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Adiabatic evolution of 1D shape resonances: an artificial

interface conditions approach.

A. Faraj∗, A. Mantile∗, F. Nier∗

Abstract

Artificial interface conditions parametrized by a complex number θ0 are introduced for
1D-Schrödinger operators. When this complex parameter equals the parameter θ ∈ iR of the
complex deformation which unveils the shape resonances, the Hamiltonian becomes dissipative.
This makes possible an adiabatic theory for the time evolution of resonant states for arbitrarily
large time scales. The effect of the artificial interface conditions on the important stationary
quantities involved in quantum transport models is also checked to be as small as wanted, in
the polynomial scale (hN)N∈N as h → 0, according to θ0.

1 Introduction

The adiabatic evolution of resonances is an old problem which has received various answers in the
last twenty years. The most effective results where obtained by remaining on the real spectrum
and by considering the evolution of quasi-resonant states (see for example [48][60][1]). Motivated
by nonlinear problems coming from the modelling of quantum electronic transport, we reconsider
this problem and propose a new approach which rely on a modification of the initial kinetic en-
ergy operator −h2∆ into −h2∆h

θ0
where θ0 parametrizes artificial interface conditions. With this

analysis, we aim at developing reduced models for the nonlinear dynamics of transverse quantum
transport in resonant tunneling diodes or possibly more complex structures. A functional frame-
work for such a model has been proposed in [45] and implements a dynamically nonlinear version of
the Landauer-Büttiker approach based on Mourre’s theory and Sigal-Soffer propagation estimates
(see [16] and [15] for an alternative presentation of the stationary problem). The derivation of
reduced models for the steady state problem has been developed in [20][21][46] on the basis of
Helffer-Sjöstrand analysis of resonances in [30]. This asymptotic model elucidated the influence of
the geometry of the potential on the feasibility of hysteresis phenomena already studied in [33][50].
Numerical applications have been carried out in realistic Ga − As or Si − SiO2 structure in [19]
and [18], showing a good agreement with previous numerical simulations in [17] or [41] and finally
predicting the possibility of exotic bifurcation diagrams. From the modelling point of view a diffi-
culty comes from the phase-space description of the tunnel effect which can be summarized with
the importance in the asymptotic nonlinear system of the asymptotic value of the branching ratio

tj = lim
h→0

|〈Whψ̃h
−(+k, .) , Φ

h
j 〉|2

4hkΓh
j

. (1.1)

In the above formula zhj = Eh
j −iΓh

j is a resonance for the Hamiltonian Hh = −h2∆+V −Wh with

a semiclassical island V and a quantum well Wh, ψ̃−(±k, .) are the generalized eigenfunctions for

the filled well Hamiltonian H̃h = −h2∆+ V with a momentum ±k such that k2 ∼ Eh
j and Φh

j is

the j-th eigenfunction of the Dirichlet Hamiltonian Hh
D = −h2∆+V −Wh on some finite interval

(a, b). The imaginary part of the resonance is given by the Fermi Golden rule proved in [21]

Γh
j (1 + o(1)) =

|〈Whψ̃h
−(+k, ·), φhj 〉|2
4hk

+
|〈Whψ̃h

−(−k, ·), φhj 〉|2
4hk

, (1.2)
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where the interaction with the continuous spectrum leading to a resonance contains two contribu-
tions from the left-hand side with +k and from the right-hand side with −k.

Our purpose is the derivation of reduced models for the dynamics of quantum nonlinear systems
like it has been done in the stationary case in [20][21][46] with the following motto: The (nonlinear)
phenomena are governed by a finite number of resonant states. As this was already explained in
[20], such a remark dictates the scaling of the potential which leads to the small parameter analysis
and in the end to effective reduced models even when h ∼ 0.1 or 0.3 (see [19]).
For the dynamical problem, the time evolution of resonant states have to be considered possibly
with a time-dependent potential. And it is known that this is a rather subtle point. Quantum
resonances follow almost but not exactly the general intuition (see [53]) and remain an inexhaustible
playground for mathematical analysis. For example, the exponential decay law is an approximation
which has a physical interpretation in terms of the evolution of quasi-resonant states (truncated
resonant states which lie on the real L2-space) and writes as

e−itHh

ψqr,j = e−itEje−tΓjψqr,j +R(t) ,

where the remainder term R(t) is small only in the range of times scaled as 1
Γj
. A very accurate

analysis of this has been done in [27][57][58][59][39][38] and adiabatic results for slowly varying
potentials and for quasi-resonant states have been obtained in [48](see also [60] and [1] in a similar
spirit) on this range of time-scales. On the other side the relation

e−itHh(θ)ψj = e−itEje−tΓjψj

holds without remainder terms when θ ∈ iR+ parametrizes a complex deformation of Hh according
to the general approach to resonances (see [3][10][31][23][30][29]). However, and this is well known
within the analysis of resonances, the deformed generator iHh(θ) is not maximal accretive although

its spectrum lies in {Re z ≥ 0} and no uniform estimates are available on e−itHh(θ) . One of the
two next strategies have to be chosen:

• Stay on the real space with quasi-resonant states, with uniform estimates of the semigroups,
groups or dynamical systems (they are unitary) but with remainder term which can be
neglected only on some parameter dependent range of time.

• Consider the complex deformed situation and try to solve or bypass the defect of accretivity.

Because the remainder terms seemed hard to handle within the original nonlinear problem and
also because there may be multiple time scales to handle, due to the nonlinearity or due to several
resonances involved in the nonlinear process, we chose the second one.

In a one dimensional problem the simplest approach is the complex dilation method according
to [3][10][23]. Since the possibly nonlinear potential with a compact support has a limited regularity
inside the interval (a, b), this deformation is done only outside this interval following an approach
already presented in [54]. The dilation is defined according to

Uθψ(x) =





e
θ
2ψ(eθ(x− b) + b), x > b

ψ(x), x ∈ (a, b)

e
θ
2ψ(eθ(x− a) + a), x < a ,

(1.3)

and finally handled with θ ∈ iR+. The conjugated Laplacian is

Uθ(−h2∆)U−1
θ = −h2e−2θ 1R\(a,b)(x)∆ ,

with the domain made of functions u ∈ H2(R \ {a, b}) with the interface conditions

[
e−

θ
2u(b+) = u(b−); e−

3θ
2 u′(b+) = u′(b−)

e−
θ
2u(a−) = u(a+); e−

3θ
2 u′(a−) = u′(a+) .

(1.4)
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This can be viewed as a singular version of the black-box formalism of [56]. Additionally to the
fact that this singular deformation is convenient for the original model with potential barriers
presented with a discontinuous potential and with a nonlinear part inside (a, b), the obstruction
to the accretivity of Uθ(−h2∆)U−1

θ is concentrated in two boundary terms at x = a and x = b in

Re 〈u , iUθ(−h2∆)U−1
θ u〉L2(R) = Re

[
ih2(ūu′)

∣∣b+
a−(e

−2θ − e−
θ̄+3θ

2 )
]

+ h2e−2Re θ sin(2 Im θ)

∫

R\[a,b]
|u′|2 dx . (1.5)

Our strategy then relies on the introduction of artificial interface conditions parametrized with θ0
which modify the operator −h2∆. The parameter θ0 is then chosen so that the above boundary
term vanishes when θ = θ0 = iτ . The modified and deformed Hamiltonian Hh

θ0=iτ (θ = iτ) then

generates a contraction semigroup and uniform estimates are available for e−itHiτ (iτ) or for the
dynamical system (Uh(t, s))t≥s for time-dependent potentials .
Hopefully this modification has a little effect on the Hamiltonian Hh = −h2∆+ V −Wh and all
the quantities involved in the nonlinear problem, with explicit estimates with respect to θ0 and h.
Indeed all the quantities and even the exponentially small ones like Γj or the ones appearing in
the branching ratio (1.1) experiment small relative variation with respect to θ0 when θ0 = ihN0

with N0 ≥ 5.
In comparison with the modelling of artificial dissipative boundary conditions in [11][12][13][14], our
approach has the advantage of remaining close to the initial quantum model. Such a comparison
is valuable and ensures the validity of numerical applications when the non-linear bifurcation
phenomena are very sensitive to small variations of the data.
Once the above comparison is done, it is checked that adiabatic evolution for a slowly varying
potential or equivalently for the ε-dependent Cauchy problem

iε∂tu = Hh
θ0(θ0, t)u , ut=0 = u0 ,

with some exponentially large time scale 1
ε = e

C
h , is adapted from the general approach for the

adiabatic evolution of bound states of self-adjoint generators in [8][43][34].
Adiabatic dynamics have already been considered within the modelling of out-of-equilibrium quan-
tum transport in [22][7][9] playing with the continuous spectrum with self-adjoint techniques. Only
partial results are known with non self-adjoint generators: in [42] only small time results are valid
for resonances, in [44] bounded generators are considered and in [55] a general scheme for the
the higher order construction of the adapted projector is done but without time propagation es-
timates. In [35], A. Joye considered a general time-adiabatic evolution for semigroups in Banach
spaces under a fixed gap condition and with analyticity assumptions: The exponential growth of
the dynamical system ‖Sε(t, 0)‖ ≤ e

Ct
ε is compensated by the O(e−

c
ε ) error of the adiabatic ap-

proximation under analyticity assumptions (see [43][34]) and lead to a total error O(Ct−c
ε ) which

is small when t < c/C. Our adaptation combines the uniform estimates due to the accretivity
of the modified and deformed Hamiltonian with the accurate resolvent estimate provided by the
accurate comparison with self-adjoint problems (shape resonances result from the coupling of some
Dirichlet eigenvalues with a continuous spectrum). Although, the error associated with the adia-
batic evolution is estimated at the first order as an O(ε1−δ), with δ > 0 as small as wanted, it is
necessary to reconsider the higher-order method in [43] or [34], because we work with small gaps
(vanishing as h → 0) and with non self-adjoint operators. Finally note that the exponential time
scale is not necessarily related with the imaginary parts of resonances and several resonant states
with various life-time scales are taken into account in our application.

The outline of the article is the following.

• The artificial interface conditions parametrized by θ0 are introduced in Section 2. With
these new interface conditions −∆ is transformed into a non self-adjoint operator conjugated
with −∆, W (θ0)(−∆)W (θ0)

−1 with W (θ0) = Id L2 +O(θ0). The case with a potential is
illustrated with numerical computations.
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• The functional analysis of the complex deformation parametrized with θ is done in Section 3.
After introducing a Krein formula associated with the (θ0, θ)-dependent interface conditions,
it mimics the standard approach to resonances summarized in [23][29] but things have to be
reconsidered for we start from an already non self-adjoint operator when θ0 6= 0. Assumptions
on the time-dependent variations of the potential which ensure the well-posedness of the
dynamical systems are specified in the end of this section.

• The small parameter problem modelling quantum wells in a semiclassical island is introduced
in Section 4. Accurate exponential decay estimates are presented for the spectral problems
reduced to (a, b) making use of the fact that our operators are proportional to −h2∆ outside
[a, b].

• The Grushin problem leading to an accurate theory of resonances is presented in Section 5.
There it is checked that the imaginary parts of the resonances, which are exponentially small,
are little perturbed by the introduction of θ0-dependent artificial conditions. The conclusion
of this section is that all the quantities involved in the Fermi Golden Rule (1.2) have little
relative variations with respect to θ0, even the exponentially small ones.

• Accurate parameter-dependent resolvent estimates for the whole space problem are done in
Section 6. Again the Krein formula for the resolvent associated with the (θ0, θ)-dependent
interface conditions is especially useful.

• The adiabatic evolution of resonances is really introduced in 7. After specifying all the
assumptions, the main result about this is stated in Theorem 7.1.

• The appendix contains various preliminary and sometimes well-known estimates, plus a vari-
ation of the general adiabatic theory concerned with non self-adjoint maximal accretive op-
erators in Section B

2 Artificial interface conditions

Modified Hamiltonians with artificial interface conditions are introduced. It is checked that the
effect of these artificial conditions parametrized by θ0 ∈ C is of order |θ0| for all the quantities
associated with the free Schrödinger Hamiltonian −h2∆ on the whole line. Instead of pursuing
this analysis for general Schrödinger operators −h2∆+ V we simply give a numerical evidence of
this stability with respect θ0 .

2.1 The modified Laplacian

We consider a class of singular perturbations of the 1-D Laplacian, defined through non self-adjoint
boundary conditions in the extrema of a bounded interval. For θ0 ∈ C and a, b ∈ R, with a < b
and b− a = L, the Hamiltonian Hh

θ0,0
is defined by






D(Hh
θ0,0

) =

{
u ∈ H2(R\ {a, b}) :

[
e−

θ0
2 u(b+) = u(b−); e−

3
2 θ0u′(b+) = u′(b−)

e−
θ0
2 u(a−) = u(a+); e−

3
2 θ0u′(a−) = u′(a+)

}
,

Hh
θ0,0

u = −h2∂2x ,
(2.1)

where u(x+) and u(x−) respectively denote the right and the left limits of u in x, while the
notation u′ is used for the first derivative. When |θ0| is small, the analysis of Hh

θ0,0
follows by a

direct comparison with Hh
0,0 (coinciding with the usual Laplacian: −h2∆R). To fix this point, let

us introduce the intertwining operator Wθ0 defined through the integral kernel

Wθ0(x, y) =

∫ +∞

−∞
ψ−(k, x)e

−i k
hy dk

2πh
, (2.2)
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with ψ−(k, x) denoting the generalized eigenfunctions associated with our model. These are de-
scribed by the plane wave solutions to the equation

(
Hh

θ0,0 − k2
)
ψ−(k, ·) = 0 . (2.3)

For k > 0, one has

1(0,+∞)(k)ψ−(k, x) =






ei
k
hx +R(k)e−i k

hx, x < a

A(k)ei
k
hx +B(k)e−i k

hx, x ∈ (a, b)

T (k)ei
k
hx, x > b .

(2.4)

Since ψ−(k, x) fulfills the boundary conditions in (2.1), the explicit expression of the coefficients
in (2.4) are





A(k) = 2 c+(θ0)e
−i k

h
L

d(θ0,k)
, B(k) = −2 c−(θ0)e

2i k
h

aei
k
h

L

d(θ0,k)
,

T (k) = e−i k
h

L

d(θ0,k)

(
c+(θ0)

2 − c−(θ0)2
)
, R(k) = −2ic+(θ0)c−(θ0)

d(θ0,k)
e2i

k
ha sin

(
kL
h

)
,

(2.5)

with: c+(θ0) = e
θ0
2 + e

3
2 θ0 , c−(θ0) = e

θ0
2 − e

3
2 θ0 and

d(θ0, k) = det

(
c+(θ0)e

i k
ha c−(θ0)e−i k

ha

c−(θ0)ei
k
h b c+(θ0)e

−i k
h b

)
= c+(θ0)

2e−i k
hL − c−(θ0)

2ei
k
hL . (2.6)

For k < 0, an analogous computation gives

1(−∞,0)(k)ψ−(k, x) =





T̃ (k)ei
k
hx, x < a

Ã(k)ei
k
hx + B̃(k)e−i k

hx, x ∈ (a, b)

ei
k
hx + R̃(k)e−i k

hx, x > b ,

(2.7)

with {
Ã(k) = A(−k) , B̃(k) = e4i

k
hae2i

k
hLB(−k) ,

T̃ (k) = T (−k) , R̃(k) = e4i
k
hae2i

k
hLR(−k) .

(2.8)

In what follows we adopt the simplified notation

A(k, θ0) =

{
A(k), k ≥ 0

Ã(k), k < 0 ,
B(k, θ0) =

{
B(k), k ≥ 0

B̃(k) k < 0 ,
(2.9)

and

T (k, θ0) =

{
T (k), k ≥ 0

T̃ (k), k < 0 ,
R(k, θ0) =

{
R(k), k ≥ 0

R̃(k), k < 0 .
(2.10)

Lemma 2.1. The operator Wθ0 defined by (2.2) verifies the expansion

Wθ0 − Id = O(|θ0|) (2.11)

in operator norm.

Proof: According to (2.4), (2.7) and to the definition (2.2), one can express the integral kernel
Wθ0(x, y) as follows

Wθ0(x, y) =

∫ +∞

−∞
ei

k
h (x−y) dk

2πh

+ 1(a,b)(x)

∫ +∞

−∞
(A(k, θ0)− 1) ei

k
h (x−y) dk

2πh
+ 1(a,b)(x)

∫ +∞

−∞
B(k, θ0)e

−i k
h (x+y) dk

2πh

+ 1(−∞,a)(x)

∫ 0

−∞
(T (k, θ0)− 1) ei

k
h (x−y) dk

2πh
+ 1(b,+∞)(x)

∫ +∞

0

(T (k, θ0)− 1) ei
k
h (x−y) dk

2πh

+ 1(b,+∞)(x)

∫ 0

−∞
R(k, θ0)e

−i k
h (x+y) dk

2πh
+ 1(−∞,a)(x)

∫ +∞

0

R(k, θ0)e
−i k

h (x+y) dk

2πh
.
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The previous expression is rewritten in terms of operators:

Wθ0 − Id = 1(a,b)F−1 (A(k, θ0)− 1)F + 1(a,b)PF−1B(k, θ0)F
+ 1(−∞,a)F−11(−∞,0) (T (k, θ0)− 1)F + 1(b,+∞)F−11(0,+∞) (T (k, θ0)− 1)F

+ 1(b,+∞)PF−11(−∞,0)R(k, θ0)F + 1(−∞,a)PF−11(0,+∞)R(k, θ0)F ,

where F denotes the Fourier transform normalized as Fu(k) =
∫
R
u(x)e−i k

hx dx
(2πh)1/2

, and P denotes

the parity operator: Pu(x) = u(−x).
Since the operators P , F , F−1 and multiplication by the characteristic function of a set are
uniformly bounded with respect to θ0, we get:

‖Wθ0−Id‖ ≤ C
(
‖A(k, θ0)− 1‖L∞(R) + ‖B(k, θ0)‖L∞(R) + ‖T (k, θ0)− 1‖L∞(R) + ‖R(k, θ0)‖L∞(R)

)
.

From (2.8), it is enough to estimate for k > 0 the terms at the r.h.s of the inequality above to get
the L∞(R) bounds. Moreover, from the definition of the coefficients c−(θ0), c+(θ0) and d(θ0, k),
we have:

c−(θ0) = O(|θ0|), c+(θ0) = 2 +O(|θ0|), d(θ0, k) = 4e−
ikL
h +O(|θ0|) ,

where the upper bound of O(|θ0|) holds with a universal constant. The previous equation gives
|d(θ0, k)| ≥ 1 when |θ0| is small enough, and using (2.5), this implies:

|A(k, θ0)− 1| =

∣∣∣2c+(θ0)e−
ikL
h − d(θ0, k)

∣∣∣
|d(θ0, k)|

=
|O(|θ0|)|
|d(θ0, k)|

≤ C|θ0| ,

|T (k, θ0)−1| =

∣∣∣e− ikL
h

(
c+(θ0)

2 − c−(θ0)2
)
− d(θ0, k)

∣∣∣
|d(θ0, k)|

=

∣∣2c−(θ0)2 sin
(
kL
h

)∣∣
|d(θ0, k)|

=

∣∣O(|θ0|2)
∣∣

|d(θ0, k)|
≤ C|θ0| ,

|B(k, θ0)| =
|2c−(θ0)|
|d(θ0, k)|

=
|O(|θ0|)|
|d(θ0, k)|

≤ C|θ0| ,

|R(k, θ0)| =
∣∣2c+(θ0)c−(θ0) sin

(
kL
h

)∣∣
|d(θ0, k)|

=
|(2 +O(|θ0|))O(|θ0|)|

|d(θ0, k)|
≤ C|θ0| .

According to the result of Lemma 2.1, for |θ0| small enough, Wθ0 is invertible; in particular one
has

Wθ0 = 1 +O(|θ0|) , W−1
θ0

= 1 +O(|θ0|) . (2.12)

Then, it follows from the definition (2.2) that Hh
θ0,0

are Hh
0,0 conjugated operators with

Hh
θ0,0 =Wθ0H

h
0,0W

−1
θ0

. (2.13)

This relation allows to discuss the spectral and the dynamical properties related to Hh
θ0,0

for small
values of the parameter θ0.

Proposition 2.2. There exists c > 0 such that: for any θ0 with |θ0| ≤ c, the following property
holds:

1) The operator Hh
θ0,0

has only essential spectrum defined by σess(H
h
θ0,0

) = R+.

2) The semigroup associated with Hh
θ0,0

is uniformly bounded in time and the expansion

e−itHh
θ0,0 = e−itHh

0,0 +O(|θ0|) (2.14)

holds uniformly in t ∈ R.
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Proof: 1) According to (2.13), one has

(
Hh

θ0,0 − z
)−1

=Wθ0

(
Hh

0,0 − z
)−1

W−1
θ0
,

with Wθ0 ,W
−1
θ0

bounded in L2(R). This implies: σ(Hh
θ0,0

) = σess(H
h
0,0) = R+.

2) Since Hh
θ0,0

are Hh
0,0 conjugated by Wθ0 , we have

e−itHh
θ0,0Wθ0 =Wθ0e

−itHh
0,0 .

For |θ0| small, one can use the expansions (2.12) to write

e−itHh
θ0,0 =Wθ0e

−itHh
0,0W−1

θ0
= (1 +O(|θ0|)) e−itHh

0,0 (1 +O(|θ0|)) .

Recalling that Hh
0,0 is self-adjoint (it coincides with the usual Laplacian), and

(
e−itHh

0,0

)

t∈R

is a

unitary group, one has

e−itHh
θ0,0 = e−itHh

0,0 +O(|θ0|).

Remark 2.3. It is worthwhile to notice that Hh
θ0,0

is not self-adjoint (excepting for θ0 = 0) neither
accretive, since

Re
〈
u, iHh

θ0,0u
〉
= h2 Im

{[
ū(a−)u′(a−)− ū(b+)u′(b+)

] (
1− e−

3θ0+θ̄0
2

)}
, u ∈ D(Hh

θ0,0)

has not a fixed sign. Thus, it is not possible to use standard arguments to state that e−itHh
θ0,0 is a

contraction. Nevertheless, for small values of the parameter θ0, the result of Proposition 2.2 allows

to control the operator norm of e−itHh
θ0,0 uniformly in time, and states that the time evolution

generated by Hh
θ0,0

is close to the one associated with the usual Laplacian Hh
0,0.

Spectral properties of Hamiltonians obtained as singular perturbations ofHh
θ0,0

can be discussed
using standard results in spectral analysis adapted to this non self-adjoint case.

Lemma 2.4. Let V = V1 + V2, with V1 ∈ L∞((a, b)) and V2 a bounded measure supported in
U ⊂⊂ (a, b). Then: σess(H

h
θ0,0

+ V) = σess(H
h
θ0,0

).

Proof: The proof follows from the first point of Corollary 3.4 below in the case θ = 0.

2.2 Numerical computation of the time propagators for small |θ0|
This part is devoted to the numerical comparison of the propagators e−itHh

θ0,V and e−itHh
0,V where

V is a locally supported perturbation of Hh
θ0,0

with

Hh
θ0,V = Hh

θ0,0 + V, and V ∈ L∞((a, b)) .

Using discrete time dependent transparent boundary conditions for the Schrödinger equation, it

is possible to compute the propagator e−itHh
0,V with a Crank-Nicolson scheme, see [25][6][49][5].

To compute the propagator e−itHh
θ0,V , the key point is to integrate the boundary conditions in

(2.1) in the resolution in a way which preserves the stability. This is performed by integrating the
boundary conditions in the finite difference discretization of the Laplacian at the points a and b.
To simplify the presentation, we suppose temporarily that the interface conditions occur only at

0. So we want to write a modified discretization of the operator d2

dx2 with the condition

{
e−

θ0
2 u(0+) = u(0−)

e−
3
2 θ0u′(0+) = u′(0−) .

(2.15)
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For a given mesh size ∆x, we introduce the discretization of R: xj = j∆x with j ∈ Z. For j 6= 0,
the number uj will denote the approximation of u(xj), while u0 will denote the approximation of
u(0−) and u+0 will denote the approximation of u(0+). If the function u is regular on R∗, we can
use the usual finite difference approximation

(
d2

dx2
u

)

j

=
uj−1 − 2uj + uj+1

∆x2
, (2.16)

for j /∈ {−1, 0, 1}. Due to the regularity constraint, this approximation is written correctly for
j = −1, and respectively for j = 1, only when considering the continuous extension of the function
from the left, and respectively from the right, which leads to

(
d2

dx2
u

)

−1

=
u−2 − 2u−1 + u0

∆x2
,

(
d2

dx2
u

)

1

=
u+0 − 2u1 + u2

∆x2
.

