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Controllability and Observability of Leader-Based Multi-agent Systems

R.Lozano, M.W. Spong, J. A. Guerrero, N. Chopra

Abstract— In this work we analyze the controllability and
observability properties of several interconnection configura-
tions such as the chain topology and cyclic topology as well as
combinations of these two topologies. A leader/follower control
strategy is proposed to control the center of mass of the multiple
agent system. It is shown that the trajectory tracking for a
multi-agent system converges to the constant input reference
given only to the leader. Also, it is shown that choosing an
appropriated gain, the agents achieve consensus for constant
input reference.

Index Terms— Multi-agent coordination, Trajectory tracking,
Formation Control, Controllability, Observability.

I. INTRODUCTION

Multiple agent coordination as well as multiple spacecraft
flying in formation has been intensively investigated during
the last decade. Coordination control of multiple aerial,
ground or underwater vehicles has important applications.
They include the transport of heavy or large loads, search
and rescue operations, space or ocean exploration, etc.

Different approaches have been proposed in the literature
for coordinating multiple robot systems. There are mainly
three approaches: Leader/Follower, Virtual Structure and
Behavioral Control.

In the leader/follower architecture, one agent is desig-
nated as leader while the others are designated as followers
which should track the leader. Leader/follower approaches
are described in: [1], [2]. The virtual structure approach
considers every agent as an element of a larger structure
[3]. Finally the behavioral control in [4] and [5] is based
on the decomposition of the main control goal into tasks or
behaviors. This approach also deals with collision avoidance,
flock centering, obstacle avoidance and barycenter.

Consensus algorithms allow the coordination of velocities
and/or positions of multiple agents. They have been the
object of extensive analysis and development [6], [7] and[8].
Trajectory tracking of flocks has been recently studied in [9]
and [10].

A natural way to analyze the relationship and communi-
cation between agents is using directed or undirected graphs.
Every node in a graph is considered as an agent which can
have information exchange with all or several agents. In
[7], [8], and [11], the authors use algebraic graph theory in
order to model the information exchange between vehicles.
By using this technique several control strategies have been
developed. [9] presents a new strategy for consensus in multi-
agent systems with a time varying reference. Several cases
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are presented, such as: all agents have access to the reference,
several agents have access to the reference, etc. The analysis
presented assumes that each agent evolution is represented
by a first order integrator.

In [12] and [13] an analysis of multiple agent coordination
using a passivity approach to decompose the system into
two passive subsystems is presented. The first subsystem
called ”shape” maintains the formation of the group of agents
while the second subsystem called ”lock” represents the
translational dynamics of the group. In [13], the convergence
of velocity and relative position of the agents via passive
decomposition is shown.

A bilateral teleoperation approach has been used in [10] to
teleoperate a group of agents. The authors provide results to
achieve a bilateral teleoperation one-to-many (i.e. one master
and many slaves in a leader/follower achitecture). The center
of mass is used as a virtual master robot which is used
to coordinate the slave robots. Trajectory tracking is also
considered using an input to state stability analysis.

Most of the papers in literature dealing with multiple
agent coordination consider fully actuated agents capable of
movement in all directions. Some represent the agents by
single integrators and some other by double integrators. A
state of the art in consensus algorithms can be found in [6].

In this paper we propose a passive approach for multiple-
vehicle coordination and flock trajectory tracking control.
The study is mainly focused on two configurations: cyclic
and chain configurations of information exchange between
agents. The control strategy is composed of two terms. The
first control term is used for agent consensus and the second
control term is used for achieving a desired position of the
formation center of mass. We use the output synchronization
control in [14] for agent coordination. This type of strategy
is such that the control input for each agent depends only
on the information coming from its neighbors. Tracking of
the center of mass is achieved by using a full state feedback
control on the leader. Since the leader is not assumed to have
direct information from all the agents, the state is observed
from the input and output of the leader. We therefore require
observability and controllability (or at least detectability
and stabilizability) of the agents network from the leader
input and output. Observability and controllability of agent
formations is studied for the case of ring and chain topologies
using a coordinating controller. Controllability and observ-
ability of leader-based multi-agent coordination has been
studied in [15]-[18]. Here, the authors provide sufficient
conditions for multi-agent coordination controllability and
observability using multiple leaders and how interconnection
graph topology determines controllability and observability



