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Time-reversal RAP-MUSIC imaging

A. BAUSSARD∗ and T. BOUTIN

E3I2 laboratory – ENSIETA, 2 rue François Verny, 29806 Brest, France

(Received 7 March 2007; in final form 31 May 2007)

Time-reversal imaging with the MUltiple SIgnal Classification (MUSIC) method for the location of
point targets was first proposed by Devaney et al. In this paper, a recursive time-reversal MUSIC
algorithm is proposed. The considered approach is based on the Recursively Applied and Projected
(RAP) MUSIC which was first introduced for magnetoencephalographic (MEG) data processing. The
main goal of this contribution is to test and study a time-reversal RAP-MUSIC approach for target
location and imaging.

1. Introduction

Time-Reversal (TR) MUltiple SIgnal Classification (MUSIC)-based location, imaging, and

inverse scattering were first introduced in [1–3] for point scatterers (whose size is smaller than

the wavelength). Recent work, in this area, deals with extended targets [4]. These methods

are named ‘time-reversal MUSIC’ because both time-reversal methods and MUSIC can be

explained using the eigenvalues of the time reversal operator. For point targets, the TR MUSIC

techniques have shown their capabilities to detect and locate them. However, in some cases

this approach is not able to detect too close targets.

In this contribution, a recursive MUSIC approach for time-reversal imaging is considered.

Sequential MUSIC algorithms [5–7] were introduced in order to outperform the classical

MUSIC approach when the source signals are highly correlated. In general, when uncorrelated

sources are under study, MUSIC and recursive MUSIC methods lead to equivalent results.

The paper will focus on the recursively applied and projected (RAP) MUSIC proposed for

magnetoencephalographic (MEG) data processing in [5]. The general idea is based on a

recursive procedure in which each source is found as the global maximizer of a recursively

adjusted cost function. The changes are made after each source detection by projecting the

signal space away from the subspace spanned by the founded sources.

In this paper, a time-reversal RAP-MUSIC imaging approach is considered in order to

improve the MUSIC approach when targets are highly correlated. The paper is organized as

follows. In section 2, the considered setup is described. Then, in section 3, the electromagnetic

model and the multistatic matrix are presented. Section 4 gives an overview of TR imaging

with MUSIC and presents the TR imaging method based on RAP-MUSIC. Some simulations

and comments are proposed in section 5. Finally, section 6 gives some concluding remarks.
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2. Problem statement

The considered experimental setup (see figure 1) consists of an array of Ns transmitting

antennas and an array (which defines the Ŵ domain) of Nr receiving antennas (of the same

type).

The target under consideration can be made of one or more dielectric and/or metallic

objects. In the plane of illumination, a two-dimensional search domain (�) containing the

target is considered. The embedding medium (�b) is assumed to be of infinite extent and

homogeneous, with given permittivity εb = ε0εr,b, and permeability µ = µ0 (ε0 and µ0 being

the permittivity and the permeability of the vacuum, respectively). The objects are assumed

to be inhomogeneous nonmagnetic cylinders with complex-valued permittivity distribution

ε(r) = ε0εr (r).

The emitters are individually excited and generate a transverse magnetic (TM) polarized

electromagnetic wavefield einc
l that illuminates the medium. For each irradiation, the receiving

antennas provide the total field el which is defined as

el = ed
l + einc

l , (1)

where ed
l is the scattered field by the targets inside the medium.

For each excitation, taking into account an exp(−iωt) time-dependence, the direct scattering

problem can be modeled via two coupled contrast-source integral relationships: the observation

equation (2) and the coupling equation (3)

ed
l (r ∈ Ŵ) = k2

0

∫

�

χ (r′) el(r
′) G(r, r′) dr′, (2)

el(r ∈ �) = einc
l + k2

0

∫

�

χ (r′) el(r
′) G(r, r′) dr′, (3)

where χ (r) = εr (r) − εr,b denotes the permittivity contrast, G(r, r′) is the two-dimensional

free-space Green’s function and k0 is the wavenumber in vacuum.

