
HAL Id: hal-00448911
https://hal.science/hal-00448911

Submitted on 20 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general model for the design of data warehouses
M. Schneider

To cite this version:
M. Schneider. A general model for the design of data warehouses. International Journal of Production
Economics, 2008, 112 (1), p. 309 - p. 325. �10.1016/j.ijpe.2006.11.027�. �hal-00448911�

https://hal.science/hal-00448911
https://hal.archives-ouvertes.fr


 1 

 
A general model for the design of data warehouses 

  
Michel Schneider 

 
LIMOS, Blaise Pascal University, Complexe des Cézeaux 

63173 Aubière, France 
Cemagref,  24 Avenue des Landais, 63172 Aubière Cedex, France 

schneider@isima.fr 
tel : 33 4 73 40 50 09   Fax : 33 4 40 50 01 

 
 
Abstract : Design and implementation of data warehouses remain delicate tasks which are led by 
experts. Nevertheless it would be interesting to allow the users to define and to build themselves 
their system through a simple and flexible process. In particular, in the field of production systems, 
exists the need to integrate data from various sources and to analyze them in order to extract 
knowledge for optimizing these systems. Traditionally the design of a data warehouse is based on 
an adequate representation of facts on one hand and dimensions of analysis on the other hand. We 
show in this article that an unified representation can be envisaged and that the problem comes 
down to that of the choice of a hierarchy of criteria adapted to the necessities of analysis. Our 
proposition leans on a graphic representation which offers a visual help to the user. 
 
Keywords : multidimensional, data warehouse, general model, relational mapping 
 
1  Introduction 
Basically, the schema of a data warehouse lies on two kinds of elements : facts and dimensions. 
Facts are used to memorize measures about situations or events. Dimensions are used to analyze 
these measures, particularly through aggregation operations (counting, summation, average, …). 
To fix the ideas let us consider the analysis of the sales in a shop according to the product type and 
to the month in the year. Each sale of a product is a fact. One can characterize it by a quantity. One 
can calculate an aggregation function on the quantities of several facts. For example one can make 
the sum of quantities sold for the product type "mineral water" during January in each of the last 
three years (2001, 2002, 2003). Product type is a criterion (one said also a member) of the 
dimension Product. Month and Year are criteria of the dimension Time. A quantity is so connected 
both with a type of product and with a month of one year. This type of connection concerns the 
organization of facts with regard to dimensions. On the other hand a month is connected to one 
year. This type of connection concerns the organization of members within a dimension. The 
possibilities of fact analysis depend on these two forms of connection and so on the schema of the 
data warehouse.  
 Many studies have been devoted to the modelling of dimensions. The objective is to find an 
organization which corresponds to the analysis operations and which provides strict control over 
how the aggregations can be made. In particular it is important to avoid double-counting or 
summation of non-additive data. Many authors recommend organizing the members of a given 
dimension into hierarchies with which the aggregation paths can be explicitly defined. In [23], 
hierarchies are defined by means of a containment function. In [14], the organization of a 
dimension results from the functional dependences which exist between its members, and multi-
dimensional normal forms are defined. The work of [13] extends this framework by considering 
specialization in dimensions. It is shown that there is a natural correspondence between optional 
dimension levels and attribute occurring in sub-classes. Normal forms are proposed which allow 
constructing a class hierarchy of dimension levels which guarantees summarizability. In [9], the 
functional dependences are also used to design the dimensions and to relate facts to dimensions. In 
[1], relationships between levels in a hierarchy are apprehended through the Part-Whole semantics. 
In [27], dimensions are organized around the notion of a dimension path which is a set of drilling 
relationships. The model is centred on a parent-child (one to many) relationship type. A drilling 
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relationship describes how the members of a children level can be grouped into sets that correspond 
to members of the parent level. In [24], a dimension is viewed as a lattice and two functions anc 
(ancestor) and desc (descendant) are used to perform the roll up and the drill down operations. The 
work of [22] proposes an extended multidimensional data model which is also based on a lattice 
structure, and which provides non-strict hierarchies (i.e. many to many relationships between the 
different levels in a dimension). The work of [21] introduces different data hierarchies (balanced 
and non-balanced, ragged and non-ragged) and studies their influence on rollup paths and their 
incidence on the expressive power of the OLAP cube. In [19] solutions for handling heterogeneous 
hierarchies and mixed-granularity hierarchies are suggested. Heterogeneity results from the 
existence of different sub-classes of a same class, each sub-class having its own attributes and 
aggregation levels. Mixed-granularity occurs when sub-classes are both end-instances of a 
dimension and serve as aggregation levels. In [15] are established necessary conditions for 
summarizability in multidimensional structures. 
 Modelling of facts and their relationships has not received so much attention. Facts are 
generally considered in a simple fashion which consists in relating a fact with the roots of the 
dimensions. However, there is a need for considering more sophisticated structures where the same 
set of dimensions are connected to different fact types and where several fact types are inter-
connected. The model described in [22] permits some possibilities in this direction. The YAM 
model [3] allows the usage of semantics O-O relationships between different star structures.   
 Apart from these studies it is important to note various propositions [4, 7, 9, 18] for cubic 
models where the primary objective is the definition of an algebra for multidimensional analysis. 
Expressiveness of the algebra is the main topic of these works.  
 Problem arises to compare the possibilities of these various models and algebras. Several 
authors worked in this direction. The work of [5] defines requirements for OLAP applications and 
compares four multidimensional models. No model meets all the requirements. This makes a 
combination of different models desirable. The work of [2] suggests a framework to classify and 
compare multidimensional models. Sixteen different models of different levels (conceptual, logical, 
physical) are studying. It appears that conceptual models offer the possibility of representing much 
more semantics, but they do not incorporate an algebra for manipulating the data.  
 Others works must also be mentioned. In [10] is suggested an environment which is able to 
generate the implementation of a star or snowflake data warehouse from a conceptual schema. The 
generation process takes into account the limitations of the OLAP target system (Cognos 
Powerplay or Informix Metacube). In [8], a solution is proposed to derive multidimensional 
structures from E/R schemas. The work of [20] suggests also a method for developing dimensional 
models from E/R schemas. Different options for the resulting schema can be choose (flat, star, 
snowflake, constellation). The work of [26] addresses the problem of integrating the data from 
heterogeneous data bases and storing it into the repository of the data warehouse. In this work, the 
data warehouse is seen as a set of materialized views. So the problem becomes a problem of view 
selection. Different algorithms are proposed and compared for solving it. In [16, 17] are suggested 
normal forms for the star and the snowflake relational models. The work of [25] extends the 
conventional data warehouse architecture with analysis rules, which mimic the work of an analyst 
during decision making. Analysis rules extend the notion of ECA (Event-Condition-Action) rule 
with mechanisms to analyze data multidimensionally and to make decisions. In [11] is proposed a 
multi-dimension algebra which strengths the traditional multi-dimensional analysis of quantitative 
data and extends it to qualitative data (like knowledge). Mechanisms are suggested to efficiently 
explore the data in a vertical direction (father and sons) or in a horizontal direction (brothers). 
 Our objective in this paper is to propose a model which can be used to apprehend the modelling 
of facts and dimension members in a unified way. It permits so to share the  dimensions in various 
ways and to describe different relationships between fact types. Using this model, we will also 
define the notion of well-formed data warehouse structures. Such structures have desirable 
properties for applications. We suggest a graph representation for such structures which can help 
the users in designing and querying a data warehouse.    
 The paper is organized as follows: sections 2 and 3 respectively present the modelling of facts 
and the modelling of dimensions; section 4 presents our unified model for facts and members; 
section 5 presents the typical structures we want to model and defines the notion of well-formed 
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structures; section 6 shows the ability of our model to describe realistic cases; section 7 discusses 
relational mappings; sections 8 illustrates SQL queries on the relational form of well-formed 
structures; section 9 discusses some improvements of our model and concludes. 
 
