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Abstract

We consider here surf zone turbulence measurements, recorded in the Eastern En-
glish Channel using a sonic anemometer. In order to characterize the intermittent
properties of their fluctuations at many time scales, we analyze the experimental
time series using the Empirical Mode Decomposition (EMD) method. The series is
decomposed into a sum of modes, each one narrow-banded, and we show that some
modes are associated with the energy containing wave-breaking scales, and other
modes are associated with small-scale intermittent fluctuations. We use the EMD
approach in association with a newly developed method based on Hilbert spectral
analysis, representing the probability density function in an amplitude-frequency
space. We then characterize the fluctuations in a stochastic framework using a cu-
mulant generating function for all scales, and compare the results obtained from
direct and classical structure function analysis, to EMD-Hilbert spectral analysis
results, showing that the former method saturates at large scales, whereas the latter
method is more precise in its scale approach. These results show the strength of the
new EMD-hilbert spectral analysis method for data presenting a strong forcing such
as found in shallow water, wave dominated situations.
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1 Introduction

One of the main properties of fully developed turbulence is its inertial range
intermittent properties, between a large-scale injection of energy and a small-
scale dissipation (Frisch, 1995; Pope, 2000). In the surf zone, when waves
break, the wave energy is transferred into turbulent motions through a violent,
highly energetic process associated with breaking wave times scales, typically
a few seconds, and then turbulence is dissipated at smaller scales (Svendsen,
1987; Battjes, 1988; Svendsen, 2005). The surf zone environment is a complex
system: there are water turbulent motion at different scales, breaking waves
feeding turbulence at the surface, and residual turbulence persisting from one
wave to the next (Svendsen, 1987; Jaffe and Rubin, 1996). This highly ener-
getic system has a strong effect on sediment transport dynamics, morpholog-
ical changes associated with it, and shoreline evolution processes (Jaffe and
Rubin, 1996; Cox et al., 1996; Trowbridge and Elgar, 2001; Masselink and
Russell, 2006; Torres-Freyermuth et al., 2007), and also on ecological processes
through influences on feeding, settlement, fertilization, bloom dynamics, etc.
(Denny and Shibata, 1989; Du Preez et al., 1990; Mead and Denny, 1995).

In the intertidal zone, transport models for either sediments or living organ-
isms need the description of surf zone velocity fluctuations. It is then impor-
tant in this context to be able to characterize these velocity fluctuations for
a wide range of scales, including highly energetic breaking waves scales and
smaller turbulent scales. This is not an easy task because of the unsteadiness
of breaking waves: phase-average methods are not straightworward since the
wave forcing is not monochromatic; ocean breaking waves are nonlinear and
present random components.

We use here for this an approach based on the Empirical Mode Decomposi-
tion method which has been introduced by Huang et al. as a new time series
analysis technique able to separate a given time series into a sum of modes,
each one associated with well defined scales (Huang et al., 1998, 1999). This
method is most efficient and interesting for nonstationary and nonlinear time
series, and is efficient to separate trends from small-scale fluctuations. Due
to the simplicity of its algorithm, since its introduction, the EMD method
has met a large success and has been successfully applied to many topics in
the natural and applied sciences: mechanical engineering (Chen et al., 2004;
Loutridis, 2004), acoustics (Loutridis, 2005), meteorology and climate studies
(Salisbury and Wimbush, 2002; Coughlin and Tung, 2004; Jánosi and Müller,
2005), and biological applications (Balocchi et al., 2004; Ponomarenko et al.,
2005), among others. It has already been applied to nonstationary ocean wave
data (Hwang et al., 2003; Veltcheva and Soares, 2004), but these studies focus
on deep water ocean waves, which are different from surf zone breaking waves.
Here we consider experimental turbulent velocity time series recorded in the

2



surf zone.

Sections 2 and 3 below present the methods; section 4 presents the data, and
the results together with a comparison of the new method with more classical
structure functions approach. Section 5 is the conclusion.