3. Time-reversal matrix

In this part, some common issues for the electromagnetic model and the time-reversal matrix

are presented. It is an overview of well-known hypotheses and developments (see for example

[1, 2, 8]).

Figure 1. Experimental setup.
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3.1 Electromagnetic model

In many works, the (first-order) Born approximation, which leads to neglect of the multiple

scattering between targets, is considered. In this case, the effect of the target on the incident

field is considered small so that the total field el in the observation equation (2) can be replaced

by the incident field einc
l . In this contribution, the second-order scattering contribution is also

take into account. Note that, in what follows, only one array of Ns = Nr = N transceivers is

considered; i.e. each antenna is an emitter and a receiver. The extension to one transmitting

array and one receiving array can be easily done (see for example [2, 9]). Moreover, the sensors

are considered small relative to the wavelength. In this case, the incident field is defined as

einc
l (r ) = Pl G(r, Rl), (4)

where Pl is the source excitation and Rl is the location of the transceiver l (used as emitter).

From these hypotheses and considering M (M < N ) point targets located at Xm , the scattered

field can be expressed as

ed
l (r ) =

M
∑

m=1

G(r, Xm)τm G(Xm, Rl)Pl

+

M
∑

m=1

M
∑

m ′=1

G(r, Xm)τm G(Xm, Rl)τm ′ G(X ′
m, Rl)(1 − δm,m ′ )Pl , (5)

where τm is the scattering amplitude of the mth target and δ.,. stands for the Kronecker symbol.

Note that a more complete model formulation through, for example, the Foldy–Lax multiple

scattering model [10] can also be considered [9, 11]. But, from previous work on TR MUSIC,

the performance of these approaches for target location seems to remain unchanged under a

Born approximation or a non-Born approximation (multiple scattering) [11]. So we could also

expect not a lot of modifications in our final results using our treatment with the ‘Foldy–Lax

model’.

3.2 Time-reversal matrix

The [N × N ] multistatic response matrix K, whose entry Ki, j is defined as the value of the

scattered field detected at the i th transceiver (used as receiver) due to the unit excitation at the

j th transceiver (used as emitter), is given by

K =

M
∑

m=1

τmgmgT
m +

M
∑

m=1

M
∑

m ′=1

gmτm G(Xm, Xm ′ )τm ′ (1 − δm,m ′ )gT
m ′ . (6)

where gT
m denotes the transpose of gm which is the N -dimensional Green function column

vector:

gm =













G(R1, Xm)

G(R2, Xm)

...

G(RN , Xm)













. (7)

Finally, the time-reversal matrix is defined as

T = K†K, (8)

where † stands for the adjoint operator.
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4. Time-reversal RAP-MUSIC imaging

4.1 Time-reversal MUSIC imaging (overview)

Time-reversal imaging using MUSIC was first proposed in [3]. This signal subspace method

assumes that the number of point targets Nc in the medium is lower than the number of

transceivers. The general idea is to localize multiple sources by exploiting the eigenstructure

of the time-reversal matrix.

Performing the SVD on the time-reversal matrix, the space C of voltage vectors applied

to the N -transceiver array can be decomposed into the direct sum C = S ⊕ B, where the

signal subspace S is orthogonal to the noise subspace B, where S is spanned by the principal

eigenvectors µi of the TR matrix having nonzero eigenvalues. B is spanned by the eigenvectors

µi of T having zero eigenvalues.

Let N̂c be the number of nonzero eigenvalues, i.e. the estimated number of targets inside

the medium.

It follows from the orthogonality of the signal and noise subspaces that the target locations

must correspond to the poles (peaks) in the MUSIC pseudo-spectrum:

PMUSIC(r) =
1

∑N

m=N̂c+1
|〈µ

†
m, g∗

d (r)〉|2
, (9)

where for all m = N̂c + 1, . . . , N the inner product 〈µ
†
m, g∗

d (r)〉 = 0 whenever r is the actual

location of one of the targets. gd (r) corresponds to the Green function in the free space.