With the first relation in (2.15), the approximation at j = 1 is

(
d2

dx2
u

)

1

=
e

θ0
2 u0 − 2u1 + u2

∆x2
. (2.17)

At j = 0, due to the possible discontinuity of a function u verifying (2.15), we define u− on R as a
regular continuation of u|(−∞,0). More precisely u− ∈ C2(R) is such that u− = u on (−∞, 0) and
we get the following approximation at j = 0

(
d2

dx2
u

)

0

=
u−1 − 2u0 + u−1

∆x2
. (2.18)

This method corresponds to the introduction of a fictive point u−1 which allows to write the finite

difference approximation for d2

dx2 and to calculate u′(0−) and u′(0+) in (2.15) by using the same
points of the space grid {

e−
θ0
2 u+0 = u0

e−
3
2 θ0(u1 − u+0 ) = u−1 − u0 .

The resolution of the system above gives: u−1 = (1 − e−θ0)u0 + e−
3
2 θ0u1 and (2.18) becomes

(
d2

dx2
u

)

0

=
u−1 − (1 + e−θ0)u0 + e−

3
2 θ0u1

∆x2
. (2.19)

Therefore, from the boundary conditions in (2.1), the scheme to compute the propagator e−itHh
θ0,V

is obtained by using the modified Laplacian corresponding to the application of (2.17) and (2.19)
at x = a and x = b. When θ0 is small, the equations (2.17) and (2.19) approximate well the

usual finite difference equation (2.16), therefore the solution e−itHh
θ0,V will be close to the solution

e−itHh
0,V , as expected.

After the change of variable x′ = x−a
ℓ −1, where ℓ = b−a

2 , the problem for e−itHh
θ0,V is the following





i∂tu(t, x) =
[
−h2

ℓ2 ∂
2
x + Ṽ (x)

]
u(t, x), t > 0, x ∈ R \ {−1, 1}

e
θ0
2 u(t,−1+) = u(t,−1−), e

3
2 θ0∂xu(t,−1+) = ∂xu(t,−1−), t > 0

e−
θ0
2 u(t, 1+) = u(t, 1−), e−

3
2 θ0∂xu(t, 1

+) = ∂xu(t, 1
−), t > 0

u(0, x) = uI(x), x ∈ R ,

(2.20)

where Ṽ (x) = V ((x+1)ℓ+a) and uI ∈ C∞(R) is the initial data. The resolution will be performed
on the bounded interval [−5, 5] using homogeneous transparent boundary conditions valid when
suppuI ⊂⊂ (−5, 5).
Set ∆x = 1

J and consider the uniform grid points xj = j∆x for j ∈ {−5J, . . . , 5J}. Then using
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(2.17) and (2.19), the Crank-Nicolson scheme for the modified Hamiltonian is obtained from the
Crank-Nicolson scheme in [6][25] by replacing the usual discrete Laplacian by the modified discrete
Laplacian defined below

∆θ0uj =
1

∆x2





uj−1 − (1 + e∓θ0)uj + e∓
3
2 θ0uj+1, if j = ±J

e±
θ0
2 uj−1 − 2uj + uj+1, if j = ±J + 1

uj−1 − 2uj + uj+1, else .

The discrete transparent boundary conditions at x = −5 and x = 5 are those used for e−itHh
0,V in

[6][25].
For a given time step ∆t and for θ0 = i Im θ0, we present some comparison of the numerical

solution unθ0 to the system (2.20), given at time tn = n∆t by the scheme described above, with
the numerical solution un to the reference problem, computed by taking θ0 = 0. In particular, the
numerical parameters are the following: ℓ = 1, h = 0.03, J = 30, ∆t = 0.8, and the comparison is
realized with the initial condition equal to the wave packet

uI(x) = exp

(
− (x− x0)

2

2σ2
+ ik(x− x0)

)
,

where σ = 0.2, k = 2π
8∆x and the center x0 will be specified in each simulation.

Three simulations were performed corresponding to different values of the potential V and of
the center x0. The first test was realized with V = 0 and x0 = −3. Although the comparison
presented here can be extented to more general potentials, the two other tests were realized in the
case where V is a non trivial barrier potential

V = V0I(a,b) ,

where V0 = 0.8: for this potential one test was realized with an initial condition localized at the
left of (−1, 1) by taking x0 = −3, and the second with an initial condition localized in (−1, 1) by
taking x0 = 0. The solution unθ0 is represented, at different time t, next to the reference solution
un in the Figures 1, 2 and 3, for the fixed small value θ0 = 0.09i. We remark that unθ0 has the
same qualitative behaviour than the reference solution.

In the case V = 0, the solution unθ0 corresponds to an incoming function from the left which
goes near the domain (−1, 1). When time grows, it crosses the interface points and leaves the
domain.

In the case of the barrier potential with x0 = −3, the solution is splitted in two parts: a first
one which passes through the barrier; and a second one which is reflected and goes out of the
domain.

In the case of the barrier potential with x0 = 0, it appears that the wave packet is splitted in
two outgoing parts: one which leaves the barrier on the left and the second on the right. The part
on the right is more important and goes out faster, it is due to the sign of the wave vector k.

In the three tests described above, although some oscillations occur when crossing the inter-
faces x = −1 and x = 1, the quantitative comparison gives also good results. In particular, we
represented in Figure 4 the variation with respect to Im θ0 of the maximum in time of the L2

relative difference:

Dθ0 = max
1≤n≤N

100
‖unθ0 − un‖

‖uI‖
, (2.21)

where N = 400 is the number of time iterations. It shows that, for every case, the difference tends
to 0 when Im θ0 tends to 0. Moreover, the graphic of Dθ0 is a line which validates the result
(2.14). We note also that the difference in the case of a barrier potential is smaller then in the
case V = 0. This may be due to the fact that the error coming from the interface conditions
is compensated by the exponential decay imposed by the barrier. Then, in the case of a barrier
potential, we note that the difference is more important when the initial condition is supported in
(−1, 1). It can be explained by the fact that the solution crosses the two interfaces, at x = −1 and
x = 1, whereas, when the solution comes from the left, only the interaction with the first interface
x = −1 is relevant, which is also a consequence of the exponential decay in the barrier.
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Figure 1: Case V = 0: modulus of the functions unθ0 and un at different time t with x0 = −3 and
θ0 = 0.09i
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Figure 2: Case of a barrier potential: modulus of the functions unθ0 and un at different time t with
x0 = −3 and θ0 = 0.09i
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Figure 3: Case of a barrier potential: modulus of the functions unθ0 and un at different time t with
x0 = 0 and θ0 = 0.09i
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3 Exterior complex scaling and local perturbations

Spectral deformations of Schrödinger operators arising from complex dilations form a standard
tool to study resonances. This technique – originally developed by J.M. Combes and coauthors
in [3][10] for the homogeneous scaling in L2(Rn): Uθψ(x) = e

nθ
2 ψ(eθx) – allows to relate the

resonances of the Hamiltonian H = −∆+V with the spectral points of a non self-adjoint operator
H(θ) = UθHU

−1
θ with θ ∈ C. If the potential V is dilation analytic in the strip {θ ∈ C | |Im θ| < α},

the poles of the meromorphic continuation of the resolvent (H − z)
−1

in the second Riemann sheet
are identified with the eigenvalues of H(θ) placed in the cone spanned by the positive real axis
and the rotated half axis e−2i Im θR+. We refer the reader to [23] for a summary and we recall
that many variations on this approach have been developed since, see [31][30][40] and [29] for a
short comparison of these methods. In particular for potentials which can be complex deformed
only outside a compact region, the exterior complex scaling technique appeared first in [54] in the
singular version that we reconsider here. Meanwhile regular versions have been used in [31] and
extended with the so called “black box” formalism in [56].

In this section, we consider a particular class of exterior scaling maps, Uθ, acting outside a
compact set in 1D and introducing sharp singularities in the domain of the corresponding deformed
Hamiltonians. Let us introduce the one-parameter family of exterior dilations

x −→





e−θ(x− b) + b, x > b

x, x ∈ (a, b)

e−θ(x− a) + a, x < a .

(3.1)

For real values of the parameter θ, the related unitary transformation in L2(R) is

Uθψ(x) =





e
θ
2ψ(eθ(x− b) + b), x > b

ψ(x), x ∈ (a, b)

e
θ
2ψ(eθ(x− a) + a), x < a .

(3.2)

Local perturbations of Hh
θ0,0

(0) are defined by

Hh
θ0,V(0) = Hh

θ0,0(0) + V , (3.3)

with suppV ⊂ [a, b]. In what follows we will assume

V = V1 + V2, V1 ∈ L∞((a, b)), V2 ∈ Mb(U) with U ⊂⊂ (a, b) . (3.4)

Under these assumptions,

D(Hh
θ0,V(0)) =

{
u ∈ H2(R\ {a, b, U})

∣∣ (1 − χ)u ∈ D(Hh
θ0,0(0)), −h2u′′ + V2u ∈ L2(U)

}
,

where χ ∈ C∞
0 ((a, b)) and χ(x) = 1 for x ∈ U .

In particular, since V2 is a bounded measure, the domainD(Hh
θ0,V(0)) is contained inH1(R\ {a, b}).

The conjugated operator
Hh

θ0,V(θ) = UθH
h
θ0,V(0)U

−1
θ (3.5)

is defined onD(Hh
θ0,V(θ)) =

{
u ∈ L2(R)

∣∣∣U−1
θ u ∈ D(Hh

θ0,V(0))
}
. The constraintU−1

θ u ∈ D(Hh
θ0,V(0))

compels the boundary conditions

[
e−

1
2 (θ0+θ)u(b+) = u(b−); e−

3
2 (θ0+θ)u′(b+) = u′(b−)

e−
1
2 (θ0+θ)u(a−) = u(a+); e−

3
2 (θ0+θ)u′(a−) = u′(a+) ,

(3.6)

to hold for any u ∈ D(Hh
θ0,V(θ)). Thus one has

D(Hh
θ0,V(θ)) =

{
u ∈ H2(R\ {a, b, U}) ∩H1(R\ {a, b})

∣∣ (3.6) , −h2u′′ + V2u ∈ L2(U)
}
. (3.7)
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The action of Hh
θ0,V(θ) is

Hh
θ0,V(θ)u =

[
−h2η(x)∂2x + V

]
u, η(x) = e−2θ 1R\(a,b)(x) . (3.8)

It is worthwhile to notice that this definition can be extended to complex values of θ. For θ ∈ C,
the Hamiltonian Hh

θ0,V(θ) identifies with a restriction of the operator Q(θ)

{
D(Q(θ)) =

{
u ∈ H2(R\ {a, b, U}) ∩H1(R\ {a, b})

∣∣ −h2u′′ + V2u ∈ L2(U)
}
,

Q(θ)u =
[
−h2η(x)∂2x + V

]
u .

(3.9)

For particular choices of θ0 and θ, the quantum evolution generated by the deformed modelHh
θ0,V(θ)

is described by contraction maps. To fix this point, let us consider the terms

Re
〈
u, iHh

θ0,V(θ)u
〉

L2(R)
; for u ∈ D(Hh

θ0,V(θ)), an explicit calculation gives

Re
〈
u, iHh

θ0,V(θ)u
〉
L2(R)

= Re
{
−ih2

(
ū(a−)u′(a−)− ū(b+)u′(b+)

) (
e−2θ − e−

1
2 (θ̄+θ̄0)e−

3
2 (θ+θ0)

)}

+ h2e−2Re θ sin (2 Im θ)

∫

R\(a,b)
|u′|2 dx. (3.10)

For θ = θ0 = iτ , with τ ∈
(
0, π2

)
, the boundary terms disappear, and the r.h.s. of (3.10) is positive

Re
〈
u, iHh

iτ,V(iτ)u
〉
L2(R)

= h2 sin (2τ)

∫

R\(a,b)
|u′|2 dx ≥ 0. (3.11)

Lemma 3.1. For τ ∈
(
0, π2

)
, the operator iHh

iτ,V(iτ) is the generator of a contraction semigroup.

Proof: As a consequence of (3.11), iHh
iτ,V(iτ) is accretive. Moreover, the propriety σess

(
Hh

iτ,V(iτ)
)
=

e−2iτR+ in Corollary 3.4 below, implies iλ0 ∈ ρ(Hh
iτ,V(iτ)) for some λ0 > 0 and

(
iHh

iτ,V(iτ) + λ0
)

is surjective. Then, a standard characterization of semigroup generators ([51], Theorem X.48) leads
to the result.

3.1 Krein formula and analyticity of the resolvent

In order to get an expression of the adjoint operator ofHh
θ0,V(θ), we introduce the following operator

with two-parameters boundary conditions

D(Qθ1,θ2(θ)) =

{
u ∈ D(Q(θ))

∣∣∣∣∣

[
e−

1
2 (θ1+θ)u(b+) = u(b−); e−

1
2 (θ2+3θ)u′(b+) = u′(b−)

e−
1
2 (θ1+θ)u(a−) = u(a+); e−

1
2 (θ2+3θ)u′(a−) = u′(a+)

}
,

(3.12)
Qθ1,θ2(θ)u =

[
−h2η(x)∂2x + V

]
u, η(x) = e−2θ 1R\(a,b)(x) , (3.13)

where Q(θ) is defined in (3.9). Indeed, by direct computation
i) Qθ1,θ2(θ) identifies with the original model Hh

θ0,V(θ) for the choice of parameters: θ1 = θ0 and
θ2 = 3θ0

Hh
θ0,V(θ) = Qθ0,3θ0(θ), (3.14)

ii) the adjoint operator (Qθ1,θ2(θ))
∗
is given by

(Qθ1,θ2(θ))
∗ = Q−θ̄2,−θ̄1(θ̄). (3.15)

Like Hh
θ0,V(θ), the Hamiltonian Qθ1,θ2(θ) is a restriction of the operator Q(θ). In this context, we

fix a boundary value triple
{
Γθ
j=1,2,C

4
}
with Γθ

j : D(Q(θ)) → C4

Γθ
1ψ = h2




−e− 3
2 θψ′(b+)

−ψ(b−)
ψ(a+)

e−
3
2 θψ′(a−)


 ; Γθ

2ψ =




e−
θ
2ψ(b+)
ψ′(b−)
ψ′(a+)

e−
θ
2ψ(a−)


 , (3.16)
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and
(
Γθ
1,Γ

θ
2

)
: D(Q(θ)∗) → C4 × C4 surjective. For all ψ, ϕ ∈ D(Q(θ)), these maps satisfy the

relation
〈ψ,Q(θ)ϕ〉L2(R) −

〈
Q(θ̄)ψ, ϕ

〉
L2(R)

=
〈
Γθ̄
1ψ,Γ

θ
2ϕ
〉

C4
−
〈
Γθ̄
2ψ,Γ

θ
1ϕ
〉

C4
(3.17)

(for the definition of boundary triples and the construction of point interaction potentials in the
self adjoint case see [47] and [4]). Let Λ, B ∈ C4,4 be defined as

Λ(θ1, θ2) =
1

h2

(
a(θ1, θ2)

−a(−θ2,−θ1)

)
, B =

(
b

b

)
, (3.18)

a(θ1, θ2) =

(
−e− θ2

2 0

0 −e θ1
2

)
, b =

(
0 1
1 0

)
, (3.19)

the boundary conditions in (3.12) are equivalent to

ΛΓθ
1ψ = BΓθ

2ψ . (3.20)

Let Hh
ND,V(θ) denote the restriction of Q(θ) corresponding to the boundary conditions: Γθ

1ψ =
0; this operator is explicitly given by

Hh
ND,V(θ) = −h2e−2θ∆N

(−∞,a) ⊕
[
−h2∆D

(a,b) + V
]
⊕−h2e−2θ∆N

(b,+∞). (3.21)

Its spectrum is characterized as follows

σ
(
Hh

ND,V(θ)
)
= e−2θ

R+ ∪ σ
(
−h2∆D

(a,b) + V
)
. (3.22)

It is possible to write (Qθ1,θ2(θ) − z)−1 as the sum of
(
Hh

ND,V(θ) − z
)−1

plus finite rank terms.

Such a representation will be further used to develop the spectral analysis of Hh
θ0,V(θ) where

our Krein-like formula will allow explicit resolvent estimates near the resonances. The space
Nz,θ = Ker(Q(θ)− z) is generated by the linear closure of the system {ui,z}4i=1 where ui,z are the
independent solutions to (Q(θ) − z)u = 0. The exterior solutions to this problem, ui,z, i = 1, 4,
are explicitly given by

u1,z(x) = 1(b,+∞)e
i

√
ze2θ

h (x−b), u4,z(x) = 1(−∞,a)e
−i

√
ze2θ

h (x−a), (3.23)

where the square root branch cut is fixed with Im
√· > 0. This assumption implies Im

√
ze2θ > 0

for all z ∈ C\e−2i Im θR+. The interior solutions, ui,z, i = 2, 3, can be defined through the following
boundary value problems
{ [

−h2∂2x + V − z
]
u2,z = 0, in (a, b) ,

u2,z(a) = 0, u2,z(b) = 1 ,

{ [
−h2∂2x + V − z

]
u3,z = 0, in (a, b) ,

u3,z(a) = 1, u3,z(b) = 0 ,
(3.24)

with z ∈ C\σp(Hh
ND,V(θ)). Owing to the property of the interior Dirichlet realization in (a, b), the

solutions ui,z
∣∣
(a,b)

are unique and locally H2 near the boundary. We consider the maps: γ(·, z, θ) =
(
Γθ
1

∣∣
Nz,θ

)−1

, with Γθ
1

∣∣
Nz,θ

denoting the restriction of Γθ
1 onto Nz,θ, and q(z, θ,V) = Γθ

2γ(·, z, θ).
These form holomorphic families of linear operators for z in a cut plane C\e−2i Im θR+. Their matrix

form w.r.t. the standard basis
{
ej
}4
j=1

of C4 and the system {ui,z}4i=1 is: γij(z, θ) = ci(z, θ)δij
with

c1(z, θ) =
ie

3θ
2

h
√
ze2θ

, c2 = − 1

h2
, c3 =

1

h2
, c4(z, θ) =

ie
3θ
2

h
√
ze2θ

, (3.25)

and

q(z, θ,V) = 1

h2




iheθ√
ze2θ

−u′2,z(b) u′3,z(b)
−u′2,z(a) u′3,z(a)

iheθ√
ze2θ


 . (3.26)
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Lemma 3.2. Let ϕ ∈ L2(R) and j = 1, ..., 4; the relation

[
Γθ
2

(
Hh

ND,V(θ)− z
)−1

ϕ
]

j
=
〈
γ(ej , z̄, θ̄), ϕ

〉
L2(R)

(3.27)

holds with θ ∈ C and z ∈ ρ
(
Hh

ND,V(θ)
)
.

Proof: Let: f =
(
Hh

ND,V(θ)− z
)−1

ϕ. This function is in D(Hh
ND,V(θ)) so that:

Q(θ)f = Hh
ND,V(θ)f and Γθ

1f = 0. The l.h.s of (3.27) writes as

[
Γθ
2

(
Hh

ND,V(θ)− z
)−1

ϕ
]

j
=
〈
ej , Γ

θ
2f
〉
C4 .

Since ej = Γθ̄
1γ(ej , z̄, θ̄), we have

[
Γθ
2

(
Hh

ND,V(θ)− z
)−1

ϕ
]

j
=
〈
Γθ̄
1γ(ej , z̄, θ̄), Γ

θ
2f
〉

C4
−
〈
Γθ̄
2γ(ej , z̄, θ̄), Γ

θ
1f
〉

C4

=
〈
γ(ej , z̄, θ̄), Q(θ)f

〉
L2(R)

−
〈
Q(θ̄)γ(ej , z̄, θ̄), f

〉
L2(R)

.

By definition, γ(ej , z̄, θ̄) ∈ Nz̄,θ̄ and the r.h.s. writes as

〈
γ(ej , z̄, θ̄), Q(θ)f

〉
L2(R)

−
〈
Q(θ̄)γ(ej , z̄, θ̄), f

〉
L2(R)

=
〈
γ(ej , z̄, θ̄),

(
Hh

ND,V(θ)− z
)
f
〉
L2(R)

=
〈
γ(ej , z̄, θ̄), ϕ

〉
L2(R)

.

Proposition 3.3. The resolvent (Qθ1,θ2(θ)− z)
−1

allows the representation

(Qθ1,θ2(θ)− z)
−1

=
(
Hh

ND,V(θ)− z
)−1

−
4∑

i,j=1

[
(Bq(z, θ,V)− Λ)−1B

]

ij

〈
γ(ej , z̄, θ̄), ·

〉
L2(R)

γ(ei, z, θ), (3.28)

and one has: σess(Qθ1,θ2(θ)) = σess(H
h
ND,V(θ)) = e−2θR+.

Proof: Let us consider the r.h.s. of this formula: the operator
(
Hh

ND,V(θ)− z
)−1

is well defined for

z ∈ C\σ(Hh
ND,V(θ)). The vectors γ(ei, z, θ), i = 1, ..., 4, are given by (3.23), (3.24), (3.25), while the

boundary values of u′i,z – appearing in the definition of the matrix (3.26) – are well defined whenever

z ∈ C\σp(Hh
ND,V(θ)). Therefore, the r.h.s. of (3.28) makes sense for z ∈ C\

{
σ(Hh

ND,V(θ)) ∪ T0
}

where T0 is the (at most) discrete set, described by the transcendental equation

det (Bq(z, θ,V)− Λ(θ1, θ2)) = 0. (3.29)

It is worthwhile to notice that C\
{
σ(Hh

ND,V (θ)) ∪ T0
}
is not empty. Let us introduce the map

Rz(ϕ) defined for ϕ ∈ L2(R) by
Rz(ϕ) = φ− ψ,

φ =
(
Hh

ND,V(θ)− z
)−1

ϕ,

ψ =

4∑

i,j=1

[
(Bq(z, θ,V)− Λ)

−1
B
]

ij

〈
γ(ej , z̄, θ̄), ϕ

〉
L2(R)

γ(ei, z, θ),

with q(z, θ,V) given in (3.26) and z ∈ ρ(Hh
ND,V(θ))\T0. In what follows we show that:

Rz(ϕ) = (Qθ1,θ2(θ)− z)
−1
ϕ. Since Hh

ND,V(θ) ⊂ Q(θ) and γ(ei, z, θ) ∈ Ker(Q(θ)− z), one has:

(
Hh

ND,V(θ)− z
)−1

ϕ, γ(ei, z, θ) ∈ D(Q(θ)) .
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This implies Rz(ϕ) ∈ D(Q(θ)). To simplify the presentation, we will temporarily use the notation
q = q(z, θ,V). Being φ ∈ D(Hh

ND,V(θ)), we have: Γθ
1φ = 0 and the following relation holds

(Bq − Λ)Γθ
1 (φ− ψ) = −

(
BΓθ

2γ(·, z, θ)− Λ
)
Γθ
1ψ =

(
−BΓθ

2 + ΛΓθ
1

)
ψ, (3.30)

where ψ ∈ Nz,θ and
γ(·, z, θ)Γθ

1|Nz,θ
= 1

have been used. At the same time, the n-th component of the vector at the l.h.s. can be expressed
as

[
(Bq − Λ)Γθ

1 (φ− ψ)
]
n
=
[
− (Bq − Λ)Γθ

1ψ
]
n

= −
4∑

i,j=1

[
(Bq − Λ)Γθ

1γ(ei, z, θ)
]
n

[
(Bq − Λ)

−1
B
]

ij

〈
γ(ej, z̄, θ̄), ϕ

〉
L2(R)

.

Recalling that Γθ
1γ(ei, z, θ) = ei, we get

[
(Bq − Λ)Γθ

1 (φ− ψ)
]
n
=

−
4∑

i,j=1

(Bq − Λ)ni

[
(Bq − Λ)

−1
B
]

ij

〈
γ(ej , z̄, θ̄), ϕ

〉
L2(R)

= −
4∑

j=1

Bnj

〈
γ(ej, z̄, θ̄), ϕ

〉
L2(R)

.

