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Abstract

Using Hermite’s formulation of polynomial stability conditions, static output
feedback (SOF) controller design can be formulated as a polynomial matrix in-
equality (PMI), a (generally nonconvex) nonlinear semidefinite programming prob-
lem that can be solved (locally) with PENNON, an implementation of a penalty
method. Typically, Hermite SOF PMI problems are badly scaled and experiments
reveal that this has a negative impact on the overall performance of the solver.
In this note we recall the algebraic interpretation of Hermite’s quadratic form as
a particular Bézoutian and we use results on polynomial interpolation to express
the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conven-
tional power basis. Numerical experiments on benchmark problem instances show
the substantial improvement brought by the approach, in terms of problem scaling,
number of iterations and convergence behavior of PENNON.

Keywords: Static output feedback, Hermite stability criterion, Polynomial matrix inequality,
Nonlinear semidefinite programming.

1 Introduction

In 1854 the French mathematician Charles Hermite studied quadratic forms for counting
the number of roots of a polynomial in the upper half of the complex plane (or, by a
simple rotation, in the left half-plane), more than two decades before Routh, who was
apparently not aware of Hermite’s work, see [8]. Hurwitz himself used some of Hermite’s
ideas to derive in 1895 his celebrated algebraic criterion for polynomial stability, now
called the Routh-Hurwitz criterion and taught to engineering students in tabular form.
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Hermite’s criterion can be interpreted as a symmetric formulation of the Routh-Hurwitz
criterion. This symmetry can be exploited in a semidefinite programming framework, as
shown in [3] and [4] in the context of simultaneous stabilization of linear systems. Along
the same vein, in [5] the problem of static output feedback (SOF) design was formulated
as a polynomial matrix inequality (PMI) problem. In some cases (e.g. only one input or
output available for feedback) this PMI problem simplifies to a bilinear matrix inequality
(BMI) that can be solved numerically with PENBMI, a particular instance of PENNON,
a general penalty method for nonlinear and semidefinite programming. Only convergence
to a local optimum is guaranteed, but experiments reported in [5] show that quite often
the approach is viable numerically. In particular, the SOF PMI formulation involves only
controller parameters, and does not introduce (a typically large number of) Lyapunov
variables.

Our motivation in this paper is to contribute along the lines initiated in [5] and to study
the impact of SOF PMI problem formulation on the behavior of PENNON, in particular
w.r.t. data scaling and number of iterations. The Hermite matrix depends quadratically
on coefficients of the characteristic polynomial, in turn depending polynomially on the
controller parameters. As a result, coefficients of a given Hermite matrix typically dif-
fer by several orders of magnitude, and experiments reveal that this poor data scaling
significantly impacts on the performance of PENNON.

In this paper we use an alternative formulation of the Hermite matrix, using a Lagrange
polynomial basis instead of the standard power basis. We build on previous work from the
computer algebra and real algebraic geometry communities, recalling the interpretation
of Hermite’s quadratic form as a particular Bézoutian, the resultant of two polynomials,
see [6] and references therein. This interpretation provides a natural choice for the nodes
of the Lagrange basis. The construction of the Hermite matrix in this basis is carried out
efficiently by interpolation, overcoming difficulties inherent to Vandermonde matrices, as
suggested in [12] for general Bézout matrices.

In addition to digesting and tailoring to our needs results from computational algebraic
geometry, another contribution of our paper is to extend slightly the characterization of
[12] to Hermitian forms with complex and repeated interpolation nodes. In particular,
in our SOF design application framework, these nodes are roots of either imaginary or
real part of a target characteristic polynomial featuring spectral properties desirable for
the closed-loop system. This target polynomial is the main tuning parameter of our
approach, and we provide numerical evidence that a suitably choice of target polynomial,
compatible with achievable closed-loop dynamics, results in a significant improvement
of SOF PMI problem scaling, with positive effects on the overall behavior (convergence,
number of outer and inner iterations, linesearch steps) of PENNON. Furthermore, some
of the problems that were not solvable in the power basis, see [5], can now be solved in
the Lagrange basis. These improvements are illustrated on numerical examples extracted
from the publicly available benchmark collection COMPleib, see [9].
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2 PMI formulation of SOF design problem

We briefly recall the polynomial matrix inequality (PMI) formulation of static output
feedback (SOF) design problem proposed in [5].

Consider the linear system
ẋ = Ax+Bu
y = Cx

of order n withm inputs and p outputs, that we want to stabilize by static output feedback
(SOF)

u = Ky.

In other words, given matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, we want to find matrix
K ∈ Rm×p such that the eigenvalues of closed-loop matrix A + BKC all belong to the
left half of the complex plane.

Let k ∈ Rmp be the vector obtained by stacking the columns of matrix K. Define

q(s, k) = det (sI − A− BKC) =

n
∑

i=0

qi(k)s
i (1)

as the characteristic polynomial of matrix A+BKC. Coefficients of increasing powers of
indeterminate s in polynomial q(s, k) are multivariate polynomials in k, i.e.

qi(k) =
∑

α

qiαk
α (2)

where α ∈ Nmp describes all monomial powers.

