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A practical inference method with several implicative gradual rules
and a fuzzy input: one and two dimensions

Hazaël Jones, Didier Dubois, Serge Guillaume and BrigitteCharnomordic

Abstract— A general approach to practical inference with
gradual implicative rules and fuzzy inputs is presented. Gradual
rules represent constraints restricting outputs of a fuzzysystem
for each input. They are tailored for interpolative reasoning.
Our approach to inference relies on the use of inferential
independence. It is based on fuzzy output computation underan
interval-valued input. A double decomposition of fuzzy inputs
is done in terms of α-cuts and in terms of a partitioning of
these cuts according to areas where only a few rules apply. The
case of one and two dimensional inputs is considered.

I. I NTRODUCTION

Fuzzy logic, as an interface between symbolic and numeric
computations, is well known for its ability to represent
uncertainty and imprecision inherent in linguistic concepts.

Historically, fuzzy inference systems were devised to per-
form a reasoning task based upon expert knowledge yielding
a continuous numerical ouput, as needed in fuzzy control.
Afterwards, many learning methods were added to enhance
numerical performance.

Conjunctive rules [8] as the ones used in the Mamdani-
style fuzzy inference systems, represent joint possible input
and output values. They do not really fit an interpretation
in terms of logic. In [7], we outlined several advantages
of implicative rules with respect to conjunctive rules. For
instance, with conjunctive rules, the more rules a rule base
has, the more imprecise its output becomes. This fact is
usually hidden by defuzzification. Furthermore, the fuzzy
output width can bias the result. Gradual implicative rules
model constraints restricting output values for each input,
and have interesting interpolation properties [6]. They are
fully compatible with logic. Among these rules, the most
interesting for practical purposes use Goguen implication
because of its continuous inference result, and Resher-Gaines
implication if a non fuzzy output is needed. Implicative rules
are more natural to represent expert knowledge [14] as they
model constraints mapping input and output values.

Nevertheless, the practical use of these rules with a fuzzy
input is difficult. The aim of this article is to show that under
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some condition on input partitions, inference becomes easy
due to a double decomposition: byα-cut and by partitioning.

In the sequel of this article, section II recalls some rule
features. The inference mechanism is discussed in section
III. In section IV, we present sufficient conditions to obtain
inferential independence. Then, in section V, we propose
a decomposition method based on inferential independence
that allows to simplify the inference mechanism for rectan-
gular inputs and a limited number of fuzzy sets in the input
partition, as explained in section VI. Section VII adressesthe
two dimensional case.

II. I MPLICATIVE RULES

The proposition “x ∈ A is possible” means∀u ∈
U, δX(u) ≥ µA(u) whereδX(u) is a guaranteed possibility
distribution [3] and U is the universe. In contrast, the
proposition “x ∈ A is certain” means:

∀u ∈ U, πX(u) ≤ µA(u) (1)

whereπX(u) is a (potential) possibility distribution.
Conjunctive rules [8] stand for examples of what is pos-

sible under various input conditions. On the contrary, with
implicative rules, every piece of knowledge is considered as
a restriction of possible worlds. They are a direct application
of Zadeh’s theory on approximate reasoning[15] and are an
extension of classical logic.

The generalised modus ponens is of the form
A′ ∧ ( A → O ) |= O′, where |= is the logical
inference, which means that in presence of an approximate
fact A′ and the implicationA → O, we are able to calculate
O′ defined by :

µO′(v) = sup
u∈U

µA′(u)>(µA(u) → µO(v)) (2)

The outputO′ constrains the value of the output variable.
When an operator→ (implication) is obtained from>
(conjunction) by residuation, the standard modus ponens
A ∧ ( A → O ) |= O is recovered for fuzzy rules.
Rule aggregation is conjunctive because the possibility in
the sense of (1) is potential: a value estimated as possible by
a rule can be forbidden by other rules.

