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Abstract. - Hilbert-Huang transform is a method that has been introduced recently to decompose
nonlinear, nonstationary time series into a sum of different modes, each one having a characteristic
frequency. Here we show the first successful application of this approach to homogeneous turbulence
time series. We associate each mode to dissipation, inertial range and integral scales. We then
generalize this approach in order to characterize the scaling intermittency of turbulence in the
inertial range, in an amplitude-frequency space. The new method is first validated using fractional
Brownian motion simulations. We then obtain a 2D amplitude-frequency representation of the
pdf of turbulent fluctuations with a scaling trend, and we show how multifractal exponents can
be retrieved using this approach. We also find that the log-Poisson distribution fits the velocity
amplitude pdf better than the lognormal distribution.

Introduction. – In nature and the real world, most data are nonlinear, nonstationary
and noisy, and general data-driven methods to analyze such data, without a priori assump-
tions basis, are demanded. About ten years ago, such a method has been proposed to analyze
nonlinear and nonstationary time series: Hilbert-Huang transform (hereafter HHT) [1, 2].
The first step of this method is the Empirical Mode Decomposition (EMD), which is used
to decompose a time series into a sum of different time series (modes), each one having a
characteristic frequency [3, 4]. The modes are called Intrinsic Mode Functions (IMFs) and
satisfy the following two conditions: (i) the difference between the number of local extrema
and the number of zero-crossings must be zero or one; (ii) the running mean value of the
envelope defined by the local maxima and the envelope defined by the local minima is zero.
Each IMF has a characteristic scale which is the mean distance between two successive
maxima (or minima). The procedure to decompose a signal into IMFs is the following:

1 The local extrema of the signal X(t) are identified;
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2 The local maxima are connected together forming an upper envelope emax(t), which is
obtained by a cubic spline interpolation. The same is done for local minima, providing
a lower envelope emin(t);

3 The mean is defined as m1(t) = (emax(t) + emin(t))/2;

4 The mean is subtracted from the signal, providing the local detail h1(t) = X(t)−m1(t);

5 The component h1(t) is then examined to check if it satisfies the conditions to be an
IMF. If yes, it is considered as the first IMF and denoted C1(t) = h1(t). It is subtracted
from the original signal and the first residual, r1(t) = X(t)−C1(t) is taken as the new
series in step 1. On the other hand, if h1(t) is not an IMF, a procedure called “sifting
process” is applied as many times as needed to obtain an IMF. The sifting process is
the following: h1(t) is considered as the new data; the local extrema are estimated,
lower and upper envelopes are formed and their mean is denoted m11(t). This mean
is subtracted from h1(t), providing h11(t) = h1(t) − m11(t). Then it is checked again
if h11(t) is an IMF. If not, the sifting process is repeated, until the component h1k(t)
satisfies the IMF conditions. Then the first IMF is C1(t) = h1k(t) and the residual
r1(t) = X(t) − C1(t) is taken as the new series in step 1.

The above sifting process should be stopped by a criterion which is not discussed here: more
details about the EMD algorithm can be found in refs. [1, 2, 4–6].

After decomposition, the original signal X(t) is written as a sum of IMF modes Ci(t)
and a residual rn(t)

X(t) =

N∑
i=1

Ci(t) + rn(t) (1)

EMD is associated with Hilbert Spectral Analysis (HSA) [1, 7, 8], which is applied to each
mode as a time frequency analysis, in order to locally extract a frequency and an amplitude.
More precisely, each mode function C(t) is associated with its Hilbert transform C̃

C̃(t) =
1

π

∫ +∞

−∞

C(τ)

t − τ
dτ (2)

and the combination of C(t) and C̃(t) gives the analytical signal z = C + jC̃ = A(t)ejθ(t),
where A(t) is an amplitude time series and θ(t) is the phase of the mode oscillation [7].
Within such approach and neglecting the residual, the original time series is rewritten as

X(t) = Re
N∑

i=1

Ai(t)e
jθi(t) (3)

where Ai and θi are the amplitude and phase time series of mode i and Re means real
part [1,2]. For each mode, the Hilbert spectrum is defined as the square amplitude H(ω, t) =
A2(ω, t), where ω = dθ/dt is the instantaneous frequency extracted using the phase infor-
mation θ(t) = tan−1 C̃(t)/C(t). H(ω, t) gives a local representation of energy in the time-
frequency domain. The Hilbert marginal spectrum of the original time series is then written
as h(ω) =

∫
H(ω, t) dt and corresponds to an energy density at frequency ω [1, 2, 8].