2 Modelling facts  
A fact is used to record measures or states concerning an event or a situation. Measures and states 
can be analyzed through different criteria organized in dimensions. 
 A fact type has the following structure :  
 fact_name[(F), (fact_key), (list_of_reference_attributes), (list_of_fact_attributes)] 
where 

- fact_name is the name of the type ; 
- F is a mark for the fact type ;  
- fact_key is a list of attribute names ; the concatenation of the values of these attributes 

identifies each instance of the type ; 
- list_of_reference_attributes is a list of attribute names ; each attribute has a value which is 

either an atomic value (degenerated case) or a reference to a member instance in a dimension or a 
reference to another fact instance ;  

- list_of_fact_attributes is a list of attribute names ; each attribute is a measure for the fact type 
(such an attribute will also be called a measure attribute). 
 The set of referenced dimensions comprises the dimensions which are directly referenced 
through the list_of_reference_attributes, but also the dimensions which are indirectly referenced 
through other facts.  
 Each fact attribute can be analyzed along each of the referenced dimensions. Analysis is 
achieved through the computing of aggregate functions on the values of this attribute.  
 There may be no fact attribute; in this case a fact records the occurrence of an event or a 
situation. In such cases, analysis consists in counting occurrences satisfying a certain number of 
conditions. 
 For the needs of an application, it is possible to introduce different fact types sharing certain 
dimensions and having references between them. 
 Two dimensions are independent if there is no relationship between a member of the first and a 
member of the second. 
 A dimension is degenerated in a fact type if its reference attribute is replaced by a value 
attribute. In other words the analysis is achieved by direct use of the values of this attribute.  
 
Definition 1 (well-formed fact type). A fact type is well-formed if each referenced dimension is 
either degenerated or points to a legal entry in a dimension (a legal entry, as it is defined further, is 
a key of any member in a dimension). 
 
Example 1.  As an example let us consider the following fact type for memorizing the sales in a set 
of stores. 
          Sales[(F), (ticket_number, product_key), (time_key, product_key, store_key), 
   (price_per_unit, quantity)]  
 The key is (ticket_number, product_key). This means that there is an instance of Sales for each 
different product of a ticket. There are three references to dimensions: time_key, product_key, 
store_key. There are two fact attributes: price_per_unit, quantity. The fact attributes can be 
analyzed through aggregate operations by using the three dimensions. Since each of the three 
references points to a root in a dimension, this fact type is well formed. 
 
Example 2. Consider now the same fact type but with another reference to the dimension product 
(the key category_key of the member category). 
          Sales[(F), (ticket_number, product_key), (time_key, category_key, store_key), 
   (price_per_unit, quantity)]  
Each of the three references points to the key of a member in a dimension. So, this fact type is well 
formed. 
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Example 3.  Consider again the fact type Sales and another reference to the dimension product 
(weight of a product). 
          Sales[(F), (ticket_number, product_key), (time_key, product_weight, store_key), 
   (price_per_unit, quantity)]  
Since product_weight is not a legal entry in a dimension, this fact type is not well-formed. We will 
see in section 3.6 that such an attribute is a property attribute which cannot be used to organize the 
multi-dimensional analysis.  
 
In some models, it is imposed that measure attributes are independent from each others. This will 
clarify their analysis. The independence can be expressed by using functional dependencies: it must 
not exist any functional dependence between measure attributes. To be general, we do not impose a 
priori such a constraint.  
 
