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Using Hermite's formulation of polynomial stability conditions, static output feedback (SOF) controller design can be formulated as a polynomial matrix inequality (PMI), a (generally nonconvex) nonlinear semidefinite programming problem that can be solved (locally) with PENNON, an implementation of a penalty method. Typically, Hermite SOF PMI problems are badly scaled and experiments reveal that this has a negative impact on the overall performance of the solver. In this note we recall the algebraic interpretation of Hermite's quadratic form as a particular Bézoutian and we use results on polynomial interpolation to express the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conventional power basis. Numerical experiments on benchmark problem instances show the substantial improvement brought by the approach, in terms of problem scaling, number of iterations and convergence behavior of PENNON.

Introduction

In 1854 the French mathematician Charles Hermite studied quadratic forms for counting the number of roots of a polynomial in the upper half of the complex plane (or, by a simple rotation, in the left half-plane), more than two decades before Routh, who was apparently not aware of Hermite's work, see [START_REF] Jury | Remembering four stability theory pioneers of the nineteenth century[END_REF]. Hurwitz himself used some of Hermite's ideas to derive in 1895 his celebrated algebraic criterion for polynomial stability, now called the Routh-Hurwitz criterion and taught to engineering students in tabular form.

Hermite's criterion can be interpreted as a symmetric formulation of the Routh-Hurwitz criterion. This symmetry can be exploited in a semidefinite programming framework, as shown in [START_REF] Henrion | Rank-one LMI approach to simultaneous stabilization of linear systems[END_REF] and [START_REF] Henrion | Solving simultaneous stabilization BMI problems with PENNON[END_REF] in the context of simultaneous stabilization of linear systems. Along the same vein, in [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF] the problem of static output feedback (SOF) design was formulated as a polynomial matrix inequality (PMI) problem. In some cases (e.g. only one input or output available for feedback) this PMI problem simplifies to a bilinear matrix inequality (BMI) that can be solved numerically with PENBMI, a particular instance of PENNON, a general penalty method for nonlinear and semidefinite programming. Only convergence to a local optimum is guaranteed, but experiments reported in [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF] show that quite often the approach is viable numerically. In particular, the SOF PMI formulation involves only controller parameters, and does not introduce (a typically large number of) Lyapunov variables.

Our motivation in this paper is to contribute along the lines initiated in [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF] and to study the impact of SOF PMI problem formulation on the behavior of PENNON, in particular w.r.t. data scaling and number of iterations. The Hermite matrix depends quadratically on coefficients of the characteristic polynomial, in turn depending polynomially on the controller parameters. As a result, coefficients of a given Hermite matrix typically differ by several orders of magnitude, and experiments reveal that this poor data scaling significantly impacts on the performance of PENNON.

In this paper we use an alternative formulation of the Hermite matrix, using a Lagrange polynomial basis instead of the standard power basis. We build on previous work from the computer algebra and real algebraic geometry communities, recalling the interpretation of Hermite's quadratic form as a particular Bézoutian, the resultant of two polynomials, see [START_REF] Henrion | Plane geometry and convexity of polynomial stability regions[END_REF] and references therein. This interpretation provides a natural choice for the nodes of the Lagrange basis. The construction of the Hermite matrix in this basis is carried out efficiently by interpolation, overcoming difficulties inherent to Vandermonde matrices, as suggested in [START_REF] Shakoori | The Bézout matrix in the Lagrange basis[END_REF] for general Bézout matrices.

In addition to digesting and tailoring to our needs results from computational algebraic geometry, another contribution of our paper is to extend slightly the characterization of [START_REF] Shakoori | The Bézout matrix in the Lagrange basis[END_REF] to Hermitian forms with complex and repeated interpolation nodes. In particular, in our SOF design application framework, these nodes are roots of either imaginary or real part of a target characteristic polynomial featuring spectral properties desirable for the closed-loop system. This target polynomial is the main tuning parameter of our approach, and we provide numerical evidence that a suitably choice of target polynomial, compatible with achievable closed-loop dynamics, results in a significant improvement of SOF PMI problem scaling, with positive effects on the overall behavior (convergence, number of outer and inner iterations, linesearch steps) of PENNON. Furthermore, some of the problems that were not solvable in the power basis, see [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF], can now be solved in the Lagrange basis. These improvements are illustrated on numerical examples extracted from the publicly available benchmark collection COMPl e ib, see [START_REF] Leibfritz | COMPl e ib:: constrained matrix optimization problem library: a collection of test examples for nonlinear semidefinite programs, control system design and related problems[END_REF].

