N

N

XeNA: an access negotiation framework using XACML
Diala Abi Haidar, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Hervé Debar

» To cite this version:

Diala Abi Haidar, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Hervé Debar. XeNA: an access nego-
tiation framework using XACML. Annals of Telecommunications - annales des télécommunications,
2009, 64 (1-2), pp.155 - 169. 10.1007/s12243-008-0050-5 . hal-00448945

HAL Id: hal-00448945
https://hal.science/hal-00448945
Submitted on 20 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00448945
https://hal.archives-ouvertes.fr

Ann. Telecommun. (2009) 64:155-169
DOI 10.1007/s12243-008-0050-5

XeNA: an access negotiation framework using XACML

Diala Abi Haidar - Nora Cuppens - Boulahia -
Frédéric Cuppens - Hervé Debar

Received: 31 March 2008 / Accepted: 13 August 2008 / Published online: 7 October 2008

© Institut TELECOM and Springer-Verlag 2008

Abstract XeNA is a new model for the negotiation of
access within an extended eXtensible Access Control
Markup Language (XACML) architecture. We bring
together trust management through a negotiation pro-
cess and access control management within the same
architecture. The negotiation process based on re-
source classification methodology occurs before the ac-
cess control management. A negotiation module at the
core of this negotiation process is in charge of collecting
resources required to establish a level of trust and to
insure a successful evaluation of access. The access
control management is based on an extended Role-
Based Access Control (RBAC) profile of XACML.
This extended profile responds to advanced access
control requirements and allows the expression of
several access control models within XACML.

Keywords Access control - XACML - RBAC -
OrBAC - Interoperability - Trust management

1 Introduction
Combining access control and trust is essential to en-

force security of Web services and resources shared
between entities from different security domains. The

D. Abi Haidar (X)) - H. Debar

France Telecom R&D Caen, 42 rue des
coutures, 14066 Caen, France

e-mail: diala.abihaidar@telecom-bretagne.eu

N. Cuppens - Boulahia - F. Cuppens
ENST Bretagne, 2 rue de la chataigneraie,
35512 Cesson Sevigne, France

negotiation of access is the first step before the autho-
rization management. It allows the establishment of a
required level of trust and collects resources needed in
the access request’s evaluation process.

In [1-3], authors suggest a prototype for trust es-
tablishment called TrustBuilder. It allows negotiat-
ing trust across organizational boundaries, between
entities from different security domains. The Trust-
Builder project is investigating trust negotiation, using
an Attribute-Based Access Control (ABAC) [4] model.
Using TrustBuilder, parties conduct bilateral and iter-
ative exchanges of policies and certified attributes to
negotiate access to system resources including services,
roles, capabilities, personal credentials, and sensitive
system policies. The TrustBuilder approach consists in
gradually disclosing credentials in order to establish
trust. The prototype also incorporates policy disclosure;
only policies that are relevant to the current negotiation
may be disclosed by the concerned parties. These poli-
cies specify what combinations of credentials one must
present in order to gain access to a protected resource
of the accessed service. In this way, it is possible to
focus the negotiation and base disclosures on need-
to-know requirements. Since these policies may con-
tain sensitive information, their disclosure must also be
controlled [5]. Trust may be gradually established, and
policies referencing sensitive credentials or containing
sensitive constraints are not disclosed to strangers. As
far as trust is established, sensitive policies may be
disclosed if permitted by the policy.

Regarding access control management, there are
many access control models in the literature [TBAC [6],
DAC [7], Organization-Based Access Control model
(OrBAC) [8], ABAC [4]...], the most frequently cited
being the Role-Based Access Control (RBAC) [9]

@ Springer

156

Ann. Telecommun. (2009) 64:155-169

model. Among the languages that have been proposed
for expressing access control, there is the eXtensible
Access Control Markup Language (XACML), an OA-
SIS standard [10].

In this paper, we bring together negotiation for
trust establishment and access control management
within the same architecture. Our proposed framework
is called XeNA for XACML negotiation of access.
Within this framework, we used our methodology of
negotiation, based on resource classification, within an
extended XACML architecture. In this process, we
consider that negotiation precedes the access control
evaluation since negotiation allows the collection of re-
sources needed to establish a required level of trust and
to permit the success of the access control evaluation.

This paper is organized as follows: In Section 2, we
introduce the negotiation’s general concept and ex-
plain our resource classification. Section 3 presents the
negotiation’s policies and process. The negotiation’s
architecture is described in Section 4. The negotiation
and exception treatment modules are introduced within
this section. In Section 5, we detail our previous work
on an extended RBAC profile of XACML on which
our architecture is based. Section 6 describes our XeNA
framework where the negotiation architecture is inte-
grated within the extended XACML architecture. The
implementation of our prototype is discussed in Section
7. Finally, Section 8 concludes the paper and suggests
some perspectives.

2 Concept definition
2.1 Access control and negotiation

Every service provider possesses an access control pol-
icy that defines who has access to which resource and
for which purpose. The Web service is seen as a re-
source belonging to the service provider. Furthermore,
this resource may involve the manipulation of other
local protected resources (other services or data). This
explains the necessity to determine all the resources
that may be concerned by the access request and the
definition of their corresponding access control policies.
These policies define a set of required prerequisites
from the requestor so that the service provider can
decide if the access to the requested resource is allowed
or not. These prerequisites are attributes obtained from
credentials. A credential is an assertion about its owner,
digitally signed by a credential issuer. A credential
contains a description of attributes as name/value pairs.
An attribute is seen as an age, a membership, a job or
anything else owned by a person not directly related to

@ Springer

his or her identity. These attributes are used to satisfy
access control policies of a requested resource. They
are also important in the Trust Establishment (TE)
systems [11], where entities tend to trust each other
based on attributes.

Access control policies are considered resources be-
longing to the service provider. However, some policies
may not be publicly accessed. In such cases, the re-
quired attributes are not necessarily known in advance
by the requestor. This latter may not give the required
information whenever it accesses the resource. To be
able to satisfy the request of legitimate requestors, we
propose to negotiate the access trying to collect the
needed attributes whenever the need arises.

The negotiation is seen as a process by which a
group of participants come to a mutually acceptable
agreement on some matter. In a negotiation process
[12], there are mainly three components:

1. The negotiation protocols are the set of rules man-
aging the interaction.

2. The negotiation objects are the range of issues over
which agreement must be reached.

3. The decision making models are the decision mak-
ing apparatus the participants employ to act in line
with the negotiation protocol in order to achieve
their objectives.

