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CHAOTIC VIBRATIONS AND STRONG SCARS

NALINI ANANTHARAMAN AND STÉPHANE NONNENMACHER

1. Introduction

What relates an earthquake, a drum, a 2-dimensional mesoscopic cavity, a microwave
oven and an optical fibre? The equations governing wave propagation in these systems
(seismic, acoustic, electronic, microwave and optical) are linear. As a result, the solutions
of the wave equations can be decomposed as a sum over vibrating eigenmodes (or stationary
modes). The discrete (or “quantum”) nature of this eigenmode decomposition is due
to the compact geometry of the above-mentioned “cavities”. Mathematically, the latter
are modelled by compact, d-dimensional Riemannian manifolds (X, g) with or without
boundaries.

To simplify the presentation, we will restrict ourselves to scalar waves, described by a
real wavefunction ψ(x, t). The eigenmodes (ψn(x))n≥0 then satisfy Helmholtz’s equation

(1.1) ∆ψn + k2n ψn = 0 ,

where ∆ : H2 → L2 is the Laplace-Beltrami operator on X and kn ≥ 0 is the vibration
frequency of the mode ψn. If the manifold has a boundary (as is the case for an acoustic
drum or for electromagnetic cavities), the wavefunction must generally satisfy specific
boundary conditions, dictated by the physics of the system: the simplest ones are the
Dirichlet (ψ|∂X = 0) and Neumann (∂νψ|∂X = 0) boundary conditions, where ∂ν is the
normal derivative at the boundary.

Our goal is to describe the eigenmodes, in particular the high-frequency eigenmodes
(kn ≫ 1). Specifically, we would like to predict the localization properties of the modes
ψn, from our knowledge of the geometry of the manifold (X, g).

Consider, for instance, the case of a bounded domain in the Euclidean plane, which
we will call a billiard. For some very particular billiard shapes (e.g. a rectangle, a cir-
cle or an ellipse), there exists a choice of coordinates allowing one to separate the vari-
ables in Helmholtz’s equation (1.1), thereby reducing it to a one-dimensional eigenvalue
problem (of the Sturm-Liouville type). In the high-frequency limit, the latter can be
solved to arbitrarily high precision through WKB1 methods, or sometimes even exactly
(see Figure 1.1). The high-energy eigenmodes of such domains are hence very well-
understood.

This separation of variables can be interpreted as a particular symmetry of the classical
dynamics of the billiard (the motion of a point particle rolling frictionless across the billiard
and bouncing on its boundary). This dynamics is Liouville-integrable, which means that

1Wentzel-Kramers-Brillouin.
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Figure 1.1. Left: one orbit of the circular billiard. Center and right: two
eigenmodes of that billiard, with their respective frequencies.

there is a conserved quantity in addition to the kinetic energy. For instance, in a circular
billiard the angular momentum of the particle is conserved. The classical trajectories are
then very “regular” (see Figure 1.1). The same regularity is observed in the eigenfunctions
and can be explained by the existence of a non-trivial differential operator commuting
with the Laplacian. As soon as an integrable billiard is slightly deformed, the symmetry
is broken: the geodesic flow is no longer integrable; it becomes chaotic in some regions of
phase space. We do not have any approximate formula at hand to describe the eigenmodes.
The extreme situation consists of fully chaotic billiards, like the “stadium” displayed in
Figure 1.2 (the word “chaotic” is a fuzzy notion; the results we present below will always
rely on precise mathematical assumptions).

We mention that the most recent numerical methods (the boundary operator and the
“scaling method”) allow one to compute a few tens of thousands of eigenmodes for 2-dimen-
sional billiards, at most a few thousands in 3 dimensions and much less if the metric is not
Euclidean. The difficulty stems from the fact that a mode of frequency kn ≫ 1 oscillates
on a scale ∼ 1/kn (the wavelength); one thus needs a finer and finer mesh when increasing
the frequency2. On the other hand, the analytical methods and results we present below
are especially fitted to describe these high-frequency modes.