3  Modelling dimensions  

3.1 Member of a dimension  
The different criteria which are needed to conduct analysis along a dimension are introduced 
through members. A member is a specific attribute (or a group of attributes as we will see in 
section 3.6) taking its values on a well defined domain. For example, the dimension TIME can 
include members such as DAY, MONTH, YEAR, … . Analysing a fact attribute A along a member 
M means that we are interested in computing aggregate functions on the values of A for any 
grouping defined by the values of M. In the paper we will also use the notation Mij for the j-th 
member of the i-th dimension.  
 
3.2 Hierarchical organization of members 
Members of a dimension are generally organized in a hierarchy which is a conceptual 
representation of the hierarchies of their occurrences.  
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(a) 

(b) 

2002                                        2003   .... 

w2/02      w8/02      w7/03….     Jan/02   Feb/02  Jan/03  …. 

tk1  tk2   tk3   tk4  ….. 
 

time_key 
 

month 
 

year 
 

(c) month 
 

time_key 
 

week 
 

year 
 

time_key 
 

month 
 

year 
 

(12/Jan/02)    (13/Jan/02)    (23/Feb/02)    (11/Feb/03)      
    tk1          tk2                  tk3                   tk4 
 

Jan/02            Feb/02 ….           Feb/03 …. 

2002                 2003   ….. 

tk1 tk2 tk3 tk4  ….. 

 January     February  …  2002      2003  ….. 

International Journal of Production Economics, Volume 112, Issue 1, March 2008, Pages 309-325
Elsevier, doi:10.1016/j.ijpe.2006.11.027



 5 

 Hierarchies in dimensions is a very useful concept that can be used to impose constraints on 
member values and to guide the analysis. Hierarchies of occurrences result from various 
relationships which can exist in the real world: categorization, membership of a subset, mereology. 
Figure 1 illustrates typical situations which can occur.  
 Cases (a) and (b) represents the same members but organized differently. In case (a) there are 
hierarchical relationships between time_key and month and between month and year. Time_key, 
for example, is a date which encodes the day, the month and the year; the month has values such as 
February/02 which identifies each month from all the months of the total period. In these 
conditions, the amount of sales for all the months of all the years, is obtained with a group_by just 
on the month. In case (b) month and year are both hierarchically dependent of time_key but are 
independent of each other (month, for example, is a value such as January identifying a month 
independently from the value of year). With such a structure we can make groupings by using only 
values of month, or only values of year, or both values of month and year. The expression of the 
previous query would involve a group_by on month+year. Case (c) represents a hierarchy where 
the two paths are alternative. They share the same root type (time_key) and the same leaf type 
(year). Starting from time_key, groupings are possible by using either the values of week or either 
the values of month (but not both). This configuration has precise semantics: for a given occurrence 
of time_key, whether the week path or the month path is used, one always obtains the same 
occurrence of year. This means that, using either the first path or the second path, we obtain the 
same result when continuing the aggregations with the year element. In this case we said that 
alternatives paths satisfy the path coherence constraint. We use dotted arrows to represent 
alternative paths. 
 We will model these different cases according to a hierarchical relationship (HR) which links a 
child member Mij (i.e. week) to a parent member Mik (i.e. year) and we will use the notation 
M ij�M ik. For the following we consider only situations where a child occurrence is linked to a 
unique parent occurrence in a type. However, a child occurrence, as in case (b) or (c), can have 
several parent occurrences but each of different types. Existence of this HR is very important since 
it means that the members of a dimension can be organized into levels and correct aggregation of 
fact attribute values along levels can be guaranteed. 
 
3.3 Cover graph of a dimension 
For the following, we suppose that HR is anti-symmetric and transitive. To justify these properties 
we can refer to the notion of part-whole relationship. This kind of relationship is often appropriate 
to apprehend real situations [1]. There exist different semantics for part-whole-relationships and 
most of them verify these two properties. Thanks to the transitivity property we introduce the 
notion of cover graph of a dimension. The idea behind the notion of cover graph is to remove in a 
dimension graph all redundant directed edges and paths. 
 
Definition 2 (cover graph of a dimension). Consider the directed graph defined by the HR between 
the members of a dimension. A cover graph of this dimension is a minimal sub-graph obtained by 
removing all the directed edges resulting from the transitivity property.  
 
 
 
 
 
 
          
 
 
 
 
 
                                           Fig. 2. A graph of a dimension and its cover graph. 
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Example 4. Figure 2 illustrates the case of a dimension graph with all the edges obtained by 
transitive closure and the corresponding cover graph.  
 
In our dimension graph, we do not introduce the member type “ALL” which represents the upper 
level of aggregation. This member specifies that all the occurrences of a fact type which point to a 
same dimension can be aggregate together. However, this upper aggregation will always be 
possible with our model.  
 
3.4 Well-formed dimension 
Definition 3 (well-formed dimension). A dimension is well-formed relatively to a cover graph when 
this graph has a unique connected component and is acyclic and when the path coherence 
constraint is satisfied for alternative paths.  
 
Restricting the cover graph to a unique component is very important in practice. If the graph 
comprises, for example, two components, the dimension must be divided into two distinct 
dimensions. We do not impose that the cover graph has a unique root. In real situations we can 
encounter different dimensions which share a common part.  
 
Example 5.  Let us consider the dimensions illustrated in figure 1. They are all well-formed since 
their cover graphs have a unique component and are acyclic (in case (c) it is supposed that the path 
coherence constraint is satisfied).  
 
Example 6. In figure 3 we illustrate a dimension graph with two roots. In this case it appears that 
two dimensions which are priori different (supplier dimension and customer dimension) share a 
same part.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A dimension graph with two roots 
 
Remark (relaxing the transitivity property for the HR). Definition 2 can be easily extended to the 
more general case where the transitivity property is not satisfied by the HR. In this case, the cover 
graph is replaced in the definition by the initial graph of the dimension or by an equivalent non 
redundant graph. A non-redundant graph is obtained by removing directed edges which can be 
derived by using some rule. 
 
3.5 Aggregation levels in a well-formed dimension  
Since the cover graph of a well-formed dimension is acyclic, it is possible to distribute its members 
into levels. Each level represents a level of aggregation. Each time we follow a directed edge, the 
level increases (by one or more depending on the used path). This action corresponds to a 
ROLLUP operation (corresponding to the semantics of the HR) and the opposite operation to a 
DRILL DOWN. Starting from the reference to a dimension D in a fact type F, we can then roll up 
in the hierarchy of dimension D by following a path of the cover graph of D. 
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3.6 Property attributes in a dimension 
As in other studies [12], we consider property attributes in a dimension. Such attributes are used to 
describe the members. A property attribute is linked to its member through a functional 
dependence, but does not introduce a new member and a new level of aggregation. For example a 
member town in a dimension may have property attributes such as population, administrative 
position, … . These attributes are not interesting to specify groupings but they can be useful in the 
selection predicates of queries to filter certain groups.  
 
3.7 Member type 
We now define the notion of member type, which incorporates the different features presented 
above. A member type has the following structure: 
     member_name[(M), (member_key), (list_of_reference_attributes), (list_of_property_attributes)] 
where 

 - member_name is the name of the type; 
 - M is a mark for the member type; 

 - member_key is a list of attribute names; the concatenation of these attributes identifies each 
instance of the type; 
 - list_of_reference_attributes is a list of attribute names where each attribute is a reference to 
the successors of the member instance in the cover graph of the dimension; alternatives are 
represented by using a sub-list in nested parentheses; 
 - list_of_property_attributes is a list of attribute names where each attribute is a property for the 
member. 
 Only the member_key is mandatory.  
 
Example 7.  Using this model, the representation of the members of the dimension represented in 
figure 1(c) is the following: 
  time_root[(M), (time_key), ((week_key, month_key)), ()] 
  week[(M), (week_key), (year_key), (week_type)] 
  month[(M), (month_key), (year_key), ()] 
  year[(M), (year_key), (), (year_type)] 
 Note that the two reference attributes week_key and month_key are represented in a sublist 
since they are the origin of two alternative paths. 
Here is an occurrence of the week type : 
  week [(M), (w1_03), (2003), (holiday)]. 
 
3.8 Entries and roots in a dimension 
Each member_key of a member in a dimension can be an entry for this dimension i.e. can be 
referenced from a fact type or from another member type. This possibility is very important since it 
means that dimensions can be shared between several fact types in various ways. In particular, it is 
possible to reference a dimension at different levels of granularity. A root represents a standard 
entry in a dimension. The cover graph can have several roots. For the three dimensions in figure 1, 
there is a single root. However, definition 3 authorizes several roots.  
 
3.9 Handling many-to-many relationships in a dimension 
In certain situations, a many-to-many relationship exists between two members of a dimension 
hierarchy. For example a Project can be connected with several Groups (possibly zero) and 
conversely a Group can collect several Projects (at least one). Within the framework of an analysis 
of purchases (purchase is so a fact type), a dimension can incorporate projects. Problem arises so 
how to elaborate the hierarchy with the Projects and the Groups. One supposes that a purchase for a 
project depends on the group to which this project belongs. A simple solution consists in two 
separated hierarchies, a one around a member Project and the other one around a member Group 
(Figure 4(a)). It is then possible to make aggregations, either on the projects separately, or on the 
groups separately, or simultaneously on projects and groups by crossing the two dimensions. 
Another solution consists in a single dimension with a member Project-Group which points 
towards members Project and Group (Figure 4(b)). This solution offers the same possibilities of 
aggregation as the previous one but it materializes the relationship between the Projects and the 
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Groups through the instances of the member Project-Group. It becomes then possible to materialize 
aggregates at the level of Project-Group. In this second solution, if a project is isolated (it does not 
belong to any group), it is possible as in [19] to introduce an artificial instance for Group.  
 
 
 
 
 
 
 
 
 
                     (a)    (b)    (c) 
 

Fig. 4. Handling a many-to-many relationship in a dimension 
 
 For the graph of figure 4(b), the HR is transitive. One can so deduct from it the graph of figure 
4(c). This graph means that one can directly aggregate instances of the fact type either for every 
Project, or for every Group. The graph of figure 4(b) is a cover graph according to definition 2. 
 
4 A unified way for modelling elements (facts or members)  
A fact type has a very similar structure to that of a member type. Moreover, property attributes of a 
member can be seen as fact attributes and can be analyzed along the successors of this member 
acting as roots of partial dimensions. For example, suppose that in a dimension we have a member 
town with a property attribute population which references the member region. One can analyze 
population by using region : one can calculate aggregates on population with groupings on 
region_name.  
 An element is a type which has the following structure : 
      element_name[(T), (element_key), (list_of_references), (list_of_specific_attributes)] 
where 

- element_name is the name of the type; 
- T is a mark for the type (F or M); 
- element_key identifies each instance of the type; 
- list_of_references is composed of sub-lists of attribute names; each attribute references 

another element ; these references determine the multidimensional structure of the data warehouse; 
- list_of_specific_attributes is a list of attribute names; each attribute is a measure for a fact or a 

property for a dimension member. 
 The list of references determines the dimensions along which the element can be analyzed. 
Each specific attribute can be analyzed along each of these dimensions. Analysis is achieved 
through the computing of aggregate functions on the values of this attribute. The aggregation is 
specified through the values of the chosen members in the dimensions. Recall that the notion of 
sub-list is used to mark alternative paths. 
 
5   Well-formed structures 
 
5.1 Various structures for data warehouses 
In this section we explain how with our unified model fact types and member types can be 
interconnected in order to model various data warehouse structures. 
 First, a fact can directly reference any member of a dimension. Usually a dimension is 
referenced through one of its roots (as we saw above, a dimension in our model can have several 
roots). But it is also interesting and useful to have references to members other than the roots. This 
means that a dimension can be used by different facts with different granularities. For example, a 
fact can directly reference town in the customer dimension and another can directly reference 
region in the same dimension. This second reference corresponds to a coarser granule of analysis 
than the first.   
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 Moreover, a fact F1 can reference any other fact F2. This type of reference is necessary to 
model certain situations (see section 6). This means that a fact attribute of F1 can be analyzed by 
using the key of F2 (acting as the grouping attribute of a normal member) and also by using the 
dimensions referenced by F2. 
 To formalise the interconnection between facts and dimensions, we thus suggest extending the 
HR relationship of section 3 to the representation of the associations between fact types and the 
associations between fact types and member types. This gives a very uniform model since fact 
types and member types are considered equally. To maintain a traditional vision of the data 
warehouses, we also ensure that the members of a dimension cannot reference facts.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Typical data warehouse structures 
 
 Figure 5 illustrates the typical structures we want to model. Case (a) corresponds to the simple 
case, also known as star-snowflake structure, where there is a unique fact type F1 and several 
separate dimensions D1, D2, … . Cases (b) and (c) correspond to the notion of facts of fact. Case (d) 
corresponds to the sharing of a whole dimension. In cases (e) and (f) only the members which are 
at the intersection of D1 and D2 are shared. An illustration of case (e) is given further in Fig. 7. 
 
5.2 Data Warehouse Graph (DWG) and well-formed structures 
To represent data warehouse structures, we suggest using a graph representation called DWG (data 
warehouse graph). It consists in representing each type by a node containing the main information 
about this type, and representing each reference by a directed edge. Alternative paths in dimensions 
are represented by dotted lines. 
 We are now able to introduce the notion of well-formed structures. 
 
Definition 4 (well-formed data warehouse structures).  A data warehouse structure is well-formed 
when the following conditions are satisfied : 
 1) the fact types are well-formed ; 
 2) the dimensions are well-formed ; 
 3) a fact type is a root or all its predecessors in the graph are fact types ;  
 4) the DWG has a unique component and is acyclic. 
 
5.3 Cut in the DWG 
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We introduce now the notion of cut in the DWG in order to characterise the legal groupings when 
making an analysis. 
 
Definition 5 (Cut of a sub-graph in a DWG). Let SG be a sub-graph of a well-formed DWG with 
root R. A cut of SG is a sub-set S={e1, e2, …, ek) of edges of SG such that two different edges ei, ej 
of S does not appear in a same path or in two alternative paths. 
 
Property 1. Each cut of a sub-graph of a well-formed DWG defines a legal grouping (i.e. the 
elements pointed by the edges of the cut can be legally combined to make an aggregation on the 
occurrences of the root of the sub-graph).  
 
This important property permits to use the DWG in order to situate the different possibilities of 
aggregations. This ability is illustrated in the next section. 
 
6  Illustrating the modelling of realistic cases with well-formed structures 
In this section we show how different realistic cases can be described with well-formed structures. 
 
6.1 Star and snowflake structures 
We have a star or snowflake structure when : 

- there is a unique fact type; 
- each dimension has a unique root; 
- each reference in the fact type points towards the root of a dimension. 

 Our model does not differentiate star structures from snowflake structures. The difference will 
appear with the mapping towards the relational model (see section 7). The DWG of a star-
snowflake structure is represented in figure 6. This representation is well-formed. Such a 
representation can be very useful to a user for formulating queries. Facts are clearly differentiated 
from members, reference to dimensions are shown explicitly, analysis criteria appear immediately.  
 
 We can illustrate on this structure several cuts as defined previously. For example (e1, e2, e6) is 
a cut, also (e1, e5, e6). So groupings on (e1, e2, e6) or (e1, e5, e6) are legal. But (e3, e4, e5) or (e2, e5, e6) 
are not cuts. So groupings on (e3, e4, e5) or (e2, e5, e6) are not legal.  
 It is clear that any subset of a cut is also a cut.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The DWG of a star-snowflake structure 
 

6.2 Constellation structure (sharing of a dimension)  
The constellation structure appears when:  

e1 e2 

e4 e3 

e6 

e5 

time_root 
[(M),(time_key), …] 
 

product_root 
[(M),(product_key), …] 

 

week[(M), 
(week_no),...] 
 

year 
[(M),(year_no),…] 
 

family 
[(M),(family_name),…] 
 

factory_root 
[(M),(factory_key), …] 
 

town 
[(M),(town_name),… ] 

 

region 
[(M),(region_name),…] 
 

category 
[(M),(category_no), …] 

 

manufacturing[(F), (manufacturing_key), (time_key, product_key, factory_key), 
      (quantity, cost_per_unit)] 

month[(M), 
(month_no),...] 
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- there are at least two different root types (each root acts as a fact type); 
- a fact type does not reference another fact type. 
Note that in such a structure, there exists at least one element in the hierarchy which can be 

reached from the two roots.  
 Using the notion of DWG, figure 7 shows an example with the fact type manufacturing from 
figure 6 and a new fact type stock memorizing stock facts. Stock has a reference to the member 
town of the dimension factory. So, the dimension factory is shared partly between the two fact 
types. The two other dimensions are completely shared. 
 The DWG clearly shows how the two fact types can be exploited separately or simultaneously. 
We can explore the graph from one of its two roots and use it as a single rooted graph. We can also 
simultaneously exploit the two fact types. For example, to the node town, one can associate 
different aggregates from the stock occurrences and use them for the analysis of the manufacturing 
facts, or vice-versa. 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 

 
 
 

Fig. 7. The DWG for a constellation data warehouse 
 
6.3 Facts of fact with a unique root   
Sometimes one fact type, called primary fact type, can be characterized by several other fact types, 
called secondary fact types. Let us consider for example the case of a manufacturing of a product. 
It is characterized by primary fact attributes such as quantity, cost, ... . An instance of 
manufacturing is created each time a product is manufactured. A manufacturing is in fact 
composed of several operations on machines. Secondary fact attributes are associated to each 
operation such as the duration of the operation with a given machine. It is not adequate to 
memorize these secondary facts in the primary type (there is a many-to-many association between 
operations and manufacturing). One solution consists in placing them in a secondary fact type 
referencing the primary fact type. Our model caters for the description of such a solution. It 
consists in specifying two different fact types manufacturing and operation, and installing in 
operation a reference to manufacturing (figure 8). It should also be noted that operation has a 
normal reference to the root of the machine dimension. There is an instance of operation for each 
different operation in a manufacturing. Note that a serial number is used in the primary key of the 
operation type to mark the order of an operation in the sequence of a manufacturing. So an 
operation can occur several times in a manufacturing. The key of the operation type is composed of 
the operation name, the serial number, the manufacturing key. For example a welding operation   
can be associated to the manufacturing M100, a first time with serial number 2, and a second time 
with serial number 4. This means that this operation occurs in position 2 and in position 4 in the 
sequence of operations for the manufacturing M100. So two instances with respective keys 
(welding, 2, M100) and (welding, 4, M100) appear for the operation type. With this representation 

time_root 
      product_root 

factory_root 
[(M),(factory_key),…] 

 

town 
[(M),(town_name),…] 

 

region  
[(M),(region_name),...] 

 

manufacturing[(F), (manufacturing_key), 
(time_key, product_key, factory_key), (quantity, 
cost_per_unit)] 

time_root 
      product_root 

stock[(F), (time_key, product_key, 
warehouse_key), (time_key, product_key, 
warehouse_key), (quantity)] 

warehouse_root 
[(M),(warehouse_key), ....] 
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it is possible to analyze the duration of an operation by using the serial number (for example : what 
is the average ratio between the duration of a welding operation and the total duration of a 
manufacturing when the welding occurs in position 2) or not (for example : what is the average 
ratio between the duration of the welding operations and the total duration of a manufacturing). 
 For the secondary fact type, the primary fact type acts as a multi-dimension. So, all the 
dimensions of the primary type can be also used as dimensions of the secondary type. This clearly 
appears in the DWG of the global structure (figure 8). For example, quantity can be analyzed using 
the time and product dimensions and duration can be analyzed using machine dimension but also 
time and product dimensions. The operation fact can also be analyzed using manufacturing_key 
alone acting as a degenerated dimension. For example we can calculate the average duration of an 
operation per manufacturing. 
 
 
 
 
 
 
 
 
 
 
 
 
                    

Fig. 8. Modelling facts of fact with a unique root 
 
6.4 Facts of fact with several roots 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Modelling facts of fact with two roots 
 
For the previous example we wish now to analyze the component parts which are needed for a 
manufacturing and which are necessary to buy in advance to suppliers outside the company. For a 
given manufacturing, several component parts are involved. We introduce so another secondary 
fact type component_part which references the manufacturing type. The measure attribute quantity 
of the component_part type can be so analyzed not only according to the component dimension 
(for example: which is the supplier who have supplied the largest number of component parts) but 
also according to manufacturing (for example: how much a manufacturing requires of component 
parts on average) and of the dimensions product and time (for example: total number of component 
parts which were furnished by a given supplier for each month in year 2005).  

time_root       product_root 

operation[(F), (operation_name, serial_number, manufacturing_key), 
(machine_key, manufacturing_key), (duration)] 

machine_root[(M), 
(machine_key), …] 

manufacturing[(F), (manufacturing_key), (time_key,  product_key), 
(quantity)] 

 

product_root       time_root 

operation[(F), (operation_name, serial_number, manufacturing_key), 
(machine_key, manufacturing_key), (duration)] 

machine_root[(M), 
(machine_key), …] 

manufacturing[(F), (manufacturing_key), (time_key,  product_key), 
(quantity)] 

 

component_part[(F), (component_key, manufacturing_key), 
(component_key, manufacturing_key), (quantity)] 

component_root[(M), 
(component_key), …] 

supplier[(M),  
(supplier_key), …] 
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7   Mapping to the relational model 
One way to implement data warehouses is to use relational DBMS. So it is necessary to be able to 
map our well-formed structures in accordance with the relational model. In this section we provide 
a certain number of guidelines for this mapping. In the framework of [6], our proposal is related to 
relational approaches. 
 
7.1 Relational mapping with split dimension 
This solution, which is straightforward, consists in mapping each type Pi (fact type or member 
type) into a table Ti. The key of Pi becomes the primary key of Ti. References between types are 
implemented via foreign keys. This solution offers a simple way to memorize precalculated 
aggregates by adding supplementary attributes in element types. Its drawback is well-known: 
navigating through the hierarchy necessitates many joins which can burden the performances. For a 
structure like the one described in figure 6, this solution leads to the relational snowflake data 
warehouse structure as represented below (primary keys are marked in bold, foreign keys in 
italics).     

  manufacturing(manufacturing_key, time_key, product_key, factory_key, quantity, cost_per_unit) 
  time_root(time_key, A1$week_no, A1$month_no, …) 
  week(week_no, year_no, …) 
  month(month_no, year_no, …) 
  year(year-no, …) 
  product_root(product_key, category_no,…) 
  category(category_no, family_name, …) 
  family(family_name, …) 
  factory_root(factory_key, town_name, …) 
  town(town_name, region_name, ...) 
  region(region_name, …)  

 Note that the two references in town for the first (and unique) alternative are marked with the 
special prefix A1$. If a second configuration of alternative paths would exist in the same 
dimension, we can use the special prefix A2$, and so on.  
 