PMI formulation of SOF design problem

We briefly recall the polynomial matrix inequality (PMI) formulation of static output feedback (SOF) design problem proposed in [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF]. Consider the linear system ẋ = Ax + Bu y = Cx of order n with m inputs and p outputs, that we want to stabilize by static output feedback (SOF) u = Ky.

In other words, given matrices A ∈ R n×n , B ∈ R n×m , C ∈ R p×n , we want to find matrix K ∈ R m×p such that the eigenvalues of closed-loop matrix A + BKC all belong to the left half of the complex plane.

Let k ∈ R mp be the vector obtained by stacking the columns of matrix K. Define

q(s, k) = det (sI -A -BKC) = n i=0 q i (k)s i (1)
as the characteristic polynomial of matrix A + BKC. Coefficients of increasing powers of indeterminate s in polynomial q(s, k) are multivariate polynomials in k, i.e.

q i (k) = α q iα k α (2) 
where α ∈ N mp describes all monomial powers.

The Routh-Hurwitz criterion for stability of polynomials has a symmetric version called the Hermite criterion. A polynomial is stable if and only if its Hermite matrix, quadratic in the polynomial coefficients, is positive definite. Algebraically, the Hermite matrix can be defined via the Bézoutian, a symmetric form of the resultant.

Let a(u), b(u) be two polynomials of degree n of the indeterminate u. Define the bivariate quadratic form

a(u)b(v) -a(v)b(u) u -v = n i=1 n j=1 b ij u i-1 v j-1 .
The n-by-n matrix with entries b ij is the Bézoutian matrix, whose determinant is the resultant of a and b, obtained by eliminating variable u from the system of equations a(u) = b(u) = 0.

The Hermite matrix in power basis of q(s, k), denoted by H P (k), is defined as the Bézoutian matrix of the real and imaginary parts of q(ju, k):

a(u, k) = Im q(jw, k) b(u, k) = Re q(jw, k).
The roots of polynomial q(s, k) belongs to the left half-plane if and only if

H P (k) = n i=0 n j=0 q i (k)q j (k)H P ij ≻ 0.
The above relation is a matrix inequality depending polynomially on parameters k. Therefore, finding k amounts to solving a polynomial matrix inequality (PMI) problem.

Example 2.1 As an illustrative example, consider problem NN6 in [START_REF] Leibfritz | COMPl e ib:: constrained matrix optimization problem library: a collection of test examples for nonlinear semidefinite programs, control system design and related problems[END_REF]. The closed-loop characteristic polynomial is (to 8 significant digits):

q(s, k) = s 9 + 23.300000s 

with SOF gain K = [k 1 k 2 k 3 k 4 ]
. The 9-by-9 Hermite matrix of this polynomial cannot be displayed entirely for space reasons, so we choose two representative entries:

H P 3,3 (k) = 10244466 • 10 8 -53923375 • 10 7 k 1 + 55487273 • 10 6 k 2 + 10310826 • 10 7 k 3 -32624061 • 10 7 k 4 + 16028416 • 10 7 k 1 k 2 -27103829 • 10 4 k 1 k 3 -36752006 • 10 6 k 1 k 4 -43632833 • 10 6 k 2 k 3 -43073807 • 10 6 k 2 k 4 + 22414163k 2 3 + 10078541 • 10 6 k 3 k 4 + 99492593 • 10 5 k 2 4
and H P 9,9 (k) = 23.300000. We observe that this Hermite matrix is ill-scaled, in the sense that the coefficients of its entries (multivariate polynomials in k i ) differ by several orders of magnitude. This representation is not suitable for a matrix inequality solver.