According to our reasoning, the primary negotiation
object is the access to the Web service seen as a pro-
tected resource. This access may involve negotiating
other issues such as the access to some protected cre-
dentials or policies. That is, policies may be sensitive
in the sense that each participant would not wish that
the other party knows about his or her access con-
trol requirements. We admit that some access control
policies or some distillations of these policies, seen as
resources, are subject to an access negotiation. In this
way, other parties in the negotiation can understand
what the requirements are to gain access to the desired
resource. The requestor and the provider each imple-
ment their negotiation protocols that define how to
exchange resources to satisfy the mutual access policies.
The decision making model at the level of both enti-
ties decides about what to reveal and what to request
from the negotiating party according to the negotiation
protocol.

2.2 Resource classification

We define as protected resource all sensitive informa-
tion (e.g., services, sensitive policies, credentials, etc.).
All the protected resources in our system are man-

Ann. Telecommun. (2009) 64:155-169

157

aged by access control policies. We classify protected
resources in three classes.

e (lass 1—“resource with direct access”: all pro-
tected resources that belong to this class are man-
aged by policies that do not trigger a negotiation
process. Nevertheless, to evaluate the request for
access to such resources, some attributes may be
needed (e.g., a requestor identifier). If these at-
tributes are given in the request, the evaluation may
be possible. If they are not given, they will not be
collected through a negotiation process.

e C(Class 2—*“resource with direct negotiated access”:
If the request for access to resources from this
class does not include all the needed attributes,
the missing attributes are directly requested from
the requestor. In a direct negotiation process, the
policies are not hidden and may be revealed to the
requestor.

e (lass 3—“resource with indirect negotiated ac-
cess”: We consider that the resources that are clas-
sified in this class are managed by a policy that
should be kept secret. Thus, missing attributes are
indirectly requested from the requestor. That is, a
strategy should be applied to obfuscate some (or
all) of these attributes before negotiating them.

An example of class 1 resources is the never-
accessible resources. We define these resources as those
that cannot be accessed under any circumstance. The
resources that are always accessible also belong to class
1. The corresponding access control policies allow ac-
cess to them without restrictions.

As one can notice, the class 2 and class 3 resources
may not necessarily imply a negotiation between the
requestor and the service provider. Whenever all the
needed attributes are given by the requestor directly,
there is no need to negotiate. That is, starting a negoti-
ation or not does not reveal to the requestor the classi-
fication of the resource. For instance, whenever all the
needed attributes are given by the requestor, this latter
can imagine that the accessed resource is classified in
class 1 since no negotiation was needed whereas, in
reality, it could be a class-1, -2, or -3 resource. Similarly,
a requestor cannot easily distinguish between class 2
and class 3 resources.

Furthermore, deducing the classification of the re-
source does not call into question the sensitivity of this
resource since our classification is not based on the
sensitivity of the resources. That is, a class 1 resource
is not necessarily less sensitive then a class 2 (or class 3)
resource and vice versa.

2.3 Strategies definition for class 3

We define two types of strategy categories:

e Definition of structured subpolicies: In this cate-
gory, we consider the strategies based on a step-
by-step revealing process. Since the policy that
manages the access to a class 3 resource should be
kept secret, then other policies (subpolicies) that
can be revealed are defined by the administrator.
These subpolicies, whenever applied one by one,
form a cover for the initial policy. It is only when
one subpolicy is verified that the process may con-
tinue and additional attributes are requested by the
provider.

e Introduction of useless information: We consider
the introduction of noise (useless information) as a
way of hiding the original policy. That is, additional
attributes may be requested from the requestor.
These attributes should be given by the requestor
even though they are not used in the request’s
evaluation. If the administrator chooses this kind
of strategy, he or she should define the additional
useless information to be requested from the user.
By using this strategy, we increase the risk of a
failure in the negotiation process, i.e., the poli-
cies’s conditions may not be verified. This occurs
whenever the requestor does not give one of the
additional required attributes.

We should notice that we do not rule out the pos-
sibility of using both strategies at the same time. It is
up to the administrator to assign each information that
should be hidden to its corresponding strategy.

2.4 Our resources’ perimeter of interest

Each service is described by the service provider and
its behavior is known in advance. A published Web
Service Description Language (WSDL) [13] document
describes the interface of the service and the resources
that are involved in the proposed service. Neverthe-
less, a negotiation process may involve other resources
that are not directly related to the service; thus, they
are not included in its description. These resources
may be requested from the provider to satisfy a re-
questor’s policy. Thus, we define three sets of resources
(see Fig. 1).

We call organization’s resources all the internal re-
sources that belong to an organization (e.g., a provider).
Within the set of these resources, some are protected
and managed by access control policies since they can
be requested by external accesses. They are called the
classified resources. Within this set of classified re-

@ Springer

158

Ann. Telecommun. (2009) 64:155-169

Web service’s |
resources

Fig. 1 The organization’s resources

sources, we have the resources that are directly related
to the Web service’s functions.

The resources that are classified and not directly
related to the Web service’s functions are those that
may be involved in the negotiation process. The set of
organization’s resources can be concerned by another
service if we are in the case of a multiservices provider.
However, our reasoning concerns a given Web service.
We are in the situation where each provider is respon-
sible of one provided service.

3 The negotiation
3.1 Obtaining the negotiation policies

We consider that an access control policy may include
information that is strictly related to the organization
such as the roles in an RBAC [9] model-based orga-
nization. Organizations use such access control models
to facilitate the expression and manipulation of their
policies. Nevertheless, a local role may not be nec-
essarily interpretable by the requestor. This explains
why revealing a local access policy that contains such
information is useless. Previous works in the field of
interoperability have influenced our choice of export-
ing a distillation of policies in the negotiation process
[5, 14]. In [14], authors make use of the virtual pri-
vate organizations (VPO) to manage the access control
in an interoperability context. Their approach, called
020 (for “Organization to Organization”), is based on
the idea that each organization should define a VPO
that is associated with security policies managing the
access to protected resources within this organization.
VPOs manage the interoperability policies of each or-
ganization. In the same way, in our architecture, we
derive from the access control policies what we call
the negotiation policies. These negotiation policies can

@ Springer

be seen as a distillation of the access controlpolicies
that is meaningful in the negotiation. The negotiation
policies are expressed in a basic way not related to
the internal organization and access control model. For
this purpose, we suggest translating any defined access
control model in an ABAC [4] model. In this way,
the negotiation policies state the required attributes to
access a resource.