The Routh-Hurwitz criterion for stability of polynomials has a symmetric version called
the Hermite criterion. A polynomial is stable if and only if its Hermite matrix, quadratic
in the polynomial coefficients, is positive definite. Algebraically, the Hermite matrix can
be defined via the Bézoutian, a symmetric form of the resultant.

Let a(u), b(u) be two polynomials of degree n of the indeterminate u. Define the bivariate
quadratic form

a(u)b(v)− a(v)b(u)

u− v
=

n
∑

i=1

n
∑

j=1

biju
i−1vj−1.

The n-by-n matrix with entries bij is the Bézoutian matrix, whose determinant is the
resultant of a and b, obtained by eliminating variable u from the system of equations
a(u) = b(u) = 0.

The Hermite matrix in power basis of q(s, k), denoted by HP (k), is defined as the
Bézoutian matrix of the real and imaginary parts of q(ju, k):

a(u, k) = Im q(jw, k)
b(u, k) = Re q(jw, k).

The roots of polynomial q(s, k) belongs to the left half-plane if and only if

HP (k) =

n
∑

i=0

n
∑

j=0

qi(k)qj(k)H
P
ij ≻ 0.
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The above relation is a matrix inequality depending polynomially on parameters k. There-
fore, finding k amounts to solving a polynomial matrix inequality (PMI) problem.

Example 2.1 As an illustrative example, consider problem NN6 in [9]. The closed-loop
characteristic polynomial is (to 8 significant digits):

q(s, k) = s9 + 23.300000s8 + (4007.6500− 14.688300k2 + 14.685000k4)s
7

+ (91133.935− 14.685000k1 + 14.688300k3 + 15.132810k4)s
6

+ (1149834.9− 57334.489k2 + 15.132810k3 + 36171.693k4)s
5

+ (20216420− 57334.489k1 + 36171.693k3 + 35714.763k4)s
4

+ (49276365− 12660338k2 + 35714.763k3 + 3174671.8k4)s
3

+ (−1562.6281 · 105 − 12660338k1 − 3174671.8k3 + 3133948.9k4)s
2

+ (−4315.5562 · 105 + 95113415k2 + 3133948.9k3)s

+ 95113415k1

with SOF gain K = [k1 k2 k3 k4]. The 9-by-9 Hermite matrix of this polynomial cannot
be displayed entirely for space reasons, so we choose two representative entries:

HP
3,3(k) = 10244466 · 108 − 53923375 · 107k1 + 55487273 · 106k2

+ 10310826 · 107k3 − 32624061 · 107k4 + 16028416 · 107k1k2

− 27103829 · 104k1k3 − 36752006 · 106k1k4

− 43632833 · 106k2k3 − 43073807 · 106k2k4

+ 22414163k2
3 + 10078541 · 106k3k4 + 99492593 · 105k2

4

and
HP

9,9(k) = 23.300000.

We observe that this Hermite matrix is ill-scaled, in the sense that the coefficients of
its entries (multivariate polynomials in ki) differ by several orders of magnitude. This
representation is not suitable for a matrix inequality solver.

3 A simple scaling strategy

A possible remedy to address the poor scaling properties of the Hermite matrix is to scale
the frequency variable s, that is, to substitute ρs for s in the characteristic polynomial
q(s, k), for a suitable positive scaling ρ. Finding the optimal value of ρ (e.g. in terms
of relative scaling of the coefficients of the Hermite matrix) may be formulated as an
optimization problem, but numerical experiments indicate that nearly optimal results are
achieved when following the basic strategy consisting of choosing ρ such that the constant
and highest power polynomial coefficients are both equal to one. For example, this idea
was implemented by Huibert Kwakernaak in the scale function of the Polynomial Toolbox
for Matlab, see [11].
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Example 3.1 Consider the simple example AC4 in [9]. The open-loop characteristic
polynomial is

q(s, 0) = det(sI − A)

= s4 + 150.92600s3 + 130.03210s2 − 1330.6306s− 66.837750

with Hermite matrix in power basis

HP =









88936.354 0 10087.554 0
0 −162937.14 0 1330.631

10087.554 0 20955.855 0
0 1330.6306 0 150.92600









.

To measure quantitatively the scaling of a matrix X , we may use its condition number. If
the matrix is poorly scaled, then its condition number is large. Minimizing the condition
number therefore improves the scaling. For the above matrix, its condition number (in
the Frobenius norm), defined as ‖HP‖F‖(H

P )−1‖F , is equal to 1158.2. If we choose ρ =
4
√

1.0000/66.840 = 3.5000 · 10−1, the scaled characteristic polynomial has unit constant
and highest coefficient, and the resulting scaled Hermite matrix reads

SHPS =









163.48864 0 151.37636 0
0 −2445.0754 0 163.00225

151.37636 0 2567.0923 0
0 163.00225 0 150.92600









with
S = diag

(

ρ3, ρ2, ρ1, 1
)

.

