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ABSTRACT

This paper considers the problem of ultra—tight GNSS/INS
integration. We propose a new approach, deriving the direct
relation between Inertial Measurement Unit (IMU) measure-
ments and synchronization parameters, used in the trilat-
eration algorithm to compute the position of the receiver.
We take into account the IMU’s eventual biased behavior
by introducing it into the state representation. We use
a recently—developed, square-root derivative—free Gaussian
nonlinear filter to solve the estimation problem.

Index Terms— GNSS/INS integration, cubature rules,
synchronization, square-root Cubature Kalman filter

I. INTRODUCTION

Accuracy and availability are the main objectives of a nav-
igation system. Since Global Navigation Satellite Systems
(GNSS) performance is not sufficient for all applications in
geodesy and navigation, it is common to hybridize them with
Inertial Navigation Systems (INS), in order to combine the
only short-time stability of an inertial sensor and the long-
time stability but noise behavior of a GNSS receiver, taking
advantage of their complementary nature.

In most GNSS/INS integrations the position and velocity
estimates of a GNSS receiver are used as observations in a
navigation filter for the estimation of INS errors, making pos-
sible a reduction of GNSS-noise, bridging of GNSS outages,
and even GNSS measurements are also usable when fewer
than four satellites are tracked. This combination, known
as loosely coupled integration, provides good performance
combined with simplicity of integration. The mathematical
problem posed by this integration can be cast into a nonlinear
filter, that traditionally has been solved by means of the
Extended Kalman Filter (EKF).

In case of high dynamic applications or in jamming
environments, information about the receiver dynamics mea-
sured by the inertial sensor can be used to enhance the
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pseudorange/Doppler estimations of the GNSS receiver. This
principle is known as tightly coupled integration, and it poses
a nonlinear problem. Examples of this approach can be found
in [1]-[3], making use of the UKF, Sigma—Point Kalman
Filter (SPKF), and Particle Filtering (PF) methods. In [4],
the approach is cast into a convex, linearly constrained least—
squares problem and solved via dual decomposition.

An extension of this concept is the ultra—tightly coupled
integration. In this case the integrating navigation filter is
implemented as one element of the receiver tracking loop.
An optimal controlling value for the numerical oscillator can
be computed by using inertial information in combination
with the in—phase (I) and quadrature (Q) signals at the
receiver. Examples of this approach can be found in [5]-
[7], where the errors in position and velocity between the
measured and estimated values act as a link between I
& Q samples and INS measurements, and lead to slight
modifications of the tracking loops.

This paper proposes a new approach to ultra—tight
GNSS/INS integration by deriving the evolution of the
synchronization parameters from the INS measurements,
considering the eventual biased behavior of the latter, and
taking advantage of the numerical efficiency of the Square—
root Cubature Kalman Filter (SCKF), a nonlinear Gaussian
filter recently developed [8], that could substitute the struc-
ture of conventional tracking loops.

II. SYSTEM MODEL
II-A. GNSS model

Considering the signals coming from M satellites in a
multipath channel, the received signal is
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where R{-} denotes the real part of the complex—valued

quantity in the brackets, M (i) is the number of propaga-
tion paths from the ith satellite to the receiver, fe is the



carrier frequency, {vm i (t), T i (t), dm, i } are the amplitude,
delay and carrier phase of the i*" satellite in the m!"
path, w(t) is additive white Gaussian noise, and sp;(¢)
is the Direct—Sequence Spread—Spectrum (DS-SS) baseband
signal transmitted by the ‘" satellite. In order to compute
the position, the receiver should estimate the pseudoranges
(directly related to time delay of the line—of-sight (LOS)
paths, 79;(t)) and pseudorange rate (related to the evolution
of the carrier phase). Considering the orthogonality between
spreading codes, and the usual parallel architecture of a
GNSS receiver, we will simplify the signal model to

() = ao(OR {11 — (1)} + (1)
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where the subindex 0 denotes the direct path, and n(t)
gathers all the unwanted signals (multiuser interference,
multipath and termal noise) in a term which is considered
Gaussian but not white, thus admitting a degree of correla-
tion of the unwanted terms with the desired signal.