A simple scaling strategy

A possible remedy to address the poor scaling properties of the Hermite matrix is to scale the frequency variable s, that is, to substitute ρs for s in the characteristic polynomial q(s, k), for a suitable positive scaling ρ. Finding the optimal value of ρ (e.g. in terms of relative scaling of the coefficients of the Hermite matrix) may be formulated as an optimization problem, but numerical experiments indicate that nearly optimal results are achieved when following the basic strategy consisting of choosing ρ such that the constant and highest power polynomial coefficients are both equal to one. For example, this idea was implemented by Huibert Kwakernaak in the scale function of the Polynomial Toolbox for Matlab, see [START_REF] Šebek | Recent progress in polynomial methods and Polynomial Toolbox for Matlab version 2.0[END_REF].

Example 3.1 Consider the simple example AC4 in [START_REF] Leibfritz | COMPl e ib:: constrained matrix optimization problem library: a collection of test examples for nonlinear semidefinite programs, control system design and related problems[END_REF]. The open-loop characteristic polynomial is q(s, 0) = det(sI -A) = s 4 + 150.92600s To measure quantitatively the scaling of a matrix X, we may use its condition number. If the matrix is poorly scaled, then its condition number is large. Minimizing the condition number therefore improves the scaling. For the above matrix, its condition number (in the Frobenius norm), defined as H P F (H P ) -1 F , is equal to 1158.2. If we choose ρ = 4 1.0000/66.840 = 3.5000 • 10 -1 , the scaled characteristic polynomial has unit constant and highest coefficient, and the resulting scaled Hermite matrix reads 

SH P S =     163.
    with S = diag ρ 3 , ρ 2 , ρ 1 , 1 .
The Frobenius condition number of SH P S is equal to 32.096.

Whereas this simple scaling strategy with one degree of freedom may prove useful for small-degree polynomials and small-size Hermite matrices, a more sophisticated approach is required for larger instances.

Hermite matrix in Lagrange basis

In this section we show how the Hermite matrix can be scaled by an appropriate choice of polynomial basis. Moreover, this basis allows for a straightforward entrywise construction of the Hermite matrix.

Distinct interpolation points

Consider n distinct interpolation points u i ∈ C, i = 1, . . . , n, and define the j-th Lagrange polynomial

l j (u) = n i=1,i =j u -u i u j -u i
which is such that l j (u j ) = 1 and l j (u i ) = 0 if i = j. In matrix form we can write

       1 u u 2 . . . u n-1        =        1 1 • • • 1 u 1 u 2 • • • u n u 2 1 u 2 2 • • • u 2 n . . . . . . u n-1 1 u n-1 1 • • • u n-1 n               l 1 (u) l 2 (u) l 3 (u) . . . l n (u)        = V u l(u) (3) 
where V u is a Vandermonde matrix. Given a univariate polynomial q(s) with real coefficients, define

a(u) = Im q(jw) b(u) = Re q(jw) (4) 
as its imaginary and real parts on the imaginary axis, respectively. In the following, the star denotes transpose conjugation and the prime denotes differentiation, i.e.

a ′ (u) = da(u) du .

Theorem 4.1 When the interpolation points are distinct (i.e. u i = u j , i = j, i, j = 1, . . . , n), the Hermite matrix of q(s) in Lagrange basis, denoted by H L , is given entrywise by

H L i,j :=    a(u * i )b(u j ) -a(u j )b(u * i ) u * i -u j if u * i = u j , a ′ (u * i )b(u j ) -a(u j )b ′ (u * i )
otherwise, for all i, j = 1, . . . , n.

Proof Let us express the Bézoutian of a and b as a bivariate quadratic form

a(u)b(v) -a(v)b(u) u -v =      1 v . . . v n-1      * H P      1 u . . . u n-1     
where H P is the Hermite matrix of q in the power basis. Recalling relation (3), the Bézoutian becomes

a(u)b(v) -a(v)b(u) u -v = l(v) * V * v H P V u l(u) = l(v) * H L l(u)
so that the Hermite matrix of q in the Lagrange basis can be expressed as

H L = V * v H P V u
. By evaluation at n distinct interpolation points u i and v j , H L is given entrywise by

H L i,j = a(u * i )b(v j ) -a(v j )b(u * i ) u * i -v j . (5) 
Now let u * i → v j for all i, j = 1, . . . , n. After adding and subtracting a(v j )b(v j ) to the numerator of (5), we find

H L i,j = a ′ (u * i )b(u j ) -a(u j )b ′ (u * i
), using a limiting argument.

