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Abstract : Design and implementation of data warehouses redwlicate tasks which are led by
experts. Nevertheless it would be interesting towathe users to define and to build themselves
their system through a simple and flexible procesgarticular, in the field of production systems,
exists the need to integrate data from variouscesuand to analyze them in order to extract
knowledge for optimizing these systems. Traditipntie design of a data warehouse is based on
an adequate representation of facts on one handiamhsions of analysis on the other hand. We
show in this article that an unified representatiam be envisaged and that the problem comes
down to that of the choice of a hierarchy of cideadapted to the necessities of analysis. Our
proposition leans on a graphic representation wbitdrs a visual help to the user.

Keywords: multidimensional, data warehouse, general modeltioaal mapping

1 Introduction

Basically, the schema of a data warehouse liesvonkinds of elements : facts and dimensions.
Facts are used to memorize measures about sitsiaioavents. Dimensions are used to analyze
these measures, particularly through aggregatia@ratipns (counting, summation, average, ...).
To fix the ideas let us consider the analysis efghles in a shop according to the product type and
to the month in the year. Each sale of a produatfaect. One can characterize it by a quantity. One
can calculate an aggregation function on the gtiestof several facts. For example one can make
the sum of quantities sold for the product typerenal water" during January in each of the last
three years (2001, 2002, 2003). Product type igitarion (one said also a member) of the
dimension Product. Month and Year are criteriahefdimension Time. A quantity is so connected
both with a type of product and with a month of gear. This type of connection concerns the
organization of facts with regard to dimensions. @& other hand a month is connected to one
year. This type of connection concerns the orgaioizaof members within a dimension. The
possibilities of fact analysis depend on these fawvms of connection and so on the schema of the
data warehouse.

Many studies have been devoted to the modellindimensions. The objective is to find an
organization which corresponds to the analysis atjmrs and which provides strict control over
how the aggregations can be made. In particulas iimportant to avoid double-counting or
summation of non-additive data. Many authors recemsnorganizing the members of a given
dimension into hierarchies with which the aggrematpaths can be explicitly defined. In [23],
hierarchies are defined by means of a containmenttion. In [14], the organization of a
dimension results from the functional dependenceghwexist between its members, and multi-
dimensional normal forms are defined. The work 18] [extends this framework by considering
specialization in dimensions. It is shown that ¢hier a natural correspondence between optional
dimension levels and attribute occurring in sulssts. Normal forms are proposed which allow
constructing a class hierarchy of dimension lewvetéch guarantees summarizability. In [9], the
functional dependences are also used to desigdirttensions and to relate facts to dimensions. In
[1], relationships between levels in a hierarchey @pprehended through the Part-Whole semantics.
In [27], dimensions are organized around the notiba dimension path which is a set of drilling
relationships. The model is centred on a parentidoine to many) relationship type. A drilling
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relationship describes how the members of a chilteel can be grouped into sets that correspond
to members of the parent level. In [24], a dimens®viewed as a lattice and two functions anc
(ancestor) and desc (descendant) are used to ipettierroll up and the drill down operations. The

work of [22] proposes an extended multidimensiateth model which is also based on a lattice
structure, and which provides non-strict hierarsHiee. many to many relationships between the
different levels in a dimension). The work of [dhiroduces different data hierarchies (balanced
and non-balanced, ragged and non-ragged) and sttithe influence on rollup paths and their

incidence on the expressive power of the OLAP cuibgl9] solutions for handling heterogeneous

hierarchies and mixed-granularity hierarchies anggested. Heterogeneity results from the

existence of different sub-classes of a same ckas) sub-class having its own attributes and
aggregation levels. Mixed-granularity occurs whearb-slasses are both end-instances of a
dimension and serve as aggregation levels. In Hrg] established necessary conditions for
summarizability in multidimensional structures.

Modelling of facts and their relationships has meteived so much attention. Facts are
generally considered in a simple fashion which =igsn relating a fact with the roots of the
dimensions. However, there is a need for considariore sophisticated structures where the same
set of dimensions are connected to different fgpes and where several fact types are inter-
connected. The model described in [22] permits spassibilities in this direction. The YAM
model [3] allows the usage of semantics O-O refatiips between different star structures.

Apart from these studies it is important to notgiaus propositions [4, 7, 9, 18] for cubic
models where the primary objective is the defimita@f an algebra for multidimensional analysis.
Expressiveness of the algebra is the main topibasfe works.

Problem arises to compare the possibilities obdhearious models and algebras. Several
authors worked in this direction. The work of [Hfithes requirements for OLAP applications and
compares four multidimensional models. No model tme#l the requirements. This makes a
combination of different models desirable. The wofl2] suggests a framework to classify and
compare multidimensional models. Sixteen differantiels of different levels (conceptual, logical,
physical) are studying. It appears that conceptualels offer the possibility of representing much
more semantics, but they do not incorporate arbadg®r manipulating the data.