Since its introduction, this method has attracted a large interest [9]. It was shown to be
an efficient method to separate a signal into a trend and small scale fluctuations on a dyadic
bank [3–5]; it has also been applied to many fields including physiology [10], geophysics [11],
climate studies [12], mechanical engineering [13] and acoustics [14], to quote a few. These
studies showed the applicability of the so-called EMD-HSA approach on many different
time series. In this letter, we apply the EMD and HSA approaches to fully developed
turbulence time series. We first show that the EMD method applies very nicely to turbulent
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velocity time series, with an almost dyadic filter bank in the inertial range. We then show
how the HSA can be generalized to take into account intermittency. We apply this to the
turbulence time series, providing a first characterization of the intermittency of turbulence
in an amplitude-frequency representation.
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Fig. 1: Comparison of the Hilbert marginal energy spectrum (solid line) and Fourier spectrum
(dashed line, vertically shifted). The slope of the reference line is −5/3. Both the second order
Hilbert and Fourier spectra indicate the same inertial subrange, 10 < f (or ω) < 1000Hz. The
insert shows the compensated spectra. The HHT spectra estimated using two different algorithms
are shown for comparison, indicating a stability of the spectrum with respect to the algorithm used.

Application of EMD to turbulence time series. – We consider here a database
obtained from measurements of nearly isotropic turbulence downstream an active-grid char-
acterized by the Reynolds number Reλ = 720. The sampling frequency is fs = 40 kHz [15].
The sampling time is 30 s , and the total number of data points per channel for each mea-
surement is 1.2 × 106. We consider data in the streamwise direction at position x/M = 48,
where M is the mesh size and x is the distance in the streamwise direction. The mean
velocity at this location is 10.8 ms−1 and the turbulence intensity is about 10%. For details
about the experiment and the data see ref. [15].

Figure 1 shows the second order Hilbert and Fourier spectra of the longitudinal velocity.
A Kolmogorov −5/3 spectrum is observed in range 10 < f (or ω) < 1000 Hz for both spectra,
indicating an inertial subrange over 2 decades. Two different HHT spectra estimated using
two different algorithms are shown in this figure: the very similar shape of the spectra
indicates a stability of the spectrum with respect to the algorithm used. The scaling which
is obtained shows that Hilbert spectral analysis can be used to recover Kolmogorov scaling
in the inertial subrange. The original velocity time series is divided into 73 non-overlapping
segments of 214 points each. After decomposition, the original velocity series is decomposed
into several IMFs from 11 to 13 modes with one residual. The time scale is increasing with

p-3



Y. X. Huang et al.

1     10    100   1000  10000 
10

0

10
2

10
4

10
6

10
8

10
10

10
12

E
n
er

g
y

(a
rb

it
ra

y
u
n
it

)
f (Hz)

-5/3
u

12

3
4

5
6

7
8

9
10

1112

(b)

0 2 4 6 8 10 12 14
0

5

10

15

k

log2(f)

 

 

(a)

Fig. 2: (a) Mean frequency versus mode number for the turbulent velocity time series. There is
an exponential decrease with a slope very close to 1. This indicates that EMD acts as a filter
bank which is almost dyadic. (b) Fourier spectrum of each mode (from 1 to 12) showing that they
are narrow-banded. The slope of the reference line is −5/3 corresponding to the inertial-range
Kolmogorov spectrum.

the mode; each mode has a different mean frequency, which is estimated by considering the
(energy weighted) mean frequency in the Fourier power spectrum. The relation between
mode number k and mean frequency [1] is displayed in fig. 2 (a). The straight line in log-
linear plot which is obtained suggests the following relation f(k) = f0ρ

−k, where f is the
mean frequency, f0 ≃ 22000 is a constant and ρ = 1.9 ± 0.1 is very close to 2, the slight
discrepancy from 2 may be an effect of intermittency. This result may also slightly depend
on the number of iterations of the sifting process: in the present algorithm, the latter is
variable but some proposed algorithms contain a fixed maximum number of iterations.

This indicates that EMD acts as a dyadic filter bank in the frequency domain; an anal-
ogous property was obtained previously using stochastic simulations of Gaussian noise and
fractional Gaussian noise (fGn) [3–5], and it is interesting to note here that the same re-
sult holds for fully developed turbulence time series, possessing long-range correlations and
intermittency [16].

We then interpret each mode according to its characteristic time scale. When compared
with the original Fourier spectrum of the turbulent time series (see fig. 2 (b)), these modes
can be termed as follows: the first mode, which has the smallest time scale, corresponds
to the measurement noise; modes 2 and 3 are associated with the dissipation range of
turbulence. Mode 4 corresponds to the Kolmogorov scale, which is the scale below which
dissipation becomes important; it is a transition scale between inertial range and dissipation
range. Modes 5 to 10 all belong to the inertial range corresponding to the scale-invariant
Richardson-Kolmogorov energy cascade [16]; larger modes belong to the large forcing scales.
Figure 2 (b) represents the Fourier power spectra of each mode. It shows that each mode in
the inertial range is narrow-banded. This confirms that the EMD approach can be used as
a filter bank for turbulence time series. In the next section, we focus on the intermittency
properties.

