marked by �.265

The large scale modes are correlated as expected. More precisely, we observe266

a larger cross-correlation between the annual cycle modes, ρws(9, 8) = 0.426,267

and the most correlation coefficient is ρws(11, 11) = 0.579, with mean pe-268

riods of about 6 and 8 years for the Seine river and the Wimereux river,269

respectively.270

We then replot the annual cycle for the Seine river (thin solid line) and271

Wimereux river (thick solid line) in Fig. 7 (a). One can find that their shapes272

are almost the same on the range from 1 January 1981 to 28 May 2006. We273

also reconstruct the large scale signal from those modes, with mean period274

larger than 3 years, 11th and 12th from the Seine river (thin solid line), and275

11th to 13th from the Wimereux river (thick solid line). The result is shown276
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in Fig. 7 (b). Graphically, they have almost the same shape and evolution277

trend.278

4.2. Arbitrary order HSA results279
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Figure 8: Comparison of the Hilbert marginal spectrum (dashed line) and Fourier spec-

trum (solid line) for (a) the Seine river, (b) the Wimereux river. For the Seine river, a

power law behaviour is observed on the range 6 < ω < 80 year−1 , or 4.5 ∼ 60 days: this

range is marked by the vertical dashed lines. The scaling values are 2.54 and 2.45 for

Hilbert spectrum and Fourier spectrum, respectively. The vertical solid line indicates the

annual cycle.

In order to characterize the intermittent properties of river flow fluctu-280

ations, we consider here HSA and arbitrary order HSA analysis. We firstly281

compare the Hilbert marginal spectrum (dashed line) and Fourier spectrum282

(solid line) in Fig. 8 for (a) the Seine river, and (b) the Wimereux river to283

identify the power law range, where the scale invariance holds. For the Seine284

river, both methods capture the annual cycle (vertical solid line) and show285

power law behaviour on the range 6 < ω < 80 year−1 or from 4.5 to 60 days,286

with scaling exponent 2.54 and 2.45, respectively. The power law range is287

between synoptic and intraseasonal scales (Zhang, 2005). The latter may be288

linked to the Madden-Julian Oscillation (MJO), since some connection be-289
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Figure 9: Representation of arbitrary order Hilbert marginal amplitude spectra Lq(ω) for

the Seine river, where q = 0, 1, 3, 4, 5 and 6. A power law behaviour is observed in all

cases on the range 6 < ω < 80 year−1. The vertical dashed lines indicate the power law

range. The corresponding scaling values are shown in each figure.

tween and the North Atlantic Oscillation (NAO) and MJO have been found290

(Cassou, 2008). For the Wimereux river, the power law range is less clear.291

We therefore only apply below the arbitrary order HSA analysis on the Seine292

river.293

Since we are concerned with the scaling property in the above range, we294

thus divide the entire time series into 16 segments, each one has 2 × 365295

points, 2 years each. The arbitrary order Hilbert marginal spectra are shown296

in Fig. 9, where q = 0, 1, 3, 4, 5 and 6. Power law behaviour is then observed297

in all cases on range 6 < ω < 80 year−1, graphically. The corresponding298

scaling exponents ξ(q) are estimated on this range by using least square299
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Figure 10: Scaling exponents ξ(q) (#) for the Seine river. The inset shows the departure

from the reference line qH + 1, where H = ξ(1)− 1. The shape of these scaling exponents

is concave, which indicates the small scale intermittency nature of river flow.

fitting with 95% confidence limit, Fig. 10 shows the scaling exponents ξ(q)300

(#). Graphically, this curve is concave, which indicates the multifractal301

properties of the river flow discharge (Pandey et al., 1998; Kantelhardt et al.,302

2003, 2006). For comparison, we also show a reference line qH+1 (solid line),303

where H = ξ(1) − 1 = 0.84 ± 0.08, which corresponds to the mono-scaling304

case. The departure from this reference mono-scaling line is then shown in305

inset.306

5. Discussions307

We compare the above observation with the conventional structure func-308

tion analysis, the traditional way to extract the scaling exponents. We plot309
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Figure 11: Structure function for (a) the Seine river, and (b) the Wimereux river, where

q = 1 (�), 2 (#) and 3 (♦). The vertical dashed lines indicate the range 4.5 ∼ 60 days.

The annual cycle influence is also indicated by the solid line.

the result in Fig. 11, where q = 1 (�), 2 (#) and 3 (♦), respectively. Some310

scaling portion are visible on these figures, of a relatively limited amplitude.311