7.2 Relational mapping with regrouped dimensions 
This solution is only possible when the DWG has a unique root. First the root type is mapped into a 
specific table. Then we create a number of tables equal to the number of references in the root type. 
All the elements which can be reached from one reference are grouped in the same table. For a 
structure like the one described in figure 6, this solution leads to the relational star data warehouse 
structure as represented below.  

  manufacturing(manufacturing_key, time_key, product_key, factory_key, quantity, cost_per_unit) 
  time_root(time_key, …, A1$week_no, …, A1$month_no, …, year_no, …)   
  product_root(product_key, …, category_no,…, family_name, …) 
  factory_root(factory_key, …, town_name, …, region_name, …) 

 With this mapping the structure of the dimension hierarchies is not represented. It is embedded 
in the data. 
 
7.3 Hybrid relational mapping  
The previous mapping is not possible when an element can be reached from different roots. This is 
because this element acts as an entry and must be the key of a table in order to install the references 
correctly. The hybrid mapping thus consists in inserting each element entry into a specific table. 
Elements which are accessible only from one entry can be stored in the table of this entry. Others 
must be stored in separate tables. 
 For the structure of figure 7, this mapping gives the following tables : 

  manufacturing(manufacturing_key, time_key, product_key, factory_key, ..., town_name, quantity, 
cost_per_unit) 
  stock(time_key,  product_key, warehouse_key, ..., town_name, quantity) 
  time_root(time_key, …) 
  product_root(product_key, …) 
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  town(town_name,…, region_name, ...)  

 Note that the attributes of the element types factory_root, warehouse_root, region have been 
encapsulated into the tables manufacturing, stock, town respectively. 
 
7.4 Performances of theses mappings 
These various mappings do not offer the same performances as regards the execution of queries by 
the relational engine. The most efficient mapping is the one that requires a minimum of joins that is 
the second mapping. But this mapping, as we underlined it, does not explicitly represent 
relationships between the dimension members. It is more difficult for the end user to separate the 
legal groupings and the not legal groupings. The first mapping well represents these relations but it 
is the least efficient. In practice it will so be necessary to choose a hybrid mapping. 
 It is important to notice that almost every relational DBMS offer now functions to calculate the 
day, the month, the year from any date. As a consequence it is useless to represent the 
corresponding members in the time dimension which can be so considerably simplified. In a 
majority of cases the time dimension can be degenerated and represented only by an attribute of 
type DATE in the fact tables.  
 
7.5   Automatic generation of theses mappings 
Indeed the descriptions of the different types (facts and members) contain all the necessary 
information for generating the relational schema. It is not difficult to design an algorithm which 
ensures this generation. The problem is how to produce the descriptions of the different types from 
a DWG. We can imagine a software component with a graphical interface which permits a user to 
draw the DWG. This component must control at each step the properties and the constraints of the 
DWG and must verify that the structure is well-formed. It is this constituent which has to offer a 
function for generating the descriptions of the types. Such a constituent would be very useful to 
allow the users to be involved in the design of the data warehouse. But its elaboration is not so easy 
and represents a main objective of our future work.   
 
8 Illustrating SQL queries on the relational forms of well-formed structures 
In this section we show how the DWG can help the design of aggregation queries on the relational 
forms defined previously. 
 
 
 
 
 
 
 
 
                  
 
 
 
 
 
 
 
 
 

Fig. 10. The marking of the DWG for illustrating Query 1 
  

8. 1 Query 1 (a simple aggregation query on a star or snowflake structure) 
For the data warehouse represented in figure 6 we want to obtain the total quantity manufactured 
for each category of products and each week of the year 2004.  

time_root 
[(M),(time_key), …] 
 

product_root 
[(M),(product_key), …] 
 

week[(M), 
(week_no),...] 
 

year 
[(M), (year_no),…] 
 

family 
[(M),(family_name),…] 
 

factory_root 
[(M),(factory_key), …] 
 

town 
[(M), (town_name),… ] 

 

region 
[(M),(region_name),…] 
 

category 
[(M),(category_no), …] 

 

manufacturing[(F),(manufacturing_key), (time_key, product_key, factory_key), 
      (quantity, cost_per_unit)] 

month[(M), 
(month_no),...] 
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 This query corresponds to the cut represented in Figure 10 (edges of the cut are marked in 
bold). The DWG permits to identify immediately the different elements involved in the query (in 
grey in the figure). Note that we do not select the year element and the category element since the 
attributes we need are included as foreign keys in the week table and in the product_root table.  
 
 For the relational snowflake representation the corresponding SQL query is the following : 

  Select sum(quantity) from manufacturing m, time_root t, product_root p, time_root t, week w 
  where m.time_key=t.time_key and m.product_key=p.product_key and 
   t.A1$week_no=w.week_no and w.year_no=2004   
  group by t.A1$week_no, p.category.no; 
 
 For the relational star representation the query is slightly shorter (since the week table is 
embedded into the time_root table) : 

  Select sum(quantity) from manufacturing m, time_root t, product_root p 
  where m.time_key=t.time_key and m.product_key=p.product_key and t.year_no=2004   
  group by t.A1$week_no, p.category_no; 
 
 
8.2 Query 2 (using results analysis coming from another fact when a same dimension is 
shared) 
For the data warehouse represented in Figure 7 we want to elaborate the total quantity of product 
40 manufactured in the towns where there exists a stock greater than 200 for this product on the 12 
December 2004.   
 Also in this case the DWG can be very useful to help in identifying the different elements 
involved in the query (see figure 11). We use the hybrid relational mapping of section 7 for 
expressing the SQL query. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. The marking of the DWG for illustrating Query 2 
 
 In a first step we elaborate the stock for the product 40 on the 12 December 2004 for each town 
and we incorporate the result in the corresponding town instance using a property attribute.   

