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Abstract geometrical computation: beyond the
Blum, Shub and Smale model with accumulation

Jérome Durand-Lose*

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans,
B.P. 6759, F-45067 ORLEANS Cedex 2.

Abstract. Abstract geometrical computation (AGC) naturally arises as
a continuous counterpart of cellular automata. It relies on signals (dimen-
sionless points) traveling and colliding. It can carry out any (discrete)
Turing-computation, but since it works with continuous time and space,
some analog computing capability exists. In Abstract Geometrical Com-
putation and the Linear BSS Model (CiE 2007, LNCS 4497, p. 238-247),
it is shown that basic AGC has the same computing capability as the
linear BSS.

Using continuous space and time, it is possible to embed accumulations
in AGC: infinitely many time steps in a finite duration. This has been
used to implement the black-hole model of computation (Fundamenta
Informaticae 74(4), p. 491-510). It also makes it possible to multiply two
variables, thus simulating the full BSS. Nevertheless a BSS uncomputable
function, the square root, can also be implemented, thus proving that the
computing capability of AGC with accumulation is strictly beyond the
one of BSS.

Key-words. Abstract geometrical computation, Accumulations, Ana-
log computation, BSS model, Signal machine.

1 Introduction

There is no agreed continuous/analog/R counterpart of the Church-Turing the-
sis. Relating the numerous models is crucial to understand the differences be-
tween their computing capabilities. For example, Bournez et al. [BH04,BCGHO6]
have related Moore’s recursion theory on R [Mo096], computable analysis [Wei00)
and the general purpose analog computer. The aim of the present paper is to re-
late two analog models of computation. One, abstract geometrical computation
(AGCQ) deals with regular and automatic drawing on the Euclidean plane, while
the second, the Blum, Shub and Smale model [BCSS98] relies on algebraic com-
putations over R. Bournez [Bou99] has already provided some relations between
linear BSS and Piecewise constant derivative systems which also generates Eu-
clidean drawings. In [DLO07], AGC without accumulation was proved equivalent
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to the linear BSS model (i.e. BSS restricted to multiplication only by constants)
with an unbounded number of variables. In the present paper, the full BSS is
related to AGC with accumulation.

Abstract geometrical computation (ACG) arises from the common use in
cellular automata (CA) literature of Euclidean settings to explain an observed
dynamics or to design a CA for a particular purpose. While CA operate in
discrete time over discrete space, Euclidean geometry deals with both continuous
time and space. This switch of context is justified by the scaling invariance of
CA and relates to our preference and ability for thinking in continuous rather
than discrete terms (for example just think how recent and complex is discrete
geometry compared to the Euclidean one). Abstract geometrical computation
works in a continuous setting: discrete signals/particles are dimensionless points;
the local function of CA —computing the next state of a cell according to the
states of neighbouring cells— is replaced by collision rules: which signals emerge
from a collision of signals. Signals and rules define signal machines (SM).

This recent model, restricted to rational numbers, is able to carry out any
(discrete) Turing-computation [DL0O5b]; even with the additional restriction of
reversibility and conservativeness [DL06¢]. With continuous time, comes Zeno
effect (infinitely many discrete steps during a finite duration): not only are ac-
cumulations possible, but they can be used to decide recursively enumerable
problems by using the black-hole scheme [DL05a,DL06a]. Although accumula-
tions can easily be generated, they can hardly be foreseen [DLO6D].

In the Blum, Shub and Smale model (BSS), machines compute over any ring.
Roughly speaking, polynomial functions can be performed on variables as well as
tests (according to some order) for branching. The dimension of the input is not
bounded, a shift operator is provided in order to access any variable (finitely
many variables are considered since only finitely many are accessed in finite
time).

In [DLO7], AGC (without accumulation) and linear (multiplying two variables
is forbidden) BSS over R with an unbounded number of variables are proved
equivalent. This is done through linear real number unlimited register machines
(the arguments of [Nov95] for the equivalence of URM and BSS translate to the
linear case).