1.1. Semiclassical methods. In the general case of a Riemannian manifold, the classical
dynamics (away from the boundaries) consists of the Hamiltonian flow gt on the cotangent
bundle3 T ∗X , generated by the free motion Hamiltonian

(1.2) H(x, ξ) =
|ξ|2

2
, (x, ξ) ∈ T ∗X.

The flow on the energy layer H−1(1/2) = S∗X = {(x, ξ) : |ξ| = 1} is simply the geodesic
flow on the manifold (with reflections on the boundary in the case ∂X 6= 0).

2The code used to compute the stadium eigenmodes featured in this article was written and provided
by Eduardo Vergini [23].

3This bundle is often called “phase space”. It consists of the pairs (x, ξ), where x ∈ X and ξ ∈ R
d is

the coordinate of a covector based at x, representing the momentum of the particle.
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Figure 1.2. Top left: one typical “ergodic” orbit of the “stadium”: it
equidistribues across the whole billiard. The three other plots feature eigen-
modes of frequencies kn ≈ 39. Bottom left: a “scar” on the (unstable)
horizontal periodic orbit. Bottom right: a “bouncing ball” mode.

The high-frequency regime allows us to use the tools of semiclassical analysis. Indeed,
the Helmholtz equation (1.1) can be interpreted as a stationary Schrödinger equation:
taking ~n = k−1

n as an “effective Planck’s constant”, the eigenmode ψn satisfies

(1.3) −
~
2
n∆

2
ψn =

1

2
ψn.

The operator −~2∆
2

on the left-hand side is the quantum Hamiltonian governing the dy-
namics of a particle moving freely inside the cavity; it is the quantization of the classical
Hamiltonian (1.2). The above equation describes a quantum particle in a stationary state
of energy E = 1/2 (in this formalism, the energy is fixed but Planck’s “constant” is the
running variable). The high-frequency limit kn → ∞ exactly corresponds to the semi-
classical regime ~ = ~n → 0. In the following, the eigenmode will be denoted by ψn or
ψ~.

The correspondence principle provides a connection between the Schrödinger propagator,

namely the unitary flow U t = eit~
∆
2 acting on L2(X) and the geodesic flow gt acting on

the phase space T ∗X . The former “converges” towards the latter in the semiclassical limit
~ → 0, in a sense made explicit below. The aim of semiclassical analysis is to exploit
this correspondence and use our understanding of the geodesic flow in order to extract
properties of the Schrödinger flow.

To analyse the eigenmodes we need to observe them by using quantum observables. For
us, an observable is a real function A ∈ C∞(T ∗X) that will be used as a test function to
measure the phase space localization of a wavefunction. One can associate to this function
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a quantum observable Op~(A), which is a selfadjoint operator on L2(X) obtained from
A through a certain (~-dependent) quantization procedure. For instance, on X = R

d a
possible procedure is the Weyl quantization

(1.4) OpW
~
(A)f(x) =

1

(2π~)d

∫

A

(

x+ y

2
, ξ

)

e
i
~
ξ.(x−y)f(y)dy dξ.

The simplest case consists of functions A(x, ξ) = A(x) independent of the momentum;
OpW

~
(A) is then the operator of multiplication by A(x). If A = A(ξ) is a polynomial in the

variable ξ then OpW
~
(A) is the differential operator A

(

~

i
∂
∂x

)

. The role of the parameter ~
in the definition of OpW

~
(A) is to adapt that operator to the study of functions oscillating

on a spatial scale ∼ ~. On a general smooth manifold X , one can define a quantization
Op~(A) by using the formula (1.4) in local charts and then glue together the charts using
a smooth partition of unity.