Repeated interpolation points

Let us define the bivariate polynomials

c i,j (u, v) := ∂ i+j-2 ∂u i-1 ∂v j-1 a(u)b(v) -a(v)b(u) u -v
for all i, j = 1, . . . , n and denote by

a (k) (u) = d k a(u) du k
the k-th derivative of univariate polynomial a(u).

Lemma 4.2 When the interpolation points are all equal (i.e. u i = u j for all i, j = 1, . . . , n), the Hermite matrix of q(s) in Lagrange basis is given entrywise by

H L i,j :=              c i,j (u * i , u j ) (i -1)!(j -1)! if u * i = u j , i-1 k=0 a (j+k) (u * i )b (i-k-1) (u j ) -a (i-k-1) (u j )b (j+k) (u * i ) (j + k)!(i -k -1)! otherwise,
for all i, j = 1, . . . , n.

Proof The proof of this result follows along the same lines as the proof of Theorem 4.1, with additional notational difficulties due to higher-order differentations.

Example 4.3 Let us choose n = 3 equal interpolation points (u

1 = u 2 = u 3 = x ∈ R).
According to Lemma 4.2, H L has the following entries:

H L 11 = a ′ (x)b(x)-a(x)b ′ (x) 1! H L 12 = a (2) (x)b(x)-a(x)b (2) (x) 2! H L 13 = a (3) (x)b(x)-a(x)b (3) (x) 3! H L 22 = a (2) (x)b ′ (x)-a ′ (x)b (2) (x) 2! + a (3) (x)b(x)-a(x)b (3) (x) 3! H L 23 = a (3) (x)b ′ (x)-a ′ (x)b (3) (x) 3! + a (4) (x)b(x)-a(x)b (4) (x) 4! H L 33 = a (3) (x)b (2) (x)-a (2) (x)b (3) (x) 3!2! + a (4) (x)b ′ (x)-a ′ (x)b (4) (x) 4! + a (5) (x)b(x)-a(x)b (5) (x) 5!
.

Based on Theorem 4.1 and Lemma 4.2, we leave it to the reader to derive entrywise expressions for the Lagrange basis Hermite matrix in the general case when only some interpolation points are repeated.

In the remainder of the paper we will assume for notational simplicity that the interpolation points are all distinct.

Scaling

Corollary 4.4 Let the interpolation points be (distinct) roots of either a(u) or b(u), as defined in [START_REF] Henrion | Solving simultaneous stabilization BMI problems with PENNON[END_REF]. Then the Hermite matrix of q(s) in Lagrange basis is block diagonal, with 2 × 2 blocks corresponding to pairs of complex conjugate points and 1 × 1 blocks corresponding to real points.

Proof From Theorem 4.1, all the off-diagonal entries of H L are given by

a(u * i )b(u j ) -a(u j )b(u * i ) u * i -u j (6) 
when interpolation points u i and u j are not complex conjugate. Both terms a(u * i )b(u j ) and a(u j )b(u * i ) are equal to zero in (6) since the interpolation points are the roots of either a(u) or b(u). The diagonal entries are a

′ (u * i )b(u j ) -a(u j )b ′ (u * i ) since it is assumed that interpolation points are distinct. Therefore this part of H L is 1 × 1 block-diagonal.
When interpolation points u i and u j are complex conjugate, there is only one non-zero entry (i, j) which is equal to a ′ (u * i )b(u j )a(u j )b ′ (u * i ) and located in the off-diagonal entry, according to pairness. The diagonal entries of this case are equal to zero by virtue of equation [START_REF] Henrion | Plane geometry and convexity of polynomial stability regions[END_REF]. Therefore this part of H L is 2 × 2 block-diagonal.

From Corollary 4.4 it follows that we can easily find a block-diagonal scaling matrix S such that the scaled Lagrange Hermite matrix

H S = SH L S
has smaller condition number. Nonzero entries of S are given by

S i,j := H L i,j -1
whenever H L i,j is a nonzero entry (i, j) of H L .

