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ABSTRACT

This paper shows the applicability of recently–developed

Gaussian nonlinear filters to sensor data fusion for po-

sitioning purposes. After providing a brief review of

Bayesian nonlinear filtering, we specially address square–

root, derivative–free algorithms based on the Gaussian as-

sumption and approximation rules for numerical integration,

namely the Gauss–Hermite quadrature rule and the cubature

rule. Then, we propose a motion model based on the ob-

servations taken by an Inertial Measurement Unit, that takes

into account its possibly biased behavior, and we show how

heterogeneous sensors (using time–delay or received–signal–

strength based ranging) can be combined in a recursive,

online Bayesian estimation scheme. These algorithms show a

dramatic performance improvement and better numerical sta-

bility when compared to typical nonlinear estimators such as

the Extended Kalman Filter or the Unscented Kalman Filter,

and require several orders of magnitude less computational

load when compared to Sequential Monte Carlo methods,

achieving a comparable degree of accuracy.

Index Terms— Bayesian estimation, Gauss–Hermite

quadrature, cubature rules, nonlinear filtering, square–root

filters, sensor data fusion, positioning.

I. INTRODUCTION TO BAYESIAN FILTERING

The problem under study, concerns the derivation of effi-

cient methods for online estimation and prediction (filtering),

of the time-varying unknown state of a system (state could

refer to position, velocity, attitude and so on), along with

the continuous flow of information (observations) from the

system. A positioning system, is nonlinear and dynamic by

nature, and thus the objective is to recursively compute esti-

mates of states at time index k, xk ∈ χ, given measurements

y1:k ∈ Y and measured inputs uk ∈ U , where χ, Y and U

This work has been partially supported by the Spanish Science and Tech-
nology Commission: CENIT2007-2002 (TIMI) and TEC2008-02685/TEC
(NARRA), and by the European Commission in the framework of the COST
Action IC0803 (RFCSET) and the FP7 Network of Excellence in Wireless
COMmunications NEWCOM++ (contract n. 216715).

are their respective supports, not necessarily with the same

dimension. State equation models the evolution of target

states (on which measurements depend on), as a discrete–

time stochastic model. Following a first-order Markov chain

approach, this can be modeled by

xk = fk−1(xk−1,uk−1,vk−1), (1)

where fk−1 is a known, possibly nonlinear, function of the

state xk, and vk−1 is referred to as process noise, which

gathers any mismodeling effect or disturbances in the state

characterization. The relation between the measurements and

the state is modeled by

yk = hk(xk,uk,nk) (2)

where hk is a known, possibly nonlinear, function and nk

is referred to as measurement noise. The combination of (1)

and (2) leads to a Markov chain whose state is not directly

observable but indirectly inferred through measurements,

an approach known as Hidden Markov Model. A generic

recursive Bayesian filter is depicted in Algorithm 1, where

E {·} stands for the statistical expectation operator. The state

transition density p(xk|xk−1,uk−1) is given by (1), and the

old posterior density at time k− 1, p(xk−1|y1:k−1,u1:k−1),
is obtained in the previous update step. From (5) to (6)

we have used p(xk|yk−1,uk−1,uk) = p(xk|yk−1,uk−1),
which is equivalent to state that the input uk can be inferred

using x̂k|k−1. This allows the recursive relationship, since

this a priori density is computed in the prediction step. The

likelihood function p(yk|xk,uk) is given by (2).

In this paper, we present the nonlinear Bayesian estimation

problem, and we summarize the recently-developed Sigma-

Point methods: the Quadrature Kalman Filter (QKF) [1]

and the Cubature Kalman Filter (CKF) [2]. We propose a

motion model, following a new approach, which includes

the biases introduced by the Inertial Measurement Unit, into

the state. We consider two different measurement models

and we combine them into a nonlinear Bayesian filter. This

approach can be useful when having different types of

sensors for the same application. These methods, from the



best of our knowledge, has never been used for data fusion

for positioning.

II. GAUSSIAN NONLINEAR FILTERING

Algorithm 1 provides an estimation framework that is

optimal in the Bayesian sense1 and enjoys a recursive

structure, which is a desirable property for online estimation.