properties.
The paper is organized as follows: Section 2 introduces the

background and preliminaries on information graph theory.
Section 3 presents the dynamic model of the proposed
configurations. Section 4 presents necessary conditions to
satisfy the controllability and observability of the multi-
agent system. Flock trajectory tracking control based on the
centroid of the system is also presented. Section 5 is devoted
to simulation results. Conclusions are given in section 6.

II. PRELIMINARIES
A multi-agent dynamic system can be modelled as a group

of dynamical systems which has a information exchange
topology represented by information graphs. A graph G
is a pair G(N , E) consisting of a set of nodes N =
{ni : ni ∈ N , ∀i = 1, ..., n} together with their interconnec-
tions E on N [6]. Each pair (n1, n2) is called an edge
e ∈ E . An undirected graph is one where nodes i and j can
get information from each other. In a digraph, the ith node
can get information from the jth node but not necessarily
viceversa. We can think of the information exchange between
agents as an undirected graph but also as a digraph which
implies a more complicated problem. A graph is connected
if for every pair {x, y} of distinct vertices there is a path
from x to y. A connected graph allows the communication
between all agents through the network. A graph is said to
be balanced if its in-degree (number of communication links
arriving at the node) is equal to its out-degree (number of
communication links leaving the node).

III. CONTROLLABILITY AND OBSERVABILITY
OF INTERCONNECTIONS

We will study the controllability and observability of in-
terconnections using a coordinating control strategy. We will
assume that the agents are represented by double integrators.
We will first consider the case of three agents and study the
controllability and observability of the system using only the
input and output of a single agent. It is shown that for the
cyclic topology the system is observable and controllable
from any agent. It also shown that for the chain topology
with undirected communication, the system is controllable
and observable for agents 1 and 3 but only stabilizable and
detectable for agent 2.

Fig. 1. Information flow configuration: a) Cyclic topology (left), b) Chain
topology (right).

A. Cyclic topology

In the case of 3 agents, the cyclic topology with input and
output on the first agent, is represented as
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Let O and C be the observability and controllability
matrices. It is clear that the system is observable since det
O = 1. Also the system is controllable since det C = −1.

B. Chain topology. Input and output on agent 1.

In the chain topology with input and output of the first
agent, the system is represented by
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The system is observable since detO = 1. The system
is also controllable since det C = 1. Due to symmetry, the
same result holds for agent 3.

C. Chain topology. Input and output on agent 2.

Let us consider the same chain configuration as before but
considering this time the input and output of agent 2.
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The system is not observable since det O = 0. Note
however that we assumed that agent 2 measures all the state.

The system is not controllable since det C = 0. Let
wT

1 , wT
2 and wT

3 be the eigenvectors of the Laplacian in (4),
see (21). Premultiplying (4) by wT

1 , wT
2 , wT

3 , we obtain

ẍ1 + ẍ2 + ẍ3 = u2

ẍ1 − 2ẍ2 + ẍ3 = −3(ẋ1 − 2ẋ2 + ẋ3) + u2

ẍ1 − ẍ3 = −(ẋ1 − ẋ3)

Equations (4) can also be rewritten as

ẍ2 = −2ẋ2 + (ẋ1 + ẋ3) + u2

ẍ1 + ẍ3 = 2ẋ2 − (ẋ1 + ẋ3)
ẍ1 − ẍ3 = −(ẋ1 − ẋ3)

(6)

The last equation represents a stable uncontrollable mode.
It follows that ẋ1 − ẋ3 = e(0) exp−t with e(0) = ẋ1(0) −
ẋ3(0). Thus defining z = ẋ1 + ẋ3, (6) can be reduced to:

ẍ2 = −2ẋ2 + z + u2

ż = 2ẋ2 − z

The reduced system is controllable since det C = 2. Also,
the reduced system is observable since det O = 1.



