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Abstract. - In fully developed turbulence, the velocity field possesses long-range correlations,10

denoted by a scaling power spectrum or structure functions. Here we consider the autocorrelation11

function of velocity increment Δu`(t) at separation distance time `. Anselmet et al. [Anselmet12

et al. J. Fluid Mech. 140, 63 (1984)] have found that the autocorrelation function of velocity13

increment has a minimum value, whose location is approximately equal to `. Taking statistical14

stationary assumption, we link the velocity increment and the autocorrelation function with the15

power spectrum of the original variable. We then propose an analytical model of the autocorrelation16

function. With this model, we prove that the location of the minimum autocorrelation function is17

exactly equal to the separation scale time ` when the scaling of the power spectrum of the original18

variable belongs to the range 0 < β < 2. This model also suggests a power law expression for the19

minimum autocorrelation. Considering the cumulative function of the autocorrelation function, it20

is shown that the main contribution to the autocorrelation function comes from the large scale part.21

Finally we argue that the autocorrelation function is a better indicator of the inertial range than22

the second order structure function.23

24

Introduction. – Turbulence is characterized by power law of the velocity spectrum [1]25

and structure functions in the inertial range [2,3]. This is associated to long-range power-law26

correlations for the dissipation or absolute value of the velocity increment. Here we consider27

the autocorrelation of velocity increments (without absolute value), inspired by a remark28

found in Anselmet et al. (1984) [4]. In this reference, it is found that the location of the29

minimum value of the autocorrelation function Γ(τ) of velocity increment Δu`(t), defined30

as31

Δu`(t) = u(t+ `)− u(t) (1)

of fully developed turbulence with distance time separation ` is approximately equal to `.32

The autocorrelation function of this time series is defined as33

Γ(τ) = 〈(V`(t)− μ)(V`(t− τ)− μ)〉 (2)

(a)E-mail: francois.schmitt@univ-lille1.fr
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where V`(t) = Δu`(t), μ is the mean value of V`(t), and τ > 0 is the time lag.34

This paper mainly presents analytical results. In first section we present the database35

considered here as an illustration of the property which is studied. The next section presents36

theoretical studies. The last section provides a discussion.37
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Fig. 1: Compensated spectrum E(f)fβ of streamwise (longitudinal) (β ' 1.63) and spanwise
(transverse) (β ' 1.62) velocity, where β is the corresponding power law estimated from the power
spectrum. The plateau is observed on the range 20 < f < 2000 Hz and 40 < f < 4000 Hz for
streamwise (longitudinal) and spanwise (transverse) velocity, respectively.

Experimental analysis of the autocorrelation function of velocity increments.38

– We consider here a turbulence velocity time series obtained from an experimental ho-39

mogeneous and nearly isotropic turbulent flow at downstream x/M = 20, where M is the40

mesh size. The flow is characterized by the Taylor microscale based Reynolds number41

Reλ = 720 [5]. The sampling frequency is fs = 40 kHz and a low-pass filter at a frequency42

20 kHz is applied to the experimental data. The sampling time is 30 s, and the number43

of data points per channel for each measurement is 1.2 × 106. We have 120 realizations44

with four channels. The total number of data points at this location is 5.76 × 108. The45

mean velocity is 12ms−1. The rms velocity is 1.85 and 1.64ms−1 for streamwise (longi-46

tudinal) and spanwise (transverse) velocity component. The Kolmogorov scale η and the47

Taylor microscale λ are 0.11mm and 5.84mm respectively. Let us note here Ts = 1/fs the48

time resolution of these measurements. This data demonstrates an inertial range over two49

decades [5], see a compensated spectrum E(f)fβ in fig. 1, where β ' 1.63 and β ' 1.6250

for streamwise (longitudinal) and spanwise (transverse) velocity respectively. We show the51

autocorrelation function Γ`(τ) directly estimated from these data in fig. 2. Graphically, the52

location τo of the minimum value of each curve is very close to `, which confirms Anselmet’s53
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Fig. 2: Autocorrelation function Γ`(τ) of the velocity increment Δu`(t) estimated from an exper-
imental homogeneous and nearly isotropy turbulence time series with various increments `. The
location of the minimum value is very close to the separation scale time `. The inset shows the
rescaled autocorrelation function Υ(ς).

observation [4]. Let us define54

Γo(`) = min
τ
{Γ`(τ)} (3)

and τo the location of the minimum value55

Γo(`) = Γ`(τo(`)) (4)