A mathematical version of the correspondence principle takes the form of an Egorov
theorem. It states that quantization (approximately) commutes with evolution for observ-
ables:

(1.5) ‖e−it~
∆
2 Op~(A)e

it~∆
2 −Op~(A ◦ gt)‖L(L2) = OA,t(~) . (Egorov)

1.2. Semiclassical measures. In quantum mechanics, the function |ψ(x)|2 describes the
probability (density) of finding the particle at the position x ∈ X . A measuring device
will only be able to measure the probability integrated over a small region (a “pixel”)
∫

B
|ψ(x)|2 dx, which can be expressed as a diagonal matrix element 〈ψ, 1lBψ〉. Here 1lB is

the multiplication operator (on L2(X)) by the characteristic function on B.
More generally, for a nontrivial observable A(x, ξ) supported in a small phase space

region, the matrix element 〈ψ,Op~(A)ψ〉 provides information on the probability of the
particle lying in this region. From the linearity of the quantization scheme A 7→ Op~(A),
this matrix element defines a distribution µψ on T ∗X :

µψ(A)
def
= 〈ψ,Op~(A)ψ〉, ∀A ∈ C∞

0 (T ∗X).

This distribution (which depends on the state ψ but also on the scale ~) is called theWigner
measure of the state ψ. The projection of µψ on X is equal to the probability measure
|ψ(x)|2 dx; for this reason, µψ is also called a microlocal lift of that measure. Still, µψ
contains more information: it takes the phase of ψ into account and thereby also describes
the local momentum of the particle (measured at the scale ~).

In order to study the localization properties of the eigenmodes ψn, we will consider their
Wigner measures µψn

= µn (constructed with the adapted scales ~n). It is difficult to state
anything rigorous about the Wigner measures of individual eigenmodes so we will only aim
to understand the limits of (subsequences of) the family (µn)n≥0 in the weak topology on
distributions. Such a limit µ is called a semiclassical measure of the manifold X . Basic
properties of the quantization scheme imply that:

• µ is a probability measure supported on the energy shell S∗X .
• µ is invariant through the geodesic flow: µ = (gt)∗(µ), ∀t ∈ R.
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• The collection of semiclassical measures µ does not depend on the choices of local
symplectic coordinates involved in the definition of the quantization scheme A 7→
Op

~
(A).

The second property is a direct consequence of the Egorov theorem (1.5).
Starting from the family of quantum stationary modes (ψn)n, we have constructed one

or several probability measures µ on S∗X , invariant through the classical flow. Each of
them describes the asymptotical localization properties of the modes in some subsequence
(ψnj

)j≥1.

1.3. Is any invariant measure a semiclassical measure? On a general Riemannian
manifold X , the geodesic flow admits many different invariant probability measures. The
Liouville measure, defined as the disintegration on the energy shell S∗X of the symplectic
volume dx dξ, is a “natural” invariant measure on S∗X . We will denote it by L in the
following. Furthermore, each periodic geodesic carries a unique invariant probability mea-
sure. The chaotic flows we will consider admit a countable set of periodic geodesics, the
union of which fills S∗X densely.

Given a manifold (X, g), we are led to the following question: Among all gt-invariant
probability measures on S∗X , which ones do actually appear as semiclassical measures?
Equivalently, to which invariant measures can the Wigner measures (µn) converge to in
the high-frequency limit?

At the moment, the answer to this question for a general manifold X is unknown. We
will henceforth be less ambitious and restrict ourselves to geodesic flows satisfying well-
controlled dynamical properties: the strongly chaotic systems.

2. Chaotic geodesic flows

The word “chaotic” is quite vague so we will need to provide more precise dynamical
assumptions. All chaotic flows we will consider are ergodic with respect to the Liouville
measure. This means that S∗X cannot be split into two invariant subsets of positive
measures. A more “physical” definition is the following: the trajectory starting on a
typical point ρ ∈ S∗X will cover S∗X in a uniform way at long times (see Figure 1.2) so
that “time average equals spatial average”.

The “stadium” billiard (see Figure 1.2) enjoys a stronger chaoticity: mixing, meaning
that any (small) ball B ⊂ S∗X evolved through the flow will spread uniformly throughout
S∗X for large times. The strongest form of chaos is reached by the geodesic flow on a
manifold of negative curvature; such a flow is uniformly hyperbolic or, equivalently, it has
the Anosov property [3]. All trajectories are then unstable with respect to small variations
of the initial conditions. Paradoxically, this strong instability leads to a good mathematical
control on the long time properties of the flow. Such a flow is fast mixing with respect to
L.