D. General case

The examples above suggest that the interconnection of
agents using the coordinating control strategy leads to sys-
tems that are controllable and observable from the input and
output of every agent or that are at least stabilizable and
detectable. We will prove next that this is true in the general
case when the system is represented by

ẍ = −Lẋ + bu (7)
y = cT ẋ

where L is the Laplacian matrix having the following
properties:

1) L has a single eigenvalue at 0, λ1(L) = 0 with right
eigenvector wT

1 =
[

1 1 · · · 1
]
, i.e. Lw1 = 0.

2) The remaining eigenvalues have all positive real part,
i.e. Re[λi(L)] > 0 and Lwi = λiwi for i = 2, ..n,
and wi ∈ Rn. If L is symmetric then the remaining
eigenvalues are all positive, i.e. λi(L) > 0.

We assume that the information exchange graph is bal-
anced. Let us assume also that in the coordinating controller
the gains multiplying the signals in between agents are all
equal to 1. For the i− th row of L, the entries lij = −1 for
i 6= j correspond to the gains multiplying the signals from
other agents coming to agent i. For the i − th column of
L, the entries lji = −1 for i 6= j correspond to the gains
multiplying the signals going out of agent i towards the other
agents. We then have the following property.

3) w1 defined above is also the left eigenvalue of L
corresponding to the eigenvalue 0, i.e. wT

1 L = 0.
Let us study the controllability and observability of the

system from the input and output of agent k, i.e. cT =
bT =

[
0 · · · 0 1 0 · · · 0

]
where only the k− th

element is different from zero.
Proposition 1: Consider the multiple agent system whose

evolution is described by (7). This system is unobservable if
there exist a right eigenvector ωi of L such that cT ωi = 0.

Proof: Let ω1 be the right eigenvector of L correspond-
ing to the zero eigenvalue. Note that cT ω1 6= 0, and thus, the
mode corresponding to (λ1, w1) is observable. If cT wi = 0
for some i = 2, ..n, then the system will have non observable
modes, but such modes will be asymptotically stable, i.e.,
they will converge to zero, because Re[λi(L)] > 0 for
i = 2, ..., n.

Proposition 2: Consider the multiple agent system whose
evolution is described by (7). This system is uncontrollable
if there exist an eigenvector vi of LT such that vT

i b = 0.
Proof: Note that L and LT have the same eigenvalues.

Let vi be the right eigenvectors of LT (or the left eigenvectors
of L), i.e. LT vi = λivi or vT

i L = λiv
T
i . Pre-multiplying (7)

by vT
i we get

vT
i ẍ = −vT

i Lẋ + vT
i bu

or
vT

i ẍ = −λiv
T
i Ẋ + vT

i bu (8)

If vT
i b = 0 for some i, then

d

dt
(vT

i ẋ) = −λi(vT
i ẋ)

which means that the corresponding mode is not controllable.
Nevertheless, for i = 2, ..., n such mode is asymptotically
stable and converges to zero. Recall that for i = 1 we
have v1 = w1 and therefore vT

1 b 6= 0. Thus the mode
corresponding to (λ1, v1) is controllable.

Lemma 1: Center of mass of multi-agent system (7) cor-
responds to controllable and observable modes.

E. The cyclic topology in the general case

In this section it will be proved that the cyclic topology is
controllable and observable in the general case. The laplacian
matrix of the cyclic topology is the following

−L =




−1 1
−1 1

. . . . . .
−1 1

1 −1




(9)

and c = bT =
[

0 · · · 1 · · · 0
]

where only the k-
th element is different from zero. For simplicity, this system
will be rewritten as

ẍ = −Lrẋ + bul

yl = cT ẋ

1) Observability: The system will be non observable if
there exists a vector v such that

vT b = 0 (10)

and
Lrv = λv (11)

with vT =
[

v1 v2 · · · vn

]
and a real λ.