Each access control model using classification of
users into roles or actions into activities, etc., bases this
classification on attributes. Let us take the example of
the RBAC model. The role assignment policies map
users to roles. When the user is known in advance to
the system, its identity is the only condition for such
a mapping, and it is obtained through authentication.
When the user is unknown to the system, this map-
ping is based on attributes not directly related to its
identity. Thus, it is necessary to express conditions for
mapping users to role, based on attributes (identity
or given attributes in a certificate). In the generalized
RBAC model [15], objects are classified into “object
role.” The properties that can be considered are size,
creation date, sensitivity level, etc. Thus, the conditions
for this mapping into object roles are the attributes of
the “object” entity. Moreover, in the OrBAC model
[8], actions are grouped into activities based on some
properties that can be seen as actions’ attributes.

We call mapping policies (or assignment policies)
these policies that define conditions to map users into
roles, actions into activities, and objects into object
roles.

We define:

P:(D,S, A, O, Ctx)
Pm:(ngroupy C)

P is an access control policy that is represented by:

A decision D € {permission, prohibition}

A group of subjects S

A group of actions A

A group of objects O

Some contextual conditions Ctx that may be rel-
ative to the time of access (temporal conditions),
the place from where the subject sends the request
(spacial conditions), etc. (see [16] for a classification
of different contextual conditions)

If the access control model does not use groups of en-
tities, then S is reduced to a single subject and replaced
by s, A is replaced by the action a, and O is replaced by
an object o.

Ann. Telecommun. (2009) 64:155-169

159

P,, is a mapping policy that expresses the conditions
C of mapping an entity X into a group group.

e X isasubjects, an action a, or an object o.
group is in fact replaced by S, A, or O.

e (is a condition of the mapping. C € {Cy, C,, C,},
where Cy, C,, and C, are the conditions over the
attributes of, respectively, the subject, the action,
and the object.

If the access control policy P uses the entities s, a,
and o, then P is necessarily based on the attributes of
these entities. Otherwise, the correlation between the
access control policy P and the mapping policies (or
assignment policies) P,, allows the translation of such
access control policy into a policy that is only based
on attributes. That is, the expression of policies using
attributes is always possible whatever the access control
model used is. These attribute-based policies are used
within the negotiation as negotiation policies.

3.2 Negotiation policy properties

The negotiation policies state, according to the accessed
resource, the required attributes. One should notice
that negotiation policies are only a function of the
accessed resource. A negotiation policy applies to a
request for access if the accessed resource is managed
by this negotiation policy. These policies are modulated
by the classification of the resource. In the case of a
class-2 resource, the required attributes are asked to
the requestor without a specific strategy, whereas, if
the concerned resource is in class 3, a strategy should
modulate the requested attributes.

Furthermore, the negotiation policies do not ex-
press permissions or prohibitions for access. Satisfying
a negotiation policy does not imply that the decision
for access can be evaluated to permitted or denied.
The evaluation of the access is strictly based on the
access control policies even though the negotiation
policies are derived from the access control policies.
To illustrate this distinction, let us take an example in
an RBAC-model-based organization. Let us suppose
that a resource R can be accessed by a role A and
that the role A is assigned to every entity possessing
the attribute Age, whose value is less than 25. If we
consider R as a class-2 resource, the negotiation policy
can directly ask for Age. When this attribute is received
(within a credential) from the requestor, this latter is
assigned or not to the role depending on the value of
the attribute. The mapping policies evaluate role A’s
condition, then the access control policies will grant the
access to the requestor if this latter is actually assigned
to role A.

3.3 The negotiation process

During the negotiation, multiple rounds may be neces-
sary to satisfy each of the provider and the requestor
entity’s negotiation policies. Once all the negotiation
policies are satisfied, the process may converge to a
decision of granting the access or not.

Nevertheless, the negotiation process may not be
completed because of some exceptional cases that can
be grouped into two categories:

e The nonaccess exceptions are situations where (1)
the required resource does not exist at the level of
the provider or (2) the evaluation of the request to
access a resource leads to a deny decision.

e The loop exceptions are situations where the nego-
tiation process is locked in a loop. Let us suppose
that one of the entities involved in the negotiation,
E,, is waiting for a resource A from the other entity,
E,. This latter cannot reveal this resource unless E;
reveals B. If the negotiation policy of B requires A,
then E; will be asking for A and E, for B, and this
creates a deadlock situation.

Exceptions are raised after the detection of such sit-
uations by the negotiating entities, and an exception
treatment module is called. This module should propose
alternatives so that the negotiation process can be com-
pleted. To be able to present our negotiation process
and architecture, we should introduce the following
definitions.

Definition 3.1 Initial negotiation level (INL): It is a
level assigned to an accessed resource at the beginning
of its corresponding negotiation process. It reflects the
class that the administrator assigns to that resource.
The INL of a resource is, thus, the classification of this
negotiable resource (INL =2 or 3).

Definition 3.2 Current negotiation level (CNL): It is
the level of a resource within a specific negotiation
process. It is initialized to the CNL at the beginning of
the negotiation process.

We can imagine that, sometimes, at a given step in
the negotiation process, the CNL of the resource can
decrease to 1. In fact, whenever the accessed resource
is a class-2 or -3 resource, we can imagine that, after
satisfying the negotiation policies managing the access
to that resource, this latter is seen as a class-1 resource.
That is, there are no more needed attributes and the
request for access is evaluated.

@ Springer

160

Ann. Telecommun. (2009) 64:155-169

Property 3.1 Negotiation termination: The negotiation
process is completed if the CNL of the requested re-
source is decreased to 1.

When the CNL of the requested resource is de-
creased to 1, the request’s evaluation may conclude
(1) on a grant access decision; (2) on a deny access
decision; (3) whenever exceptions are raised (because
of a denied access or loop), an alternative is found; or
(4) the process fails.

We illustrate the negotiation process using state ma-
chines. Figure 2 shows the requestor’s state machine,
the provider state machine is symmetric, by replacing
send by receive. The process starts at state 0 with a
request for a particular resource. Depending on the
classification of this resource on the provider side, the
requestor may have direct access to that resource (class
1 resource) or may receive a policy from the provider.
The returned policy is directly related to the requested
resource (class-2 resource) or it hides, via a strategy,
the real policy that manages the access to the resource
(class-3 resource). In both cases, the requestor receives
a policy and fails to determine if it is a class-2 or
class-3 resource. The returned policy asking for some
attributes is evaluated by the requestor. If the requestor
found credentials certifying such attributes, it sends
them to the provider (if they are class-1 resources).
The requestor returns to state 1 since we cannot know
if the accessed resource’s policy is satisfied or if other
exchanges of policies are required. From state 2, the
requestor has the possibility also to return a policy that
manages the found credentials (class-2 or -3 resources).
It is in state 3 and waits for the provider’s credentials.
In this state, it may directly receive credentials from the
provider and go to state 1, or it may receive a policy

Send credential
Paceha veours Send credential
@ Request resource m

Receive credential

Exception

Decision ____

\\“““ﬁ—q_ Decision

Fig. 2 Requestor’s negotiation process state machine

@ Springer

and go back to state 2. If it goes to state 1 after state
2, it still has to send credentials to satisfy the received
policy from the provider. Finally, after receiving the
requested resource, it goes to state 0. To express the
exceptional cases, the state machine of the requestor
and the provider should be enriched (state 4 in Fig. 2).