When this signal impinges the antenna, it passes through
a Low Noise Amplifier (LNA) and a downconversion stage
to an intermediate frequency. This can be modeled as

y(t) = R{(r(1) ¥ huya() e/ feorerol } - 3)

where * stands for the convolution operator, hyna(t) is
the impulse response for the RF front—end filter, fo is the
frequency of the local oscillator and ¢y,o is its carrier phase.
Defining fir = fo — fro, Yo = ¢o — ¢ro, sr(t) as the
filtered version of sp(t), ag(t) as the signal amplitude, and
7(t) as the filtered and down—converted noise term n(t), we
can write

y(t) = ao ()R {sp (t = To(1)) & Tt 2mlero® 00 iy ()
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Sampling this signal at ¢, = kT, we obtain the discrete
version of the received signal
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where the subindex k refers to ¢, instants.

Defining p®*) and P(u) as the position vector of the
satellite and the user receiver, respectively, and neglecting
atmospheric effects, the delay can be written as

0t = 1 [pm) - pw®| =t-tn.  ©

being c the speed of light, ¢7, is the transmission instant, and
|I|| stands for the Euclidean norm. Approximating (6) by its
second—order Taylor expansion around an arbitrary point ¢

we get
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Substituting equations (7) and (6) into equation (5) yields
Y = ao kR {SR(tk- - To,k)ej(zwf’“tkw’“)} e (8)

where we have made use of the following definitions:
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Terms v,- and a,. are usually referred to as radial velocity and
radial acceleration, respectively, while the term f; = %vr
is commonly known as the Doppler shift.

II-B. INS model

Inertial measurement units (IMUs) typically contain three
orthogonal rate-gyroscopes and three orthogonal accelerom-
eters, measuring angular velocity and linear acceleration
respectively. Let us assume a strapdown INS system in
with the inertial sensors are mounted rigidly onto the re-
ceiver device, and therefore outputs quantities measured in
a body frame. A typical strapdown navigation algorithm
works as follows: the rate—gyroscope measurements w,(t) =
[we, (t) wy, () wp, (t)]T (that is, the angular velocity) are
integrated to obtain the orientation of the tracked device.
Rate—gyroscopes are known to suffer from bias, that is, the
average output (usually given in °/h) from the gyroscope
when it is not undergoing any rotation is not zero. A constant
bias error, when integrated, causes an angular error which
grows linearly with time. This effect can be modeled by a
bias term, in the form

@y (t) = wp(t) — dwi (1), (13)

where dwy(t) = [dws, (t) dws, (t) dws, (t)}T

Since those measurements are given with respect to a body
frame and we need them expressed in a global frame, a
rotation matrix Cj such that wy(t) = CJwy(t) must be
tracked through time. The rate of change of C at time ¢

is given by %Cg(t). Using the small angle approximation,



it comes out that the orientation algorithm must solve the
differential equation

d

G0 = C{(H2) (14)

where Q(t) is the skew—symmetric form of the angular
vector wy(t):
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Taking into account that IMUs provide samples of the
angular velocity at a constant rate of period 7;, equation
(14) can be solved as

Cg t+T;) = Cg(t)eftt-f—Ti Q(t)dt (16)

Solving the integral as j;t+T"’ Q(t)dt = Q(t)T; and perform-

ing a Taylor expansion of the exponential term yields
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To track the position of an INS the acceleration signal
ap(t) = [ap,(t) ap,(t) ap, (t)]T obtained from the ac-
celerometers is projected into the global frame of reference.
Again, accelerometers are also biased. A constant bias error,
when double integrated, causes an error in position which
grows quadratically with time. This is modeled with a bias
term

Q)T+

éb(t) = ab(t) — 6ab(t), (18)

where da,(t) = [das, (t) day, () das, (t)]T. Thus, the ac-
celeration in a global frame can we written as a4(t) =
C(t)ay(t). Acceleration due to gravity is then subtracted
and the remaining acceleration is integrated once to obtain
velocity, and again to obtain displacement. In discrete form:

Vg k =Vgk—1 + T‘z (ég,k - gg) (19)
Pg.k =Pg,k—1 + Tivg,k (20)

We also define i.i.d zero-mean Gaussian terms w,, ; and
W, modeling gyroscopes and accelerometers noise.