Others works must also be mentioned. In [10] iggested an environment which is able to
generate the implementation of a star or snowftikta warehouse from a conceptual schema. The
generation process takes into account the limiatiof the OLAP target system (Cognos
Powerplay or Informix Metacube). In [8], a solutiogs proposed to derive multidimensional
structures from E/R schemas. The work of [20] ssggalso a method for developing dimensional
models from E/R schemas. Different options for tesulting schema can be choose (flat, star,
snowflake, constellation). The work of [26] addessd¢he problem of integrating the data from
heterogeneous data bases and storing it into gusitery of the data warehouse. In this work, the
data warehouse is seen as a set of materialized .vigo the problem becomes a problem of view
selection. Different algorithms are proposed amtmared for solving it. In [16, 17] are suggested
normal forms for the star and the snowflake refatiomodels. The work of [25] extends the
conventional data warehouse architecture with amalyles, which mimic the work of an analyst
during decision making. Analysis rules extend tloam of ECA (Event-Condition-Action) rule
with mechanisms to analyze data multidimensionatigt to make decisions. In [11] is proposed a
multi-dimension algebra which strengths the tradil multi-dimensional analysis of quantitative
data and extends it to qualitative data (like kremlgle). Mechanisms are suggested to efficiently
explore the data in a vertical direction (fathed aons) or in a horizontal direction (brothers).

Our objective in this paper is to propose a madeth can be used to apprehend the modelling
of facts and dimension members in a unified wapelimits so to share the dimensions in various
ways and to describe different relationships betwiet types. Using this model, we will also
define the notion of well-formed data warehouseucttires. Such structures have desirable
properties for applications. We suggest a graphesgmtation for such structures which can help
the users in designing and querying a data warehous

The paper is organized as follows: sections 23anekpectively present the modelling of facts
and the modelling of dimensions; section 4 presentsunified model for facts and members;
section 5 presents the typical structures we wamhdadel and defines the notion of well-formed
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structures; section 6 shows the ability of our niddedescribe realistic cases; section 7 discusses
relational mappings; sections 8 illustrates SQLriggeon the relational form of well-formed
structures; section 9 discusses some improveménts snodel and concludes.

2 Moddling facts
A fact is used to record measures or states coimgeam event or a situation. Measures and states
can be analyzed through different criteria orgashiredimensions.

A fact type has the following structure :

fact_name[(F), (fact_key), (list_of reference_attributes), (list_of fact_attributes)]
where

- fact_name is the name of the type ;

- Fis a mark for the fact type ;

- fact_key is a list of attribute names ; the caecation of the values of these attributes
identifies each instance of the type ;

- list_of reference_attributes is a list of atttdunames ; each attribute has a value which is
either an atomic value (degenerated case) or gerefe to a member instance in a dimension or a
reference to another fact instance ;

- list_of fact_attributes is a list of attributernes ; each attribute is a measure for the fact type
(such an attribute will also be callednaasure attribute).

The set of referenced dimensions comprises theeriians which are directly referenced
through the list_of reference_attributes, but dts® dimensions which are indirectly referenced
through other facts.

Each fact attribute can be analyzed along eacthefreferenced dimensions. Analysis is
achieved through the computing of aggregate funstan the values of this attribute.

There may be no fact attribute; in this case & facords the occurrence of an event or a
situation. In such cases, analysis consists intaaymccurrences satisfying a certain number of
conditions.

For the needs of an application, it is possiblintooduce different fact types sharing certain
dimensions and having references between them.

Two dimensions are independent if there is ndicelahip between a member of the first and a
member of the second.

A dimension is degenerated in a fact type if gference attribute is replaced by a value
attribute. In other words the analysis is achigwedirect use of the values of this attribute.

Definition 1 (well-formed fact type). A fact type is well-formed if each referenced disien is
either degenerated or points to a legal entrydimgnsion (a legal entry, as it is defined further,
a key of any member in a dimension).

Example 1. As an example let us consider the following tgpe for memorizing the sales in a set
of stores.
Sales[(F), (ticket_number, product_key), (time_key, product_key, store_key),
(price_per_unit, quantity)]

The key is (ticket_number, product_key). This nsetlrat there is an instance of Sales for each
different product of a ticket. There are three mefiees to dimensions: time_key, product_key,
store_key. There are two fact attributes: price_yeit, quantity. The fact attributes can be
analyzed through aggregate operations by usinghitee dimensions. Since each of the three
references points to a root in a dimension, thistige is well formed.

Example 2. Consider now the same fact type but with anothiareace to the dimension product

(the key category_key of the member category).
Sales[(F), (ticket_number, product_key), (time_key, category_key, store_key),
(price_per_unit, quantity)]
Each of the three references points to the keyrémber in a dimension. So, this fact type is well
formed.
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Example 3. Consider again the fact type Sales and anottererece to the dimension product

(weight of a product).
Sales[(F), (ticket_number, product_key), (time_key, product_weight, store_key),
(price_per_unit, quantity)]
Since product_weight is not a legal entry in a digien, this fact type is not well-formed. We will
see in section 3.6 that such an attribute is agrtg@ttribute which cannot be used to organize the
multi-dimensional analysis.

In some models, it is imposed that measure atggate independent from each others. This will
clarify their analysis. The independence can beesged by using functional dependencies: it must
not exist any functional dependence between measuiieutes. To be general, we do not impose a
priori such a constraint.

3 Modéeling dimensions

3.1 Member of a dimension

The different criteria which are needed to condamshlysis along a dimension are introduced
through members. A member is a specific attribatea group of attributes as we will see in
section 3.6) taking its values on a well defineandm. For example, the dimension TIME can
include members such as DAY, MONTH, YEAR, ... . Arsdhg a fact attribute A along a member
M means that we are interested in computing ag¢gefymctions on the values of A for any
grouping defined by the values of M. In the paperwill also use the notation jMor the j-th
member of the i-th dimension.