4 The negotiation architecture

We have defined a basic architecture that shows the
main actors within the negotiation process. Each en-
tity should have a classification of its own sensitive
resources and its specific access control policies to pro-
tect these resources. It should also have negotiation
policies. We have defined, for each entity involved in
the process, a specific module that is in charge of the
negotiation process. This negotiation module uses the
negotiation policies to negotiate access to the protected
resources. If an exception is raised, this module calls
the exception treatment module so that it checks the
exception treatment policies to find if there is a possible
alternative. The global data-flow is presented in Fig. 3.

Each request for an access is intercepted by the
negotiation module. If the requested resource is clas-
sified in class 1, the request is relayed for evaluation on
the service provider side. If the resource is classified
in class 2 or 3, the negotiation module will start the
negotiation. The resource’s INL (=CNL) within this
negotiation process is equal to 2 or 3 (depending on the
class of the resource). The negotiation module checks
what the accessed resource’s negotiation policies are.
This module ensures that all the required attributes
are collected, and then the CNL is assigned the value
1. At this level in the negotiation process, the request
with the collected attributes is sent to the service’s
evaluation point.

4.1 The exception treatment module

Exceptions are caught by an exception treatment mod-
ule, which evaluates alternatives the administrator has
defined for each exception case. However, who will
solve the exception: is it the requestor, the provider
or both? Actually, we can consider that each entity
chooses to react or not depending on the strategy de-
fined to manage exceptions. These strategies may be:

e Strategy 1: Abort the negotiation without solving
the exception.

e Strategy 2: Solve the exception if possible, indepen-
dently of the actions undertaken by the other entity.

Ann. Telecommun. (2009) 64:155-169

161

Fig. 3 The negotiation global

Service requester

Service provider

architecture

Negotiation
policies

Policy evaluation

Resources
classification
+
~
/
—d

Excepl
Ireatment

- - Request — -
Y- =Y q S| =
o =
= @
o « Resources
o Negotiation =] classification
E o +
= — e
o g Negotiation
= licies
o Response = s
=
o =]
o o Va B,
D = o \
=z @® o
\ J > 5
p — o - 2
@
=
Qo
I 5
. - - - 8
i Exception\ { Exoeption\ =
treatment treatment ‘ e o
| module | module g
N 7 S e
Access policies
ion Exception
policies, reatment policies,

e Strategy 3: Wait a certain amount of time for the
other entity to solve the exception, then return to
strategy 1 or 2.

According to the chosen strategy, the administrator
should define some policies for solving the exceptions.
The treatment module will check these policies; if there
is an exception treatment policy, then it is applied. If
not, the negotiation will abort.

When an exception is caused by a loop, it should be
detected by the two entities involved in the negotiation
process so that one can solve it. In the case of nonaccess
exception, this exception should also be raised by the
two sides even though, for the provider, the evaluation
of the access policy may have terminated on a deny
decision, which means that there was no problem. We
should always take into consideration these exceptions
because the service requestor may propose another
alternative (another credential for instance). Thus, it
is essential not to abort the negotiation and initialize
another one when the requestor submits an alternative.
In this case, one obvious strategy for the provider is
strategy 3.

4.2 The negotiation module

The negotiation module (Fig. 4) is split in two parts: the
supervision layer, which is responsible for the supervi-
sion tasks (see Section 4.2.1), and the execution layer,
which enforces the negotiation protocol according to
the directives of the supervision layer (see Section
4.2.2). This abstraction is applied whatever the under-
lying implementation is.

4.2.1 The supervision layer

The supervision layer has the following functions:

1. Checking the classification of the resource: The
negotiation module uses a repository of the classes
to which all the classified resources within the orga-
nization belong. Each time the request for access
to a resource is intercepted by the module, this
latter looks at its class. If the resource is in class
1, then the request is sent to the evaluation point.
Whenever its class is 2 or 3, the negotiation module
checks the negotiation policies repository.

2. Checking the negotiation policies repository: This
repository contains all the negotiation policies.
Since each negotiation policy manages the access to
a specific resource, the policies are selected within
this repository according to the accessed resource.

3. Decreasing the CNL of the accessed resource: The
negotiation module should take into account the

Negotiation module

*%\ * Checking classification repository
\o . kil iation policies repository
. \0 De g the CNL of the resource
Q\% * Looking for policies and resources to reveal
Q\ * Creating a negotiation request
(‘O\SQ * Creating an enriched request
* Calling the exception treatment module
* Receiving resources
,‘\\QQ * Receiving policies
\) * Sending resources
Q/*Q * Sending policies

Fig. 4 The negotiation module’s architecture

@ Springer

162

Ann. Telecommun. (2009) 64:155-169

classification in the negotiation process. Each time
the required attributes are collected and the re-
source’s negotiation policies are satisfied, the CNL
of the accessed resource is decreased to 1.

4. Looking for policies and credentials to reveal: The
module is able to reveal some negotiation policies
and some credentials to satisfy the requestor’s ne-
gotiation policies. To do that, it analyzes a received
negotiation policy and determines the local creden-
tials that can be revealed. It may also determine
what the negotiation policies (if any) that should
be revealed to the requestor are. We consider that
only negotiation policies (not access control poli-
cies) can be revealed. This is because the access
control policies may be expressed using a group
of entities that cannot be interpreted by the other
entity.

5. Creating an enriched request: Each time the nego-
tiation module collects credentials certifying some
attributes that are necessary for evaluating a re-
quest, it forms an enriched request where it brings
together all the collected information.

6. Creating a negotiation request: After finding the
local credentials that satisfy a received negotiation
policy, the negotiation module should determine
if these credentials are accessible or not. For this
purpose, it makes a negotiation query to access
such credentials. This negotiation query is treated
as any query for access to a resource.

7. Calling the exception treatment module: Whenever
an exception is detected by the negotiation module,
this latter calls the exception treatment module and
sends the raised exception. The exception treat-
ment module checks if there is any alternative. As
stated before, the exception treatment module has
some predefined policies that handle different cases
of exceptions and suggest alternatives.