The Frobenius condition number of SHPS is equal to 32.096.

Whereas this simple scaling strategy with one degree of freedom may prove useful for
small-degree polynomials and small-size Hermite matrices, a more sophisticated approach
is required for larger instances.

4 Hermite matrix in Lagrange basis

In this section we show how the Hermite matrix can be scaled by an appropriate choice of
polynomial basis. Moreover, this basis allows for a straightforward entrywise construction
of the Hermite matrix.

4.1 Distinct interpolation points

Consider n distinct interpolation points ui ∈ C, i = 1, . . . , n, and define the j-th Lagrange
polynomial

lj(u) =

n
∏

i=1,i 6=j

u− ui

uj − ui
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which is such that lj(uj) = 1 and lj(ui) = 0 if i 6= j. In matrix form we can write














1
u
u2

...
un−1















=















1 1 · · · 1
u1 u2 · · · un

u2
1 u2

2 · · · u2
n

...
...

un−1
1 un−1

1 · · · un−1
n





























l1(u)
l2(u)
l3(u)
...

ln(u)















= Vul(u) (3)

where Vu is a Vandermonde matrix. Given a univariate polynomial q(s) with real coeffi-
cients, define

a(u) = Im q(jw)
b(u) = Re q(jw)

(4)

as its imaginary and real parts on the imaginary axis, respectively. In the following, the
star denotes transpose conjugation and the prime denotes differentiation, i.e.

a′(u) =
da(u)

du
.

Theorem 4.1 When the interpolation points are distinct (i.e. ui 6= uj, i 6= j, i, j =
1, . . . , n), the Hermite matrix of q(s) in Lagrange basis, denoted by HL, is given entrywise
by

HL
i,j :=







a(u∗
i )b(uj)− a(uj)b(u

∗
i )

u∗
i − uj

if u∗
i 6= uj ,

a′(u∗
i )b(uj)− a(uj)b

′(u∗
i ) otherwise,

for all i, j = 1, . . . , n.

Proof Let us express the Bézoutian of a and b as a bivariate quadratic form

a(u)b(v)− a(v)b(u)

u− v
=











1
v
...

vn−1











∗

HP











1
u
...

un−1











where HP is the Hermite matrix of q in the power basis. Recalling relation (3), the
Bézoutian becomes

a(u)b(v)− a(v)b(u)

u− v
= l(v)∗V ∗

v H
PVul(u) = l(v)∗HLl(u)

so that the Hermite matrix of q in the Lagrange basis can be expressed as

HL = V ∗
v H

PVu.

By evaluation at n distinct interpolation points ui and vj, H
L is given entrywise by

HL
i,j =

a(u∗
i )b(vj)− a(vj)b(u

∗
i )

u∗
i − vj

. (5)

Now let u∗
i → vj for all i, j = 1, . . . , n. After adding and subtracting a(vj)b(vj) to the

numerator of (5), we find

HL
i,j = a′(u∗

i )b(uj)− a(uj)b
′(u∗

i ),

using a limiting argument. �
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4.2 Repeated interpolation points

Let us define the bivariate polynomials

ci,j(u, v) :=
∂i+j−2

∂ui−1∂vj−1

(

a(u)b(v)− a(v)b(u)

u− v

)

for all i, j = 1, . . . , n and denote by

a(k)(u) =
dka(u)

duk

the k-th derivative of univariate polynomial a(u).

Lemma 4.2 When the interpolation points are all equal (i.e. ui = uj for all i, j =
1, . . . , n), the Hermite matrix of q(s) in Lagrange basis is given entrywise by

HL
i,j :=



























ci,j(u
∗
i , uj)

(i− 1)!(j − 1)!
if u∗

i 6= uj,

i−1
∑

k=0

a(j+k)(u∗
i )b

(i−k−1)(uj)− a(i−k−1)(uj)b
(j+k)(u∗

i )

(j + k)!(i− k − 1)!
otherwise,

for all i, j = 1, . . . , n.

Proof The proof of this result follows along the same lines as the proof of Theorem 4.1,
with additional notational difficulties due to higher-order differentations. �

Example 4.3 Let us choose n = 3 equal interpolation points (u1 = u2 = u3 = x ∈ R).
According to Lemma 4.2, HL has the following entries:

HL
11 = a′(x)b(x)−a(x)b′(x)

1!

HL
12 = a(2)(x)b(x)−a(x)b(2)(x)

2!

HL
13 = a(3)(x)b(x)−a(x)b(3)(x)

3!

HL
22 = a(2)(x)b′(x)−a′(x)b(2)(x)

2!
+ a(3)(x)b(x)−a(x)b(3)(x)

3!

HL
23 = a(3)(x)b′(x)−a′(x)b(3)(x)

3!
+ a(4)(x)b(x)−a(x)b(4)(x)

4!

HL
33 = a(3)(x)b(2)(x)−a(2)(x)b(3)(x)

3!2!
+ a(4)(x)b′(x)−a′(x)b(4)(x)

4!
+ a(5)(x)b(x)−a(x)b(5)(x)

5!
.

Based on Theorem 4.1 and Lemma 4.2, we leave it to the reader to derive entrywise
expressions for the Lagrange basis Hermite matrix in the general case when only some
interpolation points are repeated.

In the remainder of the paper we will assume for notational simplicity that the interpo-
lation points are all distinct.
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4.3 Scaling

Corollary 4.4 Let the interpolation points be (distinct) roots of either a(u) or b(u), as
defined in (4). Then the Hermite matrix of q(s) in Lagrange basis is block diagonal,
with 2 × 2 blocks corresponding to pairs of complex conjugate points and 1 × 1 blocks
corresponding to real points.

Proof From Theorem 4.1, all the off-diagonal entries of HL are given by

a(u∗
i )b(uj)− a(uj)b(u

∗
i )

u∗
i − uj

(6)

when interpolation points ui and uj are not complex conjugate. Both terms a(u∗
i )b(uj)

and a(uj)b(u
∗
i ) are equal to zero in (6) since the interpolation points are the roots of either

a(u) or b(u). The diagonal entries are a′(u∗
i )b(uj) − a(uj)b

′(u∗
i ) since it is assumed that

interpolation points are distinct. Therefore this part of HL is 1× 1 block-diagonal.

When interpolation points ui and uj are complex conjugate, there is only one non-zero
entry (i, j) which is equal to a′(u∗

i )b(uj) − a(uj)b
′(u∗

i ) and located in the off-diagonal
entry, according to pairness. The diagonal entries of this case are equal to zero by virtue
of equation (6). Therefore this part of HL is 2× 2 block-diagonal.�

From Corollary 4.4 it follows that we can easily find a block-diagonal scaling matrix S
such that the scaled Lagrange Hermite matrix

HS = SHLS

has smaller condition number. Nonzero entries of S are given by

Si,j :=
∣

∣

∣

√

HL
i,j

∣

∣

∣

−1

whenever HL
i,j is a nonzero entry (i, j) of HL.

Example 4.5 As an illustrative example, consider problem NN5 in [9]. The open-loop
characteristic polynomial is

q(s) = s7 + 10.171000s6 + 96.515330s5 + 458.42510s4

+2249.4849s3 + 1.2196400s2 − 448.72180s+ 6.3000000.

The Hermite matrix in power basis has the following entries:

HP
1,1 = −2826.9473 HP

1,3 = −14171.755
HP

1,5 = 608.04658 HP
1,7 = −6.3000000

HP
2,2 = −14719.034 HP

2,4 = 206313.38
HP

2,6 = −4570.2494 HP
3,3 = 209056.94

HP
3,5 = −4687.9634 HP

3,7 = 1.2196400
HP

4,4 = 1026532.4 HP
4,6 = −22878.291

HP
5,5 = 21366.759 HP

5,7 = −458.42510
HP

6,6 = 523.23232 HP
7,7 = 10.171000,

8



remaining nonzero entries being deduced by symmetry. Apparently, this matrix is ill-
scaled. Choosing interpolation points ui as roots of a(u), the imaginary part of q(s) along
the imaginary axis, we use Theorem 4.1 to build the Hermite matrix in Lagrange basis:

HL = diag (−2826.9473, 41032866 · 103, 44286011 · 102, 41032866 · 103,

44286011 · 102,

[

0 22222.878
22222.878 0

]

).

This matrix is still ill-scaled (with Frobenius condition number equal to 2.0983 · 107), but
it is almost diagonal. Using an elementary diagonal scaling matrix S, we obtain

HS = SHLS = diag (−1, 1, 1, 1, 1,

[

0 1
1 0

]

)

which is a well-scaled representation of the Hermite matrix, with Frobenius condition
number equal to 7.

4.4 Target polynomial

In our control application, let us introduce our main tuning tool which we call target
polynomial, denoted by q(s). The target polynomial provides the interpolation points
required to build well-scaled Hermite matrix in the SOF problem. These points are
defined as in Corollary 4.4 as the roots of either the real or imaginary part of q(s) when
evaluated along the imaginary axis.

In the context of SOF design, the target polynomial may be either choosen as

• a valid closed-loop characteristic polynomial (1) for a specific value of k, or

• a polynomial with desired pole distribution for the closed-loop system.

Furthermore, we invoke a continuity argument to observe that the condition and/or scaling
of the Hermite matrix does not change abruptly in a neighborhood of a given target
polynomial.