3.2 Hierarchical organization of members
Members of a dimension are generally organized irhierarchy which is a conceptual
representation of the hierarchies of their occuesn

(12/Jan/02) (13/Jan/02) (23/Feb/02) (16/68)
tkl tk2 tk3 tk4
(a) month \/ / /

Jan/02 Feb/02 .... Feb/0z

\/ /
year
200z 2003

Vs

—

time_key tk1 tk2 tk3 tk4 .....

o W
month year January February ... 2002 2003

] tk1 tk2 tk3 tk4 .....

[ time_key

v %
(© [Week ] [month ] w2/02  w8/02 w7/03.... Jan/02 Feb@xn/03 ...

Fig. 1. Different types and data hierarchies in dimensions
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Hierarchies in dimensions is a very useful con¢kat can be used to impose constraints on
member values and to guide the analysiserarchies of occurrences result from various
relationships which can exist in the real worldeeg@rization, membership of a subset, mereology.
Figure 1 illustrates typical situations which camcar.

Cases (a) and (b) represents the same membeosgaumized differently. In case (a) there are
hierarchical relationships between time_key and tm@md between month and year. Time_key,
for example, is a date which encodes the day, thatlmand the year; the month has values such as
February/02 which identifies each month from alé tmonths of the total period. In these
conditions, the amount of sales for all the momthall the years, is obtained with a group_by just
on the month. In case (b) month and year are bigttarfchically dependent of time_key but are
independent of each other (month, for example, v@lae such as January identifying a month
independently from the value of year). With sudtracture we can make groupings by using only
values of month, or only values of year, or botluga of month and year. The expression of the
previous query would involve a group_by on montraty&ase (c) represents a hierarchy where
the two paths are alternative. They share the sawtetype (time_key) and the same leaf type
(year). Starting from time_key, groupings are passby using either the values of week or either
the values of month (but not both). This configimathas precise semantics: for a given occurrence
of time_key, whether the week path or the month patused, one always obtains the same
occurrence of year. This means that, using eitheffitst path or the second path, we obtain the
same result when continuing the aggregations with ytear element. In this case we said that
alternatives paths satisfy thgath coherence constraint. We use dotted arrows to represent
alternative paths.

We will model these different cases according theaarchical relationship (HR) which links a
child member M (i.e. week) to a parent memberMi.e. year) and we will use the notation
M;~>Mj. For the following we consider only situations we child occurrence is linked to a
unique parent occurrence in a type. However, adabdlcurrence, as in case (b) or (c), can have
several parent occurrences but each of differgresyExistence of this HR is very important since
it means that the members of a dimension can benaed into levels and correct aggregation of
fact attribute values along levels can be guarantee

3.3 Cover graph of adimension

For the following, we suppose that HR is anti-syrtrineand transitive. To justify these properties
we can refer to the notion of part-whole relatidpsfihis kind of relationship is often appropriate

to apprehend real situations [1]. There exist d#fifié semantics for part-whole-relationships and
most of them verify these two properties. Thankgh® transitivity property we introduce the

notion of cover graph of a dimension. The idea fiehihe notion of cover graph is to remove in a
dimension graph all redundant directed edges ati$ pa

Definition 2 (cover graph of a dimension). Consider the directed graph defined by the HR betw
the members of a dimension. A cover graph of thizedsion is a minimal sub-graph obtained by
removing all the directed edges resulting fromtthasitivity property.

(vaior ) (vair )

Fig. 2. A graph of a dimension and its cover graph.
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Example 4. Figure 2 illustrates the case of a dimension grajth all the edges obtained by
transitive closure and the corresponding coverltyrap

In our dimension graph, we do not introduce the lemtype “ALL” which represents the upper
level of aggregation. This member specifies thiath@l occurrences of a fact type which point to a
same dimension can be aggregate together. Howéhier,upper aggregation will always be
possible with our model.

3.4 Wdll-formed dimension

Definition 3 (well-formed dimension). A dimension is well-formed relatively to a coveagh when
this graph has a unique connected component aratyslic and when the path coherence
constraint is satisfied for alternative paths.

Restricting the cover graph to a unique compongntery important in practice. If the graph

comprises, for example, two components, the dinsensnust be divided into two distinct

dimensions. We do not impose that the cover grashahunique root. In real situations we can
encounter different dimensions which share a compash

Example 5. Let us consider the dimensions illustrated inffiiggl. They are all well-formed since
their cover graphs have a unique component andadic (in case (c) it is supposed that the path
coherence constraint is satisfied).

Example 6. In figure 3 we illustrate a dimension graph witbotroots. In this case it appears that
two dimensions which are priori different (suppleéimension and customer dimension) share a
same part.

[ Supplier_key ]

v

[ Category ] [ Customer_key ]

Town

Fig. 3. A dimension graph with two roots

Remark (relaxing the trangitivity property for the HR). Definition 2 can be easily extended to the
more general case where the transitivity propertyat satisfied by the HR. In this case, the cover
graph is replaced in the definition by the initigbph of the dimension or by an equivalent non
redundant graph. A non-redundant graph is obtalmedemoving directed edges which can be
derived by using some rule.