With a reasonable handling of accumulations, restrictions on multiplication
can be lifted thus achieving the full BSS computing capability. They are handled
in the following way: there is no second (or higher) order accumulation; only
finitely many signals leave any accumulation; and one signal appears where an
accumulation takes place. Multiplication is embedded in the same context and
the same encoding of real numbers as in [DL07], so that addition, multiplication
by constants and test do not have to be implemented again. Only the basis is
recalled: a real number is encoded as the distance between two signals.

Multiplication of two real numbers, z and y, is done by producing the bi-
nary extension of y and according to y,, adding or not x2". With integers, n is
increasing from 0, with real numbers, n goes down to —oo which explains the
use of an accumulation. Each iteration divides = by 2, computes the next bit of



y and updates the partial product accordingly. All the values are geometrically
decreasing to zero and so are the time and space used by an iteration, so that
there is an accumulation. The signal left by the accumulation is located exactly
at the value of the product zy.

To prove that AGC with accumulation is, as expected, strictly more powerful
than the BSS model, it is explained how to implement the square root. Each
iteration only uses addition and multiplication by constants.

Since the reader might be more familiar with BSS than with ACG, more care
and illustrations are given to ACG. Section 2 provides all the needed definitions.
Section 3 recalls basic encoding and geometric constructions for BSS simulation.
Section 4 provides the multiplication between variables. Section5 explains how
to build a signal machine able to compute the square root with an accumulation.
Conclusion, remarks and perspectives are gathered in Section 6.

2 Definitions

Abstract geometrical computation. In this model, dimensionless objects are
moving on the real axis. When a collision occurs they are replaced according to
rules. This is defined by the following machines:

Definition 1 A signal machine with accumulation is defined by (M, S, R, ui,)
where M (meta-signals) is a finite set, S (speeds) a mapping from M to R, R
(collision rules) a partial mapping from the subsets of M of cardinality at least
two into subsets of M (speeds must differ in both domain and range) and p, is
a meta-signal, the one that comes out of any accumulation.

Each instance of a meta-signal is a signal. The mapping S assigns speeds to
meta-signals. They correspond to the inverse slopes of the segments in space-
time diagrams. The collision rules, denoted p~—p™, define what emerge (p™)
from the collision of two or more signals (p~). Since R is a mapping, signal
machines are deterministic. The extended value set, V', is the union of M and R
plus two symbols: one for void, @, and one for accumulation 0. A configuration,
¢, is a total mapping from R to V such that the set {x € R|c(z) # @ } is finite.

A signal corresponding to a meta-signal p at a position z, i.e. ¢(x) = p, is
moving uniformly with constant speed S(u). A signal must start (resp. end) in
the initial (resp. final) configuration or in a collision. A y, signal may also start
as the result of an accumulation. This corresponds to condition 2 in Def. 2. At a
p~—pT collision signals corresponding to the meta-signals in p~ (resp. pT) must
end (resp. start) and no other signal should be present (condition 3). Condition
4 deals with accumulations, the first line implies that sufficiently close to the
accumulation, outside of the light cone, there is nothing but a p, signal leaving
the accumulation. The second line expresses that there is indeed an accumulation
(this is not formalized since it would be too ponderous).

Let S,,;, and S,,,, be the minimal and maximal speeds. The causal past,
or light-cone, arriving at position z and time ¢, J~(x,t), is defined by all the



positions that might influence the information at (x,¢) through signals, formally:
J(z,t) ={ (@', ¢) | . — Sppeu(t—1t) <2/ <ax—S,,,t=t) } .

max

Definition 2 The space-time diagram issued from an initial configuration cg
and lasting for T', is a mapping ¢ from [0, 7] to configurations (i.e. a mapping
from R x [0, 7] to V) such that, ¥(z,t) € R x [0,T] :
1. Vte[0,T], {x € R|c(z) # @} is finite,
2. if ¢i(x)=p then 3t;, t [0, T] with t;<t<ty or 0=t;=t<t; or t,<t=t;=T s.t.:
W € (tirty), oo+ SE — 1) =,
— t;=00r (¢t (x;) = p~—ptand p € pt) or (¢, (x;)=0 and p=p, ) where
zi=v + S(p)(t: — 1),
— ty=T or (c;;(xy) = p~—p" and p € p~ ) where xp=x+ S(u)(ty —1);
3. if ¢;(x)=p~ —p™T then e, O<e, VE'€[t—e, t+e] N[0, T], Vo'€[x — &,z + €],
(@) # (@,8) = (@) € pmUp* U{@),
“and ¢ <tand 2’ = S(p)(t —t
— VpEM, ep(a)y=p > or WwE pT an </an ZC/ x+ (u)(/ ),
peptandt <t and 2’ =+ S(u)(t' —t).
4. if ¢;(z) = O then
— Je >0, Vt'e[t—e, t+e] N[0, T], Vo' €[z — e,z + €],
cv(x) =0 and o' #x+ S(ua)(t' — )
cv(x) = pg and ' =z + S(u,)(t' —t),
— Ve > 0, there are infinitely many signals in J~(z, t).

(', t') ¢ I (z,t) = or {

On space-time diagrams, the traces of signals are line segments whose direc-
tions are defined by (S(.), 1) (1 is the temporal coordinate). Collisions correspond
to the extremities of these segments. This definition can easily be extended to
T = oo. In the space-time diagrams, time increases upwards. To simplify, the
same name is used for a signal throughout the computation, in fact, there is
a different meta-signal for each speed. As a computing device, the input is the
initial configuration and the output is the final configuration.

Blum, Shub and Smale model. (The reader is expected to be more familiar
with the BSS model than with AGC, so this part is not very detailed.) A BSS
machine is described by a (directed) graph. There are five kind of nodes: input,
output (start and end of computation), set a variable to the value computed
by a polynomial over neighboring variables, branch according to the value of a
polynomial, and shift. There is exactly one input node. Outgoing edges indicate
the next instruction. Each node has exactly one outgoing edge, except for output
(no outgoing edge) and branch (two, the next instruction is chosen by a test of the
form 0 < P(zg, 21, ..x,)) nodes. The shift operator allows to access any variable
by shifting the context (this is useful since there is no indirect addressing).



3 Basic construction

Real number encoding. A Real number is encoded as the distance from a
ba signal to its pairing val signal. Since signal machines are scaleless, two sca
signals whose distance amounts for a scale are provided as depicted on Fig. 1.
All numbers use the same scale. For the value 0, the superposition of ba and val
is encoded as a single signal nul. This value is never considered in the rest of the
paper; the reader is invited to check that it can be easily covered.

] o et |

sca sca val val ba val val
or nul(0)

Fig. 1. Encoding: scale and positions of val for values —m, —1.5, 0, v/2 and e.

Geometric constructions. The construction of the multiplication, like the
addition and the multiplication by a constant, relies on some basic geometric
constructions. In each picture, the slopes of the line segments are indicated. It
can easily be checked that it is scale invariant and provides the desired effect.
Signals with equal speeds result in parallel segments, the key to many geometric
properties. Figure2(a) shows how a distance can be halved. This is done by
starting two signals. The first one is going three times slower than the second
one. The time the first one crosses half the way, the second one goes one full way
and half way back, so that they meet exactly in the middle. Doubling is done
the other way round. Figures 2(b) and 2(c) show two ways to halve a distance
while shifting it. They also work with two signals emitted that change speed
or direction at some point and meet at the desired location. Generating simple
shifts is done by modifying only one slope (% by % for Fig.2(b) and % by 1 for
Fig. 2(b)).

3
1 3

2 i

2 3 5
1= 1 3 3
3 —1 3
l L
(a) Halving. (b) Shifting and halving 1. (c) Shifting and halving 2.