Intermittency and multiscaling properties: Arbitrary order Hilbert spectral

analysis. – Intermittency and multiscaling properties have been found in many fields,
including turbulence [16], precipitations [17], oceanography [18], biology [19], finance [20],
etc. Multiscaling intermittency is often characterized using structure function of order q > 0
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as the statistical moment of the fluctuations ∆Xτ = |X(t + τ) − X(t)| (see ref. [16] for
reviews):

〈(∆Xτ )q〉 ∼ Cqτ
ζ(q) (4)

where Cq is a constant and ζ(q) is a scale invariant moment function; it is also a cumu-
lant generating function, which is nonlinear and concave and fully characterizes the scale
invariant properties of intermittency.

We present here a new method to extract an analogous intermittency function using the
EMD-HSA methodology. The Hilbert spectrum H(ω, t) represents the original signal at the
local level. This can be used to define the joint probability density function (pdf) p(ω,A)
of the frequency [ωi] and amplitude [Ai], which are extracted from all modes i = 1 · · ·N
together. The Hilbert marginal spectrum is then rewritten as

h(ω) =

∫ ∞

0

p(ω,A)A2 dA (5)

This definition corresponds to a second statistical moments. We then naturally generalize
eq. (5) into arbitrary moments:

Lq(ω) =

∫ ∞

0

p(ω,A)Aq dA (6)

where q ≥ 0 and h(ω) = L2(ω) [21]. In the inertial range, we assume the following scaling
relation:

Lq(ω) ∼ ω−ξ(q) (7)

where ξ(q) is the corresponding scaling exponent function in the amplitude-frequency space.
Equation (6) provides a new way to estimate the scaling exponents, where, according to
dimensional analysis, ξ(q) − 1 can be compared to ζ(q).

We first validate the new method by using fractional Brownian motion time series (fBm).
They are characterized by the Hurst number 0 ≤ H ≤ 1, and it is well-known that ζ(q) = qH,
hence we expect ξ(q) = 1 + qH. We simulate 500 segments of length 212 data points each,
using a wavelet based algorithm [22], with different H value from 0.2 to 0.8. The Hilbert
transform is numerically estimated by using a FFT based method [23]. The scale invariance
is perfectly respected as expected, this is not shown here, see ref. [21] for more detail on
validations of the method with fBm simulation. We then represent the corresponding scaling
exponents ξ(q) for various value of q from 0 to 6, for four values of H (H = 0.2, 0.4, 0.6
and 0.8) in fig. 3. The perfect straight lines of equation 1 + qH confirm the usefulness of
the new method to estimate ξ(q).

We then consider turbulence intermittency properties using this approach. The EMD-
HSA methodological framework provides a way to represent turbulent fluctuations in an
amplitude-frequency space: the joint pdf p(ω,A) is shown in fig. 4. The inertial subrange
for frequencies is shown as vertical dotted lines. This figure is the first 2D amplitude-
frequency representation of the pdf of turbulent fluctuations; it can be seen graphically that
the amplitudes decrease with increasing frequencies, with a scaling trend. We show in the
same graph the skeleton As(ω) of the joint pdf which corresponds to the amplitude for which
the conditional pdf p(A|ω) is maximum:

As(ω) = A0 ; p(A0, ω) = max
A

{p(A|ω)} (8)

We then reproduce the skeleton in fig. 5 in two different views: (a) As(ω) in log-log plot;
(b) skeleton pdf pmax(ω) = p(As(ω), ω) = maxA{p(A|ω)} in log-log plot. It is interesting to
note that a power law behaviour is found for both representations

As(ω) ∼ ω−β1 , pmax(ω) ∼ ω−β2 (9)
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Fig. 3: Scaling exponents ξ(q) for fractional Brownian motion simulations with H = 0.2, 0.4, 0.6
and 0.8, respectively.

