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Abstract

This paper is concerned with the pile-up model defined as a nonlinear transformation of a distribution
of interest. An observation of the pile-up model is the minimum of a random number of independent
variables from the distribution of interest. One specific pile-up model is encountered in time-resolved
fluorescence where only the first photon of a random number of photons is observed. In the first part
of the paper the Cramér-Rao bound is studied to optimize the experimental conditions by choosing the
best tuning parameter which is the average number of variables over which the minimum is taken. The
implication is that the tuning parameter currently used in fluorescence does not minimize the acquisition
time. However, data obtained at the optimal choice of the tuning parameter require an estimator adapted
to the pile-up effect, therefore, an appropriate Gibbs sampler is presented. The covariance matrix of this
estimator turns out to be close to the Cramér-Rao bound and hence the acquisition time may be reduced
considerably.

Key words: Cramér-Rao bound; exponential mixture; fluorescence lifetime measurements; Gibbs
sampler; Hellinger differentiability; TCSPC.

1. Introduction

There are applications where parameter estimation is difficult since the observed data do not form a
sample from the distribution of interest due to noisy, missing, censored or truncated observations. In this
paper a new type of problem involving missing data is studied. We suppose that the observed sample
is distributed as the minimum of a random number of independent variables from the distribution of
interest. Thus, the distribution of the observations results in a nonlinear distortion of the distribution of
interest, usually called the pile-up effect. A formal definition of the pile-up model is given in Section 2.

The motivation for considering this type of problem arises from data encountered in time-resolved
fluorescence, where the time from exciting a fluorescent molecule to the emission of a photon is called the
fluorescence lifetime. This random time follows an exponential distribution whose parameter is called
the lifetime constant and which depends on the molecule as well as its environment like pH, viscosity,
polarity. Measurements for determining lifetime constants are obtained by the Time-Correlated Single-
Photon Counting (TCSPC) technique, also called Single-Photon Timing (see O’Connor & Phillips, 1984;
Valeur, 2002). Here a laser flash excites a random number of molecules but for technical reasons only the
arrival time of the first fluorescent photon hitting the detector can be measured. Currently, the TCSPC
method is used with a very low laser intensity such that the probability of detecting two or more photons
per laser pulse becomes negligible, that is, only two events are likely: either no photon at all or exactly
one photon hits the detector (see Lakowicz, 1999). Hence, no photons ‘get lost’ and the observations,
where a photon is detected, may be considered as a sample distributed according to a mixture of expo-
nential distributions. In this case, classical methods such as the EM algorithm (Dempster et al., 1977) or
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a Gibbs sampler (Gruet et al., 1999) can be applied to estimate the parameters of interest.
The number of photons hitting the detector per excitation pulse is modeled by a Poisson distribution

with parameter λ. The literature advises a low laser intensity such that the average number of photons
λ hitting the detector is less than 0.05, see Valeur (2002). However, a small λ has the drawback that
more than 95% of the measurements provide no information about the distribution of interest since
there is no photon detected. Thus, the acquisition time is long which is unfavourable since fluorescence
measurements are highly sensitive to unstable experimental conditions such as variations of the laser
intensity (see Walker, 2002). We believe that the acquisition time can be greatly reduced by increasing
the laser intensity which results in an increase in the proportion of observations containing information
about the parameters. However, the pile-up effect can no longer be disregarded and we have to know
how to handle pile-up affected data. In consequence, two specific questions arise: How does the pile-up
affect the information contained in the data? How to handle the pile-up in the estimation procedure? The
goal of this paper is to answer these two questions. In Section 3, we study the behaviour of standard
information bounds as λ varies. In Section 4 we develop a Gibbs sampler to estimate a pile-up affected
exponential mixture. This estimator is an adaption of the Gibbs sampler proposed by Gruet et al. (1999),
using a new set of missing variables.

2. General setting

2.1. The pile-up model
Let {Yk, k ≥ 1} be a sequence of independent positive random variables with distribution function

F , and let N be a random variable taking its values in N independently of this sequence. We define the
pile-up observation Z as the random variable taking its values in R+ = R+ ∪ {∞} by

Z =

{
min{Y1, . . . , YN} if N > 0
∞ if N = 0 .