II-C. GNSS/INS coupling

We propose here a new GNSS/INS coupling approach,
which consists on the derivation of the evolution of the
synchronization parameters from the IMU measures. Taking
into account the geometry of the satellite-user link, we can
write that

1
Tk =Th-1 " 7 (Pg,k — pg,k—l)T di_1+
1 5 S
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where dj, is the unitary vector pointing from the user receiver
to the satellite:

= Pt — k) — Py.k
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The term p(*)(t,, — 73,) represents the position from where
the satellite emitted the signal received at ¢, an information
that can be inferred from the navigation message. Since T
is what we are looking for, we make the approximation
p® (ty — ) =~ p(s)(t;€ — Tig—1). Proceeding in the same
way, from (9) we can derive

L ; ‘ T
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where v, . is the velocity given by the IMU, and v(*) (%) is
the velocity of the satellite that can be extracted from the
navigation message. Again, we will accept v(s)(tk —TK) R
V(S)(tk — 7i—1). The phase evolution can be predicted from
(10) as
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where ag j is the acceleration measured by the IMU, and
al®)(t) is the acceleration of the satellite, also extracted
from the navigation message. Terms w; x, Wy and wy
are white Gaussian i.i.d. noise sequences.

We take a state-space approach in order to use an optimal
Bayesian filtering solution. In equation (8), we have defined
the discrete measurement equation. As we want to consider
the biased behavior of the IMU, we introduce the bias of the
rate-gyroscopes, 0wy i, and accelerometers, day ;, into the
state, using a random walk evolution. We define the vector
state

o T
Xp = Tk7fk,¢k,5wg,k75abT,k ) (25)

d;_; + w,; and its evolution as

X = PpxXp_1 +ug + wy (26)



where ®;, = Igxg is the identity matrix, the input vector

T

is u, = [ﬂ,(;), ,(ff),ﬁl(:/)),ﬂlxg} , and the noise vector is
T

Wi = |:w7',k7wf,kaw¢,k7wz;7kvwg’k:| .

ITII. SIGMA-POINT NONLINEAR FILTERING

When considering a nonlinear filtering problem, we can
consider different suboptimal solutions. A common solution
is the well-known EKF, a solution that is useful for mild
nonlinearities but fails otherwise. Alternative solutions have
been proposed in the last decade, among them, the family of
Sequential Monte Carlo (SMC) methods [9] and the family
of Sigma-Point Filters (SPFs) [10].

SMC methods provide a framework to deal with non-
linear, non—Gaussian problems using a stochastic sampling
approach to numerically approximate the integrals of the
optimal solution. This broad suitability comes at the expense
of a high computational load, that makes this solution
difficult to embed in digital light processors or real-time
applications.

SPFs use a deterministic sampling to approximate the
integrals involved in the Bayesian filter solution. The key
point is to assume that the measurement and process noise
are independent random Gaussian processes. This leads
to Gaussian state transition and measurement likelihood
densities, which in turn reverts to a Gaussian posterior
density [11]. Recently, a new SPF method, and its square-
root version, has been derived: the Square-root Cubature
Kalman Filter (SCKF) [8]. The SCKF uses cubature rules
to approximate the optimal solution, and propagates the
square root of the covariance matrix instead of the covariance
itself, thus preserving its symmetry and positive-definiteness,
and avoiding its inversion in the update step. The SCKF is
numerically stable, accurate, and easily extendable to high
dimensional problems, mitigating the curse of dimensionality
and divergence effects.

We sketch in Algorithm 1 the square-root, derivative—
free scheme. In steps 8 and 17, S = Tria(A) denotes
a general triangularization algorithm (for instance, the QR
decomposition), where A € RP*?, p < ¢, and S is a lower
triangular matrix. For computational reasons, we prefer to
keep the square root as a triangular matrix of the dimension
p x p. This can be achieved by the thin QR decomposition
[12, § 5.2, Theorem 5.2.2], which has a computational
complexity of O (gp?) flops. Algorithm 2 provides the way
to generate the deterministic samples, using the third—degree
spherical-radial rule, to approximate a standard Gaussian
weighted integral.