To reveal the scale invariance more clearly, we consider the Extended Self-312

Similarity (ESS) properties, a relative scaling expressed as313

〈∆xq〉 ∼ 〈∆x〉ψ(q) (16)

where in case of scaling (Eq. 10), we have ζ(q) = Hψ(q). Eq (16) can be314

used to estimate more accurately the exponents ψ(q). The ESS is verified315

for the Seine river on range 2 < τ < 60 days, see Fig 12. Figure 13 shows316

the ESS result for the Wimereux river. Graphically, it is scaling and is317

rather scattered. We then show the relative scaling exponents ψ(q) and the318

normalized scaling exponents (ξ(q) − 1)/(ξ(1) − 1) in Fig 14. In the mono-319

scaling case and when there is no large scale forcing, they should collapse320

on a solid line ψ(q) = q. The same approach is applied to the Wimereux321

river. In this case the HSA approach is not displaying any clear scaling322

range. We thus use the ESS approach and compare the resulting curve323

ψ(q) to the one obtained from the Seine river. The Wimereux river scaling324
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Figure 12: Extended self-similarity test of the Seine river on range 2 < τ < 300 day. The

relative scaling is very well captured for all moments.

exponents are saturating at ψ(q = 1), and the curve is quite different from325

the Seine river. This shows that the Wimereux river is more intermittent326

than the Seine river: which may come from the fact that its catchment basin327

is much smaller, hence its discharge variation can be more rapid. This may328

also be an effect of strong oscillations that reduce the multifractal degree329

(see Telesca et al. (2004b); Bolzan et al. (2009)). It is also interesting to330

see in the same graph the difference between the HSA based exponents and331

structure function’s exponents for the Seine river. The discrepancy can be332

interpreted as coming from the influence of the periodic component in the333

time series. Indeed we have shown elsewhere (Huang et al., 2009) that the334

influence of periodic components is stronger on structure function than on335

HSA exponents, which can be linked to the fact that EMD acts a filter336
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Figure 13: Extended self-similarity test of the Wimereux river on range 2 < τ < 300 day.

bank (Flandrin and Gonçalvès, 2004; Flandrin et al., 2004; Huang et al.,337

2008; Wu and Huang, 2004). Periodic components tend to increase the value338

of ζ(q) relative to the real theoretical curve.339

6. Conclusions340

In this paper we applied for the first time the EMD methodology to river341

flow time series. Using daily river flow discharge data, 32 years recorded342

in the Seine river (France), and 25 years recorded in the Wimereux river343

(France), we have shown that the time series can be successfully separated344

into several IMF modes. Exponential laws for the mean frequency of each345

mode have been found, with exponents γs = 1.88 and γw = 1.62 for the346

Seine river and the Wimereux river, respectively. These values are smaller347

than 2, the value for dyadic filter bank. Even though, it still confirmed that348

the EMD algorithm acts as a filter bank for river flow data. Furthermore,349

strong cross-correlation have been observed between annual cycles and the350

large scale modes having a mean period larger than 3 years. Based on the351

correlation analysis results, we have found that the annual cycle mode and352

the reconstructed large scale part have almost the same evolution trend.353
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We have also characterized the intermittency of the time series over the354

ranges showing scaling properties. For the Seine river, we observed power355

laws for the first six order Hilbert marginal spectra on the range 6 < ω <356

80 year−1 or 4.5∼60 days, between synoptic and intraseasonal scales. The357

corresponding scaling exponents ξ(q) indicate the small scale multifractal358

nature of the river flow data analyzed here. The differences obtained using359

the structure functions approach and the frequency based HSA approach have360

been emphasized, which is especially clear for large order moments associated361

to the more active fluctuations. We have interpreted this difference as coming362

from the strong annual cycle which has more influence on structure functions363

scaling exponents than on the HSA approach. We have also compared the364

scaling exponents estimated from the ESS method, for the Seine river and365
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Wimereux river; the much smaller exponents obtained for the Wimereux366

river express a higher degree of multifractality, which was interpreted as367

coming from the inertia associated to the large scale basin for the Seine368

river, whereas small rivers such as the Wimereux river may be more sensitive369

to local precipitation events.370

Several previous studies have considered scaling properties of river flows371

using other methods such as rescaled range analysis, trace moments, double372

trace moments, wavelet analysis, multifractal detrended fluctuation analy-373

sis (MFDA). We applied here a new method which gives results similar to374

the classical methods (structure functions, wavelet analysis, MFDA) for frac-375

tional Brownian motion or pure multifractal processes Huang et al. (2009).376

However, we have shown in the same paper that strong deterministic forcing377

had important influence on classical methods, whereas the HSA approach378

was much more stable and presented less influence Huang et al. (2009). This379

method seems hence more appropriate for environmental time series that pos-380

sess often strong periodic components superposed to scaling regimes. The381

origin of this stability property is the adaptative and local approach which382

is at the heart of the HSA method.383

We have compared here two rivers of very different size and catchment384

basin in order to compare their scaling properties. One of the objectives of385

scaling analyses of river flow time series is indeed to detect some differences386

among rivers, but also to evaluate some universality, i.e. some general simi-387

larity in statistical properties. This was done for normalized pdfs Dahlstedt388

and Jensen (2005), for river flow volatilities Livina et al. (2003a,b), and for389

scaling regimes Tessier et al. (1996) or multifractal parameters Pandey et al.390
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(1998). We hope that the method presented in this paper, which we claim to391

be well adapted to environmental time series, will help this quest for universal392

properties of river flow scaling statistics.393
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