For λ = 0, vT =
[

1 1 · · · 1
]

and thus vT b 6= 0
which is a contradiction.

For λ 6= 0, it follows from (10) that v1 = 0. In view of
the structure of Lr in (11) it follows that v2 = 0. Iterating
it follows that v = 0. We conclude that the system is
observable.

2) Controllability: The system will be non controllable if
there exists a vector v such that

vT b = 0 (12)

and
vTLr = λvT (13)

with vT =
[

v1 v2 · · · vn

]
and a real λ.

For λ = 0, it follows from (12) that v1 = 0. In view of
(13) it follows that v2 = 0. Iterating it follows that v = 0.

For λ 6= 0, since v1 = 0 and in view of the structure of
Lr in (13) it follows that vn = 0. Substituting in (13) gives
vn−1 = 0. Iterating it follows v = 0. We conclude that the
system is controllable.



F. The chain topology in the general case
In this section it will be proved that the chain topology is

controllable and observable in the general case. The laplacian
matrix of the chain topology is the following

−L =




−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1




(14)

and c = bT =
[

0 · · · 1 · · · 0
]

where only the k-
th element is different from zero. For simplicity, this system
will be rewritten as

ẍ = −Lcẋ + bul

yl = cT ẋ

1) Controllability: The system will be non controllable if
there exists a vector v such that

vT b = 0 (15)

and
vTLc = λvT (16)

with vT =
[

v1 v2 · · · vn

]
and a real λ.

For λ = 0, since v1 = 0, from (16) it follows that v2 = 0.
Iterating it follows that v = 0.

For λ 6= 0, in view of the structure of Lc in (14) it follows
from (16) that v2 = 0. Iterating it follows that v = 0. We
conclude that the system is controllable.

2) Observability: Given that Lc = LT
c and b = cT , the

system is also observable.

G. Combinations of chain and cyclic topologies
In this section we show that a network of agents obtained

by appropriately combining the cyclic and chain topologies
is controllable and observable. Let us consider the following
topology

6
↗ ↘

1 ⇐⇒ 2 ⇐⇒ 3 5
↖ ↙

4

Considering the input and output of agent 1, the state space
representation is given by

ẍ = −Lcoẋ + bu1

y1 = cT ẋ

where

−Lco =




−1 1
1 −2 1

1 −2 1
−1 1

−1 1
1 −1




(17)

and c = bT =
[

1 0 · · · 0
]
.

1) Controllability: The system will be non controllable if
there exists a vector v such that

vT b = 0

and
vTLco = λvT (18)

with vT =
[

v1 v2 · · · v6

]
and λ real.

Case λ = 0. In this case the only vector satisafing (18) is
vT =

[
1 1 · · · 1

]
which implies that vT b 6= 0.

Case λ 6= 0. In view of the structure of Lco in (17) it
follows that v1 = 0 =⇒ v2 = 0. Similarly it follows that
v3 = 0, v6 = 0, v4 = 0 and v5 = 0.

We conclude that the system is controllable.
2) Observability: The system will be non observable if

there exists a vector v such that

vT b = 0 (19)

and
Lcov = λv (20)

with vT =
[

v1 v2 · · · v6

]
and a real λ.

Case λ = 0. The only vector satisfying (20) is vT =[
1 1 · · · 1

]
and thus vT b 6= 0 which is a contradic-

tion.
Case λ 6= 0. In view of the structure of Lco in (18) and

since v1 = 0, it follows that v2 = 0. Iterating it follows that
v = 0. We conclude that the system is observable.

Remark 1: In view of the structure of Lco in (18) and the
arguments described above, it follows that the controllability
and the observability properties are preserved if the chain
and the cyclic topologies in (17) have arbitrary length.

H. Simple configurations that are either non controllable or
non observable

In order to help characterizing the configurations that are
both controllable and observable, we present in this section
a series of illustrative simple configurations that are not in
the form (17) and that fail to be controllable and observable.
We will denote by L, Ci,Oi the Laplacian, the controllability
and observability matrices respectively when using the input
and output of the i− th agent.

1) Example 1:

1
↗ ↘

2 ⇐⇒ 4
↖ ↙

3

Note that det C1 = det C2 = 0.We have that detO1 =
detO2 = 0

2) Example 2:

1
m m

2 ⇐⇒ 3

Note that det C1 = detO1 = 0



3) Example 3:

1
↗ ↓

2 ←− 3 ⇐⇒ 4

det C1 = 0, detO1 = 1, det C2 = −1, detO2 = 0, det C3 =
0, detO3 = 0, det C4 = 1, detO4 = −1 Controllability and
observability from agent 4 can also be proved as it was done
for (17).

4) Example 4:

5
m

1 ⇐⇒ 2 −→ 4
↑ ↙
3

det C1 = 0, detO1 = 0
5) Example 5:

1 ⇐⇒ 2 −→ 4
↑ ↙
3 ⇐⇒ 5

det C1 = −1,detO1 = 0

IV. FORMATION LEADER TRACKING

In this section we introduce a coordination control for
flock tracking. We first study the case of three agents and
then we extend the method to the general case.

A. Eigenvalues and eigenvectors of the system

Consider the case of three agents in chain topology de-
scribed in (3). The eigenvalues of A in (3) are 0,−1,−3.
Their corresponding eigenvectors are

wT
1 =

[
1 1 1

]
wT

2 =
[

1 0 −1
]

wT
3 =

[
1 −2 1

] (21)

Premultiplying (3) by wT
1 , wT

2 , wT
3 above we obtain

ẍ1 + ẍ2 + ẍ3 = u1

ẍ1 − ẍ3 = −(ẋ1 − ẋ3) + u1

ẍ1 − 2ẍ2 + ẍ3 = −3(ẋ1 − 2ẋ2 + ẋ3) + u1

(22)

Define ẋCM = 1
3

3∑
i=1

ẋi and its desired velocity value

ẋd
CM . Consider the tracking control law

u1 = 3ksat
{
ẋd

CM − ẋCM

}
(23)

where sat(·) represents the saturation function and k is a
positive gain. Note that ẋCM is not directly measurable by
the leader (agent 1), but the state can be observed from the
input and output of agent 1. Defining eCM = ẋd

CM − ẋCM

and introducing (23) into (22) we get

ẍCM = ksat {eCM}
ẍ1 − ẍ3 = −(ẋ1 − ẋ3) + 3ksat {eCM}

ẍ1 − 2ẍ2 + ẍ3 = −3(ẋ1 − 2ẋ2 + ẋ3) + 3ksat {eCM}
If the desired velocity value ẋd

CM is constant, then ẋCM −→
ẋd

CM as t −→ ∞,which implies that u1 −→ 0 and (ẋ1 −

ẋ3), (ẋ1 − ẋ2) −→ 0. Notice that for small values of k, the
convergence speed of ẋCM is slow, but the transient in the
errors (ẋ1 − ẋ3), (ẋ1 − ẋ2) will be smaller.

From the previous analysis we can state the following
lemma

Lemma 2: Consider a multi-agent system of the form (7)
with coordinating control law (23). If ẋd

CM is constant, then
ẋCM −→ ẋd

CM as t −→ ∞,which implies that u1 −→ 0
and (ẋi − ẋj) −→ 0.

B. Formation leader tracking in the general case

Define ẋCM = 1
N

N∑
i=1

ẋi where N is the number of agents

in the formation. Let ẋd
CM be the desired value for ẋCM .

Assume for simplicity that agent 1 is the leader, i.e. cT =
bT =

[
1 0 · · · 0

]
and that the control law is

u1 = Nksat
{
ẋd

CM − ẋCM

}
(24)

where sat(·) represents the saturation function and k is a
positive gain. Note that ẋCM may not be directly measurable
for the leader (agent 1). We assume the system is observable
from the input and output of the leader. The state can
therefore be observed from the input and output of agent
1. Introducing (23) into (8) we get

ẍCM = ksat
{
ẋd

CM − ẋCM

}
d
dt (v

T
i Ẋ) = −λi(vT

i Ẋ) + vT
i bu1 ; i = 2, .., N

(25)

The modes in the last equation above are all stable. When
u1 = 0, these modes converge to zero which means that
(ẋi− ẋj) −→ 0 for i 6= j. This property is obtained by using
the coordinating control algorithm that leads to system (7).
These modes are uncontrollable when vT

i b = 0. There is a
trade-off in the choice of gain k in (24). For smaller values
of k, the speed of convergence of ẋCM is slower, but the
transient in the errors (ẋi − ẋj) for i 6= j, will be smaller.

C. Observer design

Due to the nature of information flow between agents, full
state is in general not available. Thus, we have developed a
coordination control based on the center of mass of the multi-
agent system. Full state is needed in order to compute the
coordination control (24). In order to obtain the full state we
propose a Luenberger observer of the form:

ẋ = Ax−Bu(x̂)
˙̂x = L̄Cx + (A− L̄C)x̂− u(x̂)
y = Cx

where x is the state vector, x̂ is the observed state vector, L̄
is the Luenberger gain vector.

V. SIMULATIONS

We will consider both, the case when partial and full state
of the multi-agent system is available from measurement.
When the state is not available from measurement a Luen-
berger observer is used to estimate the state. It is shown
that the multi-agent system synchronizes in velocity and



position using the combination of coordinating and tracking
control. Synchronization of the center of mass is achieved
with respect to a continuous time varying reference while
there is a small bias in agents synchronization with the input
reference. When observer is used in the multiagent system,
simulation results (Fig. 2 - Fig. 3) show the observer state
convergence to the actual state which implies a convergence
of the center of mass to the input reference. Agents’ state
also converge to the center of mass reference.
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Fig. 2. Case a) Velocity consensus and tracking considering full state
available for 3-agent chain configuration.
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Fig. 3. Case b) Velocity consensus and tracking using Luenberger Observer
for 3-agent chain configuration.

VI. CONCLUSION
In this paper we have proposed a control method for

synchronizing and tracking multiple agents in formation. We
have used the coordinating control in [14] for which the input
of every agent depends only on its neighbors information.

Tracking of the center of mass of the agents formation
has been achieved by using state feedback control applied
to the leader. Since the leader is not assumed to have direct
information from all the agents, the state is observed from
the input and output of the leader. This approach requires
observability and controllability (or at least detectability and
stabilizability) of the agents network from the leader input
and output. The observability/controllability properties for
chain and cyclic topologies has been studied in this paper.

It has been shown that the interconnection of agents using
the coordinating control strategy and leading to systems as
(7) are stabilizable and detectable from the input and output
of any agent.

It has been proved that, after applying a coordinating
control, the cyclic topology is observable and controllable

from any agent and the chain topology is observable and
controllable from the first or the last agent of the chain. A
cyclic topology and a chain topology can be interconnected
in cascade to obtain a new configuration that is controllable
and observable provided that the input and output are taken
from the first agent of the chain topology as in (17). Several
simple counter-examples show that adding any extra inter-
connection to the cyclic topology, the chain topology or the
combination of both as in (17) leads to either uncontrollable
or unobservable modes. This means that the most general
combination of chain and cyclic topologies that is both
controllable and observable from one agent (the first agent of
the chain) is the cascade interconnection of a chain topology
and a cyclic topology as in (17).
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