IV. COMPUTER SIMULATIONS

The proposed integration solution was tested by com-
puter simulation. We used a realistic GPS signal gener-
ator which considered aspects such as constellation ge-
ometry, receiver/satellites relative motion and time-varying

Algorithm 1 Square—root, derivative—free nonlinear Kalman
Filter

o < _ T
Require: yi.x. uo:.x, X0, Xz,0 = S4,0/05; /0 Zw,0- Xn,0-

Initialization:
1: Define sigma—points and weights {&;,w;}i=1,.. 1 by
using Algorithm 2.
2: Set W = diag(\/w;)
Tracking:
3: for k=1 to co do

Time update:
5. Evaluate the sigma points:
Xik—1k—1 = Sz r—1k—1& + Xp—1p—1, 1 =1,..., L.
6:  Evaluate the propagated sigma points using (26):
Xiklk—1 = £(Xip—1)k—1, Up—1)-
7. Estimate the predicted state:
~ L ~
Xklk—1 = Zizl WiXi k|lk—1-
8:  Estimate the square-root factor of the predicted error
covariance:

S; kjk—1 = Tria ([ka,l ' Ss, s ) where:
SEw,kfl is a square-root factor of X, ;1 such that
w1 =Ss,,,8%,, . and
Xipo—1 = [Rikjh—1 — Rkjk—1 “** XL kk—1 — Xgjk—1] W.

9:  Measurement update:
10:  Evaluate the sigma points:
Xiklk—1 = Sz kk—1& + Xpp—1, 1 =1,..., L.
11:  Evaluate the propagated sigma points using (8):
Viklk—1 = h(X; gp—1, ur).
12:  Estimate the predicted measurement:
N L ~
Yklk—1 = Zi:l Wi¥i k|lk—1-
13:  Estimate the square—root of the innovation covariance
matrix:
Sy kjk—1 = Tria ([yk,\k—l iSx, . Q, where:
SEM denotes a square—root factor of 3, 3 such that
En,k = Szn,ksgn,k’ and
V=1 = [J1,klb—1 — Tkjb—1 " YL klk—1 — Ykll—1] W.
14:  Estimate the cross—covariance matrix
T .
gy klk—1 = Xplk—1Vj 1, Where:
Xipo—1 = [X1klk—1 — Rkjk—1 "~ XL k|k—1 — Xkk—1] W.
15:  Estimate the Kalman gain
_ T
K = (EI%k\k—l/sy,k\kfl) /Sy.klk—1-
16:  Estimate the updated state
Xijk = Xppk—1 + Kk (Y& — Yrjp—1)-
17:  Estimate the square-root factor of the corresponding
error covariance;
S ke = Tria ([ka—l — KpVk-11KiSsx, D
18: end for

delay/Doppler signal parameterizations. In particular, we
tested the tracking of the synchronization parameters of one
satellite by a static receiver (considering the biases of a



Algorithm 2 Generation of Sigma—Points and weights for
third—degree spherical-radial cubature rule

1: Set M = dim(x) and L = 2M.

2: Set the cubature points &, = v M [IMXM §—IMxM} ,

?

where [-];=1,... 1 indicates the i—th column.

3: Set the cubature weights w; = 71+, i =1,..., L.