4.2.2 The execution layer

The execution layer is in charge of executing the tasks
of the supervision layer. It also receives information
from the execution layer of another negotiating entity.
There is an execution layer at the level of the requestor,
but there is also one at the level of the provider. The
tasks of the execution layer are:

1. Receiving resources: The execution layer of the
requestor receives resources revealed by the pro-
vider. These resources are relayed to the local
supervision layer.

2. Receiving policies: If the provider requests at-
tributes to be able to reveal some of its resources,

@ Springer

the execution layer of the requestor receives the
corresponding policies to be enforced. These poli-
cies are then relayed to the supervision layer, which
can determine what the credentials that enforce
these policies are.

3. Sending policies: Whenever the requested re-
sources are classified in classes 2 or 3, policies are
revealed by the provider before giving access to
these resources. The supervision layer determines
the policies that can be revealed and passes them to
the execution layer. This latter sends these policies
to the requestor.

4. Sending resources: If the supervision layer decides
that the requested resources (or credentials) can be
revealed, it relays them to the execution layer so
that this latter sends them to the requestor.

Now that we have presented our resource
classification-based negotiation approach and archi-
tecture, we will discuss how we fit the negotiation into
an authorization standard such as XACML. The use
of an existing standard has the benefit of promoting
the interoperability and reducing the efforts required
to integrate with existing applications. The following
section introduces the extended RBAC profile of
XACML on which we base the negotiation.

S An extended RBAC profile of XACML
5.1 A brief introduction to XACML

XACML is an OASIS standard [10]. It is expressed
in XML and describes both a policy language and
an access control decision request/response language.
The policy language is used to describe general access
control requirements to resources in the information
system. The request/response language allows one to
form a query to ask whether or not a given action
should be allowed, and the response will convey the
answer for this query. The answer should contain one
of these four values: permit (access allowed), deny (ac-
cess denied), indeterminate (an error occurred or some
required value was missing, so a decision cannot be
made), or not applicable (this service has no policy that
applies to this request). The OASIS standard defines
a data-flow diagram (see the Fig. 5). The typical setup
is that someone or a process wants to perform some
action on a resource. Therefore, a request is sent (2)
to the component that actually protects that resource
(like a filesystem or a Web server), called a Policy En-
forcement Point (PEP). The PEP will form a request,
in its native request format, based on the requestor’s

Ann. Telecommun. (2009) 64:155-169

163

access
2. access request
requester

3.request 12.response

13. obligations obligations
service

4.request
notification

5. attribute
PDP queries

n
context 9. resource resource
l———10. attributes handler content

11. response
J context

6. attribute
query

8. attribute

7c. resource

attributes

PIP 7b. environment
attributes

1. policy

7a. subject
attributes

PAP subjects

Fig. 5 The OASIS XACML data-flow diagram

environment

attributes, the resource in question, the action, and
other information pertaining to the request. This re-
quest is sent to the context handler (3) that constructs
an XACML request context for a Policy Decision Point
(PDP) (4), which will look at the request and some
policy that applies to the request. The policies have
been written by the Policy Administration Point (PAP)

Fig. 6 The extended profile
architecture

' access requester |—2. access request PEP

and made available to the PDP (1). Sometimes, the
PDP may require additional attributes while evaluating
the request. In this case, attribute queries are sent to the
context handler (5); this latter requests the attributes
from the Policy Information Point (PIP) (6) then (7,
8, 9) sends them back to the PDP (10). The PDP will
finally evaluate the policy and come up with an answer
about whether access should be granted (11). That
answer is returned to the PEP via the context handler
that translates it to the native response format of the
PEP (12). The PEP can then allow or deny access to
the requestor and possibly fulfill some obligations (13).

5.2 The extended RBAC profile of XACML

OASIS has defined profiles for XACML that address
various requirements in the access control field. The
Security Assertion Markup Language (SAML) profile
of XACML [17] provides means to write assertions
regarding the identity, attributes, and entitlements of
a subject, and defines a protocol for exchanging these
assertions between entities. The core and hierarchical
RBAC profile of XACML [18] defines a profile for the
use of XACML to meet the requirements of RBAC
[9, 19]. In previous work [20], we have proposed an
extended RBAC profile of XACML with an extended
architecture for the XACML architecture (see the
Fig. 6). This extended profile responds to more ad-
vanced access control requirements such as user—user

9. obligation: obllgaylons
[service]

8. response
3. request P

/ N 6. request -

notification
PDP context handler

7. response

\ / context

sesesssessesssss |Nelayerthat we add
_ 5. response
1. policy

4. request

—
* Role Enablement Authority (REA)

Enablement -Role Assignment Policy

1. policy

-{ * View Enablement Authority (VEA)
-View Assignment Policy

* Activity Enablement Authority (AEA
-Activity Assignment Policy

* Context Enablement Authority (CEA
-Context Assignment Policy

Authorities

|

@ Springer

164

Ann. Telecommun. (2009) 64:155-169

delegation, access elements abstractions, and contex-
tual applicability of the policies. Every access request
is composed of a user asking if his/her action over a
given resource is allowed or not. In our profile, we
have used the concrete entities of the request (sub-
ject, action, and object), but, following the OrBAC
model, we have also defined the abstract entities (roles,
activities, and views) in addition to the context. We
have chosen the following terminology for the abstract
entities: view and activity are used to classify the objects
and actions, respectively, to which the same security
rules apply and role is kept as abstraction of subjects.
The context is used to express the contextual informa-
tion (temporal, spatial, provisional, prerequisite, and
user-declared [8]). These different abstract entities are
managed in our architecture by different Enablement
Authorities (EA) that are in charge of the transla-
tion between the concrete entities of the request and
the abstract ones. There are four different EA for
managing role (REA), view (VEA), activity (AEA),
and context (CEA), respectively. Each EA can query
the corresponding assignment policy. We consider that

Listing 1 An example to illustrate the new attributes

there is a Role Assignment Policy (RAP) that defines
which roles are assigned to a given subject. The REA
maintains a list of all the roles that are defined in the
organization, and when asked about the role that can
be assigned to a subject, the REA makes a request to
the RAP to get the set of candidate roles. The VEA can
similarly make requests to a view assignment policy to
determine to which view(s) the accessed object belongs.
The AEA similarly manages activity assigned to actions
via an activity assignment policy. Finally, the contextual
conditions are taken into consideration by the CEA.
The new data flow is presented in Fig. 6.

The policies are written by the PAP (1). When the
PEP receives a concrete request (2), it is relayed to the
context handler (3). The context handler then collects
the assignments of the requested subject to its roles,
the requested resource to its views, and the requested
action to its activities and finally gets the value of
the contexts. This is done by sending requests to the
corresponding EA (4). Once all the responses have
been collected (5), the context handler sends a request
to the PDP for evaluation (6). This request contains the

1 <?xml version="1.0"” encoding="UTF—-8"7>
2 <Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os”
3 xmlns:xsi="http://www.w3.0org/2001/XMLSchema—instance”
4 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
5 http://docs.oasis—open.org/xacml/2.0/
6 access_control—xacml—2.0—context —schema—os.xsd” >
7 <Subject>
8 <Attribute Attributeld="urn:oasis:names:tc:xacml:2.0:subject:role”
9 DataType="http://www.w3.0rg/2001/XMLSchema#anyURI” >
10 <AttributeValue>urn:example:role—values:physician< /AttributeValue>
11 < /Attribute>
12 </Subject>
13 <Resource>
14 < Attribute Attributeld="urn:oasis:names:tc:xacml:2.0:resource:view”
15 DataType="http://www.w3.0rg/2001/XMLSchema#anyURI” >
16 <AttributeValue>urn:example:view —values:medical_file< /AttributeValue>
17 < /Attribute>
18 < /Resource>
19 <Action>
20 <Attribute Attributeld="urn:oasis:names:tc:xacml:2.0:action:activity”
21 DataType="http://www.w3.0rg/2001/XMLSchema#anyURI” >
22 <AttributeValue>urn:example:activity —values:checking</AttributeValue>
23 < /Attribute>
24 < /Action>
25 <Environment >
26 < Attribute Attributeld="urn:oasis:names:tc:xacml:2.0:environment:context”
27 DataType="http://www.w3.0rg/2001/XMLSchema#anyURI” >
28 <AttributeValue>urn:example:environment—values:designated_doctor
29 < /AttributeValue>
30 < /Attribute>
31 </Environment>

32 < /Request>

@ Springer

Ann. Telecommun. (2009) 64:155-169

165

abstract values and the concrete values of the subject,
action, and object of the initial request in addition to
the value of the context(s). The PDP evaluates the
request according to the policies and sends back a
response to the context handler (7) that will transmit it
to the PEP in its native response language (8). The PEP
may have to fulfill some obligations (9) before allowing
or denying the access.

5.2.1 Used XACML attributes

We have extended the XACML language with new
attributes to manage the abstract entities that we
have considered (role, view, and activity) and con-
text. New attributes have been defined to handle the
role values (XACML subject attributes); the view val-
ues (XACML resource attributes); the activity values
(XACML action attributes); and, finally, the context
values (XACML environment attributes).

Listing 1 shows an illustration of these extensions.
It is an example of an XACML request the context
handler may send to the PDP for evaluation. On lines

Listing 2 An example of an activity assignment policy

8, 14, 20, and 26, we can see the identifier attribute of
our new attributes.

5.2.2 Assignment policies

Each EA queries the assignment policy it manages,
asking whether a given concrete entity can be assigned
to one of the defined abstract entities. As such, the EA
determine the value of the entity they have in charge
(i.e., role value, activity value, view value, and context
value) that matches the initial request entities (i.e., sub-
ject, action, and object). The response of the evaluation
against the assignment policies can be Permit, Deny,
NotApplicable, or Indeterminate for each request. The
response permit means that the corresponding value is
assigned.

Listing 2 illustrates an example of an activity as-
signment policy. In this example, the unique rule will
match a request sent by the AEA asking whether a
subject, the action read (line 9), can perform the action
enableActivity (line 25) over the resource the activity
checking (line 17). In other words, this rule states that

< Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os” PolicyIld=" Activity:Assignment:Policy”
RuleCombiningAlgld="urn:oasis:names:tc:xacml:1.0:rule—combining —algorithm:permit —overrides” >

<Rule RuleId=”checking:activity:requirements” Effect="Permit” >

1
2
3 <Target/>
4
5

<Target>

6 <Subjects>

7 <Subject>

8 <SubjectMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string—equal” >

9 <AttributeValue DataType="http://www.w3.0org/2001/XMLSchema#string” >read </AttributeValue>
10 <SubjectAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:action:action—id”
11 DataType="http://www.w3.0rg/2001/XMLSchema#string” />
12 < /SubjectMatch>
13 < /Subject>
14 < /Subjects>
15 <Resources>
16 <Resource>
17 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI—equal” >
18 < AttributeValue DataType="http://www.w3.0org/2001/XMLSchema#anyURI” >
19 urn:example:activity —values:checking
20 < /AttributeValue>
21 <ResourceAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:2.0:action:activity”
22 DataType="http://www.w3.0rg/2001/XMLSchema#anyURI” />
23 < /ResourceMatch>
24 < /Resource>
25 < /Resources>
26 <Actions>
27 <Action>
28 <ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:anyURI—equal” >
29 < AttributeValue DataType="http://www.w3.0org/2001/XMLSchema#anyURI” >
30 urn:oasis:names:tc:xacml:2.0:actions:enableActivity
31 < /AttributeValue>
32 <ActionAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:action:action—id”
33 DataType="http://www.w3.0org/2001/XMLSchema#anyURI” />
34 < /ActionMatch>
35 < /Action>
36 < /Actions>
37 < /Target>

38 < /Rule>
39 < /Policy>

@ Springer

166

Ann. Telecommun. (2009) 64:155-169

it is permitted to assign the action read to the activity
checking.

6 Negotiation within XACML architecture

We have used the resource classification-based nego-
tiation architecture and the extended RBAC profile
to define a global negotiation framework based on
the XACML architecture. We call this XACML-based
negotiation of access framework XeNA. Within XeNA,
the negotiation is considered first to collect all the
necessary attributes that permit to increase the chance
of a successful request evaluation.

6.1 XeNA: an extended negotiation architecture

The data-flow in this architecture will be as follows
(see Fig. 7): After an access request arrives at the
PEP (2), this latter relays it to the context handler.
At this level, the negotiation module acts as a hook;
it intercepts all the requests that are intended for the
context handler (3). If the requested resource is a class
1 resource, the negotiation module sends the request to
the context handler and the data-flow will be the same
as the one defined in our extended profile (see Fig. 6).
If the requested resource is classified in class 2 or 3,
then the negotiation module will start the negotiation
after checking the defined negotiation policies made
available to it by the administrator. The negotiation will
continue until the CNL of the requested resource is 1

Fig. 7 Data-flow in the new

architecture access requester

2. access reques!