3.5 Aggregation levelsin a well-formed dimension

Since the cover graph of a well-formed dimensioacgclic, it is possible to distribute its members
into levels. Each level represents a level of aggfien. Each time we follow a directed edge, the
level increases (by one or more depending on theal ymath). This action corresponds to a
ROLLUP operation (corresponding to the semanticshef HR) and the opposite operation to a
DRILL DOWN. Starting from the reference to a dimemsD in a fact type F, we can then roll up

in the hierarchy of dimension D by following a patithe cover graph of D.
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3.6 Property attributesin a dimension

As in other studies [12], we consider propertyilafties in a dimension. Such attributes are used to
describe the members. A property attribute is kihke its member through a functional
dependence, but does not introduce a new membea aptl level of aggregation. For example a
membertown in a dimension may have property attributes sushp@pulation, administrative
position, ... . These attributes are not interestingpecify groupings but they can be useful in the
selection predicates of queries to filter certamugs.

3.7 Member type
We now define the notion of member type, which mpooates the different features presented
above. A member type has the following structure:
member_name[(M), (member_key), (list_of reference_attributes), (list_of property_attributes)]
where

- member_name is the name of the type;

- M is a mark for the member type;

- member_key is a list of attribute names; thecatenation of these attributes identifies each
instance of the type;

- list_of reference_attributes is a list of atiitile names where each attribute is a reference to
the successors of the member instance in the aognagrh of the dimension; alternatives are
represented by using a sub-list in nested paresghes

- list_of property_attributes is a list of attrtbunames where each attribute is a property for the
member.

Only the member_key is mandatory.

Example 7. Using this model, the representation of the membérthe dimension represented in
figure 1(c) is the following:
time_root[(M), (time_key), ((week_key, month_key)), ()]
week[(M), (week_key), (year_key), (week_type)]
month[(M), (month_key), (year_key), ()]
year[(M), (vear_key), (), (vear_type)]
Note that the two reference attributes week kay mwonth_key are represented in a sublist

since they are the origin of two alternative paths.
Here is an occurrence of the week type :
week [(M), (wl1_03), (2003), (holiday)].

3.8 Entriesand rootsin a dimension

Each member_key of a member in a dimension cannbeng&ry for this dimension i.e. can be

referenced from a fact type or from another mentyg@e. This possibility is very important since it

means that dimensions can be shared between sé&aarglpes in various ways. In particular, it is

possible to reference a dimension at differentltewé granularity. A root represents a standard
entry in a dimension. The cover graph can haverakweots. For the three dimensions in figure 1,
there is a single root. However, definition 3 authes several roots.

3.9 Handling many-to-many relationshipsin a dimension

In certain situations, a many-to-many relationséyists between two members of a dimension
hierarchy. For example a Project can be connectitd several Groups (possibly zero) and
conversely a Group can collect several Projectieéat one). Within the framework of an analysis
of purchases (purchase is so a fact type), a dimemsn incorporate projects. Problem arises so
how to elaborate the hierarchy with the Projectsttie Groups. One supposes that a purchase for a
project depends on the group to which this profmbngs. A simple solution consists in two
separated hierarchies, a one around a member Papsjdahe other one around a member Group
(Figure 4(a)). It is then possible to make aggriegat either on the projects separately, or on the
groups separately, or simultaneously on projects gmoups by crossing the two dimensions.
Another solution consists in a single dimensionhwit member Project-Group which points
towards members Project and Group (Figure 4(b)}s Sblution offers the same possibilities of
aggregation as the previous one but it materialihesrelationship between the Projects and the
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Groups through the instances of the member Pr@eotip. It becomes then possible to materialize
aggregates at the level of Project-Group. In teioad solution, if a project is isolated (it does$ n
belong to any group), it is possible as in [19ntwoduce an artificial instance for Group.

[ Fact type ] [ Fact type ] [ Fact type ]

v v

(e (e
[ Project ] [ Group ] Project Group
(@) (b) (€)

Fig. 4. Handling a many-to-many relationship in a dimensio

For the graph of figure 4(b), the HR is transiti@me can so deduct from it the graph of figure
4(c). This graph means that one can directly aggesigistances of the fact type either for every
Project, or for every Group. The graph of figurb)4é a cover graph according to definition 2.

4 A unified way for modelling elements (facts or members)
A fact type has a very similar structure to thaaahember type. Moreover, property attributes of a
member can be seen as fact attributes and candbgzed along the successors of this member
acting as roots of partial dimensions. For examal@pose that in a dimension we have a member
town with a property attributpopulation which references the member region. One can analyze
population by using region : one can calculate aggregategpapulation with groupings on
region_name.

An element is a type which has the following stioe :

element_name[(T), (element_key), (list_of_references), (list_of_specific_attributes)]
where

- element_name is the name of the type;

- T is a mark for the type (F or M);

- element_key identifies each instance of the type;

- list_of references is composed of sub-lists afitatte names; each attribute references
another element ; these references determine thielrmensional structure of the data warehouse;

- list_of_specific_attributes is a list of attrieutames; each attribute is a measure for a fact or
property for a dimension member.

The list of references determines the dimensidosgawhich the element can be analyzed.
Each specific attribute can be analyzed along exdcthese dimensions. Analysis is achieved
through the computing of aggregate functions onwvlees of this attribute. The aggregation is
specified through the values of the chosen memibetise dimensions. Recall that the notion of
sub-list is used to mark alternative paths.

5 Wdl-formed structures

5.1 Various structuresfor data warehouses
In this section we explain how with our unified nebdact types and member types can be
interconnected in order to model various data wawsé structures.

First, a fact can directly reference any memberaoflimension. Usually a dimension is
referenced through one of its roots (as we saw @b@vimension in our model can have several
roots). But it is also interesting and useful tedaeferences to members other than the roots. This
means that a dimension can be used by differets faith different granularities. For example, a
fact can directly referencewn in the customer dimension and another can directly reference
region in the same dimension. This second reference sorels to a coarser granule of analysis
than the first.
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Moreover, a fact fcan reference any other fact. Fhis type of reference is necessary to
model certain situations (see section 6). This mdhat a fact attribute of, F€an be analyzed by
using the key of f(acting as the grouping attribute of a normal mernland also by using the
dimensions referenced by.F

To formalise the interconnection between facts dintensions, we thus suggest extending the
HR relationship of section 3 to the representatibithe associations between fact types and the
associations between fact types and member tyg@s. gives a very uniform model since fact
types and member types are considered equally. &mtan a traditional vision of the data
warehouses, we also ensure that the members pfemslion cannot reference facts.

(d)

Fig. 5. Typical data warehouse structures

Figure 5 illustrates the typical structures we ttarmodel. Case (a) corresponds to the simple
case, also known as star-snowflake structure, wtteree is a unique fact type Bnd several
separate dimensions [D,, ... . Cases (b) and (c) correspond to the notidaaf of fact. Case (d)
corresponds to the sharing of a whole dimensiomabes (e) and (f) only the members which are
at the intersection of Land ) are shared. An illustration of case (e) is givahfer in Fig. 7.

5.2 Data Warehouse Graph (DWG) and well-formed structures
To represent data warehouse structures, we suggjesta graph representation called DWG (data
warehouse graph). It consists in representing ggishby a node containing the main information
about this type, and representing each refereneedinected edge. Alternative paths in dimensions
are represented by dotted lines.

We are now able to introduce the notion of wethied structures.

Definition 4 (well-formed data warehouse structures). A data warehouse structure is well-formed
when the following conditions are satisfied :

1) the fact types are well-formed ;

2) the dimensions are well-formed ;

3) a fact type is a root or all its predecessoithé graph are fact types ;

4) the DWG has a unique component and is acyclic.

5.3 Cutinthe DWG
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We introduce now the notion of cut in the DWG iml@rto characterise the legal groupings when
making an analysis.

Definition 5 (Cut of a sub-graph in a DWG). Let SG be a sub-graph of a well-formed DWG with
root R. A cut of SG is a sub-set Sx{e,, ..., &) of edges of SG such that two different edgeg e
of S does not appear in a same path or in twonaltie paths.

Property 1. Each cut of a sub-graph of a well-formed DWG esi a legal grouping (i.e. the
elements pointed by the edges of the cut can kadlyecombined to make an aggregation on the
occurrences of the root of the sub-graph).

This important property permits to use the DWG ideo to situate the different possibilities of
aggregations. This ability is illustrated in thexngection.

6 Illustrating the modelling of realistic cases with well-formed structures
In this section we show how different realisticessan be described with well-formed structures.

6.1 Star and snowflake structures
We have a star or snowflake structure when :

- there is a unique fact type;

- each dimension has a unigque root;

- each reference in the fact type points towardsdbeof a dimension.

Our model does not differentiate star structuremifsnowflake structures. The difference will
appear with the mapping towards the relational mddee section 7). The DWG of a star-
snowflake structure is represented in figure 6.sThepresentation is well-formed. Such a
representation can be very useful to a user fondidating queries. Facts are clearly differentiated
from members, reference to dimensions are showiicélp analysis criteria appear immediately.

We can illustrate on this structure several catdefined previously. For example,(e, &) is
a cut, also (g &;, &). So groupings on (e, &) or (e, &, &) are legal. But (g e, &) or (&, &, &)
are not cuts. So groupings on, (@, &) or (e, &, &) are not legal.

It is clear that any subset of a cut is also a cut

(quantity, cost_per_unit)]

/* N

[ manufacturing[(F), (manufacturing_key), (time_kpsoduct_key, factory_key), 1

time_root ( product_root ( factory_root A
[(M),(time_key), ...] [(M),(product_key), ...] [(M),(factory_key), ...]
\\§ R \\§ J
Ve Vs v e
e e N
week[(M), month[(M), category town
[ (week_no),...] } [ (month_no),...] } [(M),(category_no), ...] } [(M),(town_name),... ]
T , - , N
L ! L
\ \"
year family region
[(M),(year_no),...] [(M),(family_name),...] [(M),(region_name),...]

Fig. 6. The DWG of a star-snowflake structure

6.2 Constellation structure (sharing of a dimension)
The constellation structure appears when:
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- there are at least two different root types (each acts as a fact type);

- a fact type does not reference another fact type.

Note that in such a structure, there exists at leas element in the hierarchy which can be
reached from the two roots.

Using the notion of DWG, figure 7 shows an examyith the fact typemanufacturing from
figure 6 and a new fact tymbock memorizing stock factstock has a reference to the member
town of the dimensiorfactory. So, the dimensiofactory is shared partly between the two fact
types. The two other dimensions are completelyeshar

The DWG clearly shows how the two fact types camexploited separately or simultaneously.
We can explore the graph from one of its two r@wts use it as a single rooted graph. We can also
simultaneously exploit the two fact types. For egéento the noddown, one can associate
different aggregates from ttsck occurrences and use them for the analysis ofmdmefacturing
facts, or vice-versa.

manufacturing[(F), (manufacturing_key),
(time_key, product_key, factory key), (quantity

cost_per_unit)]

J

o

time_root
product_root

v

stock|[(F), (time_key, product_key,
warehouse_key), (time_key, product_key,
warehouse_key), (quantity)]

Ve

.

J

factory_root
[(M),(factory_key),...]

J/

] ]

time_root

warehouse_root
product_root

[(M),(warehouse_key), ....]

e

Ve

~N

town
[(M),(town_name),...]
N \l/ )
( ) N
region
[(M),(region_name),...]
N Y,

Fig. 7. The DWG for a constellation data warehouse

6.3 Facts of fact with a unique r oot

Sometimes one fact type, called primary fact tyjae be characterized by several other fact types,
called secondary fact types. Let us consider fangte the case of a manufacturing of a product.
It is characterized by primary fact attributes sugh quantity, cost, . An instance of
manufacturing is created each time a product is ufis@tured. A manufacturing is in fact
composed of several operations on machines. Segorfiget attributes are associated to each
operation such as the duration of the operatior witgiven machine. It is not adequate to
memorize these secondary facts in the primary ipere is a many-to-many association between
operations and manufacturing). One solution cosdistplacing them in a secondary fact type
referencing the primary fact type. Our model catiensthe description of such a solution. It
consists in specifying two different fact typamnufacturing and operation, and installing in
operation a reference tananufacturing (figure 8). It should also be noted thageration has a
normal reference to the root of th@chine dimension. There is an instanceopgration for each
different operation in ananufacturing. Note that a serial number is used in the primagydethe
operation type to mark the order of an operation in the sega of a manufacturing. So an
operation can occur several times in a manufagufihe key of the operation type is composed of
the operation name, the serial number, the manufagtkey. For example a welding operation
can be associated to the manufacturing M100, atfime with serial number 2, and a second time
with serial number 4. This means that this openatiocurs in position 2 and in position 4 in the
sequence of operations for the manufacturing M180.two instances with respective keys
(welding, 2, M100) and (welding, 4, M100) appeartfee operation type. With this representation
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it is possible to analyze the duration of an openaby using the serial number (for example : what
is the average ratio between the duration of a iwgledperation and the total duration of a
manufacturing when the welding occurs in positigro2 not (for example : what is the average
ratio between the duration of the welding operatiand the total duration of a manufacturing).

For the secondary fact type, the primary fact tgots as a multi-dimension. So, all the
dimensions of the primary type can be also usatimensions of the secondary type. This clearly
appears in the DWG of the global structure (figgixeFor example, quantity can be analyzed using
the time andproduct dimensions anduration can be analyzed usimgachine dimension but also
time andproduct dimensions. Theperation fact can also be analyzed usimgnufacturing_key
alone acting as a degenerated dimension. For eranglan calculate the average duration of an
operation per manufacturing.

(machine_key, manufacturing_key), (duration)]

v v

[ machine_root[(M), 1 [ manufacturing[(F), (manufacturing_key), (time_keyoduct_key), }

[ operation[(F), (operation_name, serial_number, rfaturing_key), }

(machine_key), ...] (quantity)]
time_root product_root

Fig. 8. Modelling facts of fact with a unique root

6.4 Facts of fact with several roots

(machine_key, manufacturing_key), (duration)]

J

. 2\
[ machine_root[(M), 1 [ component_part[(F), (component_key, manufacturieg) k

[ operation[(F), (operation_name, serial_number, rfaturing_key), 1

(machine_key), ...] (component_key, manufacturing_key), (quantity)]

e N
component_root[(M),

) _ _ (component_key), ...]
manufacturing[(F), (manufacturing_key), (time_keyroduct_key), L )
(quantity)]

e N
\l/ \l/ supplier[(M),
time_root product root (supplier_key), ...]
\ J

Fig. 9. Modelling facts of fact with two roots

For the previous example we wish now to analyzeddmponent parts which are needed for a
manufacturing and which are necessary to buy itk to suppliers outside the company. For a
given manufacturing, several component parts arelved. We introduce so another secondary
fact typecomponent_part which references thmanufacturing type. The measure attribugaantity

of the component_part type can be so analyzed not only according toctraponent dimension
(for example: which is the supplier who have sugplihe largest number of component parts) but
also according tonanufacturing (for example: how much a manufacturing requiresahponent
parts on average) and of the dimensiprasiuct andtime (for example: total number of component
parts which were furnished by a given supplierdach month in year 2005).
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7 Mappingtothereational model

One way to implement data warehouses is to usgomd DBMS. So it is necessary to be able to
map our well-formed structures in accordance withrelational model. In this section we provide
a certain number of guidelines for this mappingthie framework of [6], our proposal is related to
relational approaches.

7.1 Relational mapping with split dimension
This solution, which is straightforward, consistsmapping each type; fact type or member
type) into a table T The key of Pbecomes the primary key of. References between types are
implemented via foreign keys. This solution offerssimple way to memorize precalculated
aggregates by adding supplementary attributes é@meaht types. Its drawback is well-known:
navigating through the hierarchy necessitates n@ng which can burden the performances. For a
structure like the one described in figure 6, thadution leads to the relational snowflake data
warehouse structure as represented below (primayg lare marked in bold, foreign keys in
italics).

manufacturing(manufacturing_key, time_key, product_key, factory_key, quantity, cost_per_unit)

time_root(time_key, Al$week_no, A1$month_no, ...)

week(week_no, year_no, ...)

month(month_no, year_no, ...)

year(year-no, ...)

product_root(product_key, category_no,...)

category(category_no, family_name, ...)

family(family_name, ...)

factory_root(factory_key, town_name, ...)

town(town_name, region_name, ...)
region(region_name, ...)