There are different kinds of implicative rules: certainty
rules and gradual rules. In this article, we only focus on
gradual rules. The behavior of gradual implicative rules,
“the moreX is A, then the moreZ is O”, depends on the
selected implication. We consider in this paper the following
implications :
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• Resher-Gaines:a → b =

{

1 if a ≤ b
0 otherwise

• Gödel:a → b =

{

1 if a ≤ b
b otherwise

• Goguen:a → b =

{

min(1, b/a) if a 6= 0
1 otherwise
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Godël conclusion

µO

µO′

0
V

1

α

Goguen conclusion

µO′

µO

0
V

1

α

µO

µO′

Resher-Gaines conclusion

Fig. 1. Inference with a gradual rule and a precise input

III. I NFERENCE MECHANISM

With implicative rules, the outputO′ is given by:

O′ = A′o

n
⋂

i=1

(Ai → Oi) (3)

whereo is the composition operatorsup-min. WhenA′ is
a precise input, operatorso and

⋂

commute, the output can
then be written:

O′ =
n
⋂

i=1

(A′o(Ai → Oi))

This formalisation corresponds to the FITA1 method. This
method is easy to implement because the inference can be
performed rule by rule.

However, when the inputA′ is imprecise or fuzzy, the
commutation of operatorso and

⋂

is no longer possible [9].
Only the expression (3) which is a FATI2 inference is correct.
Currently there is no practical way of handling inference with
implicative fuzzy rules, other than the Resher-Gaines case
[13]. Another method had been developed in [1] for Gödel
implication but the partition fuzzy sets must have overlapping
kernels.

For a one dimensional approximate fact, the following
inclusion is true:

A′o

(

n
⋂

i=1

Ai → Oi

)

⊆
n
⋂

i=1

(

A′ o (Ai → Oi)
)

The FITA method only gives an upper approximation of
the result.

1FITA means ”First Infer Then Aggregate”
2FATI means ”First Aggregate Then Infer”

IV. INFERENTIAL INDEPENDENCE

To design a practical algorithm for implicative inference,
we use the interesting property of inferential independence
[12], leading to well-conditioned systems.

A. Definitions and results

A rule system{Aj → Oj , j = 1 . . . , n} is well-
conditioned if it produces the output factOi when fed with
the input factAi, for any i = 1 . . . , n:

∀i, Aio
⋂

j

(Aj → Oj) = Oi

The partition shape will determine if the system is well-
conditioned or not. More often than not, this equation is not
true, and is replaced by the following assertion:

Aio
⋂

j

(Aj → Oj) = O′
i

whereO′
i ⊂ Oi. According to Morsi[11], if we substitute

each output of a system by the inferred outputO′
j , the system

Aj → O′
j is well-conditioned:

Aio
⋂

j

(

Aj → O′
j

)

= O′
i

Morsi’s proof uses residuated implication properties [10]
verified by Gödel and Goguen operators and the relation:
⋂

j(Aj → Oj) =
⋂

j(Aj → O′
j) proved in [11]. In a

well-conditioned system, rules are inferentially independent.
In the sequel, we check which types of partition yield a

well-conditioned system. The following proof does not work
for Resher-Gaines but it is true for all residuated implications
obtained from a continuous t-norm.

B. Sufficient conditions

From equation (2), and because of the conjunctive ag-
gregation of implicative rules, we obtain with themin
conjunction operator:∀y ∈ V,

sup
x∈U

µAi
(x)>min

j∈N

(

µAj
(x) → µOj

(y)
)

= µOi
(y)

By shifting µAi
(x) and t-norm> inside ofmin: ∀y,

sup
x∈U

min
j∈N

(

µAi
(x)>(µAj

(x) → µOj
(y))

)

= µOi
(y)

We are looking for sufficient conditions for this equality to
hold. SinceO′

i ⊆ Oi, the equation is equivalent to:∀y, ∃x ∈
U,

min
j∈N

(

µAi
(x)>(µAj

(x) → µOj
(y))

)

= µOi
(y)

Then, we have the following sufficient conditions:
∀y, ∃x ∈ U,

∀j 6= i, µAi
(x)>(µAj

(x) → µOj
(y)) ≥ µOi

(y) (4)

and

µAi
(x)>(µAi

(x) → µOi
(y)) = µOi

(y) (5)
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Choosingx ∈ Core(Ai), equation (5) obviously holds
since 1 → µOi

(y) = µOi
(y) for Gödel and Goguen

implication. For Resher-Gaines implication, this equation
holds if, ∀y, we choosex such thatµAi

(x) = µOi
(y).

Now, we must check equation (4). If we considerx in
the core ofAi, then a sufficient condition is the following:
∀y, ∃x ∈ Core(Ai), ∀j 6= i,

µAj
(x) → µOj

(y) ≥ µOi
(y) (6)

because1>x = x. Then we have two cases:

• µAj
(x) > µOj

(y): then equation (6) is not usually true.
If this strict inequality holds for allx ∈ Core(Ai), the
system is not well-conditioned.