Taking into account the result of the Lemma 3.2, this relation writes as

(Bq − Λ)Γθ
1 (φ− ψ) = −BΓθ

2φ. (3.31)

Combining (3.30) and (3.31), one has: −ΛΓθ
1ψ = BΓθ

2 (φ− ψ), and, adding the null term ΛΓθ
1φ at

the l.h.s.,
ΛΓθ

1Rz(ϕ) = BΓθ
2Rz(ϕ),

which, according to (3.20), is the boundary condition characterizing Qθ1,θ2(θ) as a restriction of
Q(θ). Then we have: Rz(ϕ) ∈ D (Qθ1,θ2(θ)). Furthermore,

(Qθ1,θ2(θ)− z)Rz(ϕ) = (Q(θ)− z)Rz(ϕ) = ϕ− (Q(θ)− z)ψ = ϕ, (3.32)

where (Q(θ)− z) γ(ei, z, θ) = 0 has been used. This leads to the surjectivity of the operator
(Qθ1,θ2(θ)− z) for any z ∈ C\

{
σ(Hh

ND,V(θ)) ∪ T0
}
. The injectivity is obtained using the adjoint

of (Qθ1,θ2(θ)− z). Indeed, the equality (3.15) implies

(Qθ1,θ2(θ)− z)∗ = (Q−θ̄2,−θ̄1(θ̄)− z̄) ,

which, from the result above, appears to be surjective for all z such that z̄ ∈ C\
{
σ(Hh

ND,V(θ̄)) ∪ T̃0
}
,

where T̃0 is the discrete set of the solutions to (3.29) when replacing: θ = θ̄, θ1 = −θ̄2 and θ2 = −θ̄1.
As a consequence of (3.22), we have

z̄ ∈ σ
(
Hh

ND,V(θ̄)
)
⇔ z ∈ σ

(
Hh

ND,V(θ)
)
.

It follows that for any z ∈ C\
{
σ(Hh

ND,V (θ)) ∪ T
}
, where T = T0 ∪

{
z s.t. z̄ ∈ T̃0

}
, the operator

(Qθ1,θ2(θ)− z) is surjective and

Ker (Qθ1,θ2(θ) − z) =
[
Ran (Qθ1,θ2(θ)− z)

∗]⊥
= {0}.

Wet get that ∀z ∈ C\
{
σ(Hh

ND,V(θ)) ∪ T
}
, (Qθ1,θ2(θ)− z) is invertible and (Qθ1,θ2(θ) − z)

−1
= Rz.

Moreover, for such a complex z, the difference Rz −
(
Hh

ND,V(θ)− z
)−1

is compact. Then, we
conclude that

σess(Qθ1,θ2(θ)) = σess(H
h
ND,V(θ)) = e−2θ

R+
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(for this point, we refer to [52], Sec. XIII.4, Lemma 3 and the strong spectral mapping theorem),
and the equality (3.28) holds as an identity of meromorphic functions on C \ e−2θR+ .

As a direct consequence of the previous proposition and the identification (3.14), the represen-

tation of the resolvent
(
Hh

θ0,V(θ)− z
)−1

is obtained by replacing the matrix Λ in (3.28) by the

matrix A = Λ(θ0, 3θ0) where the matrix Λ(θ1, θ2) is given in (3.18). It follows that for the matrices

A =
1

h2




−e− 3
2 θ0

−e θ0
2

e
θ0
2

e−
3
2 θ0


 , B =




0 1
1 0

0 1
1 0


 , (3.33)

the result below holds.

Corollary 3.4. Let V and A, B be defined as in (3.4) and (3.33). The resolvent
(
Hh

θ0,V(θ)− z
)−1

allows the representation

(
Hh

θ0,V(θ) − z
)−1

=
(
Hh

ND,V(θ) − z
)−1

−
4∑

i,j=1

[
(Bq(z, θ,V)−A)−1B

]

ij

〈
γ(ej , z̄, θ̄), ·

〉
L2(R)

γ(ei, z, θ), (3.34)

and one has: σess(H
h
θ0,V(θ)) = σess(H

h
ND,V(θ)) = e−2θR+.

The analyticity of the resolvent
(
Hh

θ0,V(θ) − z
)−1

w.r.t. θ is an important point in the theory

of resonances. The former is obtained in the next proposition as a consequence of the formula
(3.34), the latter is developed in the next section.

Proposition 3.5. Consider θ0 ∈ C, V fulfilling the conditions (3.4), and let Sα = {θ ∈ C | |Im θ| ≤ α}
for positive α < π

4 . Then, there exists an open subset O ⊂ {z ∈ C |Re z < 0} such that ∀θ ∈ Sα,

O ⊂ ρ
(
Hh

θ0,V(θ)
)
. Moreover, ∀z ∈ O, the map: θ 7→

(
Hh

θ0,V(θ)− z
)−1

is a bounded operator-

valued analytic map on the strip Sα.

Before starting the proof, we note that this result implies that the θ dependent family of
operators Hh

θ0,V(θ) is analytic in the sense of Kato in the strip Sα (definition in [52]).

Proof: The equality (3.34) holding as an identity of meromorphic functions on C \ e−2θR+, the
poles on the l.h.s. identifies with those on the r.h.s. . For θ ∈ Sα, the characterization (3.22)

implies that the map z 7→
(
Hh

ND,V(θ) − z
)−1

is analytic when Re z < 0. It results

σ
(
Hh

θ0,V(θ)
)
∩ {z ∈ C |Re z < 0} = T0 ∩ {z ∈ C |Re z < 0} ,

where
T0 = {z ∈ C |det (Bq(z, θ,V)−A) = 0} .

Noting that for Re z < 0 and θ ∈ Sα we have
√
ze2θ =

√
zeθ, and therefore q(z, θ,V) = q(z, 0,V),

we get: ∀θ ∈ Sα

σ
(
Hh

θ0,V(θ)
)
∩ {z ∈ C |Re z < 0} = {z ∈ C |Re z < 0 and det (Bq(z, 0,V)− A) = 0} ,

which is a discrete set independent of θ. This implies that there exists an open subset O ⊂
{z ∈ C |Re z < 0} such that ∀θ ∈ Sα, O ⊂ ρ

(
Hh

θ0,V(θ)
)
.

In what follows, we fix z ∈ O. The equation (3.34) gives, for any θ ∈ Sα

(
Hh

θ0,V(θ) − z
)−1

=
(
Hh

ND,V(θ) − z
)−1

−
4∑

i,j=1

[
(Bq(z, 0,V)−A)

−1
B
]

ij

〈
γ(ej , z̄, θ̄), ·

〉
L2(R)

γ(ei, z, θ) , (3.35)
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where we used q(z, θ,V) = q(z, 0,V), and we want to study the analyticity of the r.h.s. with respect
to θ.

Let us start with the operator Hh
ND,V(θ): ∀θ ∈ Sα, it is a closed operator with non empty

resolvent set. Moreover,D
(
Hh

ND,V(θ)
)
does not depend on θ and ∀ψ ∈ D

(
Hh

ND,V(θ)
)
, ∀f ∈ L2(R)

the map
θ 7→

〈
f,Hh

ND,V(θ)ψ
〉
L2(R)

is analytic on Sα. This means that Hh
ND,V(θ) is analytic of type (A) following the definition in

[52]. In addition, since Re z < 0 when z ∈ O, (3.22) implies z ∈ ρ
(
Hh

ND,V(θ)
)
for all θ ∈ Sα.

Then, it results from the analyticity of type (A) propriety that the map θ 7→
(
Hh

ND,V(θ)− z
)−1

is
analytic on Sα.

Concerning the finite rank part in (3.35), for any z with Re z < 0, the functions γ(ei, z, θ),
i = 2, 3, given by (3.24)(3.25), do no depend on θ, and the functions

γ(e1, z, θ) =
ie

3θ
2

h
√
ze2θ

1(b,+∞)e
i

√
ze2θ(x−b)

h , γ(e4, z, θ) =
ie

3θ
2

h
√
ze2θ

1(−∞,a)e
−i

√
ze2θ(x−a)

h

are such that ∀f ∈ L2(R), θ 7→ 〈f, γ(ei, z, θ)〉L2(R) is analytic on Sα. It follows that θ 7→ γ(ei, z, θ)

is a L2(R)-valued analytic function on Sα. This propriety holding for any z with Re z < 0, we have

also that θ 7→ γ(ei, z̄, θ̄) is a L2(R)-valued analytic function on Sα. Therefore, for i, j = 1, ..., 4,

the operator with kernel γ(ei, z, θ) ⊗ γ(ei, z̄, θ̄) is analytic w.r.t. θ on the strip Sα. It allows to

conclude that θ 7→
(
Hh

θ0,V(θ) − z
)−1

is a bounded operator-valued analytic map on the strip Sα.

3.2 Resonances

Next consider: Hh
θ0,V = Hh

θ0,0
+ V , with V fulfilling the assumptions (3.4). Local perturbations of

Hh
θ0,0

can generate resonance poles for the associated resolvent operator. These can be detected
through the deformation technique by means of an exterior complex scaling of the type introduced
in (3.2). To fix this point, let us introduce the set of functions

A =
{
u
∣∣∣u(x) = p(x)e−βx2

, β > 0
}
, (3.36)

where x ∈ R and p is any polynomial. The action of Uθ on the elements of A is

Uθ u(x) =





e
θ
2 p(eθ(x− b) + b) e−β(eθ(x−b)+b)2 , x > b

p(x)e−βx2

, x ∈ (a, b)

e
θ
2 p(eθ(x− a) + a) e−β(eθ(x−a)+a)

2

, x < a .

(3.37)

If Re(e2θx2) > ǫx2 for some ǫ > 0, the function Uθ u belongs to L2(R). In particular, for all positive
α < π

4 , the map θ 7→ Uθ u is a L2-valued analytic map on the strip Sα = {θ ∈ C | |Im θ| ≤ α}.
According to the presentation of [32], the quantum resonances of Hh

θ0,V are the poles of the mero-
morphic continuations of the function

z 7→ F (z, 0) =
〈
u,
(
Hh

θ0,V − z
)−1

v
〉

L2(R)
, u, v ∈ A , (3.38)

from {z ∈ C, Im z > 0} to {z ∈ C, Im z < 0}.

Proposition 3.6. Let θ0 ∈ C and u, v ∈ A. Consider the map: z 7→ F (z, 0), a.e. defined in
{C | Im z > 0}.
1) The map z 7→ F (z, 0) has a meromorphic extension into the sector

{
arg z ∈

(
−π

2 , 0
)}

of the
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second Riemann sheet.

2) The poles of the continuation of F (z, 0) into the cone

Kτ = {arg z ∈ (−2τ, 0)} , with τ <
π

4
,

are eigenvalues of the operators Hh
θ0,V(θ) with τ ≤ Im θ < π

4 .

Proof: 1) The proof adapts the ideas underlying the complex scaling method (see [23]) to the
particular class exterior scaling maps Uθ.

Consider the strip Sα = {θ ∈ C | |Im θ| ≤ α} for a positive α < π
4 . Then, consider the corre-

sponding set O ⊂ C given in Proposition 3.5 and fix z ∈ O. According to Proposition 3.5, and to
the properties of Uθu, u ∈ A, the function

F (z, θ) =
〈
Uθ̄u,

(
Hh

θ0,V(θ) − z
)−1

Uθv
〉

L2(R)

is analytic in the variable θ ∈ Sα. When θ ∈ R, the exterior scaling Uθ is an unitary map and one
has

F (z, θ) = F (z, 0), ∀θ ∈ Sα ∩R .

Since F (z, θ) is holomorphic in θ and constant on the real line, this is a constant function in the
whole strip Sα and

F (z, θ) = F (z, 0), ∀θ ∈ Sα .

Now, fix θ ∈ Sα such that Im θ > 0. It follows from Corollary 3.4 that σess(H
h
θ0,V(θ)) =

e−2i Im θ
R+ and the map z 7→ F (z, θ) is meromorphic on C \ e−2i Im θ

R+ such that

F (z, θ) = F (z, 0), ∀z ∈ O . (3.39)

Since z 7→ F (z, 0) is meromorphic on C\R+, the equality (3.39) holds as an identity of meromorphic
functions ∀z with Im z > 0. We conclude that F (z, θ) defines a meromorphic extension of F (z, 0)
from the set {z ∈ C |Im z > 0} to the sector {arg z ∈ (−2 Im θ, 0)}.

2) Consider 0 < τ < π
4 . From the previous point, when θ varies in τ ≤ Im θ < π

4 , the
maps z 7→ F (z, θ) coincide in Kτ with meromorphic extensions of F (z, 0). Therefore, the poles of
z 7→ F (z, θ) in Kτ do not depend on θ and correspond to the poles of the meromorphic extension of
F (z, 0) in Kτ . The vectors Uθu, u ∈ A, being dense in L2(R), the poles of z 7→ F (z, θ) corresponds
to eigenvalues of Hh

θ0,V(θ).

3.3 A time dependent model

Consider the non-autonomous model Hh
θ0,V(t)(θ0), where V(t) is a family of self-adjoint potentials

composed by V = V1 + V2

V1(t) ∈ C0 (R+;L
∞((a, b))) , V2(t) =

n∑

j=1

αj(t)δ(x− cj) , (3.40)

with {cj} ⊂ (a, b), αj(t) ∈ C1(R+;R). According to the specific feature of point perturbations,
the domain’s definition, given in (3.7), can be rephrased as

D(Hh
θ0,V(t)(θ0)) =

{
u ∈ H2(R\ {a, b, c1, ..., cn}) ∩H1(R\ {a, b}) |

h2
[
u′(c+j )− u′(c−j )

]
= αj(t)u(cj) and (3.6) holds

}
, (3.41)

where time dependent boundary conditions appear in the interaction points cj .
Most of the techniques employed in the analysis the Cauchy problem

{
i∂tu = H(t)u

ut=0 = u0
(3.42)
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for non-autonomous Hamiltonians, H(t), require, as condition, that the operator’s domain is inde-
pendent of the time (we mainly refer to the Yoshida’s and Kato’s results ([36][37][61]); an extensive
presentation of the subject can be found given in [26]). In the particular case of Hh

θ0,V(t)(θ0), one
can explicitly construct a family of unitary maps Vt,t0 such that

Vt,t0H
h
θ0,V(t)(θ0)V

−1
t,t0 (3.43)

has a constant domain. To fix this point, let us introduce a time dependent real vector field g(x, t)
and assume





i) g(·, t) ∈ C1(R+;C
∞
0 (R)) ,

ii) g(cj , t) = 0, j = 1, n, ∀t ,
iii) supp g(·, t) = ∪n

j=1Icj , with: Icj = (cj − ǫj, cj + ǫj) and ∩j Icj = ∅ .
(3.44)

For ǫj small, g(·, t) has support strictly included in (a, b) and localized around the interaction
points x = cj . According to i), g(·, t) satisfy a global Lipschitz condition uniformly in time: then
the dynamical system {

ẏt = g(yt, t)

yt0 = x
(3.45)

admits a unique global solution continuously depending on time and Cauchy data {t0, x}. Using
the notation: yt = F (t, t0, x), one has

|F (t, t0, x1)− F (t, t0, x2)| ≤ eM|t−t0| |x1 − x2| , with: M = sup
x∈R, t≥0

∂yg(y, t). (3.46)

Consider the variations of F (t, t0, x) w.r.t. x: zt = ∂xF (t, t0, x). From (3.45), one has
{
żt = ∂1g(F (t, t0, x), t) zt

zt0 = 1 ,
(3.47)

with ∂1g denoting the derivative w.r.t. the first variable. The solution to this problem is positive
and explicitly given by

∂xF (t, t0, x) = e
∫

t
t0

∂1g(F (s,t0,x),s)ds > 0 ∀x ∈ R . (3.48)

According to (3.48), F (t, t0, ·) is a C∞-diffeomorphism and the map x 7→ F (t, t0, x) is a time-
dependent local dilation around the points cj . In particular, it follows from the assumptions i) and
ii) that

F (t, t0, cj) = cj , F (t, t0, x) = x for all x ∈ R\supp g , (3.49)

and
F (t, t0, F (t0, t̄, x)) = F (t, t̄, x) . (3.50)

The unitary transformation associated with the change of variable x→ F (t, t0, x) is
{

(Vt0,tu) (x) = (∂xF (t, t0, x))
1
2 u(F (t, t0, x))

Vt,t0 = V −1
t0,t .

(3.51)

Regarded as a function of time, t 7→ Vt0,t is a strongly continuous differentiable map and one has

∂tVt0,t = Vt0,t

[
1

2
(∂yg) + g∂y

]
. (3.52)

The form of the conjugated Hamiltonian Vt,t0H
h
θ0,V(t)(θ0)Vt0,t follows by direct computation

Vt,t0H
h
θ0,V(t)(θ0)Vt0,t = −h2η(y)

[
∂yb

2∂y + (∂yab)− a2
]

+ V1(F (t0, t, y), t) +

n∑

j=1

αj(t) b(cj , t) δ(x− cj), (3.53)
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b(y, t) = e
∫

t
t0

∂1g(F (s,t,y),s) ds
, a(y, t) =

1

2
b

1
2 (y, t)

∫ t

t0

∂21g (F (s, t, y), s) b(y, s) ds . (3.54)

After conjugation, the boundary conditions in the operator’s domain change as

h2b2(cj , t)
[
u′(c+j )− u′(c−j )

]
= b(cj , t)αj(t)u(cj) . (3.55)

Assume, for all j = 1...n

iv) αj(0) 6= 0; v) αj(0)αj(t) > 0; vi) αj(t) ∈ C1(R+;R) . (3.56)

One can determine (infinitely many) g(·, t) ∈ C0 (R+;C
∞
0 (R)) such that

∂1g(cj , t) =
α̇j(t)

αj(t)
. (3.57)

This implies

b(cj , t) = e
∫ t
t0

∂1g(F (s,t,cj),s) ds = e
∫ t
t0

∂1g(cj ,s) ds =
αj(t)

αj(0)
(3.58)

and (3.55) can be written in the time-independent form

h2
[
u′(c+j )− u′(c−j )

]
= αj(0)u(cj) . (3.59)

Thus, the Hamiltonians Vt,t0H
h
θ0,V(t)(θ0)Vt0,t have common domain given by

Y =
{
u ∈ H2(R\ {a, b, cj}) ∩H1(R\ {a, b}) | [3.6] , [3.59]

}
. (3.60)

Consider the time evolution problem for Hh
θ0,V(t)(θ0)

{
i∂tu = Hh

θ0,V(t)(θ0)u

ut0 = u0 .
(3.61)

Setting v = Vt,t0u, and

A(t) = Vt,t0H
h
θ0,V(t)(θ0)Vt0,t − i

[
1

2
(∂yg) + g∂y

]
, (3.62)

with D(A(t)) = Y , one has: vt0 = ut0 ,
{
∂tv = −iA(t)v
vt0 = u0 .

. (3.63)

Proposition 3.7. Let V(t) = V1(t) + V2(t) be defined with the conditions (3.40) and (3.56).
Assume: θ = θ0 = iτ , with τ ∈

(
0, π2

)
. There exists an unique family of operators Ut,s, 0 ≤ s ≤ t,

with the following properties:

a) Ut,s is strongly continuous in L2(R) w.r.t. the variables s and t and fulfills the conditions:
Us,s = Id, Ut,s ◦ Us,r = Ut,r for r ≤ s ≤ t and ‖Ut,s‖ ≤ 1 for any s and t, s ≤ t.

b) For us ∈ D(Hh
θ0,V(s)(θ0)), one has: Ut,sus ∈ D(Hh

θ0,V(t)(θ0)) for all t ≥ s.In particular, for fixed

t, Ut,s is strongly continuous w.r.t. s in the norm of H2(R\ {a, b, cj}) ∩H1(R\ {a, b}). While, for
fixed s, Ut,s is strongly continuous w.r.t. t in the same norm, except possibly countable values of
t ≥ s.

c) For fixed s and us ∈ D(Hh
θ0,V(s)(θ0)), the derivative d

dtUt,sus exists and is strongly continuous

in L2(R) except, possibly, countable values t ≥ s. With similar exceptions, one has: d
dtUt,sus =

−iHh
θ0,V(t)(θ0)Ut,sus.

d) Additionally, if V1(t) ∈ C1 (R+, L
∞((a, b)))∩C0

(
R+,W

1,∞(R)
)
, and αj(t) ∈ C2(R+;R), then

the conclusion of point (c) holds for all t ≥ s without exceptions.

21



Proof: Since the Cauchy problems (3.61) and (3.63) are related by the time-differentiable map
Vt,t0 , it is enough to prove the result in the case of A(t). Let assume the conditions (3.44) and
(3.58) to hold, and start to consider the properties of this operator.

I) As already noticed (see relation (3.11)), iHh
θ0,V(t)(θ0) is an accretive operator. This property

extends to Vt,t0

(
iHh

θ0,V(t)(θ0)
)
Vt0,t, which is unitarily equivalent to an accretive operator, and

to A(t), since, as a straightforward computation shows, the contribution i
[
1
2 (∂yg) + g∂y

]
is self-

adjoint. The spectral profile of A(t) essentially follows from the properties of Hh
θ0,V(t)(θ0). Indeed,

we notice that: σ
(
Vt,t0H

h
θ0,V(t)(θ0)Vt0,t

)
= σ

(
Hh

θ0,V(t)(θ0)
)
, since the two operators are unitarily

equivalent. Moreover, the term i
[
1
2 (∂yg) + g∂y

]
is relatively compact w.r.t. Vt,t0H

h
θ0,V(t)(θ0)Vt0,t,

since it has a lower differential order (see definition (3.62)). Then, σess(A(t)) = σess(H
h
θ0,V(t)(θ0)) =

e−2i Im θ0R+, as it follows from Corollary 3.4, and (A(t)− z)−1 is a meromorphic function of z in
C\e−2i Im θ0R+. This result yields: σess(iA(t)) = ei(

π
2 −2 Im θ0)R+ and: ρ(iA(t)) ∩ R− 6= ∅. As a

consequence of the above, one has: i) iA(t) is accretive; 2) −λ0 ∈ ρ(iA(t)) for some λ0 > 0. Then,
for any fixed t, iA(t) is the generator of a contraction semigroup, e−isA(t), on L2(R) (see [51], Th.
X.48). In particular, the operator’s domain D(iA(t)) = Y , defined in (3.60), is invariant by the
action of e−isA(t) =⇒ Y is iA(t)−admissible for any t. Moreover, as iA(t) is the generator of a
contraction semigroup, from the Hille-Yoshida’s theorem it follows that





R− ⊂ ρ(iA(t)) ,
∥∥∥(iA(t) + λ)

−1
∥∥∥ ≤ 1

λ for all λ > 0 .
(3.64)

In particular, for any finite collection of values 0 ≤ t1 ≤ ... ≤ tk, one has

∥∥∥
∏k

j=1 (iA(tj) + λ)−1
∥∥∥ ≤ 1

λk
. (3.65)

This relation implies that iA(t) is stable (with coefficients M = 1 and β = 0, according to the
definition given in [37]).

II) Consider the action of A(t) on its domain. Here, the Hilbert space Y is provided with the norm
H2(R\ {a, b, c1, ..., cn}) ∩ H1(R\ {a, b}). For u ∈ Y , we use the decomposition: u = 1R\(a,b)u +
1(a,b)u = uext + uin. Recalling that the functions g(·, t), b(·, t), a(·, t) are supported inside (a, b),
from the definition (3.53), (3.62), one has

(A(t)−A(s)) u = (A(t)−A(s)) uin , (3.66)

with

A(t)uin =


−h2∂yb2∂y +

n∑

j=1

αj(t) b(cj , t) δ(x− cj)


 uin

+

[
−h2

(
(∂yab)− a2

)
+ V1(F (t0, t, y), t)− i

(
1

2
(∂yg) + g∂y

)]
uin . (3.67)

Taking into account the boundary conditions (3.59), the second order term in (3.67) writes as

−h2
(
∂yb

2∂y
)
uin = −h2

(
∂yb

2
)
∂yuin − h2b2 ∆(a,b)\{cj}uin −

n∑

j=1

αj(0) b
2(cj , t)uin(cj) δ(x− cj) ,

where, according to (3.58),

n∑

j=1

αj(0) b
2(cj , t)uin(cj)δ(x− cj) =

n∑

j=1

αj(t) b(cj , t)uin(cj) δ(x− cj) .
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From these relations, it follows

A(t)uin = −h2b2 ∆(a,b)\{cj}uin − h2
[(
∂yb

2
)
∂y + (∂yab)− a2

]
uin

+ V1(F (t0, t, y), t)uin − i

[
1

2
(∂yg) + g∂y

]
uin .

Therefore, we have

(A(t) −A(s)) u = −h2
[(
b2t − b2s

)
∆(a,b)\{cj} +

(
∂1b

2
t − ∂1b

2
s

)
∂y + (∂1atbt − ∂1asbs)−

(
a2t − a2s

)]
uin

+ (V1(F (t0, t, y), t)− V1(F (t0, s, y), s))uin − i

[
1

2
(∂1gt − ∂1gs) + (gt − gs) ∂y

]
uin ,

and
‖(A(t) −A(s)) u‖L2(R) ≤ ChM(t, s) ‖u‖H2(R\{a,b,cj})∩H1(R\{a,b}) , (3.68)

where Ch is a positive constant depending on h, while

M(t, s) = ‖V1(t)− V1(s)‖L∞((a,b)) +
∥∥a2t − a2s

∥∥
C0([a,b])

+ ‖∂1atbt − ∂1asbs‖L∞((a,b))

+
∑

l=0,1

(∥∥∂l1b2t − ∂l1b
2
s

∥∥
L∞((a,b))

+
∥∥∂l1gt − ∂l1gs

∥∥
L∞((a,b))

)
.