2 Empirical Mode Decomposition and Hilbert spectral analysis

2.1 The EMD algorithm

Empirical Mode Decomposition is an analysis technique which has recently
been developed to study the nonlinear and nonstationary properties of time
series (Huang et al., 1998, 1999) . The main idea of EMD is to locally estimate
a signal as a sum of a local trend and a local detail: the local trend is a low
frequency part, and the local detail a superposed high frequency. When this is
done for all the oscillations composing a signal, the high frequency time series
is called an Intrinsic Mode Function (IMF) and the low frequency part is called
the residual. The procedure is then applied again to the residual, considered
as a new times series, extracting a new IMF using a spline function, and
obtaining a new residual. After the decomposition process is terminated, the
EMD method expresses a time series as the sum of a finite number of IMFs
and a final residual (Huang et al., 1998; Flandrin and Gonçalvès, 2004). The
algorithm is precisely described below.

An IMF is a function that must satisfy two conditions according to the al-
gorithm originally developed: (i) the difference between the number of local
extrema and the number of zero-crossings must be zero or one; (ii) the run-
ning mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero. The algorithm to decompose a signal into
IMFs is then the following (Huang et al., 1998, 1999):

1 The local extrema of the signal x(t) are identified;
2 The local maxima are connected together by a cubic spline interpolation

(other interpolations are also possible), forming an upper envelope emax(t).
The same is done for local minima, providing a lower envelope emin(t);

3 The mean is defined as m1(t) = (emax(t) + emin(t))/2;
4 The mean is subtracted from the signal, providing the local detail h1(t) =

x(t) − m1(t);
5 The component h1(t) is then considered to check if it satisfies the above

conditions to be an IMF. If yes, it is considered as the first IMF and denoted
C1(t) = h1(t). It is subtracted from the original signal and the first residual,
r1(t) = x(t) − C1(t) is taken as the new series in step 1. If h1(t) is not
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an IMF, a procedure called “sifting process” is applied as many times as
necessary to obtain an IMF. In the sifting process, h1(t) is considered as
the new data; the local extrema are estimated, lower and upper envelopes
are calculated and their mean is denoted m11(t). This mean is subtracted
from h1(t), providing h11(t) = h1(t) − m11(t). Then the same procedure
starts again: it is checked if h11(t) is an IMF. If not, the sifting process is
repeated, until the component h1k(t) satisfies the IMF conditions. Then the
first IMF is C1(t) = h1k(t) and the residual r1(t) = x(t) − C1(t) is taken as
the new series in step 1.

By construction, the number of extrema decreases when going from one resid-
ual to the next; the above algorithm ends when the residual has only one
extrema, or is constant, and in this case no more IMF can be extracted; the
complete decomposition is then achieved in a finite number of steps. The sig-
nal x(t) is finally written as the sum of mode time series Ci(t) and the residual
rn(t):

x(t) =
N∑

i=1

Ci(t) + rn(t) (1)

The IMFs are orthogonal, or almost orthogonal functions (mutually uncorre-
lated). This method does not require stationarity of the data and is especially
suitable for nonstationary and nonlinear time series analysis (Huang et al.,
1998, 1999). Numerically, it is found that each mode is localized in frequency
space (Flandrin and Gonçalvès, 2004; Wu and Huang, 2004). EMD can be
used to choose the scale truncation: it expresses the original time series as the
sum of a trend (sum of modes from p to N) and small-scale fluctuations (sum
of modes from 1 to p − 1), where p is an index whose value depends on the
trend decomposition which is desired.