• µAj
(x) ≤ µOj

(y): then equation (6) is always true.

In order to respect this condition, partitions must satisfy
the following property: at least one value in a fuzzy set core
must not belong to the support of other sets. i.e. as we can
see on figure 2,∃ x ∈ Core(Ai), µAj

(x) = 0, ∀ j 6= i.

1

Ux0

Ai−1 Ai Ai+1

Fig. 2. A fuzzy partition allowing inferential independance

For strong input fuzzy partitions (see figure 4) the follow-
ing stronger property holds:∀ j 6= i,∀ x ∈ Core(Ai),
µAj

(x) = 0. Hence the system is always well-conditioned
in this case.

We now obtain an interesting property useful for inference:
for strong fuzzy partitions, withx ∈ Core(Ai), the system
output is Oi for Gödel and Goguen andCore(Oi) for
Resher-Gaines. This proof holds for a n-dimensional system.

V. DECOMPOSITION BASED ALGORITHM

Now, we use strong fuzzy partitions and the inferential
independence property to design a practical inference process
by input decompositions. These decompositions are feasible
due to the following property of a fuzzy relationR:

(A ∪ A′)oR = (AoR) ∪ (A′oR) (7)

First we consider one-dimensional inputs.

A. α-cut decomposition

An α-cut of A is an interval defined by:
∀α > 0, IAα

= {x ∈ R|µA(x) ≥ α} = [Iαl, Iαr]
A is equal to

⋃

αj∈]0,1] Aαj
× αj where Aαj

is a rect-
angular input of level1 whose width is theα-cut IAαj

. A
fuzzy setA is bracketted within two approximations: inner
and external (see figure 3).

⋃

j=1,...,n

αjAαj
⊆ A ⊆

⋃

j=1,...,n

αjAαj+1
(8)

1

0

α2

α3

α1

A’

U

IAα1

IAα2

IAα3

α1
A’

α2

α3

1

U0

IAα2

IAα3

IAα4

inner external

Fig. 3. α-cut decomposition

External approximations seem to be more appropriate
because they include the fuzzy input. The approximated
output will also contain the true output. It could be interesting
to keep both inner and external approximations in order to
reason with two approximations like for Rough Sets [2].

Equation (8) shows that the number ofα-cut chosen will
influence the inferred output accuracy.

B. Partitioning decomposition

To partition the input space, we consider supports and
cores seperately. LetEk be intervals obtained from such a
decomposition (see figure 4). This decomposition is able to
isolate the fuzzy set cores. Thanks to the well-conditioned
system property, inference is straightforward in the core area.

0

1

E2 E3 E4 E5

U
E1

Fig. 4. Partitioning decomposition with strong fuzzy partition

In the presence of a fuzzy inputA′ on an input partition,
we first decomposeA′ using anα-cut decomposition. Then,
the partitioning decomposition will be carried out onA′’s
support. As a consequence, we have the relation:

A′ =
⋃

α

(

α(
⋃

k=1,...,p Ek ∩ Aα)
)

wherep is the number of intervalsEk.

VI. I NFERENCE WITH A RECTANGULAR INPUT

OutputO′ is then equal to:

O′ =
⋃

α

(

α>(
⋃

k=1,...,p O′
k)
)

where O′
k = (Ek ∩ Aα)oR and > the t-norm of the

residuated implication. Due to partitioning, there are at most
two fuzzy sets by decomposition. Furthermore, due toα-cut
decomposition, it all comes down to handling rectangular
inputs. If the rectangular input is included within the fuzzy
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1
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Fig. 5. Inference with two gradual implicative rules and a precise input

set core ofAi, the result is obvious: we obtainOi for Gödel
and Goguen andOi’s core for Resher-Gaines.

Let the interval of interest be[il, ir]. A rectangular in-
put membership function is defined byµ[il,ir] such that:

µ[il,ir ](x) =

{

α if il ≤ x ≤ ir
0 otherwise

If a rectangular input is included within the overlapping
of two fuzzy sets (see figure 6), the output is given by:

µO′(y) = sup
a≤x≤b

min
i=1,...,n

(

µ[il,ir](x)>µAi
(x) → µOi

(y)
)

In this specific case, it is equal to:

µO′(y)= sup
a≤x≤b

min
(

µ[il,ir ](x)>µAi
(x) → µOi

(y),

µ[il,ir](x)>µAi+1
(x) → µOi+1

(y)
)

(9)

for somei. As the input is rectangular, there are two cases:

• Let µ[il,ir](x) = 0, then we can deduce thatµO′(y) = 0
because0>x = 0.