Example 4.5 As an illustrative example, consider problem NN5 in [START_REF] Leibfritz | COMPl e ib:: constrained matrix optimization problem library: a collection of test examples for nonlinear semidefinite programs, control system design and related problems[END_REF]. The open-loop characteristic polynomial is q(s) = s 7 + 10.171000s 6 + 96.515330s 5 + 458.42510s 4 +2249.4849s 3 + 1.2196400s 2 -448.72180s + 6.3000000.

The Hermite matrix in power basis has the following entries: 

H P 1,1 = -
H S = SH L S = diag (-1, 1, 1, 1, 1, 0 1 1 0 )
which is a well-scaled representation of the Hermite matrix, with Frobenius condition number equal to 7.

Target polynomial

In our control application, let us introduce our main tuning tool which we call target polynomial, denoted by q(s). The target polynomial provides the interpolation points required to build well-scaled Hermite matrix in the SOF problem. These points are defined as in Corollary 4.4 as the roots of either the real or imaginary part of q(s) when evaluated along the imaginary axis.

In the context of SOF design, the target polynomial may be either choosen as

• a valid closed-loop characteristic polynomial (1) for a specific value of k, or

• a polynomial with desired pole distribution for the closed-loop system.

Furthermore, we invoke a continuity argument to observe that the condition and/or scaling of the Hermite matrix does not change abruptly in a neighborhood of a given target polynomial.

Example 4.6 Consider again Example 2.1 and let the target polynomial be an achievable closed-loop characteristic polynomial q(s, k) = det(sI -A -BKC), where

K = [-4.3264 • 10 -1 , -1.6656, 1.2537 • 10 -1 , 2.8772 • 10 -1 ]
is a random feedback gain. The roots of the imaginary part of q(s, k) are chosen as interpolation points u = (0, ±60.847, ±16.007, ±9.2218, ±2.7034i) .

Here are two representative entries of the resulting Lagrange basis Hermite matrix:

H S 3,3 (k) = 9.4439251 • 10 -1 + 1.9763715 • 10 -4 k 1 -8.9049916 • 10 -4 k 2 -8.6909277 • 10 -3 k 3 + 1.9212126 • 10 -1 k 4 + 3.8300306 • 10 -9 k 1 k 2 -1.0276186 • 10 -8 k 1 k 3 + 3.3905595 • 10 -5 k 1 k 4 -3.4222179 • 10 -5 k 2 k 3 -3.8046300 • 10 -5 k 2 k 4 + 2.7420115 • 10 -9 k 2 3 + 6.5442491 • 10 -6 k 3 k 4 + 1.015195648 • 10 -5 k 2 4 and H S 1,1 (k) = -1.6918611k 1 + 3.7288052 • 10 -1 k 1 k 2 + 1.2286264 • 10 -2 k 1 k 3 .
Comparing with the entries of the power basis Hermite matrix H P (k) given in Example 2.1, we observe a significant improvement in terms of coefficient scaling.

Numerical examples

In this section, we present the benefits of Lagrange basis against power basis when solving SOF PMI problems found in the database COMPl e ib, see [START_REF] Leibfritz | COMPl e ib:: constrained matrix optimization problem library: a collection of test examples for nonlinear semidefinite programs, control system design and related problems[END_REF]. Even though Michal Kočvara and Michael Stingl informed us that an AMPL interface to PENNON is now available to solve PMI problems, in this paper for simplicity we consider only BMIs (i.e. quadratic PMIs) and the PENBMI solver (a particular instance of PENNON focusing on BMIs) under the YALMIP modeling interface, see [START_REF] Löfberg | YALMIP: a toolbox for modeling and optimization in Matlab[END_REF]. The numerical examples are processed with YALMIP R20070523 and PENBMI 2.1 under Matlab R2007a running on a Pentium D 3.4GHz system with 1GB ram. We set the PENBMI penalty parameter P0 by default to 0.001 (note that this is not the default YALMIP setting).