  Create view v(sum_stock, town_name) as  
   select sum(quantity), town_name from stock  
   where time_key= “12 December 2004”and product_no=40 
   group by town_name; 
  
  Alter table town add (sum_stock number(6) default 0).  
  Update town t set sum_stock=(select sum_stock from v where v.town_name=t.town_name); 

time_root 
      product_root 

factory_root 
[(M), (factory_key),…] 

 

town 
 [(M), (town_name),…] 

 

region  
[(M), (region_name),...] 

 

manufacturing[(F), (manufacturing_key), 
(time_key, product_key, factory_key), (quantity, 
cost_per_unit)] 

time_root 
      product_root 

stock[(F), (time_key, product_key, 
warehouse_key), (time_key, product_key, 
warehouse_key), (quantity)] 

warehouse_root 
[(M), (warehouse_key), ....] 
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 In a second step, we can specify the final query by using the new attribute sum_stock in the 
town table. 

  Select m.town_name, sum(quantity) from manufacturing m, town t  
  where m.town_name=t.town_name and m.time_key= “12 December 2004”and 
      m.product_no=40 and t.sum_stock>200  
  group by m.tow_name; 
 
8.3  Towards an automatic generation of queries 
The DWG can be used to support a graphic interface so as to allow a user to specify its aggregation 
queries. For a simple query, without filtering conditions, it is necessary to select the measure 
attribute and to indicate the cut (one saw in sections 6 and 8 how a cut of the DWG allows to 
specify the legal groupings). For a more complex query, with filtering conditions, it is necessary 
also to be able to specify graphically these conditions. From these graphic specifications one can 
rather easily design an algorithm which allows generating the SQL code of the query by taking into 
account the mapping which was used to generate the data base. 
 
 
9   Conclusion 
In this paper we propose a model which unifies the notion of fact and dimension member. This 
model can describe various data warehouse structures. It extends existing models for sharing 
dimensions and for representing relationships between facts. It allows for different entries in a 
dimension corresponding to different granularities. A dimension can also have several roots 
corresponding to different views and uses. It is possible to apprehend the concept of facts of fact 
which is very frequently encountered in the real world. Based on this model, the schema of the data 
warehouse is graphically represented through a graph called Data Warehouse Graph (DWG). 
Thanks to the DWG, we define the notion of well-formed data warehouse structures which 
guarantees desirable properties. 
 We have shown how well-formed structures can be mapped to the relational model in different 
ways. To represent the references we have used values of reference attributes. Instead, we can 
adopt an object-oriented model. Identifiers and references would then be represented through OIDs. 
This would make it possible to define mappings towards the object relational model. 
 We showed also how the DWG could be used to help in the specification of aggregation 
queries, by using notably the notion of cut in the graph. Moreover, the model which we propose 
allows queries which use aggregates resulting from various facts. For example it is possible to use 
an aggregate which results from a fact table F1 to filter aggregates resulting from another fact table 
F2.  
 The DWG can also be very helpful for the design of a data warehouse. An end user can easily 
express his decision-making needs by specifying with our model the multi-dimensional schema 
which seems the most appropriate. It is then possible to envisage automatic techniques to look for 
the compatibility of this schema with those from the available sources. The semantics problems can 
be solved by leaning on the techniques of the semantic Web. Incompatibilities will be solved 
through a dialogue between the user and the system. The schema being strengthened then 
definitively, it is possible to use approaches by materialized views (as in [26]) to make the 
connection between the sources and the repository and to solve the problems of data refreshment.  
 We think that such facilities would permit an end user to handle himself the design and the 
manipulation of his data warehouse. In many domains there exist multiple needs for constructing a 
data warehouse and for extracting knowledge from the data. With our approach end users have the 
opportunity to be freed from the technical constraints.   
 We think that our model can be enriched in different ways. We are investigating extensions to 
allow specializations in dimensions ([13], [19]) and to handle so the cases of null values. We 
envisage also the possibility for defining a reflexive relation on a member type in order to take into 
account the hierarchies of data of various levels. Handling mixed-granularity hierarchies ([19]) is 
another important extension we have in project. In all cases it would be necessary to fit out the 
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relational mappings in order to propose adequate representations which can be exploited with the 
relational engine. 
 Other extensions are less immediate because they suppose to introduce specific operations 
through an algebra. For example for the extension in the treatment of qualitative data as in [11], it 
would be necessary to introduce operations to scan efficiently the selected data. The situation is the 
same for the dynamic treatment of data for which it is a question of tracking down the changes 
which occurred during a time interval. 
 As far as our model permits to exploit simultaneously data stemming from several cubes, it 
would be also interesting to think about operations which allow to get back an aggregate of a cube 
to use it in another cube (in a condition of filtering for example as in section 8.2). For this purpose, 
the relational mapping could be adapted to allow the materialization of aggregates, either in the 
tables of the dimension members, or by using materialized views. This last solution would be 
doubtless more interesting because it could exploit the well-known rewritings techniques of queries 
from views for generating efficient execution plans. 
 It would be also interesting to establish mappings for implementation on other OLAP engines. 
We think that our model can be used in various OLAP environments to help the design of data 
warehouses. 
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