Note that the two references in town for the f{estd unique) alternative are marked with the
special prefix Al$. If a second configuration oteahative paths would exist in the same
dimension, we can use the special prefix A2$, andrs

7.2 Relational mapping with regrouped dimensions

This solution is only possible when the DWG hasigue root. First the root type is mapped into a

specific table. Then we create a number of taldesileto the number of references in the root type.
All the elements which can be reached from onereefe are grouped in the same table. For a
structure like the one described in figure 6, Hokition leads to the relational star data warefous

structure as represented below.

manufacturing(manufacturing_key, time_key, product_key, factory_key, quantity, cost_per_unit)
time_root(time_key, ..., A1$week_no, ..., A1l$month_no, ..., year_no, ...)
product_root(product_key, ..., category_no,..., family_name, ...)

factory_root(factory_key, ..., town_name, ..., region_name, ...)

With this mapping the structure of the dimensigerdrchies is not represented. It is embedded
in the data.

7.3 Hybrid relational mapping
The previous mapping is not possible when an eléwembe reached from different roots. This is
because this element acts as an entry and museliey of a table in order to install the reference
correctly. The hybrid mapping thus consists in iitisg each element entry into a specific table.
Elements which are accessible only from one erdrylee stored in the table of this entry. Others
must be stored in separate tables.

For the structure of figure 7, this mapping gittes following tables :

manufacturing(manufacturing_key, time_key, product_key, factory_key, ..., town_name, quantity,
cost_per_unit)

stock(time_key, product_key, warehouse_key, ..., town_name, quantity)

time_root(time_key, ...)

product_root(product_key, ...)
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town(town_name,..., region_name, ...)

Note that the attributes of the element tyfaesory root, warehouse _root, region have been
encapsulated into the tableanufacturing, stock, town respectively.

7.4 Perfor mances of theses mappings

These various mappings do not offer the same pedoces as regards the execution of queries by
the relational engine. The most efficient mapp#ithie one that requires a minimum of joins that is
the second mapping. But this mapping, as we umaetliit, does not explicitly represent
relationships between the dimension members.riaee difficult for the end user to separate the
legal groupings and the not legal groupings. Ttet fhapping well represents these relations but it
is the least efficient. In practice it will so beagssary to choose a hybrid mapping.

It is important to notice that almost every redaal DBMS offer now functions to calculate the
day, the month, the year from any date. As a caremmp it is useless to represent the
corresponding members in the time dimension whigh be so considerably simplified. In a
majority of cases the time dimension can be degéegrand represented only by an attribute of
type DATE in the fact tables.

7.5 Automatic generation of theses mappings

Indeed the descriptions of the different types t§aand members) contain all the necessary
information for generating the relational schemads Inot difficult to design an algorithm which
ensures this generation. The problem is how toymedhe descriptions of the different types from
a DWG. We can imagine a software component withaplgcal interface which permits a user to
draw the DWG. This component must control at eaep the properties and the constraints of the
DWG and must verify that the structure is well-fean It is this constituent which has to offer a
function for generating the descriptions of theetypSuch a constituent would be very useful to
allow the users to be involved in the design ofdhta warehouse. But its elaboration is not so easy
and represents a main objective of our future work.

8 lllustrating SQL querieson thereational forms of well-formed structures
In this section we show how the DWG can help thagiteof aggregation queries on the relational
forms defined previously.

manufacturing[(F),(manufacturing_key), (time_kesoduct_key, factory_key),
(quantity, cost_per_unit)]
/ s e
time_root product_root factory_root
[(M),(time_key), ...] [(M),(product_key), ...] [(M),(factory_key), ...]
N \

¥ v v

week[(M), month[(M), ( category ( town )
(week_no),...] (month_no),...] [(M),(category_no), ...] [(M), (town_name),... ]
. : \§ \\§ J
vV J v
N
year family region
[(M), (year_no),...] [(M),(family_name),...] [(M),(region_name),...]
J

Fig. 10. The marking of the DWG for illustrating Query 1
8. 1 Query 1 (a simple aggregation query on a star or snowflake structure)

For the data warehouse represented in figure 6 ar& vo obtain the total quantity manufactured
for each category of products and each week ofd¢he 2004.
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This query corresponds to the cut representedguaré& 10 (edges of the cut are marked in
bold). The DWG permits to identify immediately théferent elements involved in the query (in
grey in the figure). Note that we do not selectybar element and the category element since the
attributes we need are included as foreign keysarnweek table and in the product_root table.

For the relational snowflake representation theesponding SQL query is the following :

Select sum(quantity) from manufacturing m, time_root t, product_root p, time_root t, week w
where m.time_key=t.time_key and m.product_key=p.product_key and
t.Al$week_no=w.week_no and w.year_no=2004

group by t.A1$week_no, p.category.no;

For the relational star representation the querglightly shorter (since the week table is
embedded into the time_root table) :

Select sum(quantity) from manufacturing m, time_root t, product_root p
where m.time_key=t.time_key and m.product_key=p.product_key and t.year_no=2004
group by t.Al$week_no, p.category_no;

8.2 Query 2 (using results analysis coming from another fact when a same dimension is
shared)
For the data warehouse represented in Figure 7 amt o elaborate the total quantity of product
40 manufactured in the towns where there existeck gjreater than 200 for this product on the 12
December 2004.