As in [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF], the optimization problem to be solved is

min k,λ µ k -λ s.t. H(k) λI
where H(k) is the Hermite matrix in power or Lagrange basis, µ > 0 is a parameter and . is the Euclidean norm. Parameter µ allows to trade off between feasibility of the BMI and a moderate norm of the feedback gain, which is generally desirable in practice, to avoid large feedback signals. This adjustment is necessary in many examples. Indeed, the smallest values of k are typically located at the boundary of the feasibility set, so the resulting closed-loop system is fragile and a small perturbation on system parameters may be destabilizing.

PENBMI is a local optimization solver. Therefore, the choice of initial guess k 0 , λ 0 is critical. In most of the examples we choose the origin as the initial point. However this is not always an appropriate choice, as illustrated below. In addition to this, PENBMI does not directly handle complex numbers (unless the real and imaginary parts are split off, resulting in a real coefficient problem of double size), so we restrict the interpolation points to be real numbers.

As a result of the root interlacing property, the roots of real and imaginary parts of a stable polynomial are real (and interlacing). Owing to this fact, if we choose a stable target polynomial q(s) the resulting interpolation points are necessarily real.

Example 5.1 Consider again problem AC4, with characteristic polynomial q(s, k) = s 4 + 150.92600s Open-loop poles of the system are (2.5792 , -5.0000 • 10 -2 , -3.4552, -150.00). If we define our target polynomial roots as (-5.0000 • 10 -2 , -5.0000 • 10 -2 , -3.4552 , -150.00),

keeping the stable open-loop poles and shifting the unstable open-loop pole to the left of the imaginary axis, our 4 interpolation points (roots of the real part of the target polynomial) are u = (±23.100 , ±4.9276 • 10 -2 ) and the resulting Lagrange basis Hermite matrix has entries We notice however that using the same trade-off parameter µ for both representations is not fair since H P and H S have significantly different scalings. If we choose µ = 0.1 for the power basis representation, no problem is detected during the process and we obtain λ = 150.87, K = [8.0929 • 10 -2 , -1.6953 • 10 -1 ] after 26 outer iterations, 188 inner iterations and 238 linesearch steps. So it seems that the Lagrange basis representation becomes relevant mainly for high degree systems. This is confirmed by the experiments below.

H S 1,1 = 6.3432594 • 10 -1 + 3.1878941 • 10 -1 k 1 -17.462079k 2 + 4.4822907k 2 1 + 4.4060140k 1 k 2 + 4.1121739k 2 2 H S 1,2 = -3.7795293 • 10 -1 -1.0581354k 1 -18.455273k 2 -3.6574685 • 10 -3 k 2 1 -4.4045142k 1 k 2 -4.1114926k
Consider the AC7, AC17, REA3, UWV, NN5, NN1 and HE1 SOF BMI problems of COMPl e ib. In Table 1 we report comparative results for the power and Lagrange basis representations. As in Example 3.1, the main strategy to choose the target polynomials (and hence the interpolation points) is to mirror the open-loop stable roots, and to shift the open-loop roots to, say -5.0000 • 10 -1 (any other small negative value may be suitable). We see that the behavior indicators of PENBMI are significantly better in the Lagrange basis, and the improvement is more dramatic for larger degree examples. More specifically:

• for small degree systems like AC17 there is only a minor improvement;

• at the first attempt to solve the REA3 example strict feasibility was not achieved in the power basis, since λ is almost zero. Therefore it was necessary to tune the µ parameter. Results of the second attempt show that the BMI problem was solved and the Lagrange basis computation was slightly less expensive than the power basis computation;

• the underwater vehicle example UWV has two inputs and two outputs. However, because of cancellation of higher degree terms in the characteristic polynomial, the degree of the Hermite matrix is equal to 2 and we can use PENBMI on this problem; One can easy to see that the computational cost is decreasing significantly when the point defining the target polynomial is getting closer to the PENBMI initial iterate.

Consider the NN6 SOF BMI problem that was not solvable in the power basis, see [START_REF] Henrion | Solving polynomial static output feedback problems with PENBMI[END_REF].

Open-loop poles of the system are σ 0 = 2.7303, 0, -7.2028 • 10 -2 ± 60.804i, -1.0785 • 10 -1 ± 15.677i, -2.6764, -3.3000, -19.694 .