4.2 Time-reversal RAP-MUSIC imaging

The recursively applied and projected (RAP) MUSIC method uses each successively located

source to form an intermediate array gain matrix and projects the array manifold and the

estimated signal subspace into its orthogonal complement. MUSIC is then performed in this

reduced subspace to find the next source.

The kth (k = 1, . . . , N̂c) iteration of the proposed time-reversal RAP-MUSIC algorithm

is:

r̂k = max
r

(ck(r)), (10)

where c is the subspace correlation coefficient (see [5, 6]) defined as

ck(r) = subcorr
(

�⊥
ˆGk−1

g∗
d (r), �⊥

ˆGk−1

S
)

. (11)

�⊥ denotes the orthogonal projector given by

�⊥
ˆGk−1

= I − Ĝk−1

(

Ĝ
H

k−1Ĝk−1

)−1
Ĝ

H

k−1, (12)

and

Ĝk−1 = [g∗
d (r1) . . . g∗

d (rk−1)]. (13)

Finally, the image of the observed medium (see section 5.) at iteration k is obtained by using

the pseudo-spectrum PRM defined as

PRM
k (r) =

1
√

1 − c2
k (r)

. (14)

4



PRM tends towards infinity when c = 1 (the two considered subspaces have at least a common

subspace) and towards 1 when c = 0 (the two subspaces are orthogonal).

The process can be stopped when at the iteration i where no c-values greater than a given

threshold cth exist, i.e. it is not possible to detect another target:

max
r

(ck(r)) < cth, (15)

where cth, in our simulations, was fixed to 0.95. This value seems to be efficient in all our

simulations (even those which are not presented in this paper).

5. Simulations

Note that all the presented images are normalized and that white-noise (around 20 dB) has

been added to the analytically obtained forward data signals before treatment. The used point

targets have the same scattering amplitude.

5.1 Time-reversal RAP-MUSIC algorithm

In this part, the TR RAP-MUSIC algorithm is presented through simulation results. The

considered configuration is made of N = 9 transceivers equally spaced and separated by λ/2.

Only two targets separated by λ are under consideration (see figure 2). The work frequency

is fixed to 200 MHz. This first configuration is not a challenging one but it is used in order to

clearly present how the proposed algorithm works.

At the end of the first iteration of the algorithm and from the pseudo-spectrum PRM (see

figure 3a), the two targets can be easily seen. In figure 3(b), the subspace correlation coefficients

are shown. From this first step r̂1 (i.e the position of a target) is extracted and the orthogonal

projector is constructed.

At the end of the second step (figure 4a), only one target can be seen. This means that the

target (source) has been clearly detected and the signal space has been perfectly projected

away from the subspace spanned by the (previous) founded source. Figure 4(b) shows the

subspace correlation coefficients.

Figure 2. Configuration I: the • and the black ∇ stand respectively for a target location and an antenna location.
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Figure 3. Time-reversal RAP-MUSIC results for configuration I at iteration 1. (a) Pseudo-spectrum; (b) subspace
correlation coefficients.

Figure 4. Time-reversal RAP-MUSIC results for configuration I at iteration 2. (a) Pseudo-spectrum; (b) subspace
correlation coefficients.

Figure 5. Subspace correlation coefficients at iteration 3 for configuration I.
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Figure 6. Configuration II: the • and the black ∇ stand respectively for a target location and an antenna location.

If another iteration is performed, the second target is perfectly detected (by the algorithm)

and no more c-values are greater than cth (see figure 5), which means that (for the detection

algorithm) no more targets are in the medium.

5.2 Comparison between TR MUSIC and TR RAP-MUSIC

The proposed configuration in this part is more challenging than in the previous one. Here, the

two targets are separated by λ/3 (see figure 6). The search domain has been discretized into

square pixels (size = λ/10). For both algorithms the number of targets inside the medium is

assumed to be known.

In this case, from figure 7, using the MUSIC approach we are not able to clearly see the

two targets.

Figures 8 and 9(a) show the results obtained respectively at iteration 1 and at iteration

2 of the RAP-MUSIC approach. Figure 9(b) corresponds to the subtraction of the result at

iteration 1 from the result at iteration 2. This figure allows us to clearly see that RAP-MUSIC

has correctly localized and detected the first target at the end of iteration 1.