We show the estimated τo(`) on the range 2 < `/Ts < 40000 in fig. 3, where the inertial56

range is indicated by IR. It shows that when ` is greater than 20Ts, τo is very close to ` even57

when ` is in the forcing range, in agreement with the remark of Anselmet et al. [4]. In the58

following, we show this analytically.59

Autocorrelation function. – Considering the statistical stationary assumption [3],60

we represent u(t) in Fourier space, which is written as61

Û(f) = F(u(t)) =
∫ +∞

−∞
u(t)e−2πiftdt (5)

where F means Fourier transform and f is the frequency. Thus, the Fourier transform of62

the velocity increment Δu`(t) is written as63

S`(f) = F(Δu`(t)) = Û(f)(e
2πif` − 1) (6)
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Fig. 3: Location τo(`) of the minimum value of the autocorrelation function estimated from exper-
imental data, where the inertial range is marked as IR. The solid line indicates τo(`) = `.

where Δu`(t) = u(t + `) − u(t). Hence, the 1D power spectral density function of velocity64

increments EΔ(f) is expressed as65

EΔ(f) = |S`(f)|
2 = Ev(f)(1− cos(2πf`)) (7)

where Ev(f) = 2|Û(f)|2 is the velocity power spectrum [3]. It is clear that the velocity66

increment operator acts a kind of filter, where the frequencies fΔ = n/`, n = 0, 1, 2 ∙ ∙ ∙ , are67

filtered.68

Let us consider now the autocorrelation function of the increment. The Wiener-Khinchin69

theorem relates the autocorrelation function to the power spectral density via the Fourier70

transform [3,6]71

Γ`(τ) =

∫ +∞

0

EΔ(f) cos(2πfτ)df (8)

The theorem can be applied to wide-sense-stationary random processes, signals whose72

Fourier transforms may not exist, using the definition of autocorrelation function in terms73

of expected value rather than an infinite integral [6]. Substituting eq. (7) into the above74

equation, and assuming a power law for the spectrum (a hypothesis of similarity)75

Ev(f) = cf
−β , c > 0 (9)

we obtain76

Γ`(τ) = c

∫ +∞

0

f−β(1− cos(2πf`)) cos(2πfτ)df (10)
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Fig. 4: Numerical solution of the rescaled autocorrelation function Υ(ς) with various β from 0.5 to
2.5 estimated from eq. (10).

The convergence condition requires 0 < β < 3. It implies a rescaled relation, using scaling77

transformation inside the integral. This can be estimated by taking `′ = λ`, f ′ = fλ,78

τ ′ = τ/λ for λ > 0, providing the identity79

Γλ`(τ) = Γ`(τ/λ)λ
β−1 (11)

If we take ` = 1 and replace λ by `, we then have80

Γ`(τ) = Γ1(τ/`)`
β−1 (12)

Thus, we have a universal autocorrelation function81

Γ`(`ς)`
1−β = Υ(ς) = Γ1(ς) (13)

This rescaled universal autocorrelation function is shown as inset in fig. 2. A derivative of82

eq. (11) gives Γ′λ`(τ) = Γ
′
`(τ/λ)λ

β−2. The minimum value of the left-hand side is τ = τo(λ`),83

verifying Γ′λ`(τo(λ`)) = 0 and for this value we have also Γ
′
`(τo(λ`)/λ) = 0. This shows that84

τo(`) = τo(λ`)/λ. Taking again ` = 1 and λ = `, we have85

τo(`) = `τo(1) (14)

Showing that τo(`) is proportional to ` in the scaling range (when ` belongs to the inertial86

range). With the definition of Γo(`) = Γ`(τo(`)) we have, also using eq. (11), for τ = τo(λ`):87

88

Γλ`(τo(λ`)) = Γ`(τo(λ`)/λ)λ
β−1

= Γ`(τo(`))λ
β−1 (15)
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Fig. 5: Comparison of the autocorrelation function, which is predicted by eq. (20) (solid line) and
estimated from fBm simulation (�) with ` = 200 points.