Fig. 2. Basic geometric constructions.



4 Multiplication

4.1 Algorithm

The multiplication of two real numbers 2 and y uses the (possibly) infinite binary
extension of y. This is done in two steps: normalization and then an infinite loop.

The first step starts by considering signs and special cases (i.e. multiplication
by zero). Then, while y is greater than 2,  is multiplied by 2 and y divided by
2 (so that the product remains constant).

The second step carries out the multiplication. The binary extension y =
Yo-¥1Y2Vs - - - (the initialization ensures that 0 < y < 2) is generated bit by bit.
The underlying formula is:

= (3)

0<i

This is computed iteratively with the updating on Table 1. The two last cases
correspond to y,, = 1 and y,, = 0 respectively. It is started with: po = 0 (prod-
uct), bg = 1 (bit test), xg = z and 0 < yo = y < 2by = 2. The following invariants
are satisfied:

- b, =27",

-0 S Yn < 2bn7

— x, = 227", and
- xy:pn"'%-

The last invariant is trivially true for n = 0 and preserved by the loop. Since

xng—;‘ < 2x, and z,, = 27", from the last invariant comes that nl;rr;o Pn = TY.

Table 1. Potentially infinite loop to compute the product.

Pn+1 $7L+1| Yn+1 bn+1
if y, =0 stop
else if bn < Yn|Pn + Tn|Tn/2|yn — bn|bn/2

else| pn Tn/2| yn |bn/2

4.2 Initialisation

With our encoding, detecting whether x or y is zero is trivial. Detecting the
signs and computing the sign of the product is also very easy. The following only
deals with multiplication of positive values, the other cases are generated using
absolute values and symmetry if the product is negative.

The above algorithm should be started with 0 < yg < 2by = 2. So that there
is a loop that multiplies by 2 and divides y by 2 until y is small enough. This is
illustrated on Fig. 3 (the first two space-time diagrams go one above the other).



The algorithm is sequential: signals for base (ba /'), bit testers (b /), z
(x ,») and y (y ,7) are fix unless set on movement by some bouncing initializa-
tion signals (ini). All distances are from ba and are measured according to the
“official” scale (not represented). The b signal stays at position 2 for testing the
end of the loop (i.e. y < 2). The signal ini comes from the left. If it meets y
before b, this means that the loop is finished (Fig. 3(c)). Otherwise it has to half
Yy, to double = and to test again (figures 3(a) and 3(b)).

I 1
I ! '
| | :
i e Sy -+~ | 1
ol = | | !
<l A 2
£ A | %
28 | | e
3 0, I s
SEE At : 7
Rt =l e N ,
[ I \ i 7 |
> . I | . mu
o! | AN I | | | i
2 X N I [ : | ;
§| 1 \\ | | 1 P 1
[ i S N i | i
N Y | 7 N | !
. ] i o
h 1
- | | . I o .
ini ba x b y baini by x ba ini vy b X
(a) First iteration. (b) Another iteration. (¢) Loop end.

Fig. 3. Preparing the data for multiplication.

At the end of initialization (which is always achieved in finite time and finitely
many collisions), the b at position 2 is set at position 1 (halved as usual). The
signal p amounting for p is generated. Since p is 0 at start, it is set on ba (this
corresponds to a different meta-signal). And finally, ini turns to mul that handles
the second step of the multiplication. Everything is depicted on Fig. 3(c).

4.3 Main loop

The multiplication follows the (possibly) infinite loop defined in Table 1. Basi-
cally, the things to do are additions, subtractions, divisions by 2 and tests. These
are easy implementable inside signal machines. But, since the loop is infinite, a
correct accumulation have to be generated. By correct, it is understood as at the
right location and there is indeed an accumulation. The second point is not to
be underestimated since, for example, if at each iteration some constant distance
would have to be crossed, then there would be an infinite duration process but
no accumulation.

The algorithm is driven by a mul signal that bounces between p and other
signals. First of all, mul has to test to know which case to consider. This is done



easily: going away from ba, if b is encountered before y this means that b, < y,
otherwise y,, < b, (when they are met simultaneously, i.e. they are equal, this
leads to the end of the loop at the next iteration).

The simpler case is when y,, < b,. There is nothing to do but to halve b,
and z,, that is halve the distance from b and x to ba. Signals p and y are left
untouched. This is done as depicted on the lower part of Fig. 4(b).

The other case b, < y, is depicted on Fig.4(a) and on the upper part of
Fig.4(b). The addition of z,, to p, is done by moving p to the location of x,
meanwhile x is moved on the right by half the distance it has from p. The signal
b is also moved on the right, at a distance from the new p that is half the previous
distance. The signal y is moved to the right, at a distance from the new p that
is equal to its original distance from b.

Y

_shift and halve

p mul y b

ba mul b y
(a) First iteration. (b) Two iterations.

Fig. 4. Multiplication.

To ensure accumulation, all lengths are geometrically scaled down and all the
computations take place by p and are shifted according to the moves of p. This
can be seen on Fig.4. Each iteration leads to halving the distance between ba
and both x and b. Since the distance from ba to y is at most twice the distance to
b, this ensures that all distances are bounded by some I;{f at the nth iteration.
Clearly the duration of an iteration is bounded proportionally to the maximum
distance between the signals. Thus it is also bounded by some % at the nth
iteration. There is no time lag between two consecutive iterations, so that there

is indeed an accumulation.

5 Square root

In this section, it is briefly argued why it is possible to compute the square root
with an accumulation and how. Let a be any positive real number. The construc-



tion follows the digit by digit approximation algorithm constructing a sequence
b, such that:

2
At each stage it should be tested whether (bn + Qn%) < a. If it is the case
then b,4+1 = b, + 27@% otherwise b,4+1 = b,. Using the sequences: d,, = a — bi,

bu and f, = 4n—1+1, the test corresponds to computing the sign of

€n = 3n

2
a—(bp+gor) =a—b2 b — Ao =d,—en— fu .

The updating of all these sequences is shown on Table 2 (plus another helpful

sequence g, = 27@%) The only operations used are additions, multiplications by

constants and tests. Again the size of the computing part is decreasing geomet-

rically and computation can be done by the signal encoding the value of b,, and
shifted with it.

Table 2. Infinite loop to compute the square root.

bn+t1 dn+t1 | ent1 |fn+1 In+1

ifd, —en—fn=0 stop
else if 0 < dn — en — fn|bn + gn|dn —en — frlen/2 4+ fn|fn/4|gn/2
else| by dn en/2 | fn/4|gn/2

The algorithm starts by a pretreatment that finds the initial value for n. This
value might be negative (e.g. n = —11 for a = 220 + 1).

6 Conclusion

In the present paper, AGC with accumulation is proved to be strictly more
powerful than BSS. This is not very surprising because it is already known
to decide in finite time any recursively enumerable problem (in the classical
discrete setting). Like square root, a lot of functions should be computable with
an accumulation, it would be interesting to identify them. Considering v/2, an
accumulation point of a rational signal machine can be irrational.

If the computation is stopped before the accumulation happens, then an ap-
proximation is generated. Computable analysis relies on the idea of an infinite
approximating sequence both for representing real numbers and for computing
(type-2 Turing machine needs an infinite number of iterations to compute a
function on real numbers). The next step would be to relate these two mod-
els. One problem would be to miniaturize and to ensure the generation of an
accumulation. Another one is that computable analysis only provides continu-
ous functions, while in ACG, there is, for example, the sign function which is
clearly not continuous. On the other side, Moore’s recursion theory allows non
continuous functions (even the characteristic function of rational numbers).

There might be many accumulations to simulate BSS, but none is of or-
der two. Another issue is to consider nth order accumulation and connect with
infinite Turing machines and ordinals [Ham07].
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