From our assumptions, t 7→ gt, bt, at are continuous C∞-valued maps, and t 7→ V1 ∈ C0(R+, L
∞);

this yields: lims→tM(t, s) = 0, and, due to (3.68),

lim
s→t

‖(A(t) −A(s)) u‖L2(R) = 0, ∀u ∈ Y .

This gives the continuity of t 7→ A(t) in the L(Y, L2(R))-operator norm.

III) Consider the map: S(t) = (iA(t) + λ0) for λ0 > 0. According to (3.64), S(t) defines a family of
isomorphisms of Y to L2(R). Moreover, making use of the relations (3.53), (3.62) and the condition
I3.58), the time derivative of S(t) writes as

d

dt
S(t) = −h2 [∂y (2b∂tb) ∂y + (∂y,tab)− 2a∂ta] +

n∑

j=1

2αj(t)α
′
j(t)

αj(0)
δ(x− cj)

+ ∂tV1(F (t0, t, y), t) + (∂tF (t0, t, y)) ∂1V1(F (t0, t, y), t)− i

[
1

2
(∂y,tg) + (∂tg) ∂y

]
,

where the term ∂tF (t0, t, y) can be written in the form

∂tF (t0, t, y) = −b−1(y, t) g(F (t0, t, y), t) ,

as it follows by using: F (t, t0, F (t0, t, y)) = y and the definition of b(y, t). Since the variations of
the functions a, b,V1, g w.r.t. both the variables t and y are supported on (a, b), each contribution
to d

dtS(t) acts only inside this interval. Therefore, u ∈ D
(

d
dtS(t)

)
is not expected to fulfill any

interface condition at x = a, b, while in the interaction points cj , one has

h22b(cj , t)∂tb(cj , t)
[
u′(c+j )− u′(c−j )

]
=

2αj(t)α
′
j(t)

αj(0)
u(cj) ,

which, according to (3.58), reduces to (3.59). It follows that: Y ⊂ D
(

d
dtS(t)

)
, and one can

consider the action of d
dtS(t) on Y . Proceeding as in point II and using the stronger assumptions:

V1(t) ∈ C1 (R+, L
∞((a, b))) ∩ C0

(
R+,W

1,∞(R)
)
, αj(t) ∈ C2(R+;R), one shows that d

dtS(t) is
strongly continuous from Y to L2(R) .

Finally, the points I and II resume as follows: i) the Hilbert space Y is A(t)-admissible for all t,
ii) A(t) define a stable family operators t-continuous in the L(Y, L2(R))-operator norm. Thus, the
Theorem 5.2 in [37] applies and provides a strongly continuous dynamical system Ut,t0 , t0 ≤ t, for
the Cauchy problem (3.63) with ‖Ut,t0‖ ≤ 1 and such that:
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1) For fixed t0, the family Ut,t0 defines an a.e. strongly continuous flow in Y ; for fixed t, Ut,t0 is
strongly continuous w.r.t. t0 in Y .

2) For y ∈ Y , the derivative d
dtUt,t0y is a.e. strongly continuous in L2(R) and one has: d

dtUt,t0us =
−iA(t)Ut,t0us. The conclusions (a), (b) and (c) of the statement follows by using the equiv-
alence of the problems (3.61) and (3.63) through the maps Vt,t0 .

Moreover, assuming

V1(t) ∈ C1 (R+, L
∞((a, b))) ∩ C0

(
R+,W

1,∞(R)
)
, αj(t) ∈ C2(R+;R)

it follows from point III that: S(t) is a family of isomorphisms from Y to L2(R), with

S(t)A(t)S−1(t) = A(t)

and such that S(t) is strongly differentiable. In this case, Yoshida’s Theorem applies (see Theorem
6.1 and Remark 6.2 in [37]) and the conclusion (d) of the statement follows.

4 Exponential decay estimates

With this section, with start the analysis of the parameter dependent quantities as h → 0. The
exponential decay is specified with a good control of the prefactors which behave like 1

hN . These
estimates are written for potentials with limited regularity assumptions in order to hold for the
modelling of quantum wells in a semi-classical island with non-linear effect. Some preliminary
estimates are reviewed in Appendix A.

4.1 Exponential decay for the Dirichlet problem

Consider V ∈ L∞((a, b);R), and Wh =Wh
1 +Wh

2 an h-dependent real-valued potential with:

c1[a,b] ≤ V , ‖V ‖L∞ ≤ 1

c
, ‖Wh

1 ‖L∞ ≤ 1

c
, ‖Wh

2 ‖Mb
≤ 1

c
h , (4.1)

where ‖µ‖Mb
denotes the total variation of the measure µ ∈ Mb((a, b)). The constant c denotes

a fixed positive value that can be chosen small when it is required by the analysis. We suppose
that Wh

1 and Wh
2 are supported in the domain Uh = {x ∈ (a, b); d(x, U) ≤ h} where U is a fixed

compact subset of (a, b).
After introducing the differential operators on (a, b)

P̃ h := −h2∆+ V and P h := −h2∆+ V −Wh ,

two Dirichlet Hamiltonians are considered

H̃h
D := −h2∆+ V = P̃ h , with D(H̃h

D) = H2((a, b)) ∩H1
0 ((a, b)) , (4.2)

Hh
D := −h2∆+ V −Wh = P h , with D(Hh

D) =
{
u ∈ H1

0 ((a, b)), P
hu ∈ L2((a, b))

}
.(4.3)

For a real energy λ ∈ R we consider the Agmon degenerate distance associated with V

dAg(x, y, V, λ) =

∫ y

x

√
(V (t)− λ)+ dt , x ≤ y .

And an other tool that will be useful here is the h-dependent Hk norm

‖u‖2Hk,h =
∑

α≤k

‖(h∂x)αu‖2L2. (4.4)
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Proposition 4.1. i) Consider f = f1+f2 with f1 ∈ L2((a, b)) and f2 ∈ Mb((a, b)). If V−Re z ≥ c

with ‖V ‖L∞ ≤ 1
c , then any solution u ∈ H1

0 ((a, b)) to (P̃ h − z)u = f satisfies

h1/2 sup
x∈[a,b]

|eϕ(x)
h u(x)|+ ‖heϕ

h u′‖L2 + ‖eϕ
h u‖L2 ≤ Ca,b,c

h

(
‖f1‖L2 +

1

h
1
2

‖f2‖Mb

)
, (4.5)

with ϕ(x) = dAg(x,K, V,Re z) and K ⊃ supp f1 ∪ supp f2 .
ii) Consider f ∈ L2((a, b)). If V − Re z ≥ c with ‖V ‖L∞ ≤ 1

c , then any solution u ∈ D(Hh
D) to

(Hh
D − z)u = f satisfies

h1/2 sup
x∈[a,b]

|eϕ(x)
h u(x)|+ ‖heϕ

h u′‖L2 + ‖eϕ
h u‖L2 ≤ Ca,b,c

h
(‖u‖L2 + ‖f‖L2) , (4.6)

with ϕ(x) = d(x,K ′ ∪ U, V,Re z) and K ′ ⊃ supp f . Especially when z /∈ σ(Hh
D), we have:

h1/2 sup
x∈[a,b]

|eϕ(x)
h u(x)|+ ‖heϕ

h u′‖L2 + ‖eϕ
h u‖L2 ≤ Ca,b,c

h

(
1

d(z, σ(Hh
D))

+ 1

)
‖f‖L2 ,

and, when z = Eh is an eigenvalue of Hh
D, the related normalized eigenvector satisfies

h1/2 sup
x∈[a,b]

|eϕ(x)
h u(x)|+ ‖heϕ

h u′‖L2 + ‖eϕ
h u‖L2 ≤ Ca,b,c

h
,

with ϕ(x) = dAg(x, U, V,E
h) .

Remark 4.2. The negative exponents of h in the upper bounds are not the optimal ones. Some care
especially has to be taken while modifying ϕ or while commuting h∂x with e

ϕ
h . This presentation

is the most flexible one for our purpose.

Proof: i) Our assumptions imply that the functions ϕ(x) = dAg(x,K, V,Re z) and ϕh(x) =
dAg(x,Kh, V − h,Re z), with Kh = {x ∈ (a, b), d(x,K) ≤ h}, satisfy

|ϕ(x) − ϕh(x)| ≤ κa,b,ch i.e.

(
e

ϕ
h

e
ϕh
h

)±1

≤ eκa,b,c ,

for some uniform constant κa,b,c . Hence the function ϕ can be replaced by ϕh in the proof.

Lemma A.3 applied with α = a, β = b, u1 = u2 = u, ϕ = ϕh and v = e
ϕh
h u implies

Re

∫ b

a

v̄f ≥
∫ b

a

|hv′|2 +
∫ b

a

h|v|2 .

Hence we get

‖v‖2H1,h ≤ 1

h
(‖f1‖L2‖v‖L2 + ‖f2‖Mb

‖v‖L∞) .

The Gagliardo-Nirenberg estimate supx∈[a,b] |v(x)| ≤ Cb−a‖v′‖1/2L2((a,b))‖v‖
1/2
L2((a,b)) implies:

‖v‖2H1,h ≤ 1

h

(
‖f1‖L2‖v‖H1,h +

Cb−a

h
1
2

‖f2‖Mb
‖v‖H1,h

)
.

This combined with the equivalence of ‖v‖H1,h with ‖heϕh
h u′‖L2 + ‖u‖L2 leads finally to (4.5).

ii) We follow the ideas of [24] which consists in putting the possibly negative term of the energy
estimate in the left hand-side. Hence the equation (Hh

D − z)u = f is simply rewritten

(H̃h
D − z)u = f +Wh

1 u+Wh
2 u ,

and it suffices to estimate ‖Wh
2 u‖Mb

. The Gagliardo-Nirenberg estimate gives

‖Wh
2 u‖Mb

≤ Cb−a‖Wh
2 ‖Mb

‖u′‖1/2L2 ‖u‖1/2L2 .

25



Applying Lemma A.3 with α = a, β = b, u1 = u2 = u, ϕ = 0 leads to

‖hu′‖2L2 + c‖u‖2L2 ≤
∣∣∣∣∣

∫ b

a

fu

∣∣∣∣∣+
∣∣∣∣∣

∫ b

a

Wh
1 |u|2

∣∣∣∣∣+
∣∣∣∣∣

∫ b

a

Wh
2 |u|2

∣∣∣∣∣ .

Apply a second time the Gagliardo-Nirenberg estimate for

‖u‖H1,h ≤ Ca,b,c

(
‖f‖L2 + ‖Wh

1 ‖L∞‖u‖L2 +
1

h
‖Wh

2 ‖Mb
‖u‖L2

)

gives

‖Wh
2 u‖Mb

≤
C′

a,b,c

h
1
2

‖Wh
2 ‖Mb

(
‖f‖L2 + ‖Wh

1 ‖L∞‖u‖L2 +
1

h
‖Wh

2 ‖Mb
‖u‖L2

)
.

Combined with the results of i) applied with f replaced by f +Whu, this yields:

h1/2 sup
x∈[a,b]

|e
ϕh(x)

h u(x)|+ ‖he
ϕh
h u′‖L2 + ‖e

ϕh
h u‖L2 ≤

C′′
a,b,c

h
(‖f‖L2 + ‖Wh

1 ‖L∞‖u‖L2

+
1

h
‖Wh

2 ‖Mb
‖f‖L2 +

1

h
‖Wh

2 ‖Mb
‖Wh

1 ‖L∞‖u‖L2 +
1

h2
‖Wh

2 ‖2Mb
‖u‖L2) ,

where ϕh(x) = dAg(x,Kh, V,Re z) and Kh = {x ∈ (a, b), d(x,K ′ ∪ U) < h}. With the assump-
tions on Wh

1 and Wh
2 and replacing ϕh(x) by ϕ(x) = dAg(x,K

′ ∪U, V,Re z), we obtain (4.6).

4.2 Reduced boundary problem for generalized eigenfunctions

We shall consider the boundary value problem





(P̃ h − z)u = f ,[
h∂x + iζ1/2

]
u(a) = ℓa ,[

h∂x − iζ1/2
]
u(b) = ℓb ,

(4.7)

with Im z and Im ζ small enough w.r.t h > 0 and specified later. Here z1/2 denotes the complex
square root with the determination arg z ∈

[
−π

2 ,
3π
2

)
.

The case f ≡ 0 occurs while studying the generalized eigenfunctions of HV,θ0(0) or their variation
w.r.t θ0. The case ℓa = ℓb = 0 is concerned with the resolvent estimates for the non self-adjoint
Hamiltonians

H̃h
ζ := P̃ h , with D(H̃h

ζ ) =
{
u ∈ H2((a, b)) , [h∂x + iζ1/2]u(a) = 0 ,

[h∂x − iζ1/2]u(b) = 0
}
, (4.8)

Hh
ζ := P h , with D(Hh

ζ ) =
{
u ∈ H1((a, b)) , P hu ∈ L2((a, b)) ,

[h∂x + iζ1/2]u(a) = 0 , [h∂x − iζ1/2]u(b) = 0
}
. (4.9)

Lemma 4.3. Assume V −Re z ≥ c with ‖V ‖L∞ ≤ 1
c and | Im ζ1/2| ≤ h

κb−a
for κb−a large enough

according to b − a. Let K be a compact subset of [a, b] and set ϕ = dAg(x,K, V,Re z). Then any
solution u ∈ L2((a, b)) to the boundary value problem (4.7) with f ≡ 0 satisfies:

h1/2 sup
x∈[a,b]

|e±ϕ(x)
h u(x)|+ ‖he±ϕ

h u′‖L2 + ‖e±ϕ
h u‖L2 ≤ Ca,b,c

h1/2
[|ℓa|e±

ϕ(a)
h + |ℓb|e±

ϕ(b)
h ] .

Proof: Again the function ϕ is replaced by ϕh(x) = dAg(x,K, V −h,Re z) . Applying Lemma A.3

with α = a, β = b, u1 = u2 = u and v = e
ϕh
h u implies

0 ≥
∫ b

a

|hv′|2 +
∫ b

a

h|v|2 + hRe (−iζ1/2)
[
|v|2(a) + |v|2(b)

]

+ hRe
[
v(a)(e±

ϕh(a)

h ℓa)− v(b)(e±
ϕh(b)

h ℓb)
]
.
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With the Gagliardo-Nirenberg estimate, we get

‖hv′‖2L2+h‖v‖2L2−2C2
b−a| Im ζ1/2|‖hv′‖L2‖v‖L2 ≤ Cb−a‖hv′‖1/2L2 ‖v‖1/2L2 h

1/2
[
e±

ϕh(a)

h |ℓa|+ e±
ϕh(b)

h |ℓb|
]
,

which implies
(
‖hv′‖2L2 + ‖v‖2L2

)1/2 ≤ Ca,b,c

h
1
2

[
e±

ϕh(a)

h |ℓa|+ e±
ϕh(b)

h |ℓb|
]
,

provided κb−a is large enough according to the Gagliardo-Nirenberg constant Cb−a . Rewriting the

inequality with the uniform equivalence ‖he±ϕh
h u′‖L2+‖e±ϕh

h u‖L2 with ‖v‖H1,h =
(
‖hv′‖2L2 + ‖v‖2L2

)1/2

yields the result.
The generalized eigenfunction ψ̃h

−,θ0
(k, x), k ∈ R∗, of Hh

V,θ0
(0) is the solution to

(P̃ h − k2)ψ = 0 in R \ {a, b}
ψ(a+) = e−

θ0
2 ψ(a−) , ψ′(a+) = e−

3θ0
2 ψ′(a−)

ψ(b−) = e−
θ0
2 ψ(b+) , ψ′(b−) = e−

3θ0
2 ψ′(b+)

ψ
∣∣
(−∞,a)

= ei
kx
h +R(k)e−i kx

h , ψ
∣∣
(b,+∞)

= T (k)ei
kx
h for k > 0

ψ
∣∣
(−∞,a)

= T (k)ei
kx
h , ψ

∣∣
(b,+∞)

= ei
kx
h +R(k)e−i kx

h for k < 0 .

This can be reformulated as the boundary value problem in (a, b)




(P̃ h − k2)ψ = 0 in (a, b) ,
(k > 0) (k < 0)[

h∂x + i(k2)1/2e−θ0
]
ψ(a) = 2ike−

3θ0
2 ei

ka
h 0 ,[

h∂x − i(k2)1/2e−θ0
]
ψ(b) = 0 2ike−

3θ0
2 ei

kb
h ,

(4.10)

where the choice of z1/2 says (k2)1/2 = |k| for k ∈ R∗ . A straightforward application of Lemma 4.3
gives the next result.

Proposition 4.4. Assume V − k2 ≥ c, ‖V ‖L∞ ≤ 1
c and |θ0| ≤ ch for c small enough according to

a, b. The generalized eigenfunction ψ̃h
−,θ0

(k, .) satisfies

h1/2 sup
x∈[a,b]

|eϕ(x)
h ψ̃h

−,θ0(k, x)|+ ‖heϕ
h ψ̃h

−,θ0(k, .)
′‖L2 + ‖eϕ

h ψ̃h
−,θ0(k, .)‖L2 ≤ Ca,b,c

h1/2
,

with ϕ(x) = dAg(x, a, V, k
2) when k > 0 ,

and with ϕ(x) = dAg(x, b, V, k
2) when k < 0 .

With this first a priori estimate, the boundary value problem (4.10) can be rewritten




(P̃ h − k2)ψ = 0 in (a, b) ,
(k > 0) (k < 0)

[
h∂x + i(k2)1/2

]
ψ(a) = 2ikei

ka
h +O( |θ0|h ) O( e

−
dAg(a,b,V,k2)

h |θ0|
h ) ,

[
h∂x − i(k2)1/2)

]
ψ(b) = O( e

−
dAg(a,b,V,k2)

h |θ0|
h ) 2ikei

kb
h +O( |θ0|h ) .

Hence the difference u = ψ̃h
−,θ0

− ψ̃h
−,0 solves the boundary value problem





(P̃ h − k2)u = 0 in (a, b) ,
(k > 0) (k < 0)

[
h∂x + i(k2)1/2

]
u(a) = O( |θ0|h ) O( e

−
dAg(a,b,V,k2)

h |θ0|
h ) ,

[
h∂x − i(k2)1/2)

]
u(b) = O( e

−
dAg(a,b,V,k2)

h |θ0|
h ) O( |θ0|h ) .

Hence Lemma 4.3 yields the next comparison result.
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Proposition 4.5. Assume V − k2 ≥ c, ‖V ‖L∞ ≤ 1
c and |θ0| ≤ ch for c small enough according to

a, b. The difference of generalized eigenfunctions u = ψ̃h
−,θ0

(k, .)− ψ̃h
−,0(k, .) satisfies

h1/2 sup
x∈[a,b]

|eϕ(x)
h u(x)|+ ‖heϕ

h u′‖L2 + ‖eϕ
h u‖L2 ≤ Ca,b,c|θ0|

h3/2
,

with ϕ(x) = dAg(x, a, V, k
2) when k > 0 ,

and with ϕ(x) = dAg(x, b, V, k
2) when k < 0 .

Remark 4.6. With an additional regularity assumption [46] proves in the case θ0 = 0 that the

upper bound of supx∈[a,b] |e
ϕ(x)
h ψ̃h

−,0(k, x)| is actually O(1) with a first order WKB approxima-
tion. By using this result and the comparison result of Proposition 4.5 with a bootstrap argument

or reconsidering the complete proof of [46], the estimate supx∈[a,b] |e
ϕ(x)
h ψ̃h

−,0(k, x)| = O(1) and

supx∈[a,b] |e
ϕ(x)
h (ψ̃h

−,θ0
− ψ̃h

−,0)(k, x)| = O( |θ0|
h1/2 ) could be obtained. Here only V ∈ L∞ is assumed

with a possible loss in the h-exponent.

4.3 Weighted resolvent estimates

We complete the analysis of the previous subsection with results concerned with the resolvent
(H̃h

ζ − z)−1 corresponding to the boundary value problem (4.7) with ℓa = ℓb = 0 .

Proposition 4.7. Assume V − Re z ≥ c, ‖V ‖L∞ ≤ 1
c and | Im ζ1/2| ≤ h

κb−a
with κb−a large

enough according to b − a. Let K be a compact subset of [a, b] and set ϕ = dAg(x,K, V,Re z) .

Then for f ∈ L2((a, b)), the function u = (H̃h
ζ − z)−1f satisfies

h1/2 sup
x∈[a,b]

|e±ϕ(x)
h u(x)|+ ‖he±ϕ

h u′‖L2 + ‖e±ϕ
h u‖L2 ≤ Ca,b,c

h
‖e±ϕ

h f‖L2 ,

where e±
ϕ
h f = f when supp f ⊂ K .

In particular this yields ∥∥∥e±
ϕ
h (H̃h

ζ − z)−1e∓
ϕ
h

∥∥∥
L(L2)

≤ Ca,b,c

h
,

and z ∈ ρ
(
H̃h

ζ

)
.

Proof: Again we can replace ϕ by ϕh = dAg(x,K, V − h,Re z). Lemma A.3 with v = e±
ϕh
h u

implies

∫ b

a

|hv′|2 + h

∫ b

a

|v|2 + hRe (−iζ1/2)
[
|v(a)2|+ |v(b)|2

]
≤ ‖e±

ϕh
h f‖L2‖v‖L2 .

Absorbing the boundary term with the help of the Gagliardo-Nirenberg inequality like in the proof
of Lemma 4.3 and taking κb−a large enough yields the result.

Proposition 4.8. Assume V −Re z ≥ c, ‖V ‖L∞ ≤ 1
c , | Im z1/2| ≤ h

κb−a
and | Im ζ1/2| ≤ h

κb−a

with κb−a large enough according to b − a. Let K be a compact subset of [a, b] and set ϕ =
dAg(x,K, V,Re z) . Then for f ∈ L2((a, b)), the difference w = (H̃h

z − z)−1f − (H̃h
ζ − z)−1f

satisfies

h1/2 sup
x∈[a,b]

|e±ϕ(x)
h w(x)| + ‖he±ϕ

hw′‖L2 + ‖e±ϕ
hw‖L2 ≤ Ca,b,c|z1/2 − ζ1/2|

h2
‖e±ϕ

h f‖L2 ,

where e±
ϕ
h f = f when supp f ⊂ K .

In particular this yields

∥∥∥e±
ϕ
h

[
(H̃h

z − z)−1 − (H̃h
ζ − z)−1

]
e∓

ϕ
h

∥∥∥
L(L2)

≤ Ca,b,c|z1/2 − ζ1/2|
h2

.
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Proof: The function (H̃h
ζ − z)−1f solves (4.7) with ℓa = ℓb = 0. Therefore, if we set u =

(H̃h
z − z)−1f and v = (H̃h

ζ − z)−1f , the function w = u− v verifies:






(P̃ h − z)w = 0 ,[
h∂x + iz1/2

]
w(a) = −i(z1/2 − ζ1/2)v(a) ,[

h∂x − iz1/2
]
w(b) = i(z1/2 − ζ1/2)v(b) .

Then it follows from Lemma 4.3 that:

h1/2 sup
x∈[a,b]

|e±ϕ(x)
h w(x)| + ‖he±ϕ

hw′‖L2 + ‖e±ϕ
hw‖L2 ≤ Ca,b,c

h
|z1/2 − ζ1/2|2h1/2 sup

x∈[a,b]

|e±ϕ(x)
h v(x)| ,

and we can apply Proposition 4.7 to the function v to get the result.

5 Accurate analysis of resonances

In this section, we use the approach of Helffer-Sjöstrand relying on the introduction of a Grushin
problem (see [30][56]). This section ends with a rewriting of the Fermi Golden rule (1.2) for the
modified Hamitonian Hh

θ0,V −Wh .