• Let µ[il,ir ](x) = α, then we get the following equation:

µO′(y)= sup
il≤x≤ir

min
(

α>µAi
(x) → µOi

(y),

α>µAi+1
(x) → µOi+1

(y)
)

Sinceα and> are independent ofx and i, the system is
equivalent to:

µO′(y)=α> sup
il≤x≤ir

min
(

µAi
(x) → µOi

(y),

µAi+1
(x) → µOi+1

(y)
)

Next, the output’s behavior depends on the chosen resid-
uated implication. We’ll consider Resher-Gaines, Gödel and
Goguen implication. Figure 5 displays inference results with
a crisp input and two gradual rules.

Level α has only a limiting effect on the output’s height.
No output element could have higher membership than level

a

Ai1

b U
0

Ai+1

αi

αj

Rule condition

1

0
Va’ b’

αi

αj

Oi Oi+1

Resher-Gaines conclusion

1

0
Va’ b’

αi

αj

Oi Oi+1

Gödel conclusion

1

0
Va’ b’

αi

αj

Oi Oi+1

Goguen conclusion

Fig. 6. Inference with two gradual implicative rules and a fuzzy input
decomposed on three levelsαj < αi < 1

α because the minimum is the upper bound of t-norms.
According to the chosen implication, a different t-norm
will be used. For Resher-Gaines and Gödel, t-norm is the
minimum. Then, the output is truncated at levelα, but its
shape is preserved. For Goguen implication, t-norm is the
product. The output is also truncated at levelα but the
support slopes are modified (See figure 6).

Output computation for one rectangular input is straight-
forward depending on the chosen implication. The one-
dimensional inference process is done by performing the
union of outputs inferred from each rectangular input taking
both decomposition into account.

VII. 2D INFERENCE

In this section, we focus on Resher-Gaines implication
because the computation provides the core of outputs inferred
using residuated fuzzy implications. We need to make sure
fuzzy rule conclusions ensure logical system coherence [5].
Then several cases must be studied according to input
location.

A. Fuzzy rule conclusions and coherence

As a precise input value may belong to at most two fuzzy
sets in each dimension (A1 andA2, B1 andB2), four rules
are likely to be simultaneously triggered by a 2D precise
input:

• If X is A1 andY is B1 thenZ is O1,1

• If X is A1 andY is B2 thenZ is O1,2

• If X is A2 andY is B1 thenZ is O2,1

• If X is A2 andY is B2 thenZ is O2,2

Contrary to the one-dimensional case where rule inco-
herence is easily spotted, the two-dimensional rule sys-
tem is not so easy to deal with regarding coherence.
In order to maintain system coherence, we must have
O1,1 ∩ O1,2 ∩ O2,1 ∩ O2,2 6= ∅. To in-
sure coherence [4], we build an output coverage (see fig-
ure 8) given input partitions (see figure 7) and a mono-
tonic continuous 2D function. We build outputs such as
O1,1 = f(A1, B1), O1,2 = f(A1, B2), O2,1 = f(A2, B1)
andO2,2 = f(A2, B2).
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A1 A2

1 2 3 00

1 1
B1 B2

1 2 3U V

Fig. 7. Input partitions

1

0

O1,2 O2,1 O2,2O1,1

a a+b a+c a+b+c a+2b+c a+2b+2c a+3b+2c Wa+3b+3c

a+b+2c a+2b+3c

Fig. 8. Output partition created with a linear functiona + bx + cy

As an example, a linear functionf(x, y) = a+ b x + c y,
creates an output partition calculated from input verticesas
in figure 8. In this figure,O1,1 andO2,2 still make a strong
partition. If b = c, thenO1,2 andO2,1 are identical.

B. 2D inference difficulties

With input strong partitions, there are 3 different situations
according to the precise input location (see figure 9). In the
sequel, we denotea−(α) the smaller of the two abcissas of
U whose membership degree toA is α. The greater value
of the two abcissas is denoteda+(α) (see figure 10).

• Case 1: both inputs lie within the cores of fuzzy setsAk

in U andBl in V . In this situation we can directly infer
the output thanks to the rule inferential independence
(see section IV). Output is equal toCore(Ok,l) for
Resher-Gaines implication.