Example 4.6 Consider again Example 2.1 and let the target polynomial be an achievable
closed-loop characteristic polynomial q(s, k) = det(sI − A− BKC), where

K = [−4.3264 · 10−1, −1.6656, 1.2537 · 10−1, 2.8772 · 10−1]

is a random feedback gain. The roots of the imaginary part of q(s, k) are chosen as
interpolation points

u = (0, ±60.847, ±16.007, ±9.2218,±2.7034i) .

9



Here are two representative entries of the resulting Lagrange basis Hermite matrix:

HS
3,3(k) = 9.4439251 · 10−1 + 1.9763715 · 10−4k1 − 8.9049916 · 10−4k2

− 8.6909277 · 10−3k3 + 1.9212126 · 10−1k4

+ 3.8300306 · 10−9k1k2 − 1.0276186 · 10−8k1k3

+ 3.3905595 · 10−5k1k4 − 3.4222179 · 10−5k2k3

− 3.8046300 · 10−5k2k4 + 2.7420115 · 10−9k2
3

+ 6.5442491 · 10−6k3k4 + 1.015195648 · 10−5k2
4

and
HS

1,1(k) = −1.6918611k1 + 3.7288052 · 10−1k1k2 + 1.2286264 · 10−2k1k3.

Comparing with the entries of the power basis Hermite matrix HP (k) given in Example
2.1, we observe a significant improvement in terms of coefficient scaling.

5 Numerical examples

In this section, we present the benefits of Lagrange basis against power basis when solving
SOF PMI problems found in the database COMPleib, see [9]. Even though Michal Kočvara
and Michael Stingl informed us that an AMPL interface to PENNON is now available to
solve PMI problems, in this paper for simplicity we consider only BMIs (i.e. quadratic
PMIs) and the PENBMI solver (a particular instance of PENNON focusing on BMIs)
under the YALMIP modeling interface, see [10]. The numerical examples are processed
with YALMIP R20070523 and PENBMI 2.1 under Matlab R2007a running on a Pentium
D 3.4GHz system with 1GB ram. We set the PENBMI penalty parameter P0 by default
to 0.001 (note that this is not the default YALMIP setting).

As in [5], the optimization problem to be solved is

mink,λ µ‖k‖ − λ
s.t. H(k) � λI

where H(k) is the Hermite matrix in power or Lagrange basis, µ > 0 is a parameter and
‖.‖ is the Euclidean norm. Parameter µ allows to trade off between feasibility of the BMI
and a moderate norm of the feedback gain, which is generally desirable in practice, to
avoid large feedback signals. This adjustment is necessary in many examples. Indeed,
the smallest values of ‖k‖ are typically located at the boundary of the feasibility set, so
the resulting closed-loop system is fragile and a small perturbation on system parameters
may be destabilizing.

PENBMI is a local optimization solver. Therefore, the choice of initial guess k0, λ0 is
critical. In most of the examples we choose the origin as the initial point. However this
is not always an appropriate choice, as illustrated below. In addition to this, PENBMI
does not directly handle complex numbers (unless the real and imaginary parts are split
off, resulting in a real coefficient problem of double size), so we restrict the interpolation
points to be real numbers.
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As a result of the root interlacing property, the roots of real and imaginary parts of a
stable polynomial are real (and interlacing). Owing to this fact, if we choose a stable
target polynomial q(s) the resulting interpolation points are necessarily real.

Example 5.1 Consider again problem AC4, with characteristic polynomial

q(s, k) = s4 + 150.92600s3 + (130.03210− 18.135000k1 − 19612.500k2)s
2

− (1330.6306 + 19613.407k1 + 18322.789k2)s− (66.837750 + 980.62500k1 + 867.10818k2)

and power basis Hermite matrix with entries

HP
1,1 = 88936.354 + 2615765.6k1 + 2378454.6k2

+ 19233397k2
1 + 34974730k1k2 + 15887840k2

2

HP
1,3 = 10087.554 + 148001.81k1 + 130869.17k2

HP
2,2 = − 162937.14− 2378239.7k1 + 23845311k2

+ 355689.13k2
1 + 38500022 · 101k1k2 + 35935569 · 101k2

2

HP
2,4 = 1330.6306 + 19613.407k1 + 18322.789k2

HP
3,3 = 20955.855 + 16876.364k1 − 2941713.4k2

HP
4,4 = 150.92600.

Open-loop poles of the system are (2.5792 ,−5.0000 · 10−2 ,−3.4552, −150.00). If we
define our target polynomial roots as (−5.0000 · 10−2 ,−5.0000 · 10−2 ,−3.4552 ,−150.00),
keeping the stable open-loop poles and shifting the unstable open-loop pole to the left
of the imaginary axis, our 4 interpolation points (roots of the real part of the target
polynomial) are u = (±23.100 ,±4.9276 · 10−2) and the resulting Lagrange basis Hermite
matrix has entries

HS
1,1 = 6.3432594 · 10−1 + 3.1878941 · 10−1k1 − 17.462079k2

+ 4.4822907k2
1 + 4.4060140k1k2 + 4.1121739k2

2

HS
1,2 = − 3.7795293 · 10−1 − 1.0581354k1 − 18.455273k2

− 3.6574685 · 10−3k2
1 − 4.4045142k1k2 − 4.1114926k2

2

HS
1,3 = 2.4459288 + 36.285639k1 + 42.619220k2

+ 7.8459729k2
1 + 189.06139k1k2 + 169.77324k2

2

HS
1,4 = 1.9481147 + 28.929191k1 + 12.037605k2

+ 7.5224565k2
1 − 161.11487k1k2 − 157.07808k2

2

HS
2,2 = 6.3432594 · 10−1 + 3.1878941 · 10−1k1 − 17.462079k2

+ 4.4822907 · 10−3k2
1 + 4.4060140k1k2 + 4.1121739k2

2
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HS
2,3 = 1.9481074 + 28.929083k1 + 12.037568k2

+ 7.5224134k2
1 − 161.11415k1k2 − 157.07737k2

2

HS
2,4 = 2.4459288 + 36.285639k1 + 42.619220k2

+ 7.8459729k2
1 + 189.06139k1k2 + 169.77324k2

2

HS
3,3 = 659.47243 + 19434.408k1 + 18140.083k2

+ 143181.92k2
1 + 267314.59k1k2 + 124766.18k2

2

HS
3,4 = 665.36241 + 19520.378k1 + 17279.067k2

+ 143169.06k2
1 + 253396.76k1k2 + 111775.41k2

2

HS
4,4 = 659.47243 + 19434.408k1 + 18140.083k2

+ 143181.92k2
1 + 267314.59k1k2 + 124766.18k2

2.

Choosing the power basis representation with the orgin as initial point and trade-off
parameter µ = 10−5, PENBMI stops by a linesearch failure and YALMIP displays a
warning. However, we obtain a feasible solution λ = 150.88 and K = [1.4181, −1.6809].
This computation requires 43 outer iterations, 433 inner iterations and 825 linesearch
steps. On the other hand, in the Lagrange basis representation, the problem was solved
with no error or warning, yielding λ = 9.8287 · 10−1, K = [−5.0902 · 10−2, −2.0985 · 10−2]
with 17 outer iterations, 100 inner iterations and 159 linesearch steps.

We notice however that using the same trade-off parameter µ for both representations
is not fair since HP and HS have significantly different scalings. If we choose µ = 0.1
for the power basis representation, no problem is detected during the process and we
obtain λ = 150.87, K = [8.0929 · 10−2, −1.6953 · 10−1] after 26 outer iterations, 188 inner
iterations and 238 linesearch steps. So it seems that the Lagrange basis representation
becomes relevant mainly for high degree systems. This is confirmed by the experiments
below.

Consider the AC7, AC17, REA3, UWV, NN5, NN1 and HE1 SOF BMI problems of COMPleib. In
Table 1 we report comparative results for the power and Lagrange basis representations.
As in Example 3.1, the main strategy to choose the target polynomials (and hence the
interpolation points) is to mirror the open-loop stable roots, and to shift the open-loop
roots to, say −5.0000 · 10−1 (any other small negative value may be suitable). We see
that the behavior indicators of PENBMI are significantly better in the Lagrange basis,
and the improvement is more dramatic for larger degree examples. More specifically:

• for small degree systems like AC17 there is only a minor improvement;

• at the first attempt to solve the REA3 example strict feasibility was not achieved in
the power basis, since λ is almost zero. Therefore it was necessary to tune the µ
parameter. Results of the second attempt show that the BMI problem was solved
and the Lagrange basis computation was slightly less expensive than the power basis
computation;

• the underwater vehicle example UWV has two inputs and two outputs. However,
because of cancellation of higher degree terms in the characteristic polynomial, the
degree of the Hermite matrix is equal to 2 and we can use PENBMI on this problem;
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• on open-loop stable systems such as UWV or AC17, the improvement brought by
the Lagrange basis is less significant. Since the main purpose of our optimization
problem is to minimize the norm of control gain, we observe that the Lagrangian
basis is still slightly better than the power basis;

• PENBMI is unable to reach a feasible point for examples NN5, NN1 and HE1, when we
choose the origin as the initial point. Indeed, local optimization techniques seek an
optimal point inside the feasible set in a neighborhood of the initial point. Therefore,
achievement of the solver may be very sensitive to the initial point. When the initial
point is defined heuristically or randomly, the improvement is significant for system
NN5 in Lagrange basis. However, there is no improvement over NN1 and HE1, when
we use this simple strategy to define the target polynomial.

Table 1: PENBMI performance on SOF BMI problems

system basis µ K0
out. inn. lin.

K λ
iter. iter. steps

AC7

n = 9
pow. 1 [0 0] 27 148 167 [1.1205 − 3.0946 · 10−1] 51.640
Lag. 10−5 [0 0] 15 51 67 [5.7336 3.9995] 3.6356 · 10−1

AC17

n = 4
pow. 1 [0 0] 14 65 173 [1.6619 · 10−1 8.5782 · 10−1] 5.8306
Lag. 1 [0 0] 16 36 57 [−1.0855 · 10−2 1.5128 · 10−1] 1.0459

REA3

n = 12
pow.

1 [0 0 0] 21 28 28
[

0 − 1.0435 · 10−5 − 2.2281 · 10−4
]

8.4187 · 10−13

10−5 [0 0 0] 46 458 2460
[

0 − 43711 − 23491
]

43787
Lag. 10−2 [0 0 0] 16 48 68

[

0 − 4.2556 · 10−1 − 8.9973 · 10−2
]

9.9105 · 10−1

UWV

n = 8
pow. 1 [0 0; 0 0] 13 98 188

[

−1.4319 · 10−5 −2.6474 · 10−6

−3.0817 · 10−1 −5.6976 · 10−2

]

27.918

Lag. 1 [0 0; 0 0] 15 65 82

[

−1.6755 · 10−12 −6.9006 · 10−13

−3.6060 · 10−8 −1.4851 · 10−8

]

1.0000

NN5

n = 7
pow. 1 [10 5] 29 162 300 [12.382 9.0331] 3.9610 · 10−1

Lag. 10−5 [10 5] 18 45 56 [30.931 22.295] 1.7652 · 10−1

NN1

n = 3
pow. 10−3 [0 30] 15 53 59 [7.9924 72.171] 4.2238
Lag. 10−4 [0 30] 14 49 52 [26.936 177.20] 4.6019

HE1

n = 4
pow. 1 [1 1] 18 73 80 [−1.5482 − 3.9063] 34.359
Lag. 10−1 [1 1] 18 80 87 [−5.1376 11.589] 32.168

In Table 2 we show the influence of the target polynomial on the computational cost for
the PAS system. Open-loop poles of the system are

σ0 =
(

0, 0, −9.5970 · 10−1, −36.646± 523.05i
)

and we choose alternative target polynomials with the following roots

σ1 =
(

−5.0000 · 10−2, −5.0000 · 10−2, −9.5970 · 10−1, −36.646± 523.05i
)

σ2 =
(

−1.0000 · 10−3, −1.0000 · 10−3, −9.5970 · 10−1, −36.646± 523.05i
)

σ3 =
(

0, −1.0000 · 10−4, −9.5970 · 10−1, −36.646± 523.05i
)

.
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Table 2: Influence of target polynomial on PENBMI behavior

system PAS degree 5
basis power Lagrange Lagrange Lagrange
µ 10−3 10−8 10−5 10−2

roots σ0 σ1 σ2 σ3

K0 [0 0 0] [0 0 0] [0 0 0] [0 0 0]
out.iter. 11 19 17 15
inn.iter. 74 27 33 29
lin.steps 194 28 44 32

KT





−6.5390 · 10−4

−58.350
−37.751









−8.4106 · 10−6

−3.9048
−9.9675 · 10−1









−3.3369 · 10−4

−20.480
−1.2157









−8.6755 · 10−8

−4.1040 · 10−1

−1.7471 · 10−1





λ 73.2917 1.4901 · 10−12 8.1649 · 10−3 2.7241 · 10−3

One can easy to see that the computational cost is decreasing significantly when the point
defining the target polynomial is getting closer to the PENBMI initial iterate.

Consider the NN6 SOF BMI problem that was not solvable in the power basis, see [5].
Open-loop poles of the system are

σ0 =
(

2.7303, 0, −7.2028 · 10−2 ± 60.804i, −1.0785 · 10−1 ± 15.677i, −2.6764, −3.3000, −19.694
)

.

The strategy to define the target polynomial is to change the unstable open-loop poles
into slightly stable poles (shifting the real part to a small negative value). According to
this strategy, our target polynomial has the following roots

σ1 =
(

−1.0000 · 10−3 ± i, −7.2028 · 10−2 ± 60.804i, −1.0785 · 10−1 ± 15.677i,

−2.6764, −3.3000, −19.694) .

The BMI SOF problem is solved with no error or warning in the Lagrange basis, yielding
λ = 8.8487 · 10−1, K = [1.3682, 4.8816, 44.959, 59.016] with 17 outer iterations, 80 inner
iterations and 138 linesearch steps, using the orgin as initial point and trade-off parameter
µ = 10−5.

6 Conclusion

The Hermite matrix arising in the symmetric formulation of the polynomial stability
criterion is typically ill-scaled when expressed in the standard power basis. As a conse-
quence, a nonlinear semidefinite programming solver such as PENNON may experience
convergence problems when applied on polynomial matrix inequalities (PMIs) coming
from benchmark static output feedback (SOF) problems. In this paper we reformulated
Hermite’s SOF PMI in a Lagrange polynomial basis. We slightly extended the results of
[12] to use polynomial interpolation on possibly complex and repeated nodes to construct
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the Hermite matrix, bypassing potential numerical issues connected with Vandermonde
matrices. In our control application, a natural choice of Lagrange nodes are the roots of
a target polynomial, the desired closed-loop characteristic polynomial.