5.1 Resonances

Resonances for Hh
θ0,V−Wh = Hh

θ0,V−Wh(0) are eigenvalues of Hh
θ0,V−Wh(iτ) for a suitable choice

of τ according to the resonances to be revealed. Associated eigenfunctions are the gr ∈ L2(R)
functions satisfying

Hh
θ0,V −Wh(iτ)gr = zrgr , (5.1)

with arg(zr) ∈ (−2τ, 0). Alternatively, fr = U−iτgr satisfies

Hh
θ0,V−Whfr = zrfr ,

with fr ∈ L2
(
(a+ eiτR−) ∪ (a, b) ∪ (b+ eiτR+)

)
. We refer to [29] for a general comparison of

the two approaches. Accordingly, we recover the definition of Gamow resonant functions with no
incoming data and slowly exponentially increasing outgoing waves.
Equivalently working with gr, the condition gr ∈ L2(R) imposes the exponential modes in the
exterior domain:

gr(x) =





g+e
i
z
1/2
r eiτ

h (x−b), x > b

gr,int(x), x ∈ (a, b)

g−e−i
z
1/2
r eiτ

h (x−a), x < a ,

(5.2)

where we recall that z1/2 denotes the complex square root with the determination arg z ∈
[
−π

2 ,
3π
2

)
.

According to the definition of D(Hh
θ0,V−Wh(θ)), this function verifies the following boundary con-

ditions (
h∂x − iz1/2r eiτ

)
gr(b

+) = 0 ⇒
(
h∂x − iz1/2r e−θ0

)
gr(b

−) = 0 ,

and (
h∂x + iz1/2r eiτ

)
gr(a

−) = 0 ⇒
(
h∂x + iz1/2r e−θ0

)
gr(a

+) = 0

(with
(
zre

−2θ0
)1/2

= z
1/2
r e−θ0). It follows that the interior part of the solution satisfies the non-

linear eigenvalue problem
Hh

zre−2θ0 gr,int = zrgr,int (5.3)

(see definition (4.9)). Conversely, given zr in the sector: arg(zr) ∈ (−2τ, 0) for which gr,int fulfilling
(5.3), it is possible to define suitable coefficients g+ and g− such that the function gr given by (5.2)
is in D(Hh

θ0,V−Wh(θ)) and solves the equation (5.1). This allows to identify resonances with the
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poles of
(
Hh

ze−2θ0
− z
)−1

.
It is worthwhile to notice that this technique extends to the first Riemann sheet: in this case the

poles of
(
Hh

ze−2θ0
− z
)−1

correspond to proper eigenvalues ofHh
θ0,V−Wh provided that arg(z) ≤ 3π

2 − 2τ .
To this concern, the following spectral characterization holds.

Lemma 5.1. Let Hh
iτ,V−Wh(0) be defined as in (3.3) with τ ∈ (0, π4 ), then

σp

(
Hh

iτ,V −Wh(0)
)
∩ {Im z > 0} = ∅ .

Proof: According to the Proposition 3.6, the points in σp

(
Hh

θ0,V−Wh(0)
)
∩ {Im z > 0} coincides

with the eigenvalues of Hh
θ0,V −Wh(θ), in Im z > 0, for any choice of θ with: Im θ ∈ (0, π4 ) . In

particular, for θ = θ0 = iτ , it follows from (3.11) that the operator Hh
iτ,V −Wh(iτ) is accretive. In

this case, σp

(
Hh

iτ,V −Wh(iτ)
)
∩ {Im z > 0} = ∅.

5.2 The Grushin problem for resonances

In the previous section we got some accurate estimates for the variation w.r.t θ0 of the generalized
eigenfunctions of the filled well Hamiltonian Hh

θ0,V
. Here the resonances for the full Hamiltonians

Hh
θ0,V−Wh and Hh

0,V−Wh are considered. After reducing the problem to the interval [a, b], we

introduce like in [30][20][21] the Grushin problem modelled from the Dirichlet operator with the
potential V −Wh for the boundary value operator Hh

ζ − z with ζ = z or ζ = ze−2θ0 according to
(4.9).

We assume that a cluster of eigenvalues λh1 , . . . , λ
h
ℓ of the Dirichlet operator

Hh
D = −h2∆+ V −Wh

exists such that

d(λ0, σ(Hh
D) \

{
λh1 , . . . , λ

h
ℓ

}
) ≥ c , (5.4)

c ≤ λ0 ≤ inf
x∈(a,b)

V (x)− c ≤ ‖V ‖L∞ ≤ 1

c
, (5.5)

max
1≤j≤ℓ

|λhj − λ0| ≤ 1

c
h. (5.6)

The domain ωch will be a neighborhood of
{
λh1 , . . . , λ

h
ℓ

}
such that

ωch ⊂
{
z ∈ C, d(z,

{
λh1 , . . . , λ

h
ℓ

}
) ≤ ch

}
. (5.7)

Remark 5.2. Notice that these assumptions do not forbid h-dependent λ0 with |λ0(h)− λ0| ≤ 1
ch

since, in this case, it suffices to replace V by V − λ0(h) + λ0 .

Normalized eigenvectors associated with the λhj are denoted by Φh
j and the total spectral pro-

jector is

Πh =

ℓ∑

j=1

|Φh
j 〉〈Φh

j | .

We also introduce the bounded operators

R−
0 : C

ℓ → L2((a, b))

u− =



u1
...
uℓ


 7→ R−

0 u
− =

ℓ∑

j=1

ujΦ
h
j ,

and R+
0 : L2((a, b)) → C

ℓ

u 7→ R+
0 u =



〈Φh

1 , u〉
...

〈Φh
ℓ , u〉


 .
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For z ∈ ωch, the matricial operator

(
Hh

D − z R−
0

R+
0 0

)
: D(Hh

D)× Cℓ → L2((a, b))× Cℓ is invertible

with the inverse
(
Hh

D − z R−
0

R+
0 0

)−1

=

(
E0(z) E+

0

E−
0 E−+

0 (z)

)
,

E0(z) = (Hh
D − z)−1(1 −Πh) , E+

0 v
+ =

ℓ∑

j=1

vjΦ
h
j ,

E−
0 v =



〈Φh

1 , v〉
...

〈Φh
ℓ , v〉


 , E−+

0 (z)v+ = diag (z − λhj )v
+ .

Notations: We set

HD(z) =

(
Hh

D − z R−
0

R+
0 0

)
and ED(z) =

(
E0(z) E+

0

E−
0 E−+

0 (z)

)
.

The problem (Hh
ζ − z)u = f is studied after introducing the matricial operator

Hζ(z) :=

(
Hh

ζ − z χhR
−
0

R+
0 0

)
, (5.8)

where the function χh ∈ C∞
0 ((a, b)) satisfies

‖(h∂x)αχh‖L∞((a,b)) ≤ Cα , α ∈ N and χh(x) ≡ 1 if d(x, {a, b}) ≥ h .

Another cut-off function ψ ∈ C∞
0 ((a, b)) will be used with a smaller support. By introducing the

positive quantity
S0 := dAg({a, b} , U, V, λ0),

the cut-off ψ is chosen such that for some η > 0 independent of h > 0 but to be specified later

ψ(x) =

{
0 if dAg(x, U, V, λ

0) > S0+η
2

1 if dAg(x, U, V, λ
0) < S0−η

2 .

When η > 0 and h > 0 are small enough

U ⊂⊂ {ψ ≡ 1} ⊂ suppψ ⊂⊂ {χh ≡ 1} .
For z, ζ ∈ ωch, consider the approximate inverse

Fζ(z) =

(
χhE0ψ + (1 − ρh)(H̃

h
ζ − z)−1(1− ψ) χhE

+
0

E−
0 ψ E−+

0

)
,

where the function ρh ∈ C∞
0 (U2h) satisfies

‖(h∂x)αρh‖L∞((a,b)) ≤ Cα , α ∈ N and ρh ≡ 1 on U 5h
4
,

after recalling Ut = {x ∈ (a, b), d(x, U) ≤ t} . In particular this implies Wh(1 − ρh) = 0.
A direct calculation gives

Hζ(z)Fζ(z) =

(
A B
C D

)
,

with A = 1 +
[
(h∂x)

2, ρh
]
(H̃h

ζ − z)−1(1− ψ)−
[
(h∂x)

2, χh

]
E0ψ ,

B = (Hh
ζ − z)χhE

+
0 + χhR

−
0 E

−+
0 ,

C = R+
0 (χhE0ψ + (1 − ρh)(H̃

h
ζ − z)−1(1− ψ)) ,

D = R+
0 χhE

+
0 ,

where we have used Hh
ζ χh = Hh

Dχh = P hχh .
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Proposition 5.3. Assume the conditions (5.4)(5.5)(5.6) and suppose z, ζ ∈ ωch . The matricial
operator Fζ(z) is an approximate inverse of Hζ(z):

Hζ(z)Fζ(z) = 1 +Kζ(z) and Fζ(z)Hζ(z) = 1 +K′
ζ(z) , (5.9)

for h > 0 small enough and after adjusting the parameter η > 0 so that ‖Kζ(z)‖ + ‖K′
ζ(z)‖ < 1

according to:

‖Kζ(z)‖+ ‖K′
ζ(z)‖ ≤ Ca,b,ce

−S0−Ca,b,cη

2h . (5.10)

More precisely the remainder term equals

Kζ(z) =

([
(h∂x)

2, ρh
]
(H̃h

ζ − z)−1(1− ψ)−
[
(h∂x)

2, χh

]
E0ψ −[(h∂x)

2, χh]E
+
0

R+
0 (χh − 1)E0ψ +R+

0 (1 − ρh)(H̃
h
ζ − z)−1(1− ψ) R+

0 (χh − 1)E+
0

)

and is estimated by

Kζ(z) =


O(e−

S0−Ca,b,cη

2h ) O( e
−

S0
h

h )

O(e−
S0−Ca,b,cη

2h ) O( e
−

2S0
h

h2 )


 .

Proof: Set Kζ(z) =

(
K11 K12

K21 K22

)
and remember the expressions of A,B,C,D in Hζ(z)Fζ(z) =

(
A B
C D

)
.

The first coefficient K11 is simply A− 1 according to the above definition.
The coefficient K12 = B is computed by making use of Hh

ζ χh = Hh
Dχh and of the relation

(Hh
D − z)E+

0 +R−
0 E

−+
0 = 0 coming from HD(z)ED(z) = 1 .

The coefficientK2,1 = C is computed after using the relationR+
0 E0 = 0 coming fromHD(z)ED(z) =

1 .
The coefficient K22 = D − 1 is computed after using R+

0 E
+
0 = 1 .

Estimate of K11: For the first term, remark the identity:

[(h∂x)
2, ρh] = 2(hρ′h)(h∂x) + (h2ρ′′h) , (5.11)

where the coefficients hρ′h and h2ρ′′h are uniformly bounded and supported in U2h. Then, owing to
Proposition 4.7, it is estimated with:

‖
[
(h∂x)

2, ρh
]
(H̃h

ζ − z)−1(1− ψ)‖ ≤ Ca,b,ce
−S0−Ca,b,cη

2h . (5.12)

For the second term, we have the identity (5.11), where ρh is replaced by χh and the coefficients
hχ′

h and h2χ′′
h are uniformly bounded and supported in {x ∈ (a, b), d(x, {a, b}) < h} .

By introducing a circle γ0 =
{
z′ ∈ C , |z′ − λ0| = 2

ch
}
, the formula

E0(z) = (Hh
D − z)−1(1−Πh) = − 1

2iπ

∫

γ0

1

z′ − z

1

(z′ −Hh
D)

dz′ ,

and Proposition 4.1-ii) imply

‖[(h∂x)2, χh]E0ψ‖ ≤ Ca,b,ce
−S0−Ca,b,cη

2h

h3
. (5.13)

Estimate of K21: The cut-off (χh − 1) is supported in {x ∈ (a, b), d(x, {a, b}) < h} . Meanwhile
we verify with the same argument as for (5.13) that the function u = E0ψf satisfies

‖eϕ
h u‖ ≤ Ca,b,c‖f‖

h3
,
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for ϕ = dAg(x, suppψ, V, λ
0) . The operator R+

0 is the finite rank operator defined by taking
the scalar product with Φh

j , j = 1, . . . , ℓ . With the exponential decay of the eigenfunctions Φh
j ,

j = 1, . . . , ℓ, stated in Proposition 4.1, we get:

‖R+
0 (1− χh)E0ψ‖ ≤ Ca,b,ce

− 3S0−Ca,b,cη

2h .

The second term is estimated like the first one of K11 while replacing
[
(h∂x)

2, ρh
]
with R+

0 (1−ρh):

‖R+
0 (1− ρh)(H̃

h
ζ − z)−1(1− ψ)‖ ≤ Ca,b,ce

−S0−Ca,b,cη

2h .

Estimate of K12 and K22: The operator E
+
0 is defined by E+

0 v
+ =

∑ℓ
j=1 vjΦ

h
j and the exponen-

tial decay of the eigenfunctions Φh
j , j = 1, . . . , ℓ, stated in Proposition 4.1 with the relation (5.11),

where ρh is replaced by χh, yields

‖K12‖ = ‖[(h∂x)2, χh]E
+
0 ‖ ≤ Ca,b,c

e−
S0
h

h
. (5.14)

For K22 we use additionally the exponential decay of the Φh
j , j = 1, . . . , ℓ contained in R+

0 and we
get

‖K22‖ = ‖R+
0 (1− χh)E

+
0 ‖ ≤ Ca,b,c

e−
2S0
h

h2
. (5.15)

Left and Right inverse: When h and η are small enough the previous analysis says that Fζ(z)(1+
Kζ(z))

−1 is a right-inverse of Hζ(z) and Hζ(z) is surjective.
From the definitions (4.8) and (4.9), we have:

H̃h
ζ = H̃h

(
ζ

1
2

)
and Hh

ζ = Hh
(
ζ

1
2

)
. (5.16)

After two integrations by part, we get
(
Hh

(
ζ

1
2

))∗
= Hh

(
−(ζ̄)

1
2

)
. With (R+

0 )
∗ = R−

0 and with

the notations induced by (5.8) and (5.16), we obtain
[
H(ζ

1
2 , z)

]∗
= H(−(ζ̄)

1
2 , z̄). The analysis

performed to obtain (5.10) for K(ζ
1
2 , z) can be adapted in the case of K(−(ζ̄)

1
2 , z̄): this yields the

surjectivity of H(−(ζ̄)
1
2 , z̄). Since

Ker
(
H(ζ

1
2 , z)

)
=
[
Ran

(
H(ζ

1
2 , z)

)∗]⊥
= {0} ,

the injectivity of H(ζ
1
2 , z) follows.

Notation: When h > 0 is small enough, we set

Eζ(z) =
(
E E+

E− E−+

)
= Hζ(z)

−1 . (5.17)

The Schur complement formula

(Hh
ζ − z)−1 = E − E+(E−+)−1E− (5.18)

recalls that (Hh
ζ − z) is invertible if and only if the ℓ × ℓ square matrix E−+ is invertible. An

accurate calculation of this matrix allows to identify the poles of (Hh
ζ − z)−1 .

The final result comes from a higher order estimate after taking the Neumann series

(1 +Kζ(z))
−1 = 1−Kζ(z) +Kζ(z)

2 −Kζ(z)
3 +Kζ(z)

4 +O(e−
5S0−Ca,b,cη

2h ) .

Proposition 5.4. Assume the conditions (5.4)(5.5)(5.6) and suppose z, ζ ∈ ωch . Then

E−+ = E−+
0 +O(e−

2S0
h h−3) ,
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and

E−+ = E−+
0 − E−

0 [(h∂x)
2, ρh](H̃

h
ζ − z)−1[(h∂x)

2, χh]E
+
0 − E−+

0 R+
0 (χh − 1)E+

0

− E−+
0 R+

0 (1− ρh)(H̃
h
ζ − z)−1[(h∂x)

2, χh]E
+
0 +O(e−

5S0−Ca,b,cη

2h ) .

Proof: We compute first the coefficients K
(2)
12 and K

(2)
22 where Kζ(z)

n =

(
K

(n)
11 K

(n)
12

K
(n)
21 K

(n)
22

)
.

K
(2)
12

= K11K12 +K12K22 : Due to the support condition when η > 0 is chosen small enough and
h > 0 is small enough, the first term equals:

K11K12 = −[(h∂x)
2, ρh](H̃

h
ζ − z)−1[(h∂x)

2, χh]E
+
0 ,

and with the same argument as for (5.12) we get:

‖K11K12‖ ≤ Ca,b,c

h2
e−

2S0
h , (5.19)

where some additional exponential decay comes from the eigenfunctions appearing in E+
0 and the

support of the derivatives of χh. From the equations (5.14) and (5.15), the second term satisfies

‖K12K22‖ ≤ ‖K12‖‖K22‖ ≤ Ca,b,c

h3
e−

3S0
h .

K
(2)
22

= K21K12 +K2

22
: The first term equals

K21K12 = −R+
0 (1− ρh)(H̃

h
ζ − z)−1[(h∂x)

2, χh]E
+
0 ,

and as it was done for (5.19), we obtain:

‖K21K12‖ ≤ Ca,b,c

h3
e−

2S0
h .

Then, from equation (5.15), the second term verifies

‖K2
22‖ ≤ ‖K22‖2 ≤ Ca,b,c

h4
e−

4S0
h .

Estimate of K
(3)
12 , K

(3)
22 , K

(4)
12 and K

(4)
22 : A direct computation gives for i = 1 and 2:

K
(n+1)
i2 = Ki1K

(n)
12 +Ki2K

(n)
22 ,

and (5.10) implies:

‖K(n+1)
i2 ‖ ≤ ‖Kζ(z)‖

(
‖K(n)

12 ‖+ ‖K(n)
22 ‖

)
≤ Ca,b,ce

−S0−Ca,b,cη

2h

(
‖K(n)

12 ‖+ ‖K(n)
22 ‖

)
.

Moreover, we have obtained:

K
(2)
12 = O(e−

2S0−Ca,b,cη

h ) and K
(2)
22 = O(e−

2S0−Ca,b,cη

h ) ,

therefore we have:

K
(3)
12 = O(e−

5S0−Ca,b,cη

2h ), K
(3)
22 = O(e−

5S0−Ca,b,cη

2h ),

K
(4)
12 = O(e−

5S0−Ca,b,cη

2h ), K
(4)
22 = O(e−

5S0−Ca,b,cη

2h ) .

Computing E−+: We have

E−+−E−+
0 = E−

0 ψ[−K12+K
(2)
12 −K(3)

12 +K
(4)
12 ]+E−+

0 [−K22+K
(2)
22 −K(3)

22 +K
(4)
22 ]+O(e−

5S0−Cabcη

2h ) .
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Since the operators E−
0 ψ and E−+

0 are uniformly bounded, it follows from E−
0 ψK12 = 0 and

K22 = O(e−
2S0
h h−2) that:

E−+ − E−+
0 = O(e−

2S0
h h−3)

and

E−+ − E−+
0 = E−

0 ψK11K12 − E−+
0 K22 + E−+

0 K21K12 +O(e−
5S0−cabcη

2h )

= −E−
0 [(h∂x)

2, ρh](H̃
h
ζ − z)−1[(h∂x)

2, χh]E
+
0 − E−+

0 R+
0 (χh − 1)E+

0

− E−+
0 R+

0 (1− ρh)(H̃
h
ζ − z)−1[(h∂x)

2, χh]E
+
0 +O(e−

5S0−Cabcη

2h ) .

5.3 Localization of the resonances

In what follows we discuss the problem of resonances for the operator Hh
θ0,V−Wh(0). Using (5.18)

and the detecting method introduced in Subsection 5.1, these coincides with the singularities of

the matrix
(
E−+(z, ze−2θ0z)

)−1
in a sector arg(z) ∈ (−2τ, 0) for a suitable τ . Here the symbol

E−+(z, ζ) actually denotes the (z, ζ)-dependent matrix defined in (5.17).
The comparison of the Schur complements E−+ and E−+

0 stated in Proposition 5.4, allows to state
the following localization result on the resonances of the operator Hh

V −Wh,θ0
(0) and to estimate

accurately their variations w.r.t θ0 .

Proposition 5.5. Assume the conditions (5.4)(5.5)(5.6) and fix θ0 such that |θ0| ≤ c2h
8 . Then for

h > 0 small enough, the operator Hh
θ0,V −Wh(0) has exactly ℓ resonances

{
zh1 (θ0), . . . , z

h
ℓ (θ0)

}
in

ω ch
2
, possibly counted with multiplicities, with the estimate

zhj (θ0)− λhj = O
(
e−

2S0
h

h3

)
,

after the proper labelling with respect to j ∈ {1, . . . , ℓ} .
In particular, when

lim
h→0

h3e
2S0
h min

j 6=j′
|λhj − λhj′ | = +∞ , (5.20)

there exists Ta,b,c > 1, such that every disc Dj,h(T ) =

{
z ∈ C , |z − λhj | ≤ T e−

2S0
h

h3

}
contains

exactly one resonance zj(θ0) when T is fixed so that T ≥ Ta,b,c and h > 0 is small enough.

Proof: We look for the points where the matrix E−+(z, ze−2θ0) is not invertible. When z ∈ ω ch
2
,

then |z| ≤ 2
c when h is small enough and the two points z and ζ = ze−2θ0 = z+ z(e2θ0 − 1) belong

to ωch. Thus, Proposition 5.4 gives

‖E−+(z, ze−2θ0)− E−+
0 (z)‖∞ ≤Ma,b,c

e−
2S0
h

h3
, (5.21)

where the equivalent norm ‖aij‖∞ = max
i,j

|aij | is used .

Let Ωh =

{
z ∈ C; min

1≤j≤ℓ
|z − λhj | < 2ℓMa,b,c

e−
2S0
h

h3

}
and suppose z /∈ Ωh . Then the coefficients

E−+
ij of E−+ are such that for all i ∈ {1, . . . , ℓ}, |E−+

ii | >
ℓ∑

j=1
j 6=i

|E−+
ij | and E−+ is invertible by

Gershgorin circle theorem.
To conclude the proof, we have to compare the number of resonances to the number of Dirichlet
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eigenvalues in each connected component Ωj,h of Ωh (Ωj,h = Ωj′,h is not forbidden). Defining
E−+(t) = E−+

0 + t(E−+−E−+
0 ) for 0 ≤ t ≤ 1, the number N(t) of points in Ωj,h such that E−+(t)

is not invertible, is constant on [0, 1]. Actually, note first that (5.21) implies that for all t ∈ [0, 1],
E−+(t) is invertible when z ∈ ∂Ωj,h, using an argument similar to the one used for E−+ outside
Ωh. Therefore, for any t0 ∈ [0, 1] the analyticity of E−+(t0) with respect to z implies

inf
z∈∂Ωj,h

| detE−+(t0)| > 0 ,

and for δ small enough, the estimate:

| detE−+(t0+ δ)−detE−+(t0)| = | det(E−+(t0)+ δ(E
−+−E−+

0 ))−detE−+(t0)| = |δ||R(t0, δ)|
< inf

z∈∂Ωj,h

| detE−+(t0)| ≤ | detE−+(t0)|

holds for all z ∈ ∂Ωj,h after noticing that the function |R(t0, δ)| is a bounded polynomial of t0,
δ and of the coefficients of E−+

0 and E−+. The functions det(E−+(t0)) and detE−+(t0 + δ) are

holomorphic functions of z ∈ ω ch
2

such that supz∈∂Ωj,h
|detE

−+(t0+δ)
detE−+(t0)

− 1| < 1. Thus, Rouché’s

theorem implies N(t0 + δ) = N(t0). The function N(t) is continuous on [0, 1] with integer values.
It is constant.
Assuming e

2S0
h h3|λhj − λhj′ | → +∞ for all pair of distinct j, j′, implies Ωj,h ⊂ Dj,h(R) for all the

j’s with Dj,h(R) ∩ Dj′,h(R) = ∅ if j 6= j′ when R ≥ 2ℓMa,b,c and h is small enough. This yields
the last statement.

Remark 5.6. In the above proposition the term resonances is used for the eigenvalues of the
operator Hh

ze−2θ0
, which in principle may still have a positive imaginary part. In the particular

case of θ0 = iτ , τ ∈ (0, π4 ), the result of Lemma 5.1 implies that these eigenvalues must lay in
the lower half complex plane. On the other hand, the result of next proposition and the lower
bound on

∣∣Im zhj (0)
∣∣ (see Proposition 5.8) implicitely yields: Im zhj (θ0) < 0 on a suitable range

of |θ0|. Under each of such conditions the points zhj (θ0) corresponds to resonances of the operator

Hh
θ0,V−Wh(0) as defined in Proposition 3.6.

The next Proposition localizes the resonances zhj (θ0) of H
h
θ0,V−Wh(0) with respect to the reso-

nances zhj := zhj (0) of H
h
0,V−Wh(0) by making use of the comparison between E−+(z, ze−2θ0) and

E−+(z, z).

Proposition 5.7. Assume the conditions (5.4)(5.5)(5.6) and e−
S0
4h ≤ |θ0| ≤ c2h

8 . Then for h > 0
small enough, the matrices E−+ of Proposition 5.4 associated with ζ = z and ζ = ze−2θ satisfy

sup
z∈ω ch

2

|E−+(z, ze−2θ0)− E−+(z, z)| = O
(
|θ0|

e−
2S0
h

h3

)
. (5.22)

If additionally (5.20) is assumed the variation of the resonances around λ0 for e−
S0
4h ≤ |θ0| ≤ c2h

8
and θ0 = 0 is estimated by

max
j∈{1,...,ℓ}

|zhj (θ0)− zhj | = O
(
|θ0|

e−
2S0
h

h3

)
.

Proof: For z ∈ ω ch
2

and θ0 such that |θ0| ≤ c2h
8 , the Proposition 5.4 implies that:

E−+(z, ze−2θ0)− E−+(z, z) =E−
0 [(h∂x)

2, ρh]D[(h∂x)
2, χh]E

+
0

+ E−+
0 R+

0 (1− ρh)D[(h∂x)
2, χh]E

+
0 +O(e−

5S0−Ca,b,cη

2h )

=I + II +O(e−
5S0−Ca,b,cη

2h ) ,
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where D = (H̃h
z − z)−1 − (H̃h

ze−2θ0
− z)−1. The operator E−

0 being bounded, the first term I is

estimated as we did for (5.19) where (H̃h
ζ − z)−1 is replaced by D and we use Proposition 4.8

instead of Proposition 4.7. This leads to:

||I|| ≤ Ca,b,c|z1/2 − (ze−2θ0)1/2|e
− 2S0

h

h3
≤ Ca,b,c|θ0|

e−
2S0
h

h3
.

For II, using the exponential decay given by the operator R+
0 , we get:

||II|| ≤ Ca,b,c|θ0|
e−

2S0
h

h3
.

The assumption e−
S0
4h ≤ |θ0| ensures that the remainderO(e−

5S0−Ca,b,cη

2h ) is absorbed by |θ0|e−
2S0
h h−3

as h→ 0 . We have proved (5.22).
When (5.20) is verified, Proposition 5.5 says that every disc Dj,h(T ) = {z ∈ C, |z − λhj | <
Te−

2S0
h h−3} for any T ≥ Ta,b,c, contains exactly one resonance zhj (θ0), and in particular one

resonance zhj when θ0 = 0. Hence the matrix E−+(z, z) has only simple poles and its inverse is
the meromorphic function

(E−+(z, z))−1 =
ℓ∑

j=1

Ah
j

z − zhj
+ Fh(z) , z ∈ ω ch

2
. (5.23)

The matrix Ah
j is nothing but the residue

Ah
j =

1

2iπ

∫

∂Dj,h(T )

(E−+(z, z))−1 dz ,

while the function Fh(z) is a holomorphic function estimated via the maximum principle by

sup
z∈ω ch

4

|Fh(z)| ≤ sup
z∈∂ω ch

4


|(E−+(z, z))−1|+

ℓ∑

j=1

|Ah
j |

|z − zhj |


 . (5.24)

The estimate of Proposition 5.4 says

|E−+(z, z)− E−+
0 (z)| ≤ Ca,b,c

e−
2S0
h

h3
,

while we know |(E−+
0 (z))−1| ≤ max1≤j≤ℓ |z − λhj |−1 . After writing

(E−+)−1 =
[
1 + (E−+

0 )−1(E−+ − E−+
0 )

]−1
(E−+

0 )−1 , (5.25)

we get for T > max{Ta,b,c, 2Ca,b,c}

sup
z∈∂Dj,h(T )

|(E−+(z, z))−1| ≤ h3e
2S0
h

T [1− Ca,b,c

T ]
≤ 2h3e

2S0
h

T
,

and finally the uniform bound for the residues

max
1≤j≤ℓ

|Ah
j | ≤ 2 .

The holomorphic part Fh(z) is then estimated with (5.24). Actually, the first term is estimated
with the help of (5.25) while the second term is treated with the above estimate of Ah

j and by

making use of max1≤j≤ℓ |zhj − λhj | ≤ Ta,b,c
e−

2S0
h

h3 :

sup
z∈ω ch

4

|Fh(z)| ≤
C′

a,b,c

h
.
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For all z ∈ ω ch
4
\
{
zh1 , . . . , z

h
ℓ

}
, the inverse of E−+(z, z) is thus estimated by

|(E−+(z, z))−1| ≤
ℓ∑

j=1

2

|z − zhj |
+
C′

a,b,c

h
.

We now write for z 6∈ ω ch
4
\
{
zh1 , . . . , z

h
ℓ

}

E−+(z, ze−2θ0) = E−+(z, z)
[
1 + (E−+(z, z))−1(E−+(z, ze−2θ0)− E−+(z, z))

]
.

Due to the estimate (5.22) the condition

min
j∈{1,...,ℓ}

|z − zhj | ≥ T
e−

2S0
h |θ0|
h3

implies

∣∣(E−+(z, z))−1(E−+(z, ze−2θ0)− E−+(z, z))
∣∣ ≤

[
2ℓ
h3e

2S0
h

T |θ0|
+ C′

a,b,ch
−1

]
C′′

a,b,c

|θ0|e−
2S0
h

h3
,

where the right-hand side is smaller than 1 if T ≥ 4ℓC′′
a,b,c and h > 0 is small enough. Outside

∪ℓ
j=1

{
z ∈ C, |z − zhj | ≤ T |θ0|e−

2S0
h h−3

}
, E−+(z, ze−2θ0) is invertible. For such a T we have proved

max
j∈{1,...,ℓ}

|zhj (θ0)− zhj | ≤ T
e−

2S0
h |θ0|
h3

.

5.4 A Fermi-Golden rule

In [21], a Fermi Golden rule for the imaginary parts of resonances Γj = − Im zhj in the case
θ0 = 0 has been introduced. It plays a major role in the analysis of the nonlinear effects studied in
[19][20][21][45][46][18] for it expresses accurately how the tunnel effect between the resonant state
and the incoming waves is balanced between the left and right-hand sides. By assuming

lim
h→0

e
SU
h min

1≤j<j′≤ℓ
|λhj − λhj′ | = +∞ with SU <

S0

8
, (5.26)

which is stronger than (5.20), the energy range of λ ∈ R associated with the resonance zhj is

given by |λ− zhj | ≤ e−
SU
h . When ψ̃h

−,0(±
√
λ, .) denote the generalized eigenfunctions of the filled

well Hamiltonian Hh
0,V (0) at energy λ defined in section 4.2 and Φh

j , j ∈ {1, . . . , ℓ}, denote the

normalized eigenfunctions of the Dirichlet Hamiltonian Hh
D given in (4.3), the formula

Γh
j + o(Γh

j ) =
|〈Whψ̃h

−,0(
√
λ, .),Φh

j 〉|2 + |〈Whψ̃h
−,0(−

√
λ, .),Φh

j 〉|2

4h
√
λ

≥ e−
2S0
h

C
, (5.27)

for all λ ∈ R such that |λ− zhj | ≤ e−
SU
h , has been proved under additional assumptions about the

localization of the Φh
j within suppWh . We refer to Proposition 7.9 in [21] and to the subsequent

explicit computations in Sections 7 and Section 8 of [21] for the details and in particular for the
lower bound.

We shall assume that the formula (5.27) is true when θ0 = 0 and check that it remains true
when θ0 6= 0 is small enough. We shall use the notation

Γh
j = − Im zhj and Γh

j (θ0) = − Im zhj (θ0) .
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Proposition 5.8. Assume the conditions (5.4)(5.5)(5.6)(5.26)(5.27) and take θ0 such that e−
S0
4h ≤

|θ0| ≤ c2h
8 then the Fermi Golden Rule

Γh
j (θ0) =

|〈Whψ̃h
−,θ0

(
√
λ, .),Φh

j 〉|2 + |〈Whψ̃h
−,θ0

(−
√
λ, .),Φh

j 〉|2

4h
√
λ

+ o
(
Γh
j

)
+O

(
|θ0|

e−
2S0
h

h5

)
(5.28)

holds for all λ ∈ R such that |λ− zhj | ≤ e−
SU
h .

In particular, when limh→0 h
−5θ0 = 0 we have

Γh
j (θ0) + o(Γh

j (θ0)) =
|〈Whψ̃h

−,θ0
(
√
λ, .),Φh

j 〉|2 + |〈Whψ̃h
−,θ0

(−
√
λ, .),Φh

j 〉|2

4h
√
λ

≥ e−
2S0
h

C
. (5.29)

Proof: Proposition 5.7 gives:

|Γh
j (θ0)− Γh

j | ≤ Ca,b,c|θ0|
e−

2S0
h

h3
. (5.30)

Let f(θ0) = 〈Whψh
−,θ0

(
√
λ, .),Φh

j 〉. The pointwise and L2 weighted estimates of u = ψ̃h
−,θ0

(
√
λ, .)−

ψ̃h
−,0(

√
λ, .) stated in Proposition 4.5 with ϕ(x) = dAg(x, a, V, λ) say

h1/2 sup
x∈[a,b]

|eϕ(x)
h u(x)|+ ‖eϕ

h u‖L2 ≤
C′

a,b,c|θ0|
h3/2

,

while Proposition 4.4 gives

h1/2 sup
x∈[a,b]

|eϕ(x)
h ψ̃h

−,θ0(
√
λ, x)|+ ‖eϕ

h ψ̃h
−,θ0(

√
λ)‖L2 ≤

C′
a,b,c

h1/2
,

with the same estimate for θ0 = 0 . Moreover, the exponential decay of Φh
j stated in Proposition 4.1

can be written as

h1/2 sup
x∈[a,b]

|e
ϕj(x)

h Φh
j (x)| + ‖e

ϕj
h Φh

j ‖L2 ≤
C′

a,b,c

h
,

with ϕj(x) = dAg(x, U, V, λ
h
j ). Recalling that

‖Wh
1 ‖L∞ ≤ 1

c
, ‖Wh

2 ‖Mb
≤ h

c
, suppWh ⊂ {d(x, U) ≤ h} ,

and S0 = dAg(U, {a, b} , V, λ0) ≤ dAg(x, {a, b} , V, λ) + O(h) when x ∈ Uh and |λ − zhj | ≤ e−
SU
h .

Hence we get with our assumptions

|f(θ0)− f(0)| ≤ C′′
a,b,c|θ0|

e−
S0
h

h5/2

and |f(θ0)| ≤ C′′
a,b,c

e−
S0
h

h3/2
.

We obtain ∣∣∣∣
|f(θ0)|2
4h

√
λ

− |f(0)|2
4h

√
λ

∣∣∣∣ = O
(
e−

2S0
h |θ0|
h5

)
. (5.31)

Remark 5.9. In [21], the Fermi Golden Rule (5.27) has been studied with Wh ∈ L∞((a, b)).
Nevertheless it can be proved in cases when the singular part Wh

2 does not vanish by a direct
analysis like for example when Wh

2 = hδc. The presentation of Proposition 5.8 shows that the
stability result w.r.t to θ0 holds in this more general framework and leaves the possibility of further
applications.
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6 Accurate resolvent estimates for the whole space problem

In the previous sections 4 and 5, we got accurate resolvent estimates with respect to h > 0 for the
problem reduced to the interval (a, b). We use here this information in order to derive accurate
resolvent estimates for (Hθ0,V −Wh(θ0)− z)−1 when θ0 = ihN0 , N0 > 1, which are essential in the
justification of the adiabatic evolution.

6.1 Localization of the spectrum

The results of Corollary 3.4, Proposition 3.6, Proposition 5.5 and section 5.1 can be summarized
with the corresponding assumptions.

Proposition 6.1. Assume that V ∈ L∞((a, b);R) and Wh = Wh
1 +Wh

2 ∈ Mb((a, b)) are real
valued with the hypothesis (4.1),

c1(a,b) ≤ V , ‖V ‖L∞ ≤ 1

c
, ‖Wh

1 ‖ ≤ 1

c
, ‖Wh

2 ‖ ≤ h

c
,

Wh
1 and Wh

2 are supported in the domain Uh = {x ∈ (a, b); d(x, U) ≤ h} where U is a fixed compact
subset of (a, b) . Assume also θ0 = ihN0 with N0 > 1 and h < h0 . Then:

a) σess(H
h
θ0,V−Wh(θ0)) = σess(H

h
ND,V−Wh(θ0)) = e−2θ0R+ ;

b) The equality (3.34) written with θ = θ0

(
Hh

θ0,V−Wh(θ0)− z
)−1

=
(
Hh

ND,V−Wh(θ0)− z
)−1

−
4∑

i,j,k=1

(
Bq(z, θ0, V −Wh)−A

)−1

ij
Bjk

〈
γ(ek, z̄, θ̄0), ·

〉
L2(R)

γ(ei, z, θ0) (6.1)

holds as an identity of meromorphic functions on C \ e−2θ0R+ .

c) In Σh =
{
z ∈ C, c ≤ Re z ≤ infx∈(a,b) V (x) − c, | arg z| < 2| Im θ0|

}
, the (discrete) spectrum of

Hh
θ0,V−Wh(θ0) is made of eigenvalues zh which satisfy Ker(Hh

zhe−2θ0
− zh) 6= {0} where Hh

ζ

is the operator defined in (4.9) . When the spectrum of the Dirichlet Hamiltonian σ(Hh
D) is

made of clusters such that (5.4) and (5.6) are satisfied, then there exists κa,b,c > 0 such that

∀zh ∈ Σh ∩ σ(Hh
θ0,V −Wh(θ0)) , d(zh, σ(Hh

D)) ≤ e−
κa,b,c

h .

The resolvent of Hh
θ0,V−Wh(θ0) will be studied in a domain surrounding a single cluster of

eigenvalues zh, i.e. with limh→0 z
h = λ0, with a distance to σ(Hh

θ0,V−Wh(θ0)) bounded from below

by 1
Ca,b,c

hN0 .

Definition 6.2. The complex domain Gh(λ
0) is chosen accordingly to the constants a, b, c involved

in the assumptions on V , Wh, the hypotheses (4.1)(5.4)(5.5)(5.6) and to θ0 = ihN0 , N0 > 1:

Gh(λ
0) :=

{
z ∈ C, |Re z − λ0| ≤ Ξa,b,ch, | arg z| ≤ hN0 and d(z, σ(Hh

D)) ≥ hN0

Ξa,b,c

}
, (6.2)

for some constant Ξa,b,c > 0 chosen large enough.
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6.2 Estimates of the finite rank part

We study here the finite rank part of (6.1):

Υh(z, V −Wh) =
4∑

i,j,k=1

(
Bq(z, θ0, V −Wh)−A

)−1

ij
Bjk

〈
γ(ek, z̄, θ̄0), ·

〉
L2(R)

γ(ei, z, θ0) , (6.3)

and its variations between the case Wh = 0 and Wh 6= 0 . Every factor will be considered
separately. Hence it is convenient to keep the notation γV −Wh(ei, z, θ) for the total potential
V −Wh and γV (ei, z, θ) when W

h ≡ 0 .

Proposition 6.3. Assume the hypotheses (4.1) (5.4)(5.5)(5.6). Take θ0 = ihN0, N0 > 1, and let
Gh(λ

0) be the set defined by (6.2). The matrices (Bq(z, θ0, V −Wh)−A)−1 and (Bq(z, θ0, V )−A)−1

verify the uniform estimate

∀z ∈ Gh(λ
0) , |(Bq(z, θ0, V −Wh)−A)−1|+ |(Bq(z, θ0, V )−A)−1| ≤ Ca,b,ch , (6.4)

in any fixed matricial norm.
The functions γV satisfy the uniform estimates

supp γV(e2,3, z, θ0) = supp γV(e2,3, z̄, θ0) ⊂ [a, b] , (6.5)

supp γV(e1, z, θ0) = supp γV(e1, z̄, θ0) ⊂ [b,+∞) , (6.6)

supp γV(e4, z, θ0) = supp γV(e4, z̄, θ0) ⊂ (−∞, a] , (6.7)

max
i=2,3

‖γV(ei, z, θ0)‖H1,h((a,b)) + ‖γV(ei, z̄, θ0)‖H1,h((a,b)) ≤
Ca,b,c

h3/2
, (6.8)

max
i=1,4

‖γV(ei, z, θ0)‖H1,h(R\[a,b]) + ‖γV(ei, z̄ , θ0)‖H1,h(R\[a,b]) ≤
Ca,b,c

h(N0+1)/2
(6.9)

holds when z ∈ Gh(λ
0) and V = V −Wh or V = V .

Moreover the differences (Bq(z, θ0, V −Wh)−A)−1 − (Bq(z, θ0, V )−A)−1 and γV −Wh − γV are
estimated by

|(Bq(z, θ0, V −Wh)−A)−1 − (Bq(z, θ0, V )−A)−1| ≤ Ca,b,ce
−S0

2h , (6.10)

max
i=2,3

‖γV−Wh(ei, z, θ0)− γV (ei, z, θ0)‖H1,h((a,b)) ≤ Ca,b,ce
−S0

2h , (6.11)

with S0 = dAg({a, b} , U, V, λ0) ,
γV−Wh(ei, z, θ0) = γV (ei, z, θ0) , for i = 1, 4 , (6.12)

when z ∈ Gh(λ
0), with the same result for (z̄, θ0) .

The matrix Bq(z, θ0,V)−A is expressed with boundary values and we will need the next lemma.

Lemma 6.4. Assume (5.5), θ0 = ihN0, N0 > 1, and set

ϕb(x) = dAg(x, b, V, λ
0) , ϕa(x) = dAg(x, a, V, λ

0) , S0 = dAg({a, b} , U, V, λ0) .
For any z ∈ Gh, the solution ũ2 (resp ũ3) to

{
(P̃ h − z)ũ2,3 = (−h2∆+ V − z)ũ2,3 = 0
ũ2(a) = 0, ũ2(b) = 1 (resp. ũ3(a) = 1, ũ3(b) = 0) ,

verifies:

‖ũ2‖H1,h((a,b)) ≤ Ca,b,ch
1/2 , ‖e

ϕb
h ũ2‖L2((a,b)) + ‖e

ϕb
h hũ′2‖L2((a,b)) ≤

Ca,b,c

h1/2
, (6.13)

resp. ‖ũ3‖H1,h((a,b)) ≤ Ca,b,ch
1/2 , ‖eϕa

h ũ3‖L2((a,b)) + ‖eϕa
h hũ′3‖L2((a,b)) ≤

Ca,b,c

h1/2
, (6.14)

|ũ′2(b)| ≤
Ca,b,c

h
, | Im ũ′2(b)| ≤ Ca,b,ch

N0−1 , |ũ′2(a)| ≤
Ca,b,c

h2
e−

2S0
h , (6.15)

resp. |ũ′3(a)| ≤
Ca,b,c

h
, | Im ũ′3(a)| ≤ Ca,b,ch

N0−1 , |ũ′3(b)| ≤
Ca,b,c

h2
e−

2S0
h . (6.16)
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For any z ∈ Gh(λ
0), the solution u2 (resp. u3) to (3.24) rewritten as

{
(P h − z)u2,3 = (−h2∆+ V −Wh − z)u2,3 = 0
u2(a) = 0, u2(b) = 1 (resp. u3(a) = 1, u3(b) = 0) ,

can be compared with ũ2 (resp. ũ3) according to

max
i∈{2,3}

‖ui − ũi‖H1,h + |u′i(a)− ũ′i(a)|+ |u′i(b)− ũ′i(b)| ≤ Ca,b,ce
− 3S0

4h . (6.17)

Proof: Let us first focus on the case Wh = 0. It suffices to study the case of ũ2, the result for ũ3
being deduced by symmetry.
Consider a real valued function u0 ∈ C∞ such that u0(b) = 1, suppu0 ∩ [a, b] ⊂ [b− h, b] and:

‖(h∂x)αu0‖ ≤ Cα , α ∈ N ,

and set ũ2 = u0 + ṽ where ṽ solves (H̃h
D − z)ṽ = f with f = (h∂x)

2u0 − (V − z)u0 . We keep the
notation (4.2) for the Dirichlet Hamiltonian associated with P̃ h .
Owing to V −Re z ≥ c, the variational formulation of (H̃h

D−z)ũ = f with ‖f‖L2 ≤ Ch1/2 provides
‖ṽ‖H1,h ≤ Ch1/2 which yields the first estimate of (6.13) . With the equation−h2ṽ′′ = −(V−z)ṽ+f
and applying Lemma A.1 to ṽ(b− x), we get |ṽ′(b)| ≤ Ch1/2

h3/2 and hence the first estimate of (6.15).

The second estimate of (6.15) comes similarly from | Im ṽ′(b)| ≤ ChN0−1 . It suffices to write that
w = ṽ − ṽ solves

(H̃h
D − z)w = (z − z̄)u0 + (z − z̄)ṽ = g ,

where the right-hand side is estimated by ‖g‖L2 ≤ Ch1/2| Im z| ≤ ChN0+1/2 . The estimate for
|w′(b)| follows the same arguments as for |ṽ′(b)| with hN0+1/2 instead of h1/2.
The second estimate of (6.13) is a direct application of Proposition 4.1-i) to (H̃h

D − z)ṽ = f while
noticing that dAg(x, b, V, λ

0) can take the place of dAg(x, supp f, V,Re z) because |Re z − λ0| =
O(h), supp f ⊂ suppu0 ⊂ [b− h, b] and dAg(., ., V, λ

0) is uniformly Lipschitz on [a, b]2 . On the in-
terval [a, a+h] the second derivative of ṽ satisfies−h2ṽ′′ = −(V −z)ṽ so that ‖ũ2(a+.)‖H2,h((0,h)) ≤
Ce−

ϕb(a)
h

h1/2 and we apply again Lemma A.1.

The difference v = u2 − ũ2 solves the Dirichlet problem

{
(P h − z)v =Whũ2
v(a) = v(b) = 0 ,

which means v = (Hh
D − z)−1(Whũ2). It suffices to apply Lemma A.2 with ‖Whũ2‖H−1 ≤

Ca,b‖Whũ2‖Mb
≤ Ca,b,ce

−S0
h . With z ∈ Gh(λ

0), this gives ‖v‖H1,h ≤ C′
a,b,ce

−
S0
h

hN0+1 . In [a, a + h]
or in [b − h, b], the equation for v is simply h2v′′ = (V − z)v and we use again Lemma A.1 to
conclude .
Proof of Proposition 6.3:
a) First consider the estimate of (Bq − A)−1 in (6.4) and its variation in (6.10). The explicit
form of the matrix

(
Bq(z, θ0, V −Wh)−A

)
, using the definitions of A,B and q(z, θ0, V ) given

respectively in (3.33) and (3.26), can be written

(
Bq(z, θ0, V −Wh)−A

)
=M(z) +R(z) ,

with

M(z) =
1

h2




e−
3θ0
2 −u′2(b)

iheθ0√
ze2θ0

e
θ0
2

−e θ0
2

iheθ0√
ze2θ0

u′3(a) −e− 3θ0
2



, R(z) =

1

h2




u′3(b) 0
0 0

0 0
0 −u′2(a)


 ,
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where u2,3 has to be replaced by ũ2,3 when Wh ≡ 0 . According to (6.15)(6.16) and (6.17)

‖R(z)‖ ≤ Ca,b,ce
−S0

2h . (6.18)

The inverse matrix
(
Bq(z, θ0, V −Wh)−A

)−1
is formally given by:

(
Bq(z, θ0, V −Wh)−A

)−1
=M(z)−1

(
1 +R(z)M(z)−1

)−1
. (6.19)

An explicit computation gives

M(z)−1 = h2




1
∆+

(
e

θ0
2 u′2(b)

− iheθ0√
ze2θ0

e−
3θ0
2

)

1
∆−

(
−e− 3θ0

2 − iheθ0√
ze2θ0

−u′3(a) −e θ0
2

)



,

with

{
∆+ = e−θ0 + iheθ0√

ze2θ0
u′2(b) ,

∆− = e−θ0 − iheθ0√
ze2θ0

u′3(a) .

Using | Im u′2(b)| + | Im u′3(a)| ≤ Ca,b,ch
N0−1 due to (6.15)(6.16) and (6.17), leads to the lower

bounds for ∆+ and ∆−. With our choice of the branch cut: eθ0√
ze2θ0

= ± 1√
z
, depending on arg z,

and one has

|∆+| ≥ Re ∆+ ≥ cos (Im θ0)−
h

|z|
∣∣Im u′2(b)Re

√
z − Re u′2(b) Im

√
z
∣∣

≥ cos (Im θ0)− C
h

|z|

(
hN0−1

√
|z|+ 1

h
| Im √

z|
)
.