(1)

Lemma 1. The distribution function G of Z is given by

G(z) = 1−M(1− F (z)) , z ∈ R+ , (2)

where M is the moment generating function associated with N , defined as M(u) = E(uN ) for all
u ∈ [0, 1]. If F admits a density f , G admits a density g with respect to the measure L+, defined as the
measure on R+ which puts mass 1 at {∞} and whose restriction on R+ is the Lebesgue measure L+.
Setting Ṁ(u) = E[NuN−1] for all [0, 1], the density g is given by

g(z) =

{
f(z)Ṁ(1− F (z)) if z ∈ R+

M(0) if z =∞ .
(3)

PROOF. Relation (3) is obtained by computing P(Z > z) = E[P(Z < z|N)].
The general case is obtained by a density argument. Let (fn) be a sequence of continuous densities

tending to f in the L1 sense,
∫
|fn−f | dL+ → 0 as n→∞. For each nwe denote by Fn the distribution

function of the density fn, and by Gn and gn the distribution function and density defined by (2) and (3),
respectively. We get that Fn converge to F uniformly, supy |Fn(y) − F (y)| → 0 as n → ∞ and, using
the properties of M and Ṁ , that supz |Gn(z) − G(z)| → 0 and

∫∞
z |gn − g| dL+ → 0 as n → ∞ for

any z such that F (z) > 0. It follows that G admits g as a density. �

We will compute Cramér-Rao information bounds for the pile-up model in a parametric setting. The
most general setting that will be considered is the following one.

Assumption 1. The distributionF belongs to a parametric family dominated byL+ and is thus described
by a collection of densities {fθ, θ ∈ Θ} with parameter set Θ ⊂ Rd. The distribution of N belongs to a
parametric family {pλ, λ ∈ Λ} where Λ ⊂ R and, for a given λ, pλ(k) = P(N = k) for all k ∈ N.
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Definition 1. Under Assumption 1, let us denote by {gλ,θ, (λ, θ) ∈ Λ×Θ} the corresponding collection
of densities obtained by Relation (3). We call this model, that is dominated by L+, the pile-up model
associated with {fθ, θ ∈ Θ} and {pλ, λ ∈ Λ}.

Remark 1. In an experimental setup it is impossible to wait indefinitely for some outcome. To obtain
a more realistic data model, we could introduce a finite maximal observation time T , that is, instead of
considering∞, one observes finite T whenever there are no photons detected or when all photons arrive
after T . Generally, T would be chosen rather large to avoid the censoring of events occurring after T . In
the following we consider T = ∞ for simplicity except in Section 4 where we consider an estimation
using censored data.

Remark 2. A case of particular interest, mainly motivated by the TCSPC application, is when N pos-
sesses a Poisson distribution with parameter λ > 0. Then

M(u) = eλ(u−1) and Ṁ(u) = λeλ(u−1), u ∈ [0, 1] , (4)

and we obtain the pile-up distribution function

G(z) = 1− exp{−λF (z)} , z ∈ R+ .

and the pile-up density

g(z) =

{
λf(z)e−λF (z) if z ∈ R+

e−λ if z =∞ .
(5)

Concerning the family {fθ, θ ∈ Θ}, three particular cases will be considered: a scale family fθ(t) =
θf1(θt) defined for all θ > 0, the exponential family which is the particular scale family with f1(t) =
e−t, and the family of mixtures of exponential density functions with given positive order, referred to as
the multi-exponential case.

2.2. Hellinger differentiability
In maximum likelihood theory information bounds are well-known for regular models. The regular

conditions involve the existence of two derivatives of the density function, together with interchangeabil-
ity of derivation and integration (see e.g. Bickel & Doksum, 2001). However, even in simple models as
the double exponential density, 1

2 exp(−|x − θ|), some of the conditions are violated. For a gain in ele-
gance and economy of assumptions the classical regularity conditions can be replaced by assumptions of
Hellinger differentiability, that is, differentiability in norm of the square root of the density as an element
of the L2 space, defined formally hereafter.

Definition 2. A collection of densities P = {fθ, θ ∈ Θ} with dominating measure ν and parameter set
Θ ∈ Rd is said to be Hellinger differentiable with respect to ν at a point θ0, if the map θ 7→ ξθ(x) :=√
fθ(x) is differentiable in L2(ν)-norm at θ0. That is, there exists a vector ξ̇θ0(x) of Rd–valued functions

in L2(ν) such that
ξθ(x) = ξθ0(x) + (θ − θ0)T ξ̇θ0(x) + rθ(x) ,

where the L2(ν)-norm of rθ satisfies ‖rθ‖2 = o(|θ − θ0|) as θ → θ0.

The information inequality for a model P = {fθ, θ ∈ Θ} bounds the variance of a parameter
estimator T (X) from below by an expression involving the expected value of the statistic and the Fisher
information. Under classical regularity conditions this result is known as the Cramér-Rao bound.

Theorem 1 (Pollard, 2001). Suppose that P is Hellinger differentiable at an interior point θ0 of Θ with
derivative ξ̇θ0 . Suppose that an estimator T (X) satisfies

sup
θ∈U0

Eθ
{
T (X)2

}
<∞ ,
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for some neighbourhood U0 of θ0. Then θ 7→ γθ := Eθ{T (X)} has a derivative at θ0 given by

∇θγθ0 = 2

∫
ξθ0 ξ̇θ0Tdν .

Define the Fisher information matrix by Iθ = 4
∫
ξ̇θ ξ̇

T
θ dν. If, in addition, Iθ0 is nonsingular, then

Varθ0{T (X)} ≥ ∇θγθ0I
−1
θ0
∇θγθ0 . (6)

We refer to Pollard (2001) or Bickel et al. (1998) for a proof of this result.
We now give some simple sufficient conditions for the pile-up model to be Hellinger differentiable

and determine its Hellinger derivative. The following study of information bounds will mainly rely on
this result.

Theorem 2. Under Assumption 1 let {gλ,θ, (λ, θ) ∈ Λ × Θ} be the associated pile-up model. Define
ξθ =

√
fθ and ζλ,θ =

√
gλ,θ for all λ ∈ Λ and θ ∈ Θ. Let (λ0, θ0) ∈ Λ×Θ. If

(i) {fθ, θ ∈ Θ} is Hellinger differentiable with respect to L+ at θ0 with Hellinger derivative ξ̇θ0 ,

(ii) Eλ0(N3) =
∑

k≥0 k
3pλ0(k) <∞,

(iii) pλ0(1) > 0,

(iv) the function λ 7→ {pλ(k)}k≥1 is differentiable at λ0 as a function defined on Λ with values in the
space of sequences `1 = {(uk)k∈N :

∑
k≥1 k|uk| <∞},

(v) either (a) pλ0(0) > 0 and λ 7→ pλ(0) is differentiable at λ0 or (b) pλ(0) = 0 for all λ in a
neighbourhood of λ0,

then {gλ,θ, (λ, θ) ∈ Λ × Θ} is Hellinger differentiable with respect to L+ at (λ0, θ0) with Hellinger
derivative

ζ̇λ0,θ0 = [∂θζλ0,θ0 ∂λζλ0,θ0 ]T , (7)

where ∂θζλ0,θ0 is given by

∂θζλ0,θ0(z) =

ξ̇θ0(z)Ṁ
1/2
λ0

(1− Fθ0(z)) +
ξθ0 (z)M̈λ0

(1−Fθ0 (z))

Ṁ
1/2
λ0

(1−Fθ0 (z))

∫∞
z ξθ0(t)ξ̇θ0(t)dt if z ∈ R+

0 if z =∞ ,
(8)

with Ṁλ(u) = Eλ(NuN−1), M̈λ(u) = Eλ{N(N − 1)uN−2} and

∂λζλ0,θ0(z) =


ξθ0 (z)M̌λ0

(F̄θ0 (z))

2Ṁ
1/2
λ0

(F̄θ0 (z))
if z ∈ R+

p̌λ0 (0)

2p
1/2
λ0

(0)
if z =∞ ,

(9)

with the convention 0/0 = 0 and where p̌λ0(k) denotes the derivative of λ 7→ pλ(k) at λ0 and

M̌λ0(u) =

∞∑
k=1

k uk−1p̌λ0(k), u ∈ [0, 1] . (10)

Remark 3. The pile-up model {gθ,λ0 , θ ∈ Θ} parameterized by θ with a given λ0 is Hellinger differen-
tiable at a point θ0 under the conditions (i)–(iii) and the Hellinger derivative ∂θζλ0,θ0 is given by (8), see
the proof of the Theorem.
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Remark 4. Condition (iv) implies that, for all k ≥ 1, λ 7→ pλ(k) is differentiable at λ0, and that the
sequence made of their derivatives {p̌λ0(k)}k≥1 belongs to `1. Hence M̌λ0(u) is well defined in (10)
and is equal to the derivative of λ 7→ Ṁλ(u) at λ0. Conversely, if λ 7→ pλ(k) is differentiable in a
neighbourhood U0 of λ0 for all k ≥ 1 and there exist k0 > 0, (hk)k≥k0 and v0 : R+ → R+ such that,
for all k ≥ k0 and λ ∈ U0,

|p̌λ0(k)− p̌λ(k)| ≤ v0(|λ− λ0|)hk , (11)

with v0(r) → 0 as r ↓ 0 and
∑

k>0 khk < ∞, then (iv) is satisfied. The bound (11) holds for instance
when λ 7→ pλ(k) is twice differentiable on U0 with v0(r) = r and hk defined as a local bound of the
second derivative |∂2

λpλ(k)|, for instance

hk = sup
λ∈U0

|∂2
λpλ(k)| .

Remark 5. In particular, in the Poisson case, pλ(k) = e−λλk/k!, Conditions (ii)–(v) hold. Then The