The idea of using the Lagrange polynomial basis to address numerical problems which
are typically ill-scaled when formulated in the power basis has already proven successful
in other contexts. For example, in [2] it was shown that roots of extremely ill-scaled
polynomials (such as a degree 200 Wilkinson polynomial) can be found at machine pre-
cision using eigenvalue computation of generalized companion matrices obtained by an
iterative choice of Lagrange interpolation nodes. In [13] the fast Fourier transform (a par-
ticular interpolation technique) was used to perform spectral factorization of polynomials
of degree up to one million. Another example of successful use of alternative bases and
high-degree polynomial interpolation to address various problems of scientific computat-
ing is the chebfun Matlab package, see [1]. Even though our computational results on
SOF PMI problems are less dramatic, we believe that the use of alternative bases and
interpolation can be instrumental to addressing various other control problems formulated
in a polynomial setting.

Appendix: Matlab implementation

A Matlab implementation of the method described in this paper is available at

homepages.laas.fr/henrion/software/hermitesof.m

Our implementation uses the Symbolic Math Toolbox and the YALMIP interface. It is not
optimized for efficiency, and therefore it can be time-consuming already for medium-size
examples.

Let us use function hermitesof with its default tunings:

>> [A,B1,B,C1,C] = COMPleib(’NN1’);

>> A,B,C

A =

0 1 0

0 0 1

0 13 0

B =

0

0

1

C =

0 5 -1

-1 -1 0

>> [H,K] = hermitesof(A,B,C)

Quadratic matrix variable 3x3 (symmetric, real, 2 variables)
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Linear matrix variable 1x2 (full, real, 2 variables)

Here are some sample entries of the resulting Hermite matrix

>> sdisplay(H(1,1))

-0.6168744435*K(2)-0.2372594014*K(1)*K(2)+0.04745188027*K(2)^2

>> sdisplay(H(3,2))

0.3019687672*K(1)+0.01984184931*K(2)-0.009656748637*K(1)*K(2)

+0.0003260141644*K(2)^2+0.04013338907*K(1)^2

For this example, the Hermite matrix is quadratic in feedback matrix K. This Hermite
matrix is expressed in Lagrange basis, with Lagrange nodes chosen as the roots of the
imaginary part of a random target polynomial, see the online help of function hermitesof

for more information. In particular, it means that each call to hermitesof produces
different coefficients. However these coefficients have comparable magnitudes:

>> [H,K]=hermitesof(A,B,C);

>> sdisplay(H(1,1))

-0.9592151361*K(2)-0.3689288985*K(1)*K(2)+0.0737857797*K(2)^2

>> sdisplay(H(3,2))

6.702455704*K(1)+0.5150092145*K(2)-0.3440108908*K(1)*K(2)

+0.0184651235*K(2)^2+1.258426367*K(1)^2

The output of function hermitesof is reproducible if the user provides the roots of the
target polynomial:

>> opt = []; opt.roots = [-1 -2 -3];

>> [H,K]=hermitesof(A,B,C,opt);

>> sdisplay(H(1,1))

-0.196969697*K(2)-0.07575757576*K(1)*K(2)+0.01515151515*K(2)^2

>> sdisplay(H(3,2))

0.2*K(1)-0.01818181818*K(2)-0.01212121212*K(1)*K(2)

+0.0007575757576*K(2)^2+0.04166666667*K(1)^2

The Hermite matrix can also be provided in the power basis:

>> opt = []; opt.basis = ’p’;

>> [H,K]=hermitesof(A,B,C,opt);

>> sdisplay(H(1,1))

-13*K(2)-5*K(1)*K(2)+K(2)^2

>> sdisplay(H(3,2))

0

For more complicated examples, the Hermite matrix H is not necessarily quadratic in K:
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>> [A,B1,B,C1,C] = COMPleib(’NN1’);

>> size(B), size(C)

ans =

5 3

ans =

3 5

>> [H,K]=hermitesof(A,B,C)

Polynomial matrix variable 5x5 (symmetric, real, 9 variables)

Linear matrix variable 3x3 (full, real, 9 variables)

>> degree(H)

ans =

5
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This work was partly funded by TÜBITAK, the Scientific and Technological Research
Council of Turkey, and by project No. 103/10/0628 of the Grant Agency of the Czech
Republic.

References

[1] Z. Battles, L. N. Trefethen. An extension of Matlab to continuous functions and
operators. SIAM Journal on Scientific Computing, 25(5):1743-1770, 2004.

[2] S. Fortune. An iterated eigenvalue algorithm for approximating roots of univariate
polynomials. Journal of Symbolic Computation, 33(5):627-646, 2002.
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