For z ∈ Gh, we have | Im √
z| ≤ ChN0 and one finally gets: |∆+| ≥ 1

2 . The same lower bound
holds for ∆−. Thus M(z) is invertible with: M(z)−1 = O (h) in any fixed matrix norm. From
relations (6.18) and (6.19), it follows:

(
Bq(z, θ0, V −Wh)−A

)−1
=M(z)−1

(
1 +O

(
e−

3S0
4h

h

))
= O (h) , (6.20)

which is a rewriting of (6.4). The estimate (6.10) of the difference is due to the exponentially small
size of |u′2,3(a, b)− ũ′2,3(a, b)| stated in (6.17).

b) We shall now consider the estimates for γV(ei) with i = 2, 3, V = V or V = V −Wh . Actually
it suffices to remember the equations (3.23), (3.24) and the definition of the coefficients (3.25)

γV−Wh(ei, z, θ0) = ciui = ± 1

h2
ui , i = 2, 3 ,

where the functions u2,3 do not depend on θ0 and are given by (3.24). It suffices to use (6.13) for
(6.8) and (6.17) for (6.11). Changing θ0 into θ0 has no effect and z̄ ∈ Gh(λ

0) when z ∈ Gh(λ
0) .

c) The functions γV(e1,4, z, θ0) do not depend on the potential V :

γ(e1, z, θ0) =
ie

3θ0
2

h
√
ze2θ0

1(b,+∞)e
i

√
ze2θ0 (x−b)

h , γ(e4, z, θ0) =
ie

3θ0
2

h
√
ze2θ0

1(−∞,a)e
−i

√
ze2θ0 (x−a)

h ,

from which (6.12) follows while (6.9) comes from

‖γ(ei, z, θ0)‖2H1,h(R\[a,b]) ≤
C

h Im (
√
ze2θ0)

≤ Ca,b,c

hN0+1
, when z ∈ Gh(λ

0) .
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6.3 Resolvent estimates

We gather the information given by the Krein formula (6.1) and the control of the finite rank part
Υh(z,V) given by Proposition 6.3.

Proposition 6.5. Assume the hypotheses (4.1) (5.4)(5.5)(5.6). Take θ0 = ihN0, N0 > 1, and let
Gh(λ

0) be the set defined by (6.2).
a) For V = V or V = V −Wh, the resolvent (Hθ0,V(θ0)− z)−1 is estimated by

∀z ∈ Gh(λ
0) , ‖(Hh

θ0,V(θ0)− z)−1‖L(L2(R);H1(R\{a,b})) ≤
Ca,b,c

hN0+2
, (6.21)

∀z ∈ Gh(λ
0) , ‖(Hh

θ0,V−Wh(θ0)− z)−1χ‖L(H−1((a,b));H1(R\{a,b}) ≤
Ca,b,c,χ

hN0+3
, (6.22)

for any fixed χ ∈ C∞
0 ((a, b)) .

b) The difference of the resolvents equals

(Hh
θ0,V −Wh(θ0)− z)−1 − (Hh

θ0,V (θ0)− z)−1 = (Hh
ND,V −Wh(θ0)− z)−1

− (Hh
ND,V (θ0)− z)−1 +RΥh(z) , (6.23)

with

∀z ∈ Gh(λ
0) , ‖RΥh(z)‖L(L2(R);H1(R\{a,b})) ≤ Ca,b,ce

−S0
4h , (6.24)

∀z ∈ Gh(λ
0) , ‖RΥh(z)χ‖L(H−1((a,b));H1(R\{a,b})) ≤ Ca,b,ce

−S0
4h , (6.25)

for any fixed χ ∈ C∞
0 ((a, b)) .

Proof: a) The formula (6.1) says for V = V or V = V −Wh:

(
Hh

θ0,V(θ0)− z
)−1

=
(
Hh

ND,V(θ0)− z
)−1

−
4∑

i,j,k=1

(Bq(z, θ0,V)−A)−1
ij Bjk

〈
γ(ek, z̄, θ̄0), ·

〉
L2(R)

γ(ei, z, θ0)

=
(
Hh

ND,V(θ0)− z
)−1 −Υh(z,V) .

By Proposition 6.3, actually by (6.4)(6.9) and (6.8), the term Υh(z,V) satisfies with N0 > 1

‖Υh(z,V)‖L(L2(R);H1(R\{a,b})) ≤
Ca,b,ch

min
{
hN0+1, hN0/2+2, h3

} × 1

h
≤ Ca,b,c

hN0+2
,

‖Υh(z,V)χ‖L(H−1((a,b));H1(R\{a,b})) ≤
Ca,b,c,χh

min
{
hN0+1, hN0/2+2, h3

} × 1

h2
≤ Ca,b,c,χ

hN0+3
,

for any fixed χ ∈ C∞
0 ((a, b)) .

It remains to estimate the first term. The worst case is for V = V −Wh since Gh(λ
0) lies

around elements of σ(Hh
D = −h2∆D + V −Wh):

(
Hh

ND,V−Wh(θ0)− z
)−1

= e2θ0
(
−h2∆N

R\[a,b] − ze2θ0
)−1

⊕
(
Hh

D − z
)−1

.

According to Lemma A.2 with ‖f‖H−1,h((a,b)) ≤ 1
h‖f‖H−1 and ‖u‖H1((a,b)) ≤ 1

h‖u‖H1,h((a,b)), the
inequality

∥∥∥
(
Hh

D − z
)−1
∥∥∥
L(H−1((a,b)),H1

0 ((a,b)))
≤ Ca,b,c

h2

(
1

d(z, σ(Hh
D))

+ 1

)
≤ Ca,b,c

hN0+2
,
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holds for z ∈ Gh(λ
0) .

The resolvent of the Neumann Laplacian
(
−h2∆N

R\[a,b] − ζ
)−1

can be written

(
−h2∆N

R\[a,b] − ζ
)−1

=
(
−h2∆N

R\[a,b] + 1
)−1

[
1 + (1 + ζ)

(
−h2∆N

R\[a,b] − ζ
)−1

]
,

with ‖
(
−h2∆N

R\[a,b] + 1
)−1

‖L(L2(R\[a,b]);H1(R\[a,b])) ≤
1

h
,

it is estimated by

‖
(
−h2∆N

R\[a,b] − ζ
)−1

‖L(L2(R\[a,b]);H1(R\[a,b])) ≤
1

h

[
1 +

1 + |ζ|
d(ζ,R+)

]
.

For z ∈ Gh(λ
0) and ζ = ze2θ0, the distance d(ze2θ0 ,R+), is bounded from below by ChN0 . Hence

we get

‖
(
−h2∆N

R\[a,b] − ze2θ0
)
‖L(L2(R\[a,b]);H1(R\[a,b])) ≤

Ca,b,c

hN0+1
.

Putting all together gives (6.21) and (6.22) .
b) For the difference of resolvents, it suffices to notice that

RΥh(z) = Υh(z, V )−Υh(z, V −Wh) .

Hence it is the difference of trilinear quantities of which every factor is estimated by 1
h3N0

with

variations bounded by
Ca,b,c

h e−
S0
2h . This ends the proof.

7 Adiabatic evolution

We consider now a time-dependent real valued potential V (t) −Wh(t) = V (t) −Wh
1 (t) −Wh

2 (t)
supported in [a, b] with

Wh
1 (x, t) =

M1∑

j1=1

wj1(
x− xj1,1

h
, t) , Wh

2 (t) =

M2∑

j2=1

αj2(t)hδ(x− xj2,2) , αj2(t) > 0 , (7.1)

where the xj ’s are fixed (independent of h) distinct points of (a, b) and the supports suppwj1 are
contained in a fixed compact set. The functions V (., t), wj1(., t), αj2(t) are possibly h-dependent
CK functions with a uniform control of the derivatives and which impose a uniform control of
(4.1)(5.4)(5.5)(5.6). Namely we assume that for some λ0(t) the estimates

max
t ∈ [0, T ]
0 ≤ k ≤ K

0 ≤ j1 ≤ M1
0 ≤ j1 ≤ M2

‖∂kt V (t)‖L∞ + ‖∂kt wj1 (t)‖L∞ + |∂kt αj2 (t)|+ |∂kt λ0(t)| ≤
1

c
, (7.2)

∀x ∈ [a, b] , c ≤ λ0(t) ≤ V (x, t)− c , (7.3)

hold for all t ∈ [0, T ] . Actually, the regularity of λ0(t) can be deduced from the other assumptions
possibly by replacing it initial guess by the mean energy value 1

ℓ Tr
[
Hh

D(t)Π0(t)
]
with Π0(t) =

1
2iπ

∫
|z−λ0(t)|= 2h

c
(z −Hh

D(t))−1 dz .

This λ0(t) is moreover assumed to be the center of a cluster of eigenvalues of the Dirichlet
Hamiltonian Hh

D(t) = −h2∆D + V (t) −Wh(t) on (a, b): There exist λh1 (t), . . . , λ
h
ℓ (t) ∈ σ(Hh

D(t))
such that

d(λ0(t), σ(Hh
D(t)) \

{
λh1 (t), . . . , λ

h
ℓ (t)

}
) ≥ c , (7.4)

max
1≤j≤ℓ

|λhj (t)− λ0(t)| ≤ h

c
. (7.5)
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The operator Hh
θ0,V (t)−Wh(t)(θ0) is studied here with

θ0 = ihN0 , N0 > 1 .

According to Proposition 6.1 and Definition 6.2, the complex domain Gh(λ0(t)) surrounds ℓ eigen-
values zh1 (t), . . . , z

h
ℓ (t) of Hh

θ0,V (t)−Wh(t)(θ0) and its distance to the spectrum remains uniformly

bounded from below

min
t∈[0,T ]

d(Gh(λ0(t)), σ(Hθ0,V (t)−Wh(t)(θ0))) ≥
1

Ca,b,c
hN0 .

The spectral projection associated with the cluster of eigenvalues
{
zh1 , . . . , z

h
ℓ

}
is given by

P0(t) =
1

2iπ

∫

Γh(t)

(z −Hθ0,V (t)−Wh(t)(θ0))
−1 dz , (7.6)

where Γh(t) is a contour contained in Gh(λ
0(t)) .

When K ≥ 1, the parallel transport Φ0(t, s), t, s ∈ [0, T ], associated with (P0(t))t∈[0,T ] is given by

{
∂tΦ0 + [P0, ∂tP0] Φ0 = 0
Φ0(t = s, s) = Id ,

(7.7)

is well defined and satisfies

∀s, t ∈ [0, T ] , P0(t)Φ0(t, s) = Φ0(t, s)P0(s) .

The time-scale is given by the parameter

ε = e−
τ
h , with τ > 0 fixed.

When the assumed regularity is large enough, K ≥ 2, Proposition 3.7-d). the Cauchy problem

{
iε∂tu = Hh

θ0,V (t)−Wh(t)(θ0)u , t ≥ s ,

u(t = s) = us
(7.8)

defines a dynamical system Uε(t, s), 0 ≤ s ≤ t ≤ T , of contractions on L2(R) .

Theorem 7.1. Assume (7.2)(7.4)(7.3)(7.5) with K ≥ 2 and take θ0 = ihN0, N0 > 1 , ε = e−
τ
h ,

τ > 0 . Let P0(t) be the spectral projection (7.6), let r belong to C0([0, T ];L2(R)) and let rs belong
to L2(R). For s ∈ [0, T ] take an initial data us ∈ L2(R) such that P0(s)us = us.
Then the solutions uh and vh to the Cauchy problems

{
iε∂tu

h = Hh
θ0,V (t)−Wh(t)(θ0)u

h + r(t) , t ≥ s ,

uh(t = s) = us + rs
(7.9)

and {
iε∂tv

h = Φ0(s, t)P0(t)(H
h
θ0,V (t)−Wh(t)(θ0))P0(t)Φ0(t, s)v

h , t ≥ s

vh(t = s) = us ,

satisfy

max
t∈[s,T ]

‖uh(t)− Φ0(t, s)v
h(t)‖ ≤ Ca,b,c,τ,T,δ

[
ε1−δ‖us‖+ ‖rs‖+

1

ε
max
t∈[s,T ]

‖r(t)‖
]
. (7.10)

Remark 7.2. The estimate with the source term r(t) can be improved if P (t)r(t) = r(t) after
reconsidering the proof of Corollary B.2 in the Appendix (possibly with a higher order starting
approximation with K ≤ 2). Nevertheless the accuracy of the result may depend on the assumptions
for r(t). We prefer to postpone this kind of improvement to a subsequent work when hypotheses
for the source term are naturally introduced.
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Proof: a) When uh00(t) denotes the solution to (7.8) associated with rs = 0 and r ≡ 0, the
contraction property of Uε(t, s) implies

max
t∈[s,T ]

‖u(t)− u00(t)‖ ≤ ‖rs‖+
1

ε
max
t∈[s,T ]

‖r(t)‖ .

Hence, we can forget the remainder terms and simply prove the estimate (7.10) when rs = 0 and
r ≡ 0 .
b) We consider the operator Aε(t) = 1

i (Hθ0,V (t)−Wh(t)(θ0)−λ0(t)) and we notice that the domain

1

i
(Gh(λ

0(t)) − λ0(t)) =

{
1

i
(z − λ0(t)) , z ∈ Gh(λ0(t))

}

contains the contour

Γε =
1

i

{
Γh(t)− λ0(t)

}
,

which can be chosen independent of t ∈ [0, T ]. Then the projection P0(t) is nothing but

P0(t) =
1

2iπ

∫

Γε

(z −Aε(t))−1 dt .

Hence it suffices to verify the estimates of ∂kt (z −Aε(t))−1 for k ≤ K +1 and t ∈ [0, T ] in order to
apply Theorem B.1 and additionally the uniform boundedness of ‖P0(t)‖ and ‖∂tP0(t)‖ in order
to use its Corollary B.2.
Like in Appendix B, we use the notation g(ε) = Õ(εN ) in order to summarize

∀δ > 0, ∃Cg,δ > 0, |g(ε)| ≤ Cg,δε
N−δ .

For z ∈ Γε, the k-th derivative of (z −Aε(t))−1 has the form

∂kt (z −Aε(t))−1 =
∑

j1 + . . . jm = k
ji ≥ 1

cj1,...,jm(z −Aε)−1[∂j1t (−iV + iWh)](z −Aε)−1 . . .

. . . [∂jmt (−iV + iWh)](z −Aε)−1 ,

where the numbers cj1,...,jℓ are universal coefficients.
Remember

‖∂jtV (t)‖L(L2(R)) ≤
1

c
,

the support condition

∂jtW (t) = χ(x)
[
∂jtW (t)

]
χ(x)

with χ ∈ C∞
0 ((a, b)), which entails

‖∂jtW (t)‖L(H1
0 ((a,b));H

−1((a,b))) ≤
1

c
.

Hence the resolvent estimates of Proposition 6.5 imply

max
z∈Γε,k≤K+1,t∈[0,T ]

‖∂kt (z −Aε(t))−1‖ ≤ Ca,b,c

hk(N0+3)
= Õ(ε0) . (7.11)

Meanwhile the length |Γε| is bounded by O(1) and therefore the conclusions of Theorem B.1 are
valid.
Now comes the final points, which are the uniform boundedness of ‖P0(t)‖ and ‖∂tP0(t)‖, in order
to refer to the more accurate version of Corollary B.2.
c) For P0(t), we write

P0(t) =
1

2iπ

∫

Γε

(z −Aε(t))−1 dz =
1

2iπ

∫

Γh(t)

(z −Hθ0,V (t)−Wh(t)(θ0))
−1 dz ,
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and we use the formula (6.23) in the form

(Hh
θ0,V −Wh(θ0)− z)−1 − (Hh

D − z)−1 = e2θ0(−h2∆N
R\[a,b] − ze2θ0)−1

+ (Hh
θ0,V (θ0)− z)−1 − (Hh

ND,V (θ0)− z)−1 +RΥh(z) . (7.12)

The right-hand side is the sum of three holomorphic terms in the interior of Γh(t) and of an
exponentially small term according to (6.24). We obtain

P0(t) =
1

2iπ

∫

Γh(t)

(z −Hh
D)−1 dz +O(e−

S0
4h ) = Π0(t) +O(e−

S0
4h ) ,

where Π0(t) is the orthogonal spectral projector associated with
{
λh1 (t), . . . , λ

h
ℓ (t)

}
⊂ σ(Hh

D(t))
with norm ‖Π0(t)‖ ≤ 1 .
d) For ∂tP0(t), we use

∂t(z −Hθ0,V−Wh(θ0))
−1 = (z −Hθ0,V−Wh(θ0))

−1(∂tV − ∂tW
h)(z −Hθ0,V−Wh(θ0))

−1 .

From (7.12), we get

(Hθ0,V−Wh(θ0)− z)−11[a,b] − (Hh
D − z)−11[a,b]

= 0 + Υh(z, V )1[a,b] +RΥh(z)1[a,b]

=

4∑

i,j=1

3∑

k=2

(Bq(z, θ0, V )−A)
−1
ij Bjk

〈
γ(ek, z̄, θ̄0), ·

〉
L2(R)

γ(ei, z, θ0) +RΥh(z)1[a,b] ,

where the first term of the right-hand side is holomophic inside Γh(t) and the last term is exponen-
tially small according to (6.24) and (6.25). A symmetric writing holds for 1[a,b](z−Hθ0,V−Wh(θ0))

−1.
Hence the derivative ∂tP0(t) is the sum of several terms:

1

2iπ

∫

Γh(t)

(z −Hh
D)−1(∂tV − ∂tW

h)(z −Hh
D)−1 dz = ∂tΠ0(t)

=
1

2iπ

∫

|z−λ0(t)|=c/2

(z −Hh
D)−1(∂tV − ∂tW

h)(z −Hh
D)−1 dz , (7.13)

− 1

2iπ

∫

Γh(t)

Υh(z, V )1[a,b](∂tV − ∂tW
h)(z −Hh

D) dz

= −
ℓ∑

j′=1

Υh(λhj′ , V )(∂tV − ∂tW
h)|Φh

j′ 〉〈Φh
j′ | , (7.14)

− 1

2iπ

∫

Γh(t)

(z −Hθ0,V −Wh(θ0))
−1(∂tV − ∂tW

h)RΥh(z) dz , (7.15)

plus another term symmetric to (7.14).
The first one (7.13) is uniformly bounded because

• ‖(z − Hh
D)−1‖L(L2) is uniformly bounded when |z − λ0(t)| = c

2 according to Hypothe-

sis (7.4)(7.5) with ‖∂tV ‖L∞ + ‖∂tWh
1 ‖L∞ ≤ 1

c ,

• ‖(z − Hh
D)−1‖L(L2,H1,h

0 ) is uniformly bounded when |z − λ0(t)| = c
2 according to (7.4)(7.5)

and (A.1) in Lemma A.2 with ‖∂tWh
2 ‖Mb

≤ h
c .

The last one (7.15) is O(e−
S0
8h ) owing to (6.24)(6.25) for RΨh(z) and owing to (6.21)(6.22) for

(z −Hθ0,V−Wh(θ0))
−1 .

For the middle term (7.14) and its symmetric counterpart, first consider for k = 2, 3 and j′ ∈
{1, . . . ℓ}

〈γ(ek, z̄, θ̄0) , (∂tV − ∂tW
h)Φh

j′ 〉 = ± 1

h2
〈ũk , (∂tV − ∂tW

h)Φh
j′〉 ,
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where ũ2 and ũ3 are recalled in Lemma 6.4. The exponential decay estimates for ũ2,3 stated in
(6.13)(6.14) and the one for Φh

j′ stated in Proposition 4.1-ii) combined with ‖∂t(V −Wh)‖Mb
≤ 1

c

imply that the scalar product is smaller than e−
S0
2h . Since the other factors of (7.14) are bounded

by Ch or C
hN0

, we conclude (7.14) and its symmetric counterpart are smaller than e−
S0
4h .

A Parameter dependent elliptic estimates on the interval

[a, b]

We gather here elementary h-dependent estimates for the elliptic operator −h2∆+V on the interval
(a, b) .

A.1 Dirichlet problem

It is convenient to use the h-dependent Hk-norms

‖u‖2Hk,h =
∑

α≤k

‖(h∂x)αu‖2L2 ,

for k ∈ N. The estimates with the standard Hk, k ∈ N, can be recovered after

‖u‖Hk ≤ 1

hk
‖u‖Hk,h .

For k = −1, the h-dependent norm on H−1((a, b)) =
[
H1

0 ((a, b))
]′

is

‖f‖H−1,h((a,b)) = sup
u∈H1

0 ((a,b))

|〈f , u〉|
‖u‖H1,h((a,b))

,

with now ‖f‖H−1,h((a,b)) ≤ 1
h‖f‖H−1((a,b)) . We will note H1,h

0 ((a, b)) the space H1
0 ((a, b)) equipped

with the H1,h norm.

Lemma A.1. There exists a constant C > 0 such that

∀u ∈ C∞([0, h]) , |u(0)| ≤ C

h1/2
‖u‖H1,h((0,h)), resp. |u′(0)| ≤ C

h3/2
‖u‖H2,h((0,h)) ,

and the inequality extends to H1((0, h)) (resp. H2((0, h))) .

Proof: The second estimate is simply a consequence of the first one after replacing u with hu′.
The first estimate is simply the usual estimate |v(0)| ≤ C‖v‖H1((0,1)) applied with v(x) = u(hx) .

Lemma A.2. Let V1 ∈ L∞((a, b)) and V2 ∈ Mb((a, b)) be real valued with suppV2 ⊂⊂ (a, b) and

‖V1‖L∞ ≤ 1

c
, ‖V2‖Mb

≤ h

c
.

Then the Dirichlet Hamiltonian Hh
D = −h2∆+ V1 + V2 defined with the form domain H1

0 ((a, b)),
satisfies the resolvent estimate

∀z 6∈ σ(Hh
D) , ‖(Hh

D − z)−1‖L(H−1,h((a,b));H1,h
0 ((a,b))) ≤ Ca,b,c [1 + |z|]2

(
1 +

1

d(z, σ(Hh
D))

)
.

(A.1)
When f ∈ L2((a, b)) and z 6∈ σ(Hh

D) the traces u′(a) and u′(b) of u = (Hh
D−z)−1f are well defined

with

|u′(a)|+ |u′(b)| ≤
C′

a,b,c [1 + |z|]2

h5/2

(
1 +

1

d(z, σ(Hh
D))

)
‖f‖L2 . (A.2)

49



Proof: From the Gagliardo-Nirenberg estimate |u(x)|2 ≤ Ca,b

h ‖hu′‖L2‖u‖L2 with ‖V2‖Mb
≤ h

c ,
the term 〈u , V2u〉 in the variational formulation is bounded by

|〈u , V2u〉| ≤
Ca,b

c
‖hu′‖L2‖u‖L2 ≤ 1

2
‖hu′‖2L2 +

C2
a,b

2c2
‖u‖2L2 .

With

∀u ∈ H1
0 ((a, b)) , 〈u ,Hh

Du〉+ C‖u‖2L2 ≥ 1

2
‖hu′‖2L2 +

(
C − ‖V1‖L∞ −

C2
a,b

2c2

)
‖u‖2L2 ,

the operator Hh
D +C is bounded from below by −h2

2 ∆D + C
2 when C ≥ 2

c +
C2

a,b

c2 ≥ ‖V1‖L∞ +
C2

a,b

c2 .
Lax-Milgram theorem then says

‖(Hh
D + C)−1f‖H1,h

0 ((a,b)) ≤ Ca,b,c‖f‖H−1,h((a,b)) .

From the iterated first resolvent formula,

(Hh
D − z)−1 = (Hh

D +C)−1 + (C + z)(Hh
D +C)−2 + (C + z)2(Hh

D +C)−1(Hh
D − z)−1(Hh

D +C)−1 ,

we deduce (A.1).

It contains also the estimate ‖(Hh
D + C)−1‖L(L2((a,b));H1,h

0 ((a,b))) ≤
Ca,b,c

h and with

(Hh
D − z)−1 = (Hh

D + C)−1 + (C + z)(Hh
D + C)−1(Hh

D − z)−1 ,

this yields

‖(Hh
D − z)−1‖L(L2((a,b));H1,h

0 ((a,b))) ≤
Ca,b,c [1 + |z|]

h

(
1 +

1

d(z, σ(Hh
D))

)
.

When u = (Hh
D − z)−1f with f ∈ L2((a, b)), writing the equation in [a, a+ h] and [b− h, b] in the

form −h2u′′ = f − (V1 − z)u implies

‖u‖H2,h((a,a+h)∪(b−h,b)) ≤
Ca,bc[1 + |z|]2

h

(
1 +

1

d(z, σ(Hh
D))

)
‖f‖L2 .

Lemma A.1 is applied to u(a+ .) and u(b− .) in order to get (A.2).