Numerical computations of eigenmodes are easier to perform for Euclidean billiards than
on curved manifolds; on the other hand, the semiclassical analysis is more efficient in the
case of boundary-free compact manifolds so most rigorous results below concern the latter.
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2.1. Quantum ergodicity. Ergodicity alone already strongly constrains the structure of
the high-frequency eigenmodes: almost all of these eigenmodes are equidistributed on S∗X .

Theorem 2.1 (Quantum ergodicity). [22, 24, 9] Assume the geodesic flow on (X, g) is
ergodic with respect to the Liouville measure on S∗X.

Then, there exists a subsequence (nj) ⊂ N of density 1 such that the Wigner measures
of the corresponding eigenmodes satisfy

µnj
−→
j→∞

L .

The phrase “of density 1” means that
#{nj≤N}

N

N→∞
→ 1. Therefore, if there exists a subse-

quence of eigenmodes converging towards a semiclassical measure µ 6= L, this subsequence
must be sparse and consist of exceptional eigenmodes.

2.2. “Scars” and exceptional semiclassical measures. Numerical computations of
eigenmodes of some chaotic billiards have revealed interesting structures. In 1984, Heller
[15] observed that some eigenmodes of the “stadium” billiard (the ergodicity of which
had been demonstrated by Bunimovich) are “enhanced” along some periodic geodesics.
He called such an enhancement a “scar” of the periodic geodesic upon the eigenmode
(see Figure 1.2). Although it is well-understood that an eigenmode can be concentrated
along a stable periodic geodesic, the observed localization along unstable geodesics is more
difficult to justify. The enhancement observed by Heller was mostly “visual”; the more
quantitative studies that followed Heller’s paper (e.g. [5]) seem to exclude the possibil-
ity of a positive probability weight remaining in arbitrary small neighbourhoods of the
corresponding geodesic. Such a positive weight would have indicated that the corre-
sponding semiclassical measures “charge” the unstable orbit (a phenomenon referred to
as “strong scar” in [21]). Contrary to the case of Euclidean billiards, numerical stud-
ies on surfaces of constant negative curvature have not shown the presence of “scars”
[4].

On the mathematical level, the most precise results on the localization of eigenmodes
are obtained in the case of certain surfaces of constant negative curvature enjoying specific
arithmetic symmetries, called “congruence surfaces”. A famous example is the modular
surface (which is not compact). For these surfaces, there exists a commutative algebra
of selfadjoint operators on L2(X) (called Hecke operators), which also commute with the
Laplacian. It is then reasonable to focus on the orthonormal bases formed of joint eigen-
modes of these operators (called Hecke eigenmodes). Rudnick and Sarnak have shown [21]
that semiclassical measures associated with such bases cannot charge any periodic geodesic
(“no strong scar” on congruence surfaces). This result, as well as the numerical studies
mentioned above, suggested to them the following

Conjecture 2.2 (Quantum unique ergodicity). Let (X, g) be a compact Riemannian
manifold of negative curvature. For any orthonormal eigenbasis of the Laplacian, the se-
quence of Wigner measures (µn)n≥0 admits a unique limit (in the weak topology), namely
the Liouville measure.
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This conjecture goes far beyond the non-existence of “strong scars”. It also excludes all
the “fractal” invariant measures.

This conjecture has been proved by E. Lindenstrauss in the case of compact congruence
surfaces, provided one only considers Hecke eigenbases [18]. The first part of the proof [7]
(which relies heavily on the Hecke algebra) consists of estimating from below the entropies
of the ergodic components of a semiclassical measure. We will see below that the entropy
is also at the heart of our results.

2.3. The role of multiplicity? A priori, there can be multiple eigenvalues in the spec-
trum of the Laplacian, in which case one can make various choices of orthonormal eigen-
bases. On a negatively curved surface, it is known [6] that the eigenvalue k2n has multiplicity

O
(

kn
log kn

)

but this is far from what people expect, namely a uniformly bounded multiplic-

ity. One could modify Conjecture 2.2 so that the statement holds for a given basis (e.g. a
Hecke eigenbasis in the case of a congruence surface) but may be false for another basis.