Also in this case the DWG can be very useful tip hie identifying the different elements
involved in the query (see figure 11). We use thybrid relational mapping of section 7 for
expressing the SQL query.

manufacturing[(F), (manufacturing_key), stock[(F), (time_key, product_key,
(time_key, product_key, factory_key), (quantity warehouse_key), (time_key, product_key,
cost_per_unit)] warehouse_key), (quantity)]
\l/ \L e ) i \l/ \L
time_root factory_root warehouse_root time_root
product_root [(M), (factory_key),...] [(M), (warehouse_key), -...] product_root
N Y,
s \L N
town
[(M), (town_name),...]
N \l/ Y,
( N\
region
[(M), (region_name),...]
. J

Fig. 11. The marking of the DWG for illustrating Query 2

In a first step we elaborate the stock for thedpod 40 on the 12 December 2004 for each town
and we incorporate the result in the correspontbngn instance using a property attribute.
Create view v(sum_stock, town_name) as
select sum(quantity), town_name from stock

where time_key= “12 December 2004"and product_no=40
group by town_name;

Alter table town add (sum_stock number(6) default 0).
Update town t set sum_stock=(select sum_stock from v where v.town_name=t.town_name);
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In a second step, we can specify the final qugryding the new attribute sum_stock in the
town table.

Select m.town_name, sum(quantity) from manufacturing m, town t

where m.town_name=t.town_name and m.time_key= “12 December 2004"and
m.product_no=40 and t.sum_stock>200

group by m.tow_name;

8.3 Towardsan automatic generation of queries

The DWG can be used to support a graphic inteidacas to allow a user to specify its aggregation
queries. For a simple query, without filtering citiwhs, it is necessary to select the measure
attribute and to indicate the cut (one saw in sesti6 and 8 how a cut of the DWG allows to
specify the legal groupings). For a more complegrguwith filtering conditions, it is necessary
also to be able to specify graphically these cémit From these graphic specifications one can
rather easily design an algorithm which allows gatileg the SQL code of the query by taking into
account the mapping which was used to generateataebase.

9 Conclusion

In this paper we propose a model which unifiesrtbBon of fact and dimension member. This
model can describe various data warehouse strgctilireextends existing models for sharing
dimensions and for representing relationships betwfacts. It allows for different entries in a
dimension corresponding to different granularitiés.dimension can also have several roots
corresponding to different views and uses. It isgtale to apprehend the concept of facts of fact
which is very frequently encountered in the reatldidBased on this model, the schema of the data
warehouse is graphically represented through ahgegiled Data Warehouse Graph (DWG).
Thanks to the DWG, we define the notion of wellrfi@d data warehouse structures which
guarantees desirable properties.

We have shown how well-formed structures can bpp®d to the relational model in different
ways. To represent the references we have use@svalureference attributes. Instead, we can
adopt an object-oriented model. Identifiers anénexfices would then be represented through OIDs.
This would make it possible to define mappings talsahe object relational model.

We showed also how the DWG could be used to helthe specification of aggregation
queries, by using notably the notion of cut in greph. Moreover, the model which we propose
allows queries which use aggregates resulting frarious facts. For example it is possible to use
an aggregate which results from a fact table Hiltes aggregates resulting from another fact table
F2.

The DWG can also be very helpful for the desigma afata warehouse. An end user can easily
express his decision-making needs by specifyingy witr model the multi-dimensional schema
which seems the most appropriate. It is then plessibenvisage automatic techniques to look for
the compatibility of this schema with those frore tivailable sources. The semantics problems can
be solved by leaning on the techniques of the sémareb. Incompatibilities will be solved
through a dialogue between the user and the systéma. schema being strengthened then
definitively, it is possible to use approaches bgtenalized views (as in [26]) to make the
connection between the sources and the repositaryasolve the problems of data refreshment.

We think that such facilities would permit an emsker to handle himself the design and the
manipulation of his data warehouse. In many domgiase exist multiple needs for constructing a
data warehouse and for extracting knowledge fraenddita. With our approach end users have the
opportunity to be freed from the technical constisi

We think that our model can be enriched in différ@ays. We are investigating extensions to
allow specializations in dimensions ([13], [19])dato handle so the cases of null values. We
envisage also the possibility for defining a refflexrelation on a member type in order to take into
account the hierarchies of data of various levdndling mixed-granularity hierarchies ([19]) is
another important extension we have in projectallncases it would be necessary to fit out the
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relational mappings in order to propose adequaieesentations which can be exploited with the
relational engine.

Other extensions are less immediate because thgyose to introduce specific operations
through an algebra. For example for the extensiahe treatment of qualitative data as in [11], it
would be necessary to introduce operations to effariently the selected data. The situation is the
same for the dynamic treatment of data for whicis i question of tracking down the changes
which occurred during a time interval.

As far as our model permits to exploit simultarepwdata stemming from several cubes, it
would be also interesting to think about operatishgch allow to get back an aggregate of a cube
to use it in another cube (in a condition of filbey for example as in section 8.2). For this pugos
the relational mapping could be adapted to allow ritaterialization of aggregates, either in the
tables of the dimension members, or by using nalieed views. This last solution would be
doubtless more interesting because it could exgieitvell-known rewritings techniques of queries
from views for generating efficient execution plans

It would be also interesting to establish mappifggamplementation on other OLAP engines.
We think that our model can be used in various OlekRironments to help the design of data
warehouses.
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