The strategy to define the target polynomial is to change the unstable open-loop poles into slightly stable poles (shifting the real part to a small negative value). According to this strategy, our target polynomial has the following roots 

σ 1 = -1.0000 • 10 -3 ± i, - 7 

Conclusion

The Hermite matrix arising in the symmetric formulation of the polynomial stability criterion is typically ill-scaled when expressed in the standard power basis. As a consequence, a nonlinear semidefinite programming solver such as PENNON may experience convergence problems when applied on polynomial matrix inequalities (PMIs) coming from benchmark static output feedback (SOF) problems. In this paper we reformulated Hermite's SOF PMI in a Lagrange polynomial basis. We slightly extended the results of [START_REF] Shakoori | The Bézout matrix in the Lagrange basis[END_REF] to use polynomial interpolation on possibly complex and repeated nodes to construct the Hermite matrix, bypassing potential numerical issues connected with Vandermonde matrices. In our control application, a natural choice of Lagrange nodes are the roots of a target polynomial, the desired closed-loop characteristic polynomial.

The idea of using the Lagrange polynomial basis to address numerical problems which are typically ill-scaled when formulated in the power basis has already proven successful in other contexts. For example, in [START_REF] Fortune | An iterated eigenvalue algorithm for approximating roots of univariate polynomials[END_REF] it was shown that roots of extremely ill-scaled polynomials (such as a degree 200 Wilkinson polynomial) can be found at machine precision using eigenvalue computation of generalized companion matrices obtained by an iterative choice of Lagrange interpolation nodes. In [START_REF] Sitton | Factoring very high degree polynomials[END_REF] the fast Fourier transform (a particular interpolation technique) was used to perform spectral factorization of polynomials of degree up to one million. Another example of successful use of alternative bases and high-degree polynomial interpolation to address various problems of scientific computating is the chebfun Matlab package, see [START_REF] Battles | An extension of Matlab to continuous functions and operators[END_REF]. Even though our computational results on SOF PMI problems are less dramatic, we believe that the use of alternative bases and interpolation can be instrumental to addressing various other control problems formulated in a polynomial setting.

Appendix: Matlab implementation

A Matlab implementation of the method described in this paper is available at 

2 2 .

 2 Choosing the power basis representation with the orgin as initial point and trade-off parameter µ = 10 -5 , PENBMI stops by a linesearch failure and YALMIP displays a warning. However, we obtain a feasible solution λ = 150.88 and K = [1.4181, -1.6809]. This computation requires 43 outer iterations, 433 inner iterations and 825 linesearch steps. On the other hand, in the Lagrange basis representation, the problem was solved with no error or warning, yielding λ = 9.8287 • 10 -1 , K = [-5.0902 • 10 -2 , -2.0985 • 10 -2 ] with 17 outer iterations, 100 inner iterations and 159 linesearch steps.

  homepages.laas.fr/henrion/software/hermitesof.m Our implementation uses the Symbolic Math Toolbox and the YALMIP interface. It is not optimized for efficiency, and therefore it can be time-consuming already for medium-size examples. Let us use function hermitesof with its default tunings: >> [A,B1,B,C1,C] = COMPleib('NN1'); >> A,K] = hermitesof(A,B,C) Quadratic matrix variable 3x3 (symmetric, real, 2 variables) >> [A,B1,B,C1,C] = COMPleib('NN1'); >> size(B), size(,K]=hermitesof(A,B,C) Polynomial matrix variable 5x5 (symmetric, real, 9 variables) Linear matrix variable 3x3 (full, real, 9 variables) >> degree(H) ans = 5

  3 + 130.03210s 2 -1330.6306s -66.837750

	with Hermite matrix in power basis			
			88936.354	0	10087.554	0	
	H P =	  	0 10087.554	-162937.14 0	0 20955.855	1330.631 0	   .
			0	1330.6306	0	150.92600	

  being deduced by symmetry. Apparently, this matrix is illscaled. Choosing interpolation points u i as roots of a(u), the imaginary part of q(s) along the imaginary axis, we use Theorem 4.1 to build the Hermite matrix in Lagrange basis:H L = diag(-2826.9473, 41032866 • 10 3 , 44286011 • 10 2 , 41032866 • 10 3 ,