2.2 Hilbert spectral analysis and an amplitude-frequency pdf representation

This decomposition method is a time-frequency analysis (Flandrin and Gonçal-
vès, 2004) since it can represent the original signal in a energy-frequency-time
form at local level, using a complementary analysis technique called Hilbert-
Huang spectrum (Long et al., 1995; Huang et al., 1998), which is presented
here. Hilbert spectral analysis (HSA) (Cohen, 1995; Long et al., 1995; Huang
et al., 1998) is applied to each mode, in order to locally extract a frequency
and an amplitude. Each mode function Ci(t) is associated with its Hilbert
transform C̃i

C̃i(t) =
1

π

∫ +∞

−∞

Ci(τ)

t − τ
dτ (2)

and the combination of Ci(t) and C̃i(t) gives the analytical signal z = Ci +
jC̃i = Ai(t)e

jθi(t), where Ai(t) is an amplitude time series and θi(t) is the phase
of the mode oscillation (Cohen, 1995). Within such approach and neglecting
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the residual, the original time series is rewritten as

x(t) = Re
N∑

i=1

Ai(t)e
jθi(t) (3)

For each mode, the Hilbert spectrum is defined as the square amplitude
H(ω, t) = A2(ω, t), where ω = dθ/dt is the instantaneous frequency obtained
using the phase information θ(t) = tan−1 C̃(t)/C(t). H(ω, t) gives a local rep-
resentation of energy in the time-frequency domain. The Hilbert marginal
spectrum of the original time series is then written as

h(ω) =
∫

∞

0
H(ω, t)dt (4)

and corresponds to an energy density at frequency ω (Long et al., 1995; Huang
et al., 1998, 1999).

This can be used to define the joint probability density function (pdf) p(ω,A)
of the frequency [ωi] and amplitude [Ai], which are extracted from all modes
i = 1 · · ·N together. The Hilbert marginal spectrum is then rewritten as

h(ω) =
∫

∞

0
p(ω,A)A2dA (5)

This definition corresponds to a second statistical moments. As introduced
elsewhere (Huang et al., 2008), we then generalize Eq. (5) using arbitrary
moments q ≥ 0:

L(q, ω) =
∫

∞

0
p(ω,A)AqdA (6)

L(q, ω) will be used below for the computation of cumulants at a given fre-
quency.

3 Characterization of intermittency using cumulants

3.1 Structure functions and cumulants

One of the characteristic features of fully developed turbulence is the inter-
mittent nature of velocity fluctuations (Frisch, 1995). Intermittency provides
corrections to Kolmogorov’s scaling law (Kolmogorov, 1941), which are now
well established and received considerable attention in the last twenty years.
Let us recall how to quantify intermittency effects on scaling laws for Eulerian
isotropic turbulence. Denoting ∆Vℓ = V (x + ℓ)− V (x) the longitudinal incre-
ments of the Eulerian velocity field at a spatial scale ℓ, their fluctuations are
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characterized, in the inertial range, using the scale invariant moment function
ζ(q):

〈|∆Vℓ|
q〉 = Aqℓ

ζ(q) (7)

where q > 0 is the order of moment and Aq is a constant that may depend on
q. Kolmogorov’s initial proposal, for a non-intermittent constant dissipation,
leads to ζ(q) = q/3 (Kolmogorov, 1941). For intermittent turbulence, ζ(q) is
proportional to a cumulant generating function, and is nonlinear and concave;
only the third moment has no intermittency correction: ζ(3) = 1. The accuracy
of the scaling of Eq.(7) is usually tested for each order of moment, for various
values of ℓ in log-log plot, using a least-square regression (Anselmet et al.,
1984). The values of ζ(q) which are then obtained may be compared and fitted
to different multifractal models (among many studies, see (She and Leveque,
1994; Chen and Cao, 1995; Arneodo et al., 1996; Boratav, 1997; Schertzer
et al., 1997; van de Water and Herwijer, 1999; Anselmet et al., 2001)). This
way of estimating ζ(q) depends on the choice of the scaling range: one usually
estimates ζ(q) for the range of scales where the exact relation ζ(3) = 1 is
verified, assuming that the scaling range is the same for each order of moment.

Here there is no large sclaing range: we therefore consider another approach:
instead of studying the scale dependence for each moment, we focus on the
moment dependence using cumulants at a given scale. The cumulant approach
has already been undertaken in the scaling turbulence framework in a few
studies (see e.g. (Delour et al., 2001; Eggers et al., 2001; Chevillard et al.,
2005)), where the cumulants of the cascade process (Eggers et al., 2001) or a
polynomial development of the cumulant generating function (Delour et al.,
2001; Chevillard et al., 2005) have been considered; see also Venugopal et al.
(2006) for an application to multifractal properties of rainfall.

3.2 Non analytical cumulant generating functions

We consider here a random variable w. The cumulant generating function of
its generator g = log |w| is defined as (Gardiner, 2004):

Ψ(q) = log〈|w|q〉 (8)

The function Ψ(q) is also the second Laplace characteristic function of the
generator: Ψ(q) = log〈eqg〉. As a second characteristic function, it is convex
(Feller, 1971), and can be developed using the cumulants:

Ψ(q) =
∞∑

p=1

cp

qp

p!
(9)
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where cp is the pth cumulant (not to be confused with the previous Cp notation
for mode time series). Let us recall the expression for the first cumulant:

c1 = 〈g〉 = 〈log |w|〉 (10)

We also know that c2 = 〈g2〉 − c2
1, and cn depends on all moments 〈gp〉

(1 ≤ p ≤ n). The theorem of Marcienkiewicz states that, if it exists, the
development in Eq.(9) is either infinite, or if finite, of degree not higher than
2 (Gardiner, 2004). In fact, the development in Eq.(9) may not exist in case
of non-analycity of Ψ(q). This is the case when g is a stable process whose
second order moment (and hence second order cumulant) diverges (Feller,
1971; Taqqu and Samorodnisky, 1994). Stable random variables (sometimes
also called “Lévy” in the physics literature) correspond to variables that have
a domain of attraction and being stable under addition (Feller, 1971; Taqqu
and Samorodnisky, 1994; Janicki and Weron, 1994). They have been intro-
duced in the 1930s by Paul Lévy and correspond to a generalisation of the
Gaussian law. The main parameter is the index α bounded between 0 and
2. The case α = 2 corresponds to the Gaussian law. Log-stable models for
turbulent intermittency (Schertzer and Lovejoy, 1987; Kida, 1991) correspond
to a nonanalytic scaling moment function (see also Schertzer et al. (1997)). In
this case, we have instead of Eq.(9):

Ψ(q) = c1q + cαqα (11)

where 0 ≤ α ≤ 2 is the index of the stable process and cα is the cumulant
of order α. When α = 2 the generator is a Gaussian process and there are
only two cumulants in the development of Eq. (9). To check this model, we
consider in the following the function

Φ(q) = Ψ(q) − c1q (12)

For a stable law, Φ(q) should be proportional to qα; we check this below in
log-log plot using experimental data, for a given time or frequency scale.

Concerning the choice of the random variable w, we will compare the structure
function approach (w = |∆Vℓ|, where ℓ is the time scale) and the EMD-Hilbert
spectral analysis approach (w = A, the moments being estimated from the
pdf p(A|ω) for a given frequency value ω).
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Fig. 1. A map showing the location of the measurements, in the French coast of the
Eastern English Channel (marked ”X” in the map).

4 Results and comparisons between structure functions and EMD-

Hilbert spectral analysis

4.1 Presentation of the experimental database

The data analyzed here have been recorded using an Acoustic Doppler Ve-
locimeter (ADV) from Sontek/YSI, operating under autonomous operation
conditions, at a 25 Hz sampling rate, and providing the 3D velocity vector
averaged over a small volume of about 250 mm3 at a 5 cm distance from
the ADV probe, with an accuracy of 1% of the measured value. Measure-
ments have been performed in the beach in front of the research laboratory
for Littoral and Coastal Ecosystems (ELICO): Eastern English Channel at
Wimereux city (North of France, near Boulogne-sur-mer): this is a flat sand
beach with a megatidal regime that varies between 8 to 11 m (see Figure 1). A
heavy metallic structure has been built in the laboratory ELICO as a support
for the ADV, its electronics canister, and its battery canister (see Figure 2).
The measurement location is the intertidal zone in the beach, corresponding
to the surf zone. The Eastern English Channel is a megatidal sea with strong
currents. The metallic structure has been fixed to the ground using hooks; it
was built in thin tubes to avoid a too strong stress on the structure from the
tide and currents.

The measurements have been done on 9 and 10 June, 2004, during 2 tidal cy-
cles, at a height of 50 cm from the bottom. Measurements have been considered
when there was approximately at least 1 m of water above the experimental
device. Due to the tidal activity, this distance was between 1 to 3 m. We con-
sidered 27 sections of the U component of the velocity vector, corresponding
to the direction perpendicular to the shore, each of length 32, 000 data points
(each of 21 min duration). We cannot consider longer sections, since the in-
ternal programming of the ADV interrupts the continuous recording of data,
to synchronise the different clocks. The 27 sections have been chosen among
the whole data set, in order to have a large enough internal correlation of
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Fig. 2. A photography of the ADV measuring device and its support, in the intertidal
zone, before being submerged by the tide.

bursts, corresponding to a precise enough estimation of the velocity. We have
thus a total of 864, 000 data points, separated into 27 sections. A one minute
portion is shown in Figure 3: strong fluctuations at small scales are visible,
but the whole time series seems stationary. In the following we analyze the
data using the EMD method, the Hilbert-based amplitude-frequency method,
and cumulant generating functions.

4.2 EMD applied to the data: amplitude-frequency pdf

We applied EMD analysis to surf zone velocity data using a EMD Matlab
code kindly provided by Laboratoire de Physique (P. Flandrin, ENS Lyon,
France): see the acknowledgements section for the web page. The analyses
below are performed over the entire dataset, and the results displayed after
performing an ensemble average over 27 realizations, where each segment of
length 32, 000 data points is one realization. After decomposition, the original
velocity series is decomposed into several IMFs (see Figure 4), from 13 to
16 modes (depending on the segment) with one residual. As visible in this
figure, the time scale is increasing with the mode; each mode has a different
mean frequency, which is estimated by considering the energy weighted mean
frequency in the Fourier power spectrum of each mode time series; the relation
between mode number m and mean time scale is displayed in Figure 5. The
straight line which is obtained in log-linear plot suggests the following relation
between the mean time scale T and m, for modes between 4 and 13:

T = T0e
λm (13)
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Fig. 3. A one minute portion of the experimental velocity data, showing their high
variability at small scales.

where T0 = 0.038 is a constant and the coefficient λ = 0.667 is graphically
estimated. We remark that eλ = 1.94 is close to 2, showing that each mode
is associated with a time scale almost twice as large as the time scale of the
preceding mode; this property corresponds to a dyadic filter bank in the time
domain. This property was shown previously using stochastic simulations of
Gaussian noise and fractional Gaussian noise (fGn) (Flandrin and Gonçal-
vès, 2004; Wu and Huang, 2004), and also for fully developed turbulence data
(Huang et al., 2008). It is interesting to note here that this is still verified
for surf zone turbulence data possessing a strong forcing in the middle of the
studied range.

Figure 6 represents the averaged Fourier power spectrum of the data, super-
posed with the Hilbert-Huang power spectrum. It is visible that the wind wave
breaking scales (between 2 and 16 s) correspond to a strong forcing of the data.
This power spectrum is similar to power spectra presented by Trowbridge and
Elgar (2001) for surf zone turbulent data recorded in a sandy Atlantic beach
near Duck, North Carolina. A −5/3 power spectrum can be found for large
scales (minutes or larger) and scales smaller than 1 s could also be character-
ized by such spectrum: the range is too small to be affirmative on this last
point. The Hilbert-Huang spectrum which is superposed presents a similar
shape, despite its different mathematical definition for the frequency as well
as for the spectrum. For the smaller scales, the shape is different, since the
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Fig. 4. IMFs estimated from one 32, 000 data points segment of the velocity time
series: mode number increasing from top to below. The time scale is increasing with
the mode. The residual time series is also plotted.

Fig. 5. Mean time scales associated with each mode. There is an exponential increase
for mode numbers between 4 and 13.
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Fig. 6. Fourier spectrum of the data (E(f)), superposed to the Hilbert marginal
spectrum (H(f)). The latter has been vertically shifted for clarity. A strong wind
wave breaking at scales between 2 and 16 s is clearly visible on both power spectra.
It is interesting to notice that except for the smaller scales, they have the same
shape, despite a different mathematical definition. The dotted straight line has a
slope of −5/3.

Hilbert-Huang power spectrum falls down very quickly.

The EMD and Hilbert spectral analysis methodological frameworks provide a
way to represent the fluctuations in an amplitude-frequency space: the joint
pdf p(ω,A) is shown in Fig. 7. It can be seen graphically that the amplitudes
decrease with increasing frequencies. This pdf can be used to estimate many
statistical information such as the Hilbert spectrum, and the cumulants as
shown below. It can also be used to estimate the skeleton As(ω) which corre-
sponds to the amplitude for which the conditional pdf p(A|ω) is maximum:

As(ω) = A0 ; p(A0, ω) = max
A

{p(A|ω)} (14)

and the skeleton pdf pmax(ω) = p(As(ω), ω) = maxA{p(A|ω)}, which is shown
in Figure 8. A power law behaviour is found :

pmax(ω) ∼ ω−β2 (15)

where β2 ≃ 1.7, close to the Kolmogorov value 5/3. This new result cor-
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Fig. 7. Representation of the joint pdf p(ω,A) (in log scale) of velocity fluctuations
in an amplitude-frequency space.

responds to an experimental fact that needs further investigation in future
studies.

4.3 Non-analytic cumulant generating function: comparisons between struc-

ture functions and EMD-Hilbert spectral approachs

We consider here the cumulant analysis applied to the velocity fluctuations,
using the EMD and Hilbert spectral analysis described above, and compare
this to the same analysis using structure functions.

We first show the estimation of the first cumulant c1 in Figure 9. In this
figure, the first cumulant is estimated as given by Eq.(10), using on the one
hand, the amplitude-frequency pdf for a given value of ω, and taking the
time scale ℓ = 1/ω (denoted “HSA” on the figure). On the other hand, it
is superposed to the estimate of the first cumulants estimated for all modes
separately, as function of scale, through the correspondence given by Figure
5 (denoted “EMD” in the figure). It is also superposed to the first cumulants
estimated using the structure function approach, where the scale is the time
increment: this value of c1 has been vertically shifted by 0.6 to be compared
to the other curves. Figure 9 shows that c1 increases strongly for energetic
scales associated with wave breaking, between 2 and 20 s. It also shows that
the EMD-based first cumulant is very close to the Hilbert spectral analysis
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Fig. 9. Estimation of the first cumulant c1, using three different methods: (i) es-
timation in frequency space using the joint amplitude-frequency pdf (dotted line
denoted HSA); (ii) estimation using the empirical mode decomposition, done for
each mode, where the time scale is estimated using the mode-scale correspondence
(open dots, denoted EMD); and (iii) estimation using the structure functions.
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to qα confirm the nonanalytic framework applied here. (a): lin-lin plot using HSA
mehod; (b): log-log plot using HSA method; (c) lin-lin plot using the structure
functions; (d) log-log plot using the structure functions.

one (HSA). However the HSA approach is able to provide the first cumulant
on a continuous range, since it is based on a frequency estimation, whereas the
EMD curve is discrete in scale, being associated with the characteristic scale
of each mode. We also see from this figure that the first cumulant estimated
using the structure function is quite far from the other estimates: the plateau
obtained at large scales comes from the fact that the differentce V (t+ℓ)−V (t)
is not removing the forcing when the scale ℓ is larger than the forcing scale.
This shows that for such data, the EMD and HSA methods provide a more
reliable estimation of the first cumulant.

The functions Φ(q) are then estimated, for moments from 0 to 8, for scales
between 1/25 s to 10 minutes. For comparison purposes, the analysis is done
using the HSA approach in Equation (6) and using the structure functions.
An example is shown in Figures 10a-d, for fluctuations at the scale of 2 s. Fig-
ures 10a-b show the analyses using the HSA approach, in lin-lin and log-log
plots, and Figures 10c-d show the same for the structure functions. Figures 10a
and 10c show convex and increasing functions. The non-analytical behaviour
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of these curves are emphasized in log-log plots (Figures 10b and 10d). The
straight lines which are obtained confirm the non-analycity. Using a best fit,
the slopes of these straight lines are estimated for all scales, giving directly the
exponent α in Eq. (12). Figure 11 shows the values of α estimated for differ-
ent scales ℓ, for both the HSA and the structure function methods. Except at
both ends, the values are relatively independent of scale, and we can estimate a
mean value: we find α = 1.52±0.07 for the HSA estimates and α = 1.60±0.07
for the structure functions estimates, where error bars are coming from differ-
ent scales. These values are below 2 and approximately compatible between
the two methods. Figure 12 shows the non-analytical cumulant (it cannot be
denoted second cumulant) cα(ℓ) given by Equation (11). The curves are dif-
ferent for both methods, but their mean values are close. These results show
that the log-normal framework is not adequate, to be replaced by a log-Lévy
stochastic modelling. Simulations of such random variables can be performed
using available stochastic simulation algorithms (Janicki and Weron, 1994).

5 Conclusion

We have considered here surf zone velocity measurements recorded in the East-
ern English Channel using a 25 Hz sampling sonic anemometer. Such data is
characterized by the transformation of wave motion into small-scale turbulent
motion (Battjes, 1988). An important issue in this complex framework is to
be able to characterize the contribution of each scale to velocity fluctuations,
and hence to characterize velocity intermittency at many different time scales.
The objective of this study was mainly to compare two different methods for
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the analysis of velocity fluctuations in such shallow water, wave dominated
situations.

We have analysed the velocity time series here using the EMD methodology,
associated with Hilbert spectral analysis. We have provided the mode versus
time scale relationship, showing that for such data base, the dyadic mode de-
composition which has been found in Gaussian noise is still valid. We have also
provided the Fourier and Hilbert Huang marginal spectrum, showing the high
energy associated with wave breaking scales, between 2 and 20 s. In another
section, we have analyzed the fluctuations at each scale using cumulants. The
cumulants could be estimated on a continuous range of scales using the joint
amplitude-frequency pdf of velocity fluctuations that was estimated using the
EMD-HSA framework. The non-analytical properties of cumulants was shown
for each scale, for both methods. We showed, using the first cumulant, that
the structure function approach saturates at large scales, whereas the HSA
based method is more precise in its scale approach; this therefore shows the
strength and usefulness of this new EMD-HSA method combined to cumulant
analysis. It was shown here to be efficient for surf zone velocity analysis, but
could be also applied to other time series.

Let us note that our approach has considered the time series globally, while
the depth of the water varied between 1 and 3 meters. It may be that some
statistical properties depend on the depth of the water, requesting a more
precise analysis, considering separately different sections of the time series.
We have checked that this is indeed the case (not shown here), considering
the power spectra; however, the shape of the latter did not vary much. We
then keep for future studies a more precise analysis of the depth relation,
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noting here that the results we obtained must be considered as a mean value
for different depths between 1 and 3 meters.

We have shown that the log-stable model applies very well, with a characteris-
tic exponent of α = 1.60± 0.07 valid for all scales. This property may be used
for stochastic simulations. Such modelling in the surf zone may be useful for
several applications, such as plankton-turbulence coupling, energetics studies
associated with bloom formation, to fertilization processes, or feeding rate of
small fishes, or also sediment transport characterization and modelling, which
are associated, either linearly or nonlineary, with velocity fluctuations (Cox
et al., 1996; Svendsen, 2005; Torres-Freyermuth et al., 2007).
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