(see Section 3.3). At this point, the request enriched
with the collected information is relayed to the context
handler (3’). The context handler executes the normal
actions (4, 5, 6), and the evaluation of the request is
done at the level of the PDP. The PDP sends the evalu-
ation result (permit or deny) to the context handler (7);
this latter sends it back to the PEP (8). The negotiation
module also intercepts this response to check if there
is a nonaccess exception. In this case, the exception
treatment module is called. Afterwards, the negotiation
module sends the response back to the PEP (8’), which
applies the decision.

Until now, we did not take into consideration the
credentials certifying the attributes that the other entity
involved in the negotiation process may request. In fact,
we consider that the negotiation module is in charge
of negotiating the access by collecting credentials and
revealing policies. It is up to the negotiation module
to submit an access request concerning the required
credentials to the context handler. This request is sim-
ilar to any request received from the PEP. The subject
of the request should be the other negotiating en-
tity, and the requested resource is the credential that
contains the attributes required within the negotiation
process. If the access policies evaluated by the PDP
permit the access to that resource, it will be revealed so
that the other entity gives the initial requested resource
and the negotiation continues. Elsewhere, an alterna-
tive should be proposed by the exception treatment
module so that the negotiation module may continue

the negotiation.
9. obligations obligations
service

% ra?uast 8'. response
Negotiation
3. enriched request module
8. response
6. reguest 1
notification ;
PDP context handler Exception treatment
7. response module
/ context
1. policy 5. response
4. request
—
* Role Enablement Authority (REA)
\ -Role Assignment Policy
PAP 1. policy Exgioment < *View Enablement Authority (VEA)

@ Springer

Authorities

-View Assignment Policy

* Activity Enablement Authority (AEA)
-Activity Assignment Policy

* Context Enablement Authority (CEA)
-Context Assignment Policy

—

Ann. Telecommun. (2009) 64:155-169

167

6.2 Failures in the negotiation

Regarding failures in the negotiation, several cases may
be considered:

e Case 1: The negotiation module checks the class
of the resource (negotiable resource) and does not
find the corresponding negotiation policy that ap-
plies to that resource. It cannot launch the negotia-
tion process.

e (Case 2: The negotiation module fails during
the negotiation process while collecting resources
because of a loop exception raised without
alternative.

e Case 3: The negotiation module fails during
the negotiation process while collecting the re-
quired resources because of a nonaccess exception
raised by the requestor or the provider without
alternative.

e Case 4: The negotiation module contacts the ex-
ception treatment module because there is a final
nonaccess exception. This occurs after the access
decision has been already evaluated by the PDP.

Fig. 8 The implementation of
the negotiation functionalities

[PEP

3. request

3. enriched request

The exception treatment module has no alternative
to suggest.

In cases 1, 2, and 3, there is a failure in the bottom-
up flow (from the PEP to the PDP in Fig. 7). The
INL of the resource is 2 or 3 and it is not possible
to derive a CNL of 1; then, the negotiation module
should not relay the request to the context handler. The
needed attributes are not collected; thus, the request for
access cannot be properly evaluated. If an alternative
(e.g., other combination of requested attributes) were
proposed by the exception treatment module, the ne-
gotiation would have continued or, in the absence of
alternatives, the access is denied. In case 4, it is a failure
in the top-down flow (from the PDP to the PEP in the
Fig. 7); then, the response is sent to the PEP so that it
applies the decision.

7 Implementation

The implementation of the RBAC profile of XACML
does not yet exist; however, the XACML standard

Network
supervision
3
A

v
StrategyModule
Switcher

;""-NegoStrategw

PDPNego
Checker

e (NegoStrategy2 ‘
> StrategyModule— =

Mediator
J

A
[PDPChecker |-

Mediator C Neg_oSt:att_egyB_:;

1 NegoStrategw-"_"

!

8. response
Negotiation
module

8. response
) o 6 request [\
POP notification context Exception
| 7. response handler treatment
context | module
- e ©]
; 4. request QueryEngineMediator
1. pol
PoicY §. response [
- " :
: " Enablement |
Y PAP U 1. policy . Authorities |

p

Profile
Manager

Resource
Classifier

Palicy
Manager

Mapping Assertion
Resource-Classification Repository

Negotiation policy
Repository

@ Springer

168

Ann. Telecommun. (2009) 64:155-169

specification version 1.1 is implemented by Sun.! Such
an implementation especially provides the function-
alities of a PDP for evaluating a request against an
XACML policy. According to our profile, the EA are
based on such XACML PDP functionalities in the sense
that they evaluate XACML requests for enablement
against existing assignment policies. The context han-
dler and PEP specified in the XACML standard [10] are
not implemented in Sun’s distribution. We have imple-
mented such entities and made some modifications to
the existing Sun’s implementation in order to respond
to the requirements of our extended RBAC profile of
XACML. That is, the environment value, as defined in
the XACML standard, is never evaluated in the existing
Sun’s implementation. This environment information is
needed in our extended profile in order to evaluate the
context value.

In the XeNA framework, the negotiation architec-
ture is integrated within the implemented extended
RBAC profile of XACML (see Fig. 8). We based the
negotiation architecture implementation on the open
source distribution code of TrustBuilder2 version 0.1
[21]. This distributed framework for trust negotiation
can be easily extended by adding various plugins that
can be loaded by the TrustBuilder2 runtime. These
plugins can be used in place of, or in addition to, the
system components. We have modified many classes
of the TrustBuilder2 prototype to express XeNA re-
quirements. That is, the actual distribution of Trust-
Builder2 supports a policy compliance checker based
on CLOUSEAU policy language. However, Trust-
Builder2 supports any type of policy language sup-
posing that this language is added to the system by
implementing a derived class of AbstractPolicyBrick,
i.e., the abstract policy type supported by Trust-
Builder2. We have used XACML to express access
control and negotiation policies. Consequently, we im-
plemented a new compliance checker based on the
functionalities of an XACML PDP. It verifies some
conditions against the existing or received credentials
(i.e., embedded attributes). We have developed Ex-
ceptionTreatmentModule, NegotiationModule, and Re-
sourceClassification classes and many others.

We needed a module that returns the negotiation
policies and resources’ classification upon request. We
have used the QueryEngineMediator module of Trust-
Builder2 that dispatches classes to appropriate query

Ihttp://sunxacml.sourceforge.net/

@ Springer

engines based upon their query type. Currently, this
module supports two query engines in TrustBuilder2:
the PolicyManager, responsible for loading policies,
and the ProfileManager, which loads credentials and
claims (i.e., uncertified information such as phone num-
bers or e-mail addresses). We have added the Resource-
Classifier engine, which loads resource classification.
The PolicyManager engine is exclusively dedicated to
the negotiation policies in our case.