A.2 Agmon estimate

The next estimate is the usual energy estimate with exponential weights (see [2][28]) .

Lemma A.3. Let (α, β) be an open interval, V ∈ L∞((α, β)), z ∈ C and ϕ ∈ W 1,∞((α, β);R) .
Denote by P the Schrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H1((α, β))
such that u′′1 is a bounded measure in (α, β) and locally L2 around α and β, the identity

∫ β

α

ū2e
2ϕ

h (P − z)u1dx =

∫ β

α

hv′2hv
′
1dx+

∫ β

α

(V − z − ϕ′2)v̄2v1dx

+

∫ β

α

hϕ′(v̄2v
′
1 − v̄′2v1)dx

+h2
(
e2

ϕ(α)
h ū2u

′
1(α)− e2

ϕ(β)
h ū2u

′
1(β)

)
(A.3)

holds by setting vj := eϕ/huj for j = 1, 2 .

This identity is obtained after conjugation of hd/dx by eϕ/h and integration by parts. The
weak regularity assumptions can be checked after regularizing individually u1, u2, ϕ or V . In [46]
it was even considered with possible jumps of the derivative u′1 at α and β, which are here removed
by the simplifying condition that u1 is locally H2 around α and β (Jump conditions already occur
at the ends of our intervals).
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B Variation on adiabatic evolutions.

We shall consider a family of contraction semigroup generators (Aε(s))s∈[0,+∞) which fulfill the
two next properties.

• The Cauchy problem {
iε∂tut = iAε(t)ut
ut=0 = u0

(B.1)

admits a unique strong solution with ut ∈ D(Aε(t)) for all t ≥ 0 as soon as u0 ∈ D(Aε(0)).
The corresponding dynamical system of contractions is denoted (Sε(t, s))t≥s with the prop-
erty Sε(t, s)D(Aε(s)) ⊂ D(Aε(t)) .

• The resolvent (z − iAε(s))−1 defines CK+1([0,+∞);L(H)) function for some z ∈ C and that
the exists a contour Γε ⊂ C independent of s ∈ [0, T ], such that

|Γε|+ max
z∈Γε,s∈[0,T ]

‖∂ks (z −Aε(s))−1‖ ≤ ak,δ
εδ

,

for any k ∈ {0, . . . ,K + 1}, K ∈ N, any δ ∈ (0, δ0) and any ε ∈ (0, ε0) .

Notation: We shall use the notation g(ε) = Õ(εN ) for any N ∈ Z in order to summarize

∀δ > 0, ∃Cg,δ > 0, |g(ε)| ≤ Cg,δε
N−δ .

For example, the previous assumption can be written

|Γε| = Õ(ε0) and max
k≤K+1,z∈Γε,s∈[0,T ]

‖∂ks (z −Aε(s))−1‖ = Õ(ε0) . (B.2)

The spectral projection P0(t) = E0(t) is defined as a contour integral along Γε of the resolvent
(z − Aε(t))−1 . Correction terms Ej(t), 1 ≤ j ≤ K are then constructed by induction. The finite
sequence (Eε

j )0≤j≤K is defined according to

Eε
0(s) = P ε

0 (s) =
1

2iπ

∫

Γε

(z −Aε(s))−1 dz , Qε
0(s) = 1− P ε

0 (s) , (B.3)

Sε
j (s) =

j−1∑

m=1

Eε
m(s)Eε

j−m(s) , if 2 ≤ j ≤ K , Sε
0 = Sε

1 = 0 , (B.4)

Eε
j (s) =

i

2π

∫

Γε

Rε
{
Qε

0(s)∂sE
ε
j−1(s)P

ε
0 (s)− P ε

0 (s)∂sE
ε
j−1(s)Q

ε
0(s)

}
Rε dz (B.5)

+Sε
j (s)− 2P ε

0 (s)S
ε
j (s)P

ε
0 (s) , with R

ε = (z −Aε(s))−1 . (B.6)

Theorem B.1. There exists a C1-projection valued function (P ε(s))s≥0 such that the relations
and estimates

P ε(s)P ε(s) = P ε(s) , P ε(s) ∈ L(H, D(Aε(s))) , (B.7)

P ε(s) =

K∑

j=0

εjEε
j (s) + Õ(εK+1) with Eε

j (s) = Õ(ε0) in L(H) , (B.8)

P ε(s)Aε(s) = Õ(ε0) and Aε(s)P ε(s) = Õ(ε0) in L(H) , (B.9)

iε∂sP
ε(s)− [iAε(s), P ε(s)] = Õ(εK+1) in L(H) , (B.10)

hold with uniform constants with respect to s, t ∈ [0, T ] for any fixed T < +∞ . Moreover for
K ≥ 1, if us = P ε(s)us then uε(t) = Sε(t, s)us satisfies

sup
s≤t≤T

‖uε(t)− vε(t)‖ = Õ(εK) , (B.11)

with vε(t) = P ε(t)vε(t) , (B.12)

and

{
iε∂tv

ε − iε(∂tP
ε(t))vε = P ε(t)(iAε(t))P ε(t)vε , for t ≥ s ,

vε(t = s) = us .
(B.13)
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The proof of this theorem follows the lines of [43].For the sake of completeness, we check that the
computations are still valid in the non self-adjoint unbounded case (bounded self-adjoint generators

have been considered in [44] [55]) and that the Õ(ε0) estimates can be propagated in the induction
process like the uniform constants in [43]. Part of the analysis could be pushed further in the spirit
of [35] in order to get O(e−

c
ε ) error under analyticity assumptions but the techniques developed by

A. Joye in this article should be adapted in order to work with a ε-dependent gap or with Õ(ε0)
resolvent estimates, maybe by including all the additional information provided by our model.

As it is stated, the previous result cannot be used for K = 0 and is not formulated as usual
with a reduced evolution on the fixed space RanP ε(s) after introducing the parallel transport
associated with the C1 family (P ε(t))t≥s . Actually both problems can be solved at the first order
with an additional uniform boundedness assumption on Eε

0(t) and ∂tE
ε
0(t) . This will be obtained

as a corollary of Theorem B.1, used with K = 1 before reconsidering the case K = 0. The parallel
transport Φε

0(t
′, s′), associated with (Eε

0(t))t∈[0,T ], is defined for t′, s′ ∈ [0, T ] by
{
∂t′Φ

ε
0 + [Eε

0 , ∂tE
ε
0 ] Φ

ε
0 = 0

Φε
0(t

′ = s′, s′) = Id ,
(B.14)

and the uniform boundedness of Φε
0(t

′, s′) is inherited from the one of Eε
0(t) and ∂tE

ε
0(t) .

Corollary B.2. With the hypotheses of Theorem B.1 with K ≥ 1, assume additionally that the
projector Eε

0(s) defined in (B.3) and its derivative ∂sE
ε
0(s) are uniformly bounded continuous func-

tions:
∃C > 0 , ∀ε ∈ (0, ε0) , max

s∈[0,T ]
‖Eε

0(s)‖+ ‖∂sEε
0(s)‖ ≤ C .

Then for K ≥ 1 and when us = Eε
0(s)us, the solution uε(t) = Sε(t, s)us to (B.1) satisfies

sup
s≤t≤T

‖uε(t)− Φε
0(t, s)w

ε(t)‖ = Õ(ε)‖us‖ , (B.15)

where Φε
0(t

′, s′) is the parallel transport defined for t′, s′ ∈ [0, T ] by (B.14) and wε ∈ Eε
0(s)H solves

the Cauchy problem
{
iε∂tw

ε = Φε
0(s, t)E

ε
0(t)(iA

ε(t))Eε
0(t)Φ

ε
0(t, s)w

ε = Eε
0(s)Φ

ε
0(s, t)(iA

ε(t))Φε
0(t, s)E

ε
0(s)w

ε

wε(t = s) = us .

Theorem B.1 and Corollary B.2 are proved in several steps. We start with uniform estimates
for the Ej ’s.

Proposition B.3. For all j ∈ {0, . . . ,K}, and any T ∈ R+, the L(H)-valued functions Eε
j and

Sε
j satisfy:

K+1−j∑

k=0

‖∂ksEε
j (s)‖+ ‖∂ksSε

j (s)‖ = Õ(ε0) , Ej(s) ∈ L(H, D(Aε(s))) , (B.16)

Aε(s)Ej(s) = Õ(ε0) and Ej(s)A
ε(s) = Õ(ε0) in L(H) , (B.17)

Eε
j (s) =

j∑

m=0

Eε
m(s)Eε

j−m(s) =
if j≥1

Sε
j (s) + Eε

0(s)E
ε
j (s) + Eε

j (s)E
ε
0(s) , (B.18)

i∂sE
ε
j−1(s) =

[
iAε(s), Eε

j (s)
]
, for j ≥ 1 , (B.19)

with uniform constants w.r.t. s ∈ [0, T ] .

Proof: The first statement for j = 0 is a consequence of the definition (B.3) of Eε
0(s) = P ε

0 (s)
combined with the estimates (B.2) of ∂ks (z − iAε(s))−1 . By induction assume that the properties
are satisfied for j ≤ J < K. The definition (B.4) of Sε

J+1 and (B.5) of Eε
J+1 provide directly the

first statement (B.16) for j = J + 1 . The second statement of (B.16) and the estimates (B.17)
rely on the bound of the

∫
Γε
-term which is obtained after noticing

Aε(s)Rε = −1 +
z

(z −Aε(s))
= RεAε(s) (B.20)
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and the bound of the two other terms which is deduced from the induction assumption for j ≤ J .
Compute the commutator [iAε(s), Sε

J+1(s)]:

[
iAε, Sε

J+1

]
=

J∑

m=1

(Eε
m

[
iAε, Eε

J+1−m

]
+ [iAε, Eε

m]Eε
J+1−m) ,

=

J∑

m=1

Eε
m(i∂sE

ε
J−m) + (i∂sE

ε
m−1)E

ε
J+1−m , owing to (B.19) with j ≤ J ,

= i∂sE
ε
J − Eε

0(i∂sE
ε
J )− (i∂sE

ε
J)E

ε
0 , owing to (B.18) with j ≤ J ,

= −i (P ε
0 (∂sE

ε
J )P

ε
0 −Qε

0(∂sE
ε
J)Q

ε
0) , owing to Eε

0 = P ε
0 = 1−Qε

0 .

With P ε
0P

ε
0 = P ε

0 and P ε
0Q

ε
0 = Qε

0P
ε
0 = 0, this implies

[
iAε, P ε

0S
ε
J+1P

ε
0

]
= −iP ε

0 (∂sE
ε
J)P

ε
0 , (B.21)

[
iAε, Qε

0S
ε
J+1Q

ε
0

]
= iQε

0(∂sE
ε
J )Q

ε
0 , (B.22)

[
iAε, P ε

0S
ε
J+1Q

ε
0

]
=
[
iAε, Qε

0S
ε
J+1P

ε
0

]
= 0 . (B.23)

The definition of P ε
0 as a spectral projection associated with iAε and (B.23), imply (see for example

[43] Proposition 1)
P ε
0S

ε
J+1Q

ε
0 = Qε

0S
ε
J+1P

ε
0 = 0 .

Meanwhile the definition (B.5) of Eε
J+1 for j = J + 1 implies

P ε
0E

ε
J+1P

ε
0 = −P ε

0S
ε
J+1P

ε
0 , Qε

0E
ε
J+1Q

ε
0 = Qε

0S
ε
J+1Q

ε
0 .

This yields the relation (B.18) for j = J + 1. Another consequence with (B.21) and (B.22) is

[
iAε, P ε

0E
ε
J+1P

ε
0 +Qε

0E
ε
J+1Q

ε
0

]
= P ε

0 (i∂sE
ε
J )P

ε
0 +Qε

0(i∂E
ε
J)Q

ε
0 . (B.24)

Finally compute the off-diagonal blocks P ε
0 [iA

ε, Eε
J+1]Q

ε
0 and Qε

0[iA
ε, Eε

J+1]P
ε
0 by using again the

definition (B.5) of Eε
J+1, the relation (B.23), and the identity (B.20):

[
iAε, P ε

0E
ε
J+1Q

ε
0

]
= P ε

0

[
iAε, Eε

J+1

]
Qε

0 = iP ε
0 (∂sE

ε
J )Q

ε
0 ,[

iAε, Qε
0E

ε
J+1P

ε
0

]
= iQε

0(∂sE
ε
J )P

ε
0 .

Summing these last two equalities with (B.24) yields the relation (B.19) for j = J + 1 .
The above calculations are essentially the same as in [43][44] and, as a consequence of Proposition
B.3, the sum

Tε(s) =

K∑

j=0

εjEε
j (s) (B.25)

solves (B.7), (B.9) and (B.10) in the sense of asymptotic expensions; in particular:

T 2
ε = Tε + Õ(εK+1) (B.26)

Here comes the main difference which is necessary because no better estimate than ‖P ε
0 ‖ = Õ(ε0)

can be expected in our non self-adjoint case. We will need the next lemma.

Lemma B.4. Assume that T ∈ L(H) satisfies ‖T 2 − T ‖ ≤ δ < 1/4 and ‖T ‖ ≤ C then

σ(T ) ⊂ {z ∈ C , |z(z − 1)| ≤ δ} ⊂ {z ∈ C , |z| ≤ cδ} ∪ {z ∈ C , |z − 1| ≤ cδ} , cδ <
1

2
,

max

{
‖(z − T )−1‖, |z − 1| = 1

2

}
≤ 2

2C + 1

1− 4δ
,

‖T − P‖ ≤ 2
2C + 1

1− 4δ
δ , with P =

1

2iπ

∫

|z−1|=1/2

(z − T )−1 dz .
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Proof: If z ∈ σ(T ) then z(z − 1) belongs to σ(T (T − 1)) ⊂
{
z ∈ C, |z(z − 1)| ≤ 1

4

}
(Remember

that |z(z − 1)| = 1
4 means |Z − 1

4 | = 1
4 with Z = (z − 1

2 )
2). Consider z ∈ C such that |z − 1| = 1

2 ,
then the relation

(T − z)(T − (1− z)) = z(1− z) + (T 2 − T ) ,

with |z(1− z)| ≥ 1
4 and ‖T 2 − T ‖ ≤ δ < 1

4 , implies

‖(T − z)−1‖ ≤ ‖T − (1 − z)‖‖[z(1− z) + T 2 − T ]−1‖ ≤ C + 1
2

1
4 − δ

for |z − 1| = 1

2
.

The symmetry with respect to z = 1
2 due to (1− T )(1− T )− (1 − T ) = T 2 − T implies also

‖(T − z)−1‖ ≤ C + 1
2

1
4 − δ

for |z| = 1

2
.

Compute

T − P =
1

2iπ

∫

|z−1|= 1
2

[
T (z − 1)−1 − (z − T )−1

]
dz

= (T − 1)P + (T 2 − T )A1 with A1 =
1

2iπ

∫

|z−1|= 1
2

(T − z)−1(1− z)−1 dz .

In particular this implies to T (1 − P ) = (T 2 − T )A1 while replacing T with (1 − T ) and P with
1− P leads to

P − T = −T (1− P ) + (T 2 − T )A0 with A0 =
1

2iπ

∫

|z|= 1
2

(T − z)−1z−1 dz .

We finally obtain

T − P = (T 2 − T )(A1 −A0) = (A1 −A0)(T
2 − T ) (B.27)

and ‖T − P‖ ≤ ‖T 2 − T ‖ [‖A1‖+ ‖A0‖] ≤ δ × C + 1/2
1
4 − δ

.

Proposition B.5. Consider the approximate projection Tε(s) defined in (B.25), then there exists
a projection P ε(s) such that

‖P ε(s)− Tε(s)‖ = Õ(εK+1) , P ε(s) ∈ L(H, D(Aε(s))) , (B.28)

‖Aε(s)P ε(s)‖ = Õ(ε0) and ‖P ε(s)Aε(s)‖ = Õ(ε0) , (B.29)

iε∂sP
ε(s) = [iAε(s), P ε(s)] + Õ(εK+1) , in L(H) . (B.30)

Proof: For ε > 0 small enough, set

P ε(s) =
1

2iπ

∫

|z−1|= 1
2

(z − Tε(s))
−1 dz .

Owing to (B.26), the first statement of (B.28) is a straightforward application of Lemma B.4. The
definition of Tε(s) implies Aε(s)Tε(s) ∈ L(H) and Tε(s)A

ε(s) ∈ L(H). The relation (B.27) with
T = Tε and P = P ε gives (B.29) . Computing the derivative ∂sP

ε(s) with Tε ∈ C1([0, T ];L(H))
gives:

iε∂sP
ε =

1

2iπ

∫

|z−1|= 1
2

(z − Tε)
−1(iε∂sTε)(z − Tε)

−1 dz

=
1

2iπ

∫

|z−1|= 1
2

(z − Tε)
−1 [iAε, Tε] (z − Tε)

−1 dz

+
iεK+1

2iπ

∫

|z−1|= 1
2

(z − Tε)
−1(∂sE

ε
K)(z − Tε)

−1 dz .
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The relation [
iAε, (z − Tε)

−1
]
= (z − Tε)

−1 [iAε, Tε] (z − Tε)
−1

allows to conclude

iε∂sP
ε − [iAε, P ε] =

iεK+1

2iπ

∫

|z−1|= 1
2

(z − Tε)
−1(∂sE

ε
K)(z − Tε)

−1 dz = Õ(εK+1) .

Proof of Theorem B.1: The statements (B.7)(B.8) and (B.10) have already been checked in
Proposition B.3 and Proposition B.5. Consider now the adiabatic evolution of S(t, s)us, when
us = P ε(s)us, stated in (B.11)(B.12)(B.13).
We assumed that the Cauchy problem (B.1) defines a strongly continuous dynamical system
(Sε(t, s))t≥s≥0 of contractions in H with Sε(t, s)D(Aε(s)) ⊂ D(Aε(t)). We now consider the
modified operator

Hε
AD(t) = iAε(t) +Bε(t) ,

with Bε(t) = (1− 2P ε(t)) (iε∂tP
ε(t)− [iAε(t), P ε(t)]) .

Since Bε(s) is an Õ(εK+1) bounded continuous perturbation of iAε(s), the Cauchy problem
{
iε∂tut = (iAε(t)−Bε(t))ut
ut=s = us ,

defines a strongly continuous dynamical system of bounded operators

Sε
AD(t, s) = Sε(t, s)− iε−1

∫ t

s

Sε(t, s′)(−Bε(s′))Sε
AD(s′, s) ds′ .

With the help of Gronwall lemma, it satisfies

‖Sε
AD(t, s)‖ ≤ eε

−1
∫ t
s
‖Bε(s′)‖ ds′ ≤ eCδ,T εK−δ(t−s)

‖Sε(t, s)− Sε
AD(t, s)‖ ≤ Cδ,T ε

K−δ(t− s)eCδ,T εK−δ(t−s) ,

for all s, t, 0 ≤ s ≤ t ≤ T , with δ ∈ (0, 1). Note that the right-hand side is bounded when

K ≥ 1 .

For the comparison (B.11) we take simply vε(t) = Sε
AD(t, s)us. It remains to check (B.12) and

(B.13). First notice the identity

Hε
AD(t) = P ε(t)(iAε(t))P ε(t) + (1− P ε(t))(iAε(t))(1 − P ε(t)) (B.31)

−iε [P ε(t)∂tP
ε(t) + (1− P ε(t))∂t(1 − P ε(t))] .

For our choice vε(t) = Sε
AD(t, s)us the quantity P ε(t)(iε∂tv

ε(t)) equals P ε(t)(iAε(t) +Bε(t))vε(t)
since P ε(t)Aε = Aε(t)P ε(t)− [Aε(t), P ε(t)] ∈ L(H) . Hence P ε(t)vε(t) satisfies in the strong sense
the equation

(iε∂t −Hε
AD(t))(P εvε) = iε(∂tP

ε)vε + P ε(Hε
AD(t)vε)−Hε

AD(t)P ε(t)vε

= iε [(∂tP
ε)− P ε(∂tP

ε)− (∂tP
ε)P ε] vε(t) = 0 .

As a strong solution to i∂tv = Hε
AD(t)v(t) with the initial data P ε(s)us = us, P

ε(t)vε(t) has to be
equal to vε(t) . We have proved (B.12). The equation (B.13) is a rewriting of iε∂tv

ε−HAD(t)vε = 0
after recalling Π(∂Π)Π = 0 when Π2 = Π .
Proof of Corollary B.2: Theorem B.1 applied with K = 1 gives the approximation vε(t) =
P ε(t)vε(t), P ε(t) = Eε

0(t) + εEε
1(t) + Õ(ε2), which solves

{
iε∂tv

ε − iε(∂tP
ε(t))vε = P ε(t)(iAε(t))P ε(t)vε , for t ≥ s ,

vε(t = s) = us .
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The relations P ε = Eε
0 + εEε

1 + Õ(ε2), [Aε, Eε
0 ] = 0 and Eε

0E
ε
1E

ε
0 = 0 combined with the estimates

(B.17) and (B.29) lead to:

P ε(t)(iAε(t))P ε(t) = Eε
0(t)(iA

ε(t))Eε
0(t) + εEε

1(t)(iA
ε(t))Eε

0(t) + ε(iAε(t))Eε
0(t)E

ε
1(t) + Õ(ε2) .

Then Proposition B.3 provide

iε∂tP
ε(t) = iε∂tE

ε
0(t) + Õ(ε2) .

This implies

iε∂tv
ε − iε(∂tE

ε
0(t))v

ε = Eε
0(t)(iA

ε(t))Eε
0(t)v

ε + εEε
1(t)(iA

ε(t)Eε
0(t))v

ε + Õ(ε2) , (B.32)

where we used Eε
0v

ε = vε + Õ(ε). Consider now the adiabatic generator

Hε
0(t) = iAε(t) +Bε

0(t) ,

with Bε
0(t) = (1− 2Eε

0(t)) (iε∂tE
ε
0(t)− [iAε(t), Eε

0(t)]) = iε(1− 2Eε
0(t))∂tE

ε
0(t) .

The assumed estimates on E0 and ∂tE0 with the Gronwall Lemma lead to the uniform bound for
the associated dynamical system Sε

0(t, s):

∀s, t, 0 ≤ s ≤ t ≤ T, ‖Sε
0(t, s)‖ ≤ CT e

CT ,

while the formula (B.31) is valid for Hε
0(t) after replacing P

ε(t) with Eε
0(t):

Hε
0(t) = Eε

0(t)(iA
ε(t))Eε

0(t) + (1− Eε
0(t))(iA

ε(t))(1 − Eε
0(t))

− iε [Eε
0(t)∂tE

ε
0(t) + (1− Eε

0(t))∂t(1− Eε
0(t))] .

Now compute

(iε∂t −Hε
0(t))(E

ε
0v

ε) = iε(∂tE
ε
0)v

ε + Eε
0(iε∂tv

ε)−Hε
0(t)E0(t)v

ε .

With (B.32) and Eε
0E

ε
1E

ε
0 = 0, one gets

(iε∂t −Hε
0(t))(E

ε
0v

ε) = −iε [(∂tEε
0)− Eε

0(∂tE
ε
0)− (∂tE

ε
0)E

ε
0 ] v

ε(t) + Õ(ε2) = Õ(ε2) .

The uniform estimate ‖Sε
0(t, s)‖ ≤ CT e

CT implies

‖uε(t)− Sε
0(t, s)us‖ ≤ ‖uε(t)− vε(t)‖ + ‖εEε

1(t)v
ε(t)‖ + ‖Eε

0(t)v
ε − Sε

0(t, s)us‖ = Õ(ε) .

The same argument as in the end of the proof of Theorem B.1 says that vε0(t) = Sε
0(t, s)us with

Eε
0(s)us = us satisfies

∀t ∈ [s, T ] , Eε
0(t)v

ε
0(t) = vε0(t)

and solves the Cauchy problem
{
iε∂tv

ε
0 − iε(∂tE

ε
0(t))v

ε
0(t) = Eε

0(t)(iA
ε(t))E0(t)v

ε
0(t) ,

vε0(t = s) = us .

The uniform boundedness of Eε
0(t) and ∂tE

ε
0(t) ensures that the solution to (B.14) is well defined

for t′, s′ ∈ [0, T ] with the uniform estimate

∀t′, s′ ∈ [0, T ] , ‖Φε
0(t

′, s′)‖ ≤ C′
T ,

with the parallel transport property

∀t′, s′ ∈ [0, T ] , Φε
0(t

′, s′)Eε
0(s

′) = Eε
0(t

′)Φε
0(t

′, s′) , [Φε
0(t

′, s′)]−1 = Φε
0(s

′, t′) .

It suffices to take wε(t) = Φε
0(s, t)S

ε
0(t, s)us .
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