In parallel with the study of chaotic geodesic flows, people have also considered toy
models of discrete time symplectic transformations on some compact phase spaces. The
most famous example of such transformations is better known as “Arnold’s cat map” on
the 2-dimensional torus. It consists of a linear transformation (x, ξ) →M(x, ξ), where the
unimodular matrix M ∈ SL(2,Z) is hyperbolic, i.e. it satisfies |trM | > 2. The “Anosov
property” then results from the fact that no eigenvalue of M has modulus 1. That trans-
formation can be quantized to produce a family of unitary propagators, depending on a
mock Planck parameter ~N = (2πN)−1, where N is an integer [14]. Such propagators have
been named “quantum maps” and have served as a “laboratory” for the study of quantum
chaotic systems, both on the numerical and analytical sides.

Concerning the classification of semiclassical measures, the “quantized cat map” has
exhibited unexpectedly rich features. On the one hand, this system enjoys arithmetic
symmetries, allowing one to define “Hecke eigenbases” and prove the quantum unique er-
godicity for such eigenbases [16]. On the other hand, for some (scarce) values of N the
spectrum of the quantum propagator contains large degeneracies. This fact has been ex-
ploited in [10] to construct sequences of eigenfunctions violating quantum unique ergodicity:
the corresponding Wigner measures µN converge to the semiclassical measure

(2.1) µ =
1

2
δO +

1

2
L,

where L = dx dξ is now the symplectic volume measure and δ0 is the M-invariant proba-
bility measure supported on a periodic orbit of M .

This result shows that the quantum unique ergodicity conjecture can be wrong when
extended to chaotic systems more general than geodesic flows. More precisely, for the “cat
map” the conjecture holds true for a certain eigenbasis but is wrong for another one.

Another result concerning the “cat map” is the following: the weight 1/2 carried by the
scar in (2.1) is maximal [11]. In particular, no semiclassical measure can be supported on
a countable union of periodic orbits. In the next section, dealing with our more recent
results on Anosov geodesic flows, we will see this factor 1/2 reappear.
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3. Entropic bounds on semiclassical measures

In this section, we consider the case of a compact manifold (without boundary) of neg-
ative sectional curvature. As mentioned earlier, the corresponding geodesic flow has many
invariant probability measures. The Kolmogorov-Sinai entropy associated with an
invariant measure is a number hKS(µ) ≥ 0, defined below. We stress a few important
properties:

• A measure supported by a periodic trajectory has zero entropy.
• The maximal entropy hmax is reached for a unique invariant measure, called the
Bowen-Margulis measure, of support S∗X .

• According to the Ruelle-Pesin inequality,

(3.1) hKS(µ) ≤

∫ d−1
∑

k=1

λ+k dµ,

where the functions λ+1 (ρ) ≥ λ+2 (ρ) ≥ · · · ≥ λd−1(ρ) > 0, defined µ-almost every-
where, are the positive Lyapunov exponents of the flow. Equality in (3.1) is reached
only if µ is the Liouville measure [17].

• On a manifold of constant curvature −1, the inequality reads hKS(µ) ≤ d− 1. The
Bowen-Margulis measure is then equal to the Liouville measure.

• The functional hKS is affine on the convex set of invariant probability measures.

These properties show that the entropy provides a quantitative indication of the localization
of an invariant measure. For instance, a positive lower bound on the entropy of a measure
implies that it cannot be supported by a countable union of periodic geodesics. This is
precisely the content of our first result.

Theorem 3.1. (1) [1] Let X be a compact Riemannian manifold such that the geodesic
flow has the Anosov property. Then every semiclassical measure µ on S∗X satisfies

hKS(µ) > 0.

(2) [2] Under the same assumptions, let λ+j (ρ) be the positive Lyapunov exponents and

λmax = limt→∞
1
t
log supρ∈S∗X ||dgtρ|| be the maximal expansion rate of the geodesic flow.