	remaining nonzero entries 44286011 • 10 2 ,	0 22222.878	22222.878 0	).
	This matrix is still ill-scaled (with Frobenius condition number equal to 2.0983 • 10 7 ), but
	it is almost diagonal. Using an elementary diagonal scaling matrix S, we obtain
	2826.9473 H P 1,3 = -14171.755 1,5 = 608.04658 H P H P 1,7 = -6.3000000 H P 2,2 = -14719.034 H P 2,4 = 206313.38 H P 2,6 = -4570.2494 H P 3,3 = 209056.94 H P 3,5 = -4687.9634 H P 3,7 = 1.2196400 H P 4,4 = 1026532.4 H P 4,6 = -22878.291 H P 5,5 = 21366.759 H P 5,7 = -458.42510 H P 6,6 = 523.23232 H P 7,7 = 10.171000,

  3 + (130.03210 -18.135000k 1 -19612.500k 2 )s 2 -(1330.6306 + 19613.407k 1 + 18322.789k 2 )s -(66.837750 + 980.62500k 1 + 867.10818k 2 ) = -162937.14 -2378239.7k 1 + 23845311k 2 + 355689.13k 2 1 + 38500022 • 10 1 k 1 k 2 + 35935569 • 10 1 k 2

	and power basis Hermite matrix with entries
	H P 1,1 = 88936.354 + 2615765.6k 1 + 2378454.6k 2
	+ 19233397k 2 1 + 34974730k 1 k 2 + 15887840k 2 2
	H P 1,3 = 10087.554 + 148001.81k 1 + 130869.17k 2
	H P 2,2 2
	H P 2,4 = 1330.6306 + 19613.407k 1 + 18322.789k 2
	H P 3,3 = 20955.855 + 16876.364k 1 -2941713.4k 2
	H P 4,4 = 150.92600.

Table 2 :

 2 Influence of target polynomial on PENBMI behavior

	system					PAS degree 5				
	basis		power			Lagrange			Lagrange			Lagrange	
	µ		10 -3			10 -8			10 -5			10 -2	
	roots		σ 0			σ 1			σ 2			σ 3	
	K 0		[0 0 0]			[0 0 0]			[0 0 0]			[0 0 0]	
	out.iter.		11			19			17			15	
	inn.iter.		74			27			33			29	
	lin.steps		194			28			44			32	
			-6.5390 • 10 -4			-8.4106 • 10 -6			-3.3369 • 10 -4			-8.6755 • 10 -8	
	K T		-58.350			-3.9048			-20.480			-4.1040 • 10 -1	
			-37.751			-9.9675 • 10 -1			-1.2157			-1.7471 • 10 -1	
	λ		73.2917			1.4901 • 10 -12			8.1649 • 10 -3			2.7241 • 10 -3	

  The BMI SOF problem is solved with no error or warning in the Lagrange basis, yielding λ = 8.8487 • 10 -1 , K = [1.3682, 4.8816, 44.959, 59.016] with 17 outer iterations, 80 inner iterations and 138 linesearch steps, using the orgin as initial point and trade-off parameter µ = 10 -5 .

.2028 • 10 -2 ± 60.804i, -1.0785 • 10 -1 ± 15.677i, -2.6764, -3.3000, -19.694) .
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• on open-loop stable systems such as UWV or AC17, the improvement brought by the Lagrange basis is less significant. Since the main purpose of our optimization problem is to minimize the norm of control gain, we observe that the Lagrangian basis is still slightly better than the power basis;

• PENBMI is unable to reach a feasible point for examples NN5, NN1 and HE1, when we choose the origin as the initial point. Indeed, local optimization techniques seek an optimal point inside the feasible set in a neighborhood of the initial point. Therefore, achievement of the solver may be very sensitive to the initial point. When the initial point is defined heuristically or randomly, the improvement is significant for system NN5 in Lagrange basis. However, there is no improvement over NN1 and HE1, when we use this simple strategy to define the target polynomial. In Table 2 we show the influence of the target polynomial on the computational cost for the PAS system. Open-loop poles of the system are σ 0 = 0, 0, -9.5970 The Hermite matrix can also be provided in the power basis: For more complicated examples, the Hermite matrix H is not necessarily quadratic in K: