Abstract geometrical computation with accumulations: beyond the Blum, Shub and Smale model

Jérôme DURAND-LOSE

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, ORLÉANS, FRANCE

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

CiE 2008 - Athens, Greece

2 Results

2 Results

3 Accumulations

④ Simulation

Context

- Computation on the continuum
- Analog models
- No consensus on an analog Turing thesis
- Relating various models
- Blum, Shub and Smale model on ℝ [Blum, Shub, and Smale, 1989]
 [Blum, Cucker, Shub, and Smale, 1998]
- Abstract geometrical computation (AGC) [JDL: MCU 04, CiE 05]

Goal: to relate these

Definition: \mathbb{R} -BSS

- Variables hold real numbers
- Computing polynomial functions over the variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• Branch with $0 \leq test$

Definition: \mathbb{R} -BSS on unbounded sequences

- Variables hold real numbers
- Computing polynomial functions over the variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Branch with $0 \le \text{test}$

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Definition: Abstract Geometrical Computation and Signal Machines

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Definition: Abstract Geometrical Computation and Signal Machines

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition: Abstract Geometrical Computation and Signal Machines

(日)

э

 $\mathbb{R}\times\mathbb{R}^+$

Results

2 Results

3 Accumulations

④ Simulation

Results

Previous results

[JDL CiE '07]

Linear BSS

i.e. multiplication only by constant

Results

CiE '08 Result

One step ahead

AGC with accumulations

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

simulates

(full) BSS

Accumulations

2 Results

Accumulations

What can they be?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Accumulations

What is addressed?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Accumulations

What is addressed?

Simulation

2 Results

3 Accumulations

5 Conclusion

- ▲ ロ ▶ ▲ 昼 ▶ ▲ 臣 ▶ ▲ 臣 ● のへぐ

Simulation

Principle

Simulation

Real encoding

Continuous space with no scale

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > の < @ >

Simulation

Real encoding

Continuous space with no scale

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Simulation

Real encoding

Continuous space with no scale

Simulation

Real encoding

Continuous space with *no scale*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

All real numbers can be exactly represented

Real encoding

Simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

All real numbers can be exactly represented

Real encoding

Simulation

All real numbers can be exactly represented

Simulation

Multiplication scheme

$$0 < y < 1 \quad \begin{cases} y = 0.y_1y_2y_3 \dots \\ xy = \sum_{0 < i} y_i\left(\frac{x}{2^i}\right) \end{cases}$$

$$1 \le y$$
 $yx = (x2^k) \left(\frac{y}{2^k}\right)$ with $0 < \frac{y}{2^k} < 1$

・ロト ・聞ト ・ヨト ・ヨト

э

Zero and signs are treated easily

Simulation

Recurrence

$$p_n = \sum_{0 < i \le n} y_i \left(\frac{x}{2^i}\right)$$
$$x_n = \frac{x}{2^n}$$
$$y_n = 0.00 \dots 0 y_n y_{n+1} y_{n+2} \dots$$
$$b_n = \frac{1}{2^n}$$

Next values computed with test, sum, and division by 2

 $p_n \rightarrow xy$ so that accumulation should be on its limit

All other values $\rightarrow 0 \qquad \rightsquigarrow$ accumulation is possible

Simulation

Normalisation (to ensure 0 < y < 1)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < ○

Simulation

Infinite loop

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

2 Results

3 Accumulations

4 Simulation

Conclusion

Result and limit

AGC with accumulations can simulate the full BSS

With the same kind of construction $\sqrt{}$ can be computed

So that there is no hope of simulation in the other way

Conclusion

Future work

Identify which functions can be computed

Relate to other models of analog computation