In the general case, however, this algorithm cannot be used

in practice because the multi–dimensional integrals involved

in (4) and (6) are intractable. For Markovian, nonlinear and

non–Gaussian state–space models, Sequential Monte Carlo

(SMC) methods [3] (also known as Particle Filters), provide

a framework to obtain numerical approximations of such

integrals by a stochastic sampling approach. This broad

suitability comes at the expense of a high computational

load, that makes this solution difficult to embed in digital

light processors or real–time applications.

An alternative to the SMC methods, to solve the nonlinear

filtering problem, are the so-called Sigma–Point Kalman fil-

ters (SPKF) [4], [2]. The key assumption here, is to consider

that both, process noise vk and measurement noise nk,

are independent random additive processes, with Gaussian

distribution. This leads to reckon the state transition density

p(xk|xk−1,uk−1) and the measurement likelihood function

p(yk|xk,uk) as Gaussian densities, which in turn reverts to a

Gaussian posterior density p(xk|y1:k,u1:k). If the state tran-

sition function f(·) and the measurement function h(·) are

both linear, this approach leads to the Kalman filter. In case

of dealing with slightly non-linear systems, we can resort to

the Extended Kalman Filter (based on the linearization of

these functions around the predicted and updated estimates),

but this approach fails when nonlinearities are moderate or

severe. As shown in [5], for an arbitrary non-linear system

and considering the Gaussian assumption, we can derive a

recursive algorithm by equating the Bayesian formulae with

respect to the first and second moments of the distributions,

that is, means and covariances of the conditional densities

involved. Since all the appearing multi–dimensional integrals

are of the form

I =

Z

χ

nonlinear function · Gaussian density · dx, (3)

the problem of Bayesian estimation under the Gaussian

assumption reduces to a numerical evaluation of such in-

tegrals. Possible ways to approximate the definite integral

of a function such as (3) are the Gauss–Hermite quadrature

rules [6] or the cubature rules [7]. These approaches are

based on a weighted sum of function values, at specified

(i.e., deterministic) points within the domain of integration,

as opposite to the stochastic sampling performed by SMC

1The characterization of the posterior distribution allows us to compute
the Minimum Mean–Squared Error (MMSE), the Maximum a Posteriori
(MAP) or the median of the posterior (Minimax) estimators, addressing
optimality in many senses.

Algorithm 1 Optimal recursive Bayesian filter structure

1: for k = 1 to ∞ do

2: Prediction: estimate the predicted state

x̂k|k−1 = E {xk|y1:k−1,u1:k−1}

=

Z

χ

xkp(xk|y1:k−1,u1:k−1)dxk

where:

p(xk|y1:k−1,u1:k−1)

=

Z

χ

p(xk,xk−1|y1:k−1,u1:k−1)dxk−1

=

Z

χ

p(xk|xk−1,uk−1)p(xk−1|y1:k−1,u1:k−1)dxk−1

(4)

3: Update: update the state estimation with the new measure-
ment and input at time k

x̂k|k = E {xk|y1:k,u1:k} =

Z

χ

xkp(xk|y1:k,u1:k)dxk

where, applying Bayes’ rule:

p(xk|y1:k,u1:k) = p(xk|yk,uk,y1:k−1,u1:k−1)

=
p(yk|xk,uk)p(xk|uk,y1:k−1,u1:k−1)

p(yk|uk,y1:k−1,u1:k−1)
(5)

=
p(yk|xk,uk)p(xk|y1:k−1,u1:k−1)

R

χ
p(yk|xk,uk)p(xk|y1:k−1,u1:k−1)dxk

(6)

4: end for

methods. A well known method within this family, is the

Unscented Kalman Filter (UKF) [8], that can be expressed

as a particular case of a quadrature rule if parameters are

tuned adequately [5].

A further refinement of these schemes comes from the

fact that, when we propagate the covariance matrix through

a nonlinear function, the filter should preserve the properties

of a covariance matrix, namely, its symmetry, and positive-

definiteness. In practice, however, due to lack of arithmetic

precision, numerical errors may lead to a loss of these

properties. To circumvent this problem, a square-root filter

is introduced to propagate the square root of the covariance

matrix instead of the covariance itself. Even more, it avoids

the inversion of the updated covariance matrix, entailing

additional computational saving. Although this idea is not

new [9], it has been recently applied to the UKF [10]

(although it does not guarantee positive definiteness of the

covariance matrix) and, more successfully, to the Square–

Root Quadrature Kalman Filter (SQKF)[11] and the Square–

Root Cubature Kalman Filter (SCKF) [2].

The resulting procedure is sketched in Algorithm 2, where

we present a general framework for square–root, derivative–

free nonlinear Bayesian filtering. In steps 8 and 17, S =
Tria (A) denotes a general triangularization algorithm (for

instance, the QR decomposition), where A ∈ R
p×q, p < q,



Algorithm 2 Square–root, derivative–free nonlinear Kalman

Filter

Require: y1:K , u0:K , x̂0, Σx,0 = Sx,0|0S
T
x,0|0, Σv,0, Σn,0.

Initialization:

1: Define sigma–points and weights {ξi, ωi}i=1,...,L by using
Algorithms 3, 4 or any other rule.

2: Set W = diag(
√

ωi)

Tracking:

3: for k = 1 to ∞ do

4: Time update:
5: Evaluate the sigma points:

xi,k−1|k−1 = Sx,k−1|k−1ξi + x̂k−1|k−1, i = 1, ..., L.

6: Evaluate the propagated sigma points:
x̃i,k|k−1 = f(xi,k−1|k−1,uk−1).

7: Estimate the predicted state:

x̂k|k−1 =
PL

i=1 ωix̃i,k|k−1.
8: Estimate the square–root factor of the predicted error co-

variance:

Sx,k|k−1 = Tria
“h

X̃k|k−1 SΣv,k−1

i”

, where:

SΣv,k−1
is a square–root factor of Σv,k−1 such that

Σv,k−1 = SΣv,k−1
ST

Σv,k−1
, and

X̃k|k−1 =
ˆ

x̃1,k|k−1 − x̂k|k−1 · · · x̃L,k|k−1 − x̂k|k−1

˜

W.

9: Measurement update:

10: Evaluate the sigma points:

xi,k|k−1 = Sx,k|k−1ξi + x̂k|k−1, i = 1, ..., L.
11: Evaluate the propagated sigma points:

ỹi,k|k−1 = h(xi,k|k−1,uk).
12: Estimate the predicted measurement:

ŷk|k−1 =
∑L

i=1 ωiỹi,k|k−1.

13: Estimate the square–root of the innovation covariance

matrix:

Sy,k|k−1 = Tria
([

Yk|k−1 SΣn,k

])

, where:

SΣn,k
denotes a square–root factor of Σn,k such that

Σn,k = SΣn,k
ST

Σn,k
, and

Yk|k−1 =
ˆ

ỹ1,k|k−1 − ŷk|k−1 · · · ỹL,k|k−1 − ŷk|k−1

˜

W.

14: Estimate the cross–covariance matrix

Σxy,k|k−1 = Xk|k−1Y
T
k|k−1, where:

Xk|k−1 =
ˆ

x1,k|k−1 − x̂k|k−1 · · · xL,k|k−1 − x̂k|k−1

˜

W.

15: Estimate the Kalman gain

Kk =
(

Σxy,k|k−1/S
T
y,k|k−1

)

/Sy,k|k−1.

16: Estimate the updated state

x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
.

17: Estimate the square–root factor of the corresponding

error covariance:

Sx,k|k = Tria
([

Xk|k−1 − KkYk|k−1 KkSΣn,k

])

.

18: end for

and S is a lower triangular matrix.

In Algorithms 3 and 4, we present the way to compute the

deterministic samples using, respectively, the Gauss-Hermite

quadrature rule and the third-degree spherical-radial cubature

rule. The symbol ⊗ is the Kronecker tensor product, and we

Algorithm 3 Generation of Sigma–Points and weights for

multi–dimensional Gauss–Hermite quadrature rule

1: Set the number of points per dimension α, and L = αdim(x)

2: Set Ji,i+1 =
q

i
2

, where i = 1, ..., (α − 1)

3: Compute λi, the eigenvalues of J

4: Set ξi =
√

2λi

5: Set ωi = (νi)
2
1, where (νi)1 is the first element of the i–th

normalized eigenvector of J
6: if dim(x) > 1 then
7: Set ζ1,: = ξi and ̟1,: = ωi

8: for m = 2 to dim(x) do
9: Set Ξ1:m−1,: = ζ ⊗ 11×α

10: Set Ξm,: = 11×α ⊗ ζm−1,:

11: Set Ω1:m−1,: = ̟ ⊗ 11×α

12: Set Ωm,: = 11×α ⊗ ̟m−1,:

13: Set ζ = Ξ and ̟ = Ω
14: end for
15: ξi = Ξ:,i, where i = 1, ..., L

16: ωi =
Qdim(x)

l=1 Ωl,i

17: end if

Algorithm 4 Generation of Sigma–Points and weights for

third–degree spherical–radial cubature rule

1: Set M = dim(x) and L = 2M .

2: Set the cubature points ξi =
√

M
h

IM×M −IM×M

i

i
,

where [·]i=1,...,L indicates the i–th column.

3: Set the cubature weights ωi = 1
2M

, i = 1, ..., L.

have used the MATLAB notation for matrices: A1:i,: refers

to the first i rows of matrix A.

III. MOTION MODELS

The choosing of a motion model will depend on the

targeted application, the availability of different technologies

and the computational capability. In this paper, we propose

a new motion model, inspired in the one presented in [12],

based on an intrinsic coordinate system (i.e., the heading

angle and the distance moved along the path), and focused

on the thrusts applied when turning a vehicle. In an intrinsic

coordinate system, applied forces can be represented relative

to the heading of the object, rather than relative to the more

standard Cartesian or polar fixed coordinate frame. Distance

traveled along the path of motion is denoted s, while angle

of the path relative to horizontal is denoted ψ. We assume

that a piecewise constant thrust, relative to the direction of

heading, is applied between any two times τk and τk+1, with

tangential component FT and perpendicular component FP .

We also assume a damping term λds
dt

, applied in the opposite

direction to the heading. Thus:

FT = λ
ds

dt
+m

d2s

dt2
, FP = m

ds

dt

dψ

dt
(7)

where m is the mass of the object and λ the coefficient of

resistance. Accelerations tangential to and perpendicular to



the motion are then given by standard dynamics of a point

mass:

aT (t) =
d2s

dt2
, aP (t) =

ds

dt

dψ

dt
=

1

R

(
ds

dt

)2

(8)

where R is the instantaneous radius of curvature of the path.

The tangential equation is readily integrated from time

τk to τk+1 to give the speed v(t) along the path at time

t = τk + T :

v(τk+T ) = vk+1 =
1

λ

(

FTk
− (FTk

− λv(τk)) e−
T λ
m

)

(9)

Using (9), the perpendicular equation can be integrated from

τk to τk + T , obtaining

ψ(τk + T ) = ψk+1 = ψk +
FPk

FTk

(
λT

m
− log

∣
∣
∣
∣

v(τk)

v(τk + T )

∣
∣
∣
∣

)

(10)

The Cartesian position can be computed by an Euler ap-

proximation on a fine time grid, so the changes in x and y
coordinates over a time interval T can be expressed as

xk+1 ≈ xk + vk+1T cos(ψk) (11)

yk+1 ≈ xk + vk+1T sin(ψk) (12)

Inertial Measurement Units (IMUs) are known to deliver

biased estimations, and these biases are an underlying source

of error. We propose to include those biases in the model:

ãTk
= aTk

+ δaTk
, ãPk

= aPk
+ δaPk

, ψ̃k = ψk + δψk

(13)

The state space is then defined as

xk =
[
xk yk vk δaTk

δaPk
δψk

]T
(14)

and the input signal

uk =
[

ãTk
ãPk

ψ̃k

]T
, (15)

and thus the state transition xk = f(xk−1,uk−1) is com-

pletely defined by equations (7)-(12), plus the assumptions

δaTk
= δaTk−1

, δaPk
= δaPk−1

, and δψk = δψk−1.

An advantage of this model is that we can interpolate

position, speed, and angle at any time between τk and

τk+1, by substituting T by ∆τ in the above equations

(where 0 < ∆τ < T ), thus easing time alignment between

inertial measurements and other measurements coming from

wireless systems.

The reason for including the path angle bias δψk and

the acceleration biases δaTk
and δaTk

in the state vector,

and the measured angle ψk and accelerations aTk
and aPk

in the input signal is due to the well-known behavior of

the gyroscopes and accelerometers of an IMU, and the

high impact of such biases in dead reckoning methods used

for position computation. Inertial measurement units are

typically biased, and thus this effect is included in the model.

IV. MEASUREMENT MODEL

We assume a receiver equipped with a set of wireless

system interfaces. Measurements taken from these systems

(mainly time delay or received power strength) are nonlin-

early related to the device position.

If we use technologies in which the natural measurement

is time delay, it can be converted to range multiplying by the

speed of light c, but taking into account the desynchroniza-

tion between emitter and receiver (time stamp of measures

has been omitted for clarity):

y = c (tRx − tT x)
︸ ︷︷ ︸

d

+c(∆tRx − ∆tT x) + e (16)

where d =

r

“

rT x x
− rRx x

”

2
+

“

rT x y
− rRx y

”

2
+

“

rT x z
− rRx z

”

2

is the geometric distance, ∆t refers to the device’s clock

bias with respect to an agreed time framework, and e is a

random variable modeling noise.

In case of technologies in which we can easily have access

to the received signal strength, we will assume an stochastic

model for the strength loss:

y = PT x − P̄L(d0) − 10n log10

(
d

d0

)

+ ǫ, (17)

where PT x is the transmitted power, d0 is the reference

distance, P̄L(d0) is the mean loss at d0, n is the slope of the

loss (depending on the scenario) and ǫ is a random variable

modeling noise.

V. COMPUTER SIMULATIONS

In order to provide illustrative numerical results, we have

particularized the system model to the following network

deployment. Let us assume a 2D field R, a square centered

at (0, 0) with sides of 500 m length, where we have a total

number of Np = 20 beacons of a power–based ranging

technology (with the measurement function of equation (17))

and Nt = 5 beacons of time–based ranging (equation (16)),

all with known positions and a coverage of 30 m. We have

assumed a random, uniformly distributed beacon deployment

over R. The chosen values for the simulations have been

PT x = 0 dBm, d0 = 1 m, P̄L(d0) = 30 dB, n = 3 (a typical

value for urban area cellular radio) and ǫ is a random variable

with a log–normal distribution with zero mean and σǫ = 3
dBm. The noise e is Gaussian with zero mean and σe = 1 m.

We have simulated FTk
∼ N (µT +m ·δaTk

, σ2
T ) and FPk

∼
N (m · δaPk

, σ2
P ). The parameters of the motion model and

the IMU are m = 500 kg, λ = 0.3, µT = 200 N, σT = 5000
N, σP = 3000 N, and T = 1 s. Results are averaged over 500
independent computer simulations, each one with a different

network deployment and target trajectory. Both filters have

been initialized with x̂0 = [0 0 2 0.5 0.5 0.1]T , Σx,0 =
diag ([10 10 5 1 1 0.1]), Σv,0 = diag ([1 1 1 0.1 0.1 0.1]),
and Σn,0 = diag

([
σǫINp×Np

σeINt×Nt

])
.

We compare the results with a Particle Filter (PF) using

a residual resampling step [3]. We note that we are using
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L = 2dim(x) = 12 deterministic samples for the SCKF,

and L = 3dim(x) = 729 deterministic samples for the

SQKF, which considers 3 samples per dimension. To have

a coherent comparison, we consider two PFs, using 12 and

729 particles, respectively. In figure 1, we plot a trajectory

example in R, and the estimated trajectories using both

methods. We can see that using both Sigma-point methods,

and the PF with 729 particles, we obtain a correct estimation

of the trajectory. Using the PF with 12 particles, we obtain

a worse estimation, because the PF needs more particles

to obtain good results. In figure 2, we plot the RMSE

of the estimation of the position. We can see that the

deterministic methods obtain better results than the PF. If

we have no computational constraints, we will prefer the

SQKF, otherwise, the SCKF will be the choice for real-time

applications.

VI. CONCLUSIONS

This paper has presented the applicability of Gaussian

nonlinear filters to the data fusion of heterogeneous sen-

sors for positioning. We have proposed a state-space ap-

proach, which includes the biases introduced by the into

the state, to compensate measurement errors. Our numer-

ical results indicate that the square–root versions of both,

the Gauss–Hermite quadrature Kalman filter and the third–

degree spherical–radial cubature Kalman filter, achieve good

performance in scenarios where the square–root Unscented

Kalman filter fails, while maintaining numerical stability. We

have also compared the results with a SMC method, which

give poorer performances while being computationally heav-

ier. The quadrature filter attains a lower estimation error,

while the cubature filter requires much less computational

load, being the algorithm of choice for real–time implemen-

tations.
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