Then the entropy of µ satisfies

(3.2) hKS(µ) ≥

∫ d−1
∑

k=1

λ+k dµ−
d− 1

2
λmax .

In constant curvature −1, this bound reads hKS(µ) ≥
d−1
2
.

Corollary 1. [1] Let X be a compact manifold of dimension d and constant sectional
curvature −1. Then, for any semiclassical measure µ, the support of µ has Hausdorff
dimension ≥ d.

In constant negative curvature, the lower bound hKS(µ) ≥
d−1
2

implies that at most 1/2
of the mass of µ can consist of a scar on a periodic orbit. This is in perfect agreement with
the similar result proved for “Arnold’s cat map” (see §2.3).
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The right-hand side of (3.2) can be negative if the curvature varies a lot, which unfor-
tunately makes the result trivial. A more natural lower bound to hope for would be

(3.3) hKS(µ) ≥
1

2

∫ d−1
∑

k=1

λ+k dµ.

This lower bound has been obtained recently by G. Rivière for surfaces (d = 2) of non-
positive curvature [20]. B. Gutkin has proved an analogous result for certain quantum
maps with a variable Lyapunov exponent [12]; he also constructed eigenstates for which
the lower bound is attained.

From the Ruelle–Pesin inequality (3.1), we notice that proving the quantum unique
ergodicity conjecture in the case of Anosov geodesic flows would amount to getting rid of
the factor 1/2 in (3.3).

We finally provide a definition of the entropy and a short comparison between the entropy
bound of Bourgain-Lindenstrauss [7] and ours.

Definition 1. The shortest definition of the entropy results from a theorem due to Brin
and Katok [8]. For any time T > 0, introduce a distance on S∗X ,

dT (ρ, ρ
′) = max

t∈[−T/2,T/2]
d(gtρ, gtρ′),

where d is the distance built from the Riemannian metric. For ǫ > 0, denote by BT (ρ, ǫ) the
ball of centre ρ and radius ǫ for the distance dT . When ǫ is fixed and T goes to infinity, it
looks like a thinner and thinner tubular neighbourhood of the geodesic segment [g−ǫρ, g+ǫρ]
(this tubular neighbourhood is of radius e−T/2 if the curvature of X is constant and equal
to −1).

Let µ be a gt–invariant probability measure on S∗X . Then, for µ-almost every ρ, the
limit

lim
ǫ−→0

lim inf
T−→+∞

−
1

T
log µ

(

BT (ρ, ǫ)
)

= lim
ǫ−→0

lim sup
T−→+∞

−
1

T
log µ

(

BT (ρ, ǫ)
) def
= hKS(µ, ρ)

exists and it is called the local entropy of the measure µ at the point ρ (it is independent
of ρ if µ is ergodic). The Kolmogorov-Sinai entropy is the average of the local entropies:

hKS(µ) =

∫

hKS(µ, ρ)dµ(ρ).

Remark 3.2. In the case of congruence surfaces, Bourgain and Lindenstrauss [7] proved
the following bound on the microlocal lifts of Hecke eigenbases: for any ρ, and all ǫ > 0
small enough,

µn
(

BT (ρ, ǫ)
)

≤ Ce−T/9,

where the constant C does not depend on ρ or n. This immediately yields that any
semiclassical measure associated with these eigenmodes satisfies µ(BT (ρ, ǫ)) ≤ Ce−T/9,
which implies that any ergodic component of µ has entropy ≥ 1

9
.
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In [2], we work with a different, but equivalent, definition of the entropy. On a manifold
of dimension d and constant curvature −1, the bound we prove can be (at least intuitively)
interpreted as

(3.4) µn
(

BT (ρ, ǫ)
)

≤ C k
d−1
2

n e−
(d−1)T

2 ,

where k2n is the eigenvalue of the Laplacian associated with ψn. This bound only becomes
non-trivial for times T > log kn. For this reason, we cannot directly deduce bounds on the
weights µ(BT (ρ, ǫ)); the link between (3.4) and the entropic bounds of Theorem 3.1 is less
direct and uses some specific features of quantum mechanics.
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