Hence Γo(λ`) = λ
β−1Γo(`) or89

Γo(`) = Γo(1)`
β−1 (16)

We now consider the location τo(1) of the autocorrelation function for ` = 1. We take90

the first derivative of eq. (10), written for ` = 191

P(τ) =
dΓ1(τ)

dτ
= −

∫ +∞

0

f1−β(1− cos(2πf)) sin(2πfτ)df (17)

where we left out the constant in the integral. The same rescaling calculation leads to the92

following expression93

P(τ) =
[
(1 + 1/τ)β−2 + (1− 1/τ)β−2 − 2

]
M/2, τ 6= 1

P(τ) =
(
2β−3 − 1

)
M, τ = 1

(18)

whereM =
∫ +∞
0
x1−β(1−cos(2πx)) sin(2πxτ)dx andM > 0 [7]. The convergence condition94

requires 1 < β < 4. When β < 2, one can find that both left and right limits of P(1) are95

infinite, but the definition of P(1) in eq. (17) is finite. Thus τ = 1 is a second type96

discontinuity point of eq. (17) [8]. It is easy to show that97

{
P(τ) < 0, τ ≤ 1
P(τ) > 0, τ > 1

(19)

It means that P(τ) changes its sign from negative to positive when τ is increasing from98

τ < 1 to τ > 1. In other words the autocorrelation function will take its minimum value at99

the location where τ is exactly equal to 1. We thus see that τo(1) = 1 and hence τo(`) = `100

(eq. (14)).101
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Fig. 6: Representation of the minima value Γo(`) of the autocorrelation function estimated from
synthesized fBm time series with H = 1/3 (+), and the experimental data for streamwise (longitu-
dinal) (�) and spanwise (transverse) (#) turbulent velocity components, where the corresponding
inertial range is denoted as IR. Power law behaviour is observed with scaling exponent β− 1 = 2/3
and β − 1 = 0.78± 0.04 for fBm and turbulent velocity, respectively.

Numerical validation. – There is no analytical solution for eq. (10). It is then102

solved here by a proper numerical algorithm. We perform a fourth order accurate Simpson103

rule numerical integration of eq. (10) on range 10−4 < f < 104 with ` = 1 for various β104

with step Δf = 10−6. We show the rescaled numerical solutions Υ(ς) for various β values105

in fig. 4. Graphically, as what we have proved above, the location τo(1) of the minimum106

autocorrelation function is exactly equal to 1 when 0 < β < 2.107

For the fBm, the autocorrelation function of the increments is known to be the following108

[9]109

Γ`(τ) =
1

2

{
(τ + `)2H + |τ − `|2H − τ2H

}
(20)

where τ ≥ 0. We compare the autocorrelation (coefficient) function estimated from fBm sim-110

ulation (�, see bellow) with eq. (20) (solid line) in fig. 5, where ` = 200 points. Graphically,111

eq. (20) provides a very good agreement with numerical simulation. Based on this model, it112

is not difficult to find that Γo(`) ∼ `2H when 0 < H < 1, corresponding to 1 < β < 3, and113

τo(`) = ` when 0 < H < 0.5, corresponding to 1 < β < 2. One can find that the validation114

range of scaling exponent β is only a subset of Wiener-Khinchin theorem.115

We then check the power law for the minimum value of the autocorrelation function116

given in eq. (12). We simulate 100 segments of fractional Brownian motion with length 106117

data points each, by performing a Wavelet based algorithm [10]. We take db2 wavelet with118

H = 1/3 (corresponding to the Hurst number of turbulent velocity). We plot the estimated119

minima value Γo(`) (+) of the autocorrelation function in fig. 6. A power law behaviour120
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Fig. 7: Cumulative function Q(f, `, τ) estimated from turbulent experimental data for spanwise
(transverse) velocity with τ = ` in the inertial range, where the numerical solution is shown as inset
with ` = 1. The inertial range is denoted as IR. Vertical solid lines demonstrate the corresponding
scale in spectral space.

is observed with the scaling exponent β − 1 = 2/3 as expected. It confirms eq. (12) for121

fBm. We also plot Γo(`) estimated from turbulent experimental data for both streamwise122

(longitudinal) (�) and spanwise (transverse) (#) velocity components in fig. 6, where the123

inertial range is marked by IR. Power law is observed on the corresponding inertial range124

with scaling exponent β − 1 = 0.78± 0.04. This scaling exponent is larger than 2/3, which125

may be an effect of intermittency. The exact relation between this scaling exponent with126

intermittent parameter should be investigated further in future work. The power law range127

is almost the same as the inertial range estimated by Fourier power spectrum. It indicates128

that autocorrelation function can be used to determine the inertial range. Indeed, as we129

show later, it seems to be a better inertial range indicator than structure function.130