The actual StrategyModuleMediator in Trust-
Builder2 is used to call a strategy that was chosen
for use during a given session. This module decides
what should be disclosed in a response to the other
negotiating party. The current module supports one
trust negotiation strategy. We have extended this
module in order for it to be able to choose but also
dynamically change strategies during the negotiation
process. Four classes, each implementing a different
negotiation strategy, were created.

The exchanged credentials are based on the SAML
V2.0 standard [22]. In order to implement SAML cre-
dentials, we have used some open source Java libraries
of the openSAML2.0.? Finally, we tested our XeNA
prototype according to some defined test cases, and we
obtain the expected results.

8 Conclusion and perspectives

In this paper, we have proposed a framework for ac-
cess negotiation and access control management. The
negotiation of access aims to establish trust and collect
data necessary for a successful access evaluation. This
negotiation is processed by a negotiation module and
based on a resource classification methodology. The
access control management is done within an extended
RBAC profile of XACML. Our proposition is based on
this extended profile architecture, to which we add the
negotiation actors (negotiation module and exception
treatment modules).

Now that we have proposed a structured framework
for negotiation within XACML, further work should
be done on the way policies can be evaluated accord-
ing to the resources. This is to determine what the
required resources to satisfy these policies are. We will
also improve our implemented prototype especially by
reducing the time it takes for a negotiation process to
complete.

Zhttps://spaces.internet2.edu/display/OpenSAML/Home

http://sunxacml.sourceforge.net/
https://spaces.internet2.edu/display/OpenSAML/Home

Ann. Telecommun. (2009) 64:155-169

169

Acknowledgements The work presented in this paper is sup-
ported by funding from the ANR RNRT POLITESS Project.

References

1. Seamons KE, Chan T, Child E, Halcrow M, Hess A, Holt J,
Jacobson J, Jarvis R, Patty A, Smith B, Sundelin T, Yu L
(2003) TrustBuilder: negotiating trust in dynamic coalitions.
In: Proceedings DARPA information survivability confer-
ence and exposition, vol 2. Washington, DC, pp 49-51, 22-24
April 2003

2. Smith B, Seamons KE, Jones MD (2004) Responding to
policies at runtime in TrustBuilder. In: Proceedings of the
fitth IEEE international workshop on policies for distributed
systems and networks (POLICY’04). New York, pp 149-158,
7-9 June 2004

3. Seamons KE, Winslett M, Yu T, Chan T, Child E, Halcrow M,
Hess A, Holt J, Jacobson J, Jarvis R, Patty A, Smith B,
Sundelin T, Yu L (2003) Trust negotiation in dynamic
coalitions. In: Proceedings of the DARPA information sur-
vivability conference and exposition (DISCEX’03), vol 2.
Washington, DC, pp 240-245, 22-24 April 2003

4. Yuan E, Tong J (2005) Attribute based access control
(ABAC): a new access control approach for service oriented
architectures. In: Ottawa new challenges for access control
workshop. Ottawa, April 2005

5. Seamons K, Winslett M, Yu T (2001) Limiting the disclosure
of access control policies during automated trust negotia-
tion. In: Network and distributed system security symposium.
San Diego, pp 45-56, April 2001

6. Thomas RK, Sandhu RS (1997) Task-based Authoriza-
tion Controls(TBAC): a family of models for active and
enterprise-oriented authorization management. In: Proceed-
ings of the IFIP WG11.3 workshop on database security.
Lake Tahoe, pp 166-181, August 1997

7. Harrison MA, Ruzzo ML, Ullman JD (1976) Protection in
operating systems. Commun ACM 19(8):461-471

8. Miege A (2005) Definition of a formal framework for spec-
ifying security policies. The Or-BAC model and extensions.
PhD thesis, ENST, June

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Sandhu RS, Coyne EJ, Feinstein HL, Youman CE (1996)

Role-based access control models. Computer 29(2):38-47,
February

eXtensible Access Control Markup Language (XACML)
Version 2 (2005) Standard. OASIS, February

Herzberg A, Mass Y, Michaeli J, Ravid Y, Naor D (2000)
Access control meets public key infrastructure, or: assigning
roles to strangers. In: SP ’00: proceedings of the 2000 IEEE
symposium on security and privacy. IEEE Computer Society,
Washington, DC, p 2

Jennings NR, Faratin P, Lomuscio AR, Parsons S,
Wooldridge MJ, Sierra C (2001) Automated negotiation:
Prospects, methods and challenges. Group Decis Negot
10(2):199-215

Christensen E, Curbera F, Meredith G, Weerawarana S
(2001) Web Services Description Language (WSDL) 1.1.
W3C note, Microsoft and IBM Research, March

Cuppens F, Cuppens-Boulahia N, Coma C (2006) O20: vir-
tual private organizations to manage security policy inter-
operability. In: ICISS. Delhi, pp 101-115, 17-21 December
2006

Moyer MJ, Abamad M (2001) Generalized role-based access
control. In: 21st International conference on distributed com-
puting systems. Mesa, pp 391-398, 16-19 April 2001
Cuppens F, Miege A (2003) Modelling contexts in the
Or-BAC model. In: ACSAC. Las Vegas, p 416, 8-12
December 2003

SAML 2.0 profile of XACML v2.0 (2005) Standard. OASIS,
February

Core and hierarchical role based access control (RBAC) pro-
file of XACML v2.0 (2005) Standard. OASIS, February
Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli
R (2001) Proposed NIST standard for role-based access con-
trol. ACM Trans Inf Syst Secur (TISSEC) 4(3):224-274
Haidar DA, Cuppens-Boulahia N, Cuppens F, Debar H
(2006) An extended RBAC profile of XACML. In: Proceed-
ings of 2006 ACM secure web services workshop (SWS).
Fairfax, pp 13-22, November 2006

Lee AJ (2007) TrustBuilder2 user manual version 0.1. Tech-
nical report, May

Security Assertion Markup Language (SAML) V2.0 Techni-
cal Overview (2006) Working draft 10. OASIS, October

@ Springer

	XeNA: an access negotiation framework using XACML
	Abstract
	Introduction
	Concept definition
	Access control and negotiation
	Resource classification
	Strategies definition for class 3
	Our resources' perimeter of interest

	The negotiation
	Obtaining the negotiation policies
	Negotiation policy properties
	The negotiation process

	The negotiation architecture
	The exception treatment module
	The negotiation module
	The supervision layer
	The execution layer

	An extended RBAC profile of XACML
	A brief introduction to XACML
	The extended RBAC profile of XACML
	Used XACML attributes
	Assignment policies

	Negotiation within XACML architecture
	XeNA: an extended negotiation architecture
	Failures in the negotiation

	Implementation
	Conclusion and perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