• Case 2: thex input lies within the core of a fuzzy setAk

and they input lies between the cores ofBl andBm. In

A1 A2

1B1

B2

2

1 2

3 2

121

U

V

Fig. 9. Areas defined by input partitions

U

A

α

a−(α) a+(α)

Fig. 10. Input notation
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Fig. 11. Case 3: four interesting areas

consequence, only 2 rules are triggered:Ak∧Bl → Ok,l

andAk∧Bm → Ok,m. This behavior is the same for an
input y within the core ofBk and an inputx between
Al andAm’s cores.

• Case 3: the input lies between the cores of adjacent
fuzzy sets inU and inV (see figure 11). Four rules are
triggered. This is the most complicated case.
Given a functionf(x, y) and a 2D precise input, we
can compute the Resher-Gaines output [4], which is an
interval: expressions of the lower boundzmin and upper
boundzmax are summed up in table I for each zone (see
figure 11). Zones are defined according to the value of
m = min(α1, α2, β1, β2) (see fig. 7, whereα1 = 1 −
α2, β1 = 1 − β2): if m = β1 we are in zone 3.1,
m = α1 corresponds to zone 3.2,m = β2 to zone
3.3 andm = α2 to zone 3.4.

C. Continuity and kink points with rectangular inputs

In presence of a rectangular input, it is important to know
if we can compute output upper and lower bounds using only
the vertices of the input. We need to know if the real output
is in the convex hull of outputs inferred with the two vertices
of the rectangular input.

To illustrate this problem, we consider a precise input on
dimensionV and we study the output evolution according
to the other dimension (see figure 12). This figure shows a
continuous output and a kink point in the lower output bound
for some value ofα1. It is important to detect this point to
obtain the output convex hull.

A kink point is typically obtained if the two
functions defining an output bound (table I) evolve
in opposite directions. For example, in figure
12, a kink point appears on the lower bound in
zone 3.1. This bound is the result of expression:
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Zone Lower boundzmin

3.1 max

„

f
“

a−

2
(α2), b−

2
(α2)

”

, f
“

a−

1
(α1), b−

2
(α1)

”

«

3.2 max

„

f
“

a−

2
(β2), b−

2
(β2)

”

, f
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2
(β1), b−

1
(β1)

”

«

3.3 max

„

f
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2
(α2), b−

1
(α2)

”

, f
“

a−

2
(β2), b−

2
(β2)

”

«

3.4 max

„

f
“
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2
(α2), b−

2
(α2)

”
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1
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2
(β2)

”

«

Zone Upper boundzmax

3.1 min

„

f
“

a+

1
(β1), b

+

1
(β1)

”
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“
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1
(α1), b+

2
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”
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f
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2
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+

1
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”
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1
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1
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”
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„

f
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2
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1
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”
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1
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1
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”

«
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„

f
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1
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1
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”
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“
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1
(β2), b+

2
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”

«

TABLE I

OUTPUT INTERVALS (α1 = α2 − 1, β1 = β2 − 1 )
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Fig. 12. Output evolution according toα1

max

(

f
(

a−
2 (α2), b

−
2 (α2)

)

, f
(

a−
1 (α1), b

−
2 (α1)

)

)

,

where the former decreases and the latter
increases. Consequently, the kink point is where
f
(

a−
2 (α2), b

−
2 (α2)

)

= f
(

a−
1 (α1), b

−
2 (α1)

)

. For a linear

function f(x, y) = a + bx + cy, this equality becomes:
a + a−

2 (α2)b + b−2 (α2)c = a + a−
1 (α1)b + b−2 (α1)c.

All terms of this equation are known so we can find the
membership levelα1 that corresponds to the kink point.

To sum up the inference process in two dimensions with
rectangular inputs, it is necessary to:

• infer from each vertex of the rectangular input.

• test if there are kink points those input values are within
the rectangular input.

• infer from all input values yielding kink points.

The final output is the convex hull of all the outputs so
inferred.

VIII. C ONCLUSION

This paper lays the foundation for a practical inference
method with a system of implicative fuzzy rules. In the 2D
case the difficult point is to infer from a rectangular (impre-
cise) input. For fuzzy input, we can get an approximation of
the result usingα-cuts and partitioning decomposition. Infer-
ring with this kind of fuzzy system is especially appropriate
when modeling expert knowledge expressing constraints (as
opposed to Mamdani rules). In the future, this method will
be tested on a predictive diagnosis case-study of cheese
production process, for which expert rules with two input
conditions are frequent. Extending the approach beyond 2D
inputs is also the next challenging task.
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