Discussion. – We define a cumulative function131

Q(f, `, τ ) =

∫ f
0
K(f ′, `, τ )df ′

∫ +∞
0
K(f ′, `, τ )df ′

(21)

where132

K(f, `, τ ) = Ev(f)(1− cos(2πf`)) cos(2πfτ) (22)

is the integration kernel of eq. (8). It measures the contribution of the frequency from 0 to133

f at given scale ` and time delay τ . We are particularly concerned by the case τ = `. To134

avoid the effects of the measurement noise, see fig. 1, we only consider here the spanwise135

(transverse) velocity. We show the estimated Q in fig. 7 for two scales `/Ts = 20 (#) and136

`/Ts = 100 (4) in the inertial range, where the vertical solid line illustrates the location of137
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Fig. 8: Cumulative function Q1(f) estimated from turbulent experimental data for both streamwise
(longitudinal) and spanwise (transverse) velocity with various `. The numerical solution is Q1 ' 0.5.

the corresponding time scale in spectral space. In these experimental curves, the kernel K138

given in eq. (22) is computed using the experimental spectrum Ev(f). The corresponding139

inertial range is denoted by IR. We also show the numerical solution of eq. (21) with ` = 1140

as inset, which is estimated by taking a pure power law Ev(f) = f
−β in eq. (22). We notice141

that both curves cross the line Q = 0. We denote fo such as Q(fo) = 0. It has an advantage142

that the contribution from large scale ` > 1/fo is canceled by itself. Graphically, in the143

inertial range, the distance between fo and the corresponding scale ` is less than 0.3 decade.144

The numerical solution indicates that this distance is about 0.3 decade. We then separate145

the contribution into a large scale part and a small scale part. We denote the contribution146

from the large scale part as Q1(f) = Q(1/`, `, `). The experimental result is shown in fig. 8147

for both streamwise (longitudinal) and spanwise (transverse) velocity components. The148

mean contribution from large scale is found graphically to be 0.64. It is significantly larger149

than 0.5, the value indicated by the numerical solution. It means that the autocorrelation150

function is influenced more by the large scale than by the small scale.151

We now consider the inertial range provided by different methods. We replot the cor-152

responding compensated spectra estimated directly by Fourier power spectrum (solid line),153

the second order structure function (�), the autocorrelation function (#) and the Hilbert154

spectral analysis (4) [11] in fig. 9 for streamwise (longitudinal) velocity. For comparison155

convenience, both the structure function and the autocorrelation function are converted156

from physical space into spectral space by taking f = 1/`. For display convenience, these157

curves are vertically shifted. Graphically, except for the structure function, the other lines158

demonstrate a clear plateau. As we have pointed above, the autocorrelation function is a159

better indicator of the inertial range than structure function. We also notice that the inertial160
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Fig. 9: Comparison of the inertial range for the streamwise (longitudinal) velocity. They are
estimated directly by the Fourier power spectrum, the second order structure function,the Hilbert
spectral analysis and the autocorrelation function.

range provided by the Hilbert methodology is slightly different from the Fourier spectrum.161

This may come from the fact that the former methodology has a very local ability both in162

physical and spectral domain [11,12], thus the large scale effect should be constrained. How-163

ever, the Fourier analysis requires the stationary of the data, which is obviously not satisfied164

by the turbulence data. The result we present here can also be linked with intermittency165

property of turbulence: we will present this in future work.166

Conclusion. – In this work, we considered the autocorrelation function of the velocity167

increment Δu`(t) time series, where ` is a time scale. Taking statistical stationary assump-168

tion, we proposed an analytical model of the autocorrelation function. With this model,169

we proved analytically that the location of the minimum autocorrelation function is exactly170

equal to the separation time scale ` when the scaling of the power spectrum of the original171

variable belongs to the range 0 < β < 2. In fact, this property was found experimentally172

to be valid outside the scaling range, but our demonstration here concerns only the scaling173

range. This model also suggests a power law expression for the minimum autocorrelation174

Γo(`). Considering the cumulative integration of the autocorrelation function and the second175

order structure function, it is shown that structure functions are strongly influenced by the176

large scale, it was shown that the autocorrelation function is influenced more by the large177

scale part. Finally we argue that the autocorrelation function is a better indicator of the in-178

ertial range than second order structure function. These results have been illustrated using179

fully developed turbulence data; however, they are of more general validity since we only180

assumed that the considered time series is stationary and possesses scaling statistics.181
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