These results show that RAP-MUSIC, contrary to MUSIC, is able to clearly detect and

localize both targets (see figure 9a, b and table 1).

Note that if a third iteration of the proposed algorithm is performed no more targets can be

detected (all the c-values are lower than cth).

Figure 7. Configuration II: time-reversal MUSIC result.
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Figure 8. Configuration II: time-reversal RAP-MUSIC result at iteration 1.

5.3 Time-reversal RAP-MUSIC imaging analysis

In this part some complementary remarks are proposed in order to detail the analysis of the

proposed approach.

In fact for highly noisy data, as shown before, RAP-MUSIC is able to detect really close

targets. However, in some cases the location of these targets can be damaged. Since one of

the steps of RAP-MUSIC is based on a maximization, it may occur that the maximum cannot

be found at one of the target positions, but rather at a location between the two targets. In this

case, a wrong projector is constructed.

Let us do the same simulation as the previous one but with 15 dB noisy data. In this case, as

shown in figures 10 and 11 and in table 2, the two targets are detected but the position of the first

one is not well estimated. It follows that the projector operator is not well constructed which

leads to damage in the detection of the second target (see figure 10). Moreover, in this case, at

the end of the second iteration, the pseudo-spectrum shows two different spots. Fortunately in

the proposed simulation, only the two targets are detected. Actually, the subspace correlation

coefficients at the third iteration are lower than cth which means that no more targets can be

found (i.e. the algorithm does not find that the two spots at the previous iteration are two real

targets). Unfortunately, in some cases the wrong estimation of the target positions and so the

construction of the projector operators could finally lead to estimating three or more targets

or to cause the algorithm to strongly fail.

Figure 9. Time-reversal RAP-MUSIC results for configuration II: (a) iteration 2; (b) first detected target (subtraction
between figure 8 and figure 9a).
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Table 1. True position of the targets in the medium and estimated
position after detection.

Target 1 Target 2

True location (x = −1.66λ, z = 5λ) (x = −2λ, z = 5λ)
Estimated location (x = −1.7λ, z = 5.1λ) (x = −2λ, z = 5.1λ)

Table 2. True position of the targets in the medium and estimated
position after detection.

Target 1 Target 2

True location (x = −1.66λ, z = 5λ) (x = −2λ, z = 5λ)
Estimated location (x = −1.8λ, z = 4.9λ) (x = −1.9λ, z = 4.8λ)

Figure 10. Time-reversal RAP-MUSIC results for configuration II with 15dB noisy data: (a) iteration 1; (b) itera-
tion 2.

Figure 11. Time-reversal RAP-MUSIC results for configuration II with 15dB noised data: (a) first detected target
(subtraction between result from figure 10a and result from figure 10b); (b) subspace correlation coefficients at
iteration 3.
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As this can be a problem in some applications, complementary work should be developed in

order to solve it and so obtain a perfect localization of the targets in these particular challenging

cases.

Finally, one can also note that in equation (6), the term with the double sum may have an

effect similar to the presence of a non-white noise component. In this case, we are not in the

optimal conditions for a MUSIC type approach. In this way, it could be interesting to focus

on some work using [12–14].

6. Conclusions and further work

In this contribution, a time-reversal recursively applied and projected (RAP) MUSIC was

considered. The proposed results show that RAP-MUSIC outperforms the classical MUSIC

approach when targets are strongly correlated. However, we noted that errors could appear

when dealing with highly noisy data. The challenging point in the proposed approach is the

estimation of the subspace correlation coefficient maximum which acts upon the projector

operators and the targets locations.

Like for the MUSIC algorithm, this approach is limited to M < N and the obtained re-

sults depend on the noise signal subspace estimation (which remain a challenging problem).

However, because of the recursive approach, RAP-MUSIC could be less sensitive about this

estimate (when the signal subspace rank is overestimated) than MUSIC. Some further work

could focus on this point and try to take advantage of the recursive approach.
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