typical MEMS-based IMU) over 1 second. The nominal
Carrier-to-Noise density ratio was set to C/Ny = 46 dB-
Hz, although we took into account that the instantaneous
value of such parameter will depend on the elevation angle
and on satellite’s antenna radiation pattern. On the other
hand, the considered GPS receiver had a pre-correlation
filter of 2 MHz, a sampling frequency of 5.7143 MHz, an
intermediate frequency of 4.308 MHz, and the tracked signal
corresponded to that of the C/A code transmitted in the L1
link. With this setup, the receiver was able to track the
synchronization parameters of the satellite, with an initial
ambiguity given by the acquisition process, i.e., a standard
deviation of half the sampling period. Figure 1 shows the
Root Mean Squared Error (RMSE) results obtained with
the SCKF in estimating the pseudorange. In Figure 1 we
also plotted the Cramér-Rao Bound (CRB), which is the
minimum variance that any unbiased estimator can achieve.
The CRB in its standard formulation is valid for ML-like
estimators, that is to say when no use of prior information is
done. However, this is not our case since we are considering
prior data, which is expressed in the state-evolution models
proposed in Section II-C. Therefore, we must resort to the
Bayesian CRB as a valid benchmark for our algorithm.
From the figure it follows that the obtained pseudorange
variances are in accordance to the theoretical bound. In
addition, we can see the enhancement given by the use of
prior information.

V. CONCLUSIONS

This paper presented a new approach to GNSS/INS in-
tegration. The main objective was to establish the pertinent
mathematical relationships that allow the ultra—tight coupling
of both systems, casting the problem into the Bayesian
framework and proposing a solution based on Gaussian
nonlinear filtering. Detailed computer simulations confirmed
the validity of the approach.

VI. REFERENCES

[1T Y. Yi amd D. A. Grejner-Brzezinska, “Tightly-coupled
GPS/INS integration using unscented Kalman filter and
particle filter,” in Proc. ION GNSS, Fort Worth, TX,
Sept. 2006, pp. 2182-2191.

[2] J. Rezaie, B. Moshiri, B. N. Araabi, and A. Asadian,
“GPS/INS integration using nonlinear blending filters,”
in Proc. SICE’07, Kagawa, Japan, Sept. 2007, pp.
1674-1680.

10

pseudorange RM SE [m]
(4]

Al : : RMSE ]
----- - CRB
= = = = Bayesian CRB

0

0 01 02 03 04 05 06 07 08 09 1
ts]

Fig. 1. RMSE of pseudorange estimates, CRB and Bayesian
CRB over time.

[3] Y. Li, C. Rizos, J. Wang, P. Mumford, and W. Ding,
“Sigma-point Kalman filtering for tightly coupled
GPS/INS integration,” Navigation, vol. 55, no. 3, pp.
167-178, Fall 2008.

[4] D. Bernal, P. Closas, E. Calvo, and J. A. Fernandez-
Rubio, “Tight GNSS/INS integration as a constrained
least—squares problem,” in Proc. EUSIPCO, Glasgow,
Scotland, Aug. 2009, pp. 85-89.

[5] M.G. Petovello and G. Lachapelle, “Comparison of
vector-based software receiver implementations with
application to ultra-tight GPS/INS integration,” in Proc.
ION GNSS, Fort Worth, TX, Sept. 2006, pp. 1790—
1799.

[6] D. Bernal, P. Closas, and J. A. Fernandez-Rubio,
“Particle filtering algorithm for ultra—tight GNSS/INS
integration,” in Proc. ION GNSS, Savannah, GA, Sept.
2008, pp. 2137-2144.

[7] R. Babu and J. Wang, “Ultra—tight GPS/INS/PL inte-
gration: a system concept and performance analysis,”
GPS Solutions, vol. 13, no. 1, pp. 75-82, Jan. 2009.

[8] I. Arasaratnam and S. Haykin, “Cubature Kalman
Filters,” IEEE Trans. Automatic Control, vol. 54, no.
6, pp. 1254-1269, June 2009.

[9] A. Doucet, N. De Freitas, and N. Gordon, Eds., Se-
quential Monte Carlo methods in practice, Springer,
2001.

[10] R. Van der Merwe, Sigma-point Kalman filters for
probabilistic inference in dynamic state—space models,
Ph.D. thesis, Oregon Health and Science University,
Portland, OR, April 2004.

[11] K. Ito and K. Xiong, “Gaussian filters for nonlinear
filtering problems,” Trans. Automatic Control, vol. 45,
no. 5, pp. 910-927, May 2000.

[12] G. H. Golub and C. F. van Loan, Matrix Computations,
The John Hopkins University Press, 3rd edition, 1996.