where β1 ≃ 0.38, and β2 ≃ 0.63. Dimensional analysis provides the non-intermittent Kol-
mogorov value β1 = 1/3 and β2 = 2/3. The difference with these theoretical value may be an
effect of intermittency. We note that the value β1 = 0.38 is comparable with the estimation of
ζ(1) = 0.37 given by Ref. [24]. We plot in fig. 6 the rescaled pdf p1(A, ω) = ωβ2p(A/ωβ1 , ω),
for various fixed values of ω. In case of monoscaling, these pdfs should superpose perfectly;
here the plot is scattered, but nevertheless we note that the lack of superposition of these
rescaled pdfs is a signature of intermittency. Moments of this pdf are less noisy as will be
visible bellow. For comparison, we plot the normal distribution (dashed line), lognormal
distribution (solid line) and log-Poisson distribution (dashed-dotted line) in the same figure.
It seems that the log-Poisson distribution provides a better fit to the pdf than the lognor-
mal distribution. We also characterize intermittency in the frequency space by considering
marginal moments Lq(ω). Figure 7 shows Lq(ω), Hilbert spectral analysis of velocity in-
termittency, using different orders of moments (0, 1, 3, 4, 5 and 6). The moment of order
0 is the marginal pdf of the instantaneous frequency, see eq. (6). It is interesting to note
that this pdf is extremely “wild”, having a behaviour close to L0(ω) ∼ ω−1, corresponding
to a “sporadic” process whose probability density is not normalizable (

∫
p(ω) dω diverges).

This result is only obtained when all modes are considered together; such pdf is not found
for the frequency pdf of an individual mode. This property seems to be rather general: we
observed such pdf for moment of order zero using several other time series: for example
surf-zone turbulence data, fBm [21], river flow discharge data. Hence it does not seems to
be linked to turbulence itself, but to be a main property of the HSA method, which still
needs to be studied further. We observe the power laws in range 10 < ω < 1000 Hz for
all order moments. The values of scaling exponents ξ(q) are shown in each picture. This
provides a way to estimate scaling exponents ξ(q) for every order of moment q ≥ 0 on a
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which the conditional pdf p(A|ω) is maximum.

continuous range of scales in the frequency space.

Next, we compare scaling exponents ξ(q) − 1 estimated by our new approach with the
classical structure functions scaling exponent function ζ(q) estimated using the extended
self similarity (ESS) method [25] in fig. 8. It can be seen that ξ(q) − 1 is nonlinear and is
close to ζ(q), but the departure from K41 law shows that the curvature is not the same:
ξ(q) seems less concave than ζ(q).
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Fig. 5: The skeleton of the joint pdf. (a) As(ω) in log-log plot. A power law behaviour is observed
in the inertial subrange with scaling exponent 0.38, which is close to the Kolmogorov value 1/3.
(b) pmax(ω) in log-log plot. A power law behaviour is observed in the inertial subrange with scaling
exponent 0.63. The vertical lines show the corresponding inertial subrange 10 < ω < 1000Hz.
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Here, we provide some comments on some issues of the EMD method. The main draw-
back of the EMD method is a lack of solid theoretical ground, since it is almost empirical [9].
It has been found experimentally that the method, especially for the HSA, is statistically
stable with different stopping criteria [6]. Recently, Flandrin et al. have obtained new theo-
retical results on the EMD method [5,26,27]. However, more theoretical work is still needed
to fully understand this method.
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Fig. 7: Representation of Lq(ω), Hilbert spectral analysis of velocity intermittency, using different
orders of moments (0, 1, 3, 4, 5 and 6). Power laws are observed on the range 10 < ω < 1000Hz
for all spectra. The value of the scaling exponent ξ(q) is shown in each figure.
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Conclusion. – We have applied here empirical mode decomposition to analyze a high
Reynolds number turbulent experimental time series. After decomposition, the original
velocity time series is separated into several intrinsic modes. We showed that this method
acts as an almost dyadic filter bank in the frequency domain, confirming previous results
that have been obtained on Gaussian noise or fractional Gaussian noise. Comparing the
Fourier spectrum of each mode, and the associated characteristic scale, we can interpret
each mode according to the range to which it belongs. The first mode contains the smallest
scale and the measurement noise; two modes are associated to dissipation scales, and many
modes are associated to the inertial subrange corresponding to the turbulent energy cascade.
The last modes correspond to the large scales associated to the coherent structures (energy-
containing structures).

We have obtained a first 2D representation of the joint pdf p(ω,A). We observed a
interesting power law behaviour with scaling exponent β1 ≃ 0.38 for the location of the joint
pdf skeleton points. We also observed a power law behaviour with scaling exponent β2 ≃ 0.63
for the skeleton pdf pmax(ω). It is also found that the log-Poisson distribution provides
a better fit to the velocity pdf than the lognormal distribution. Then the intermittency
information in multiscaling (multifractal) turbulent processes was extracted using the HSA
framework. The scaling exponents in amplitude-frequency space (ξ(q) − 1) are close to the
ones in real space ζ(q), despite the quite different approaches used in both cases.

We have here extended the EMD-HSA approach in a quite natural way in order to
consider intermittency. This provides a new time-frequency analysis for multifractal time
series, that is likely to be applicable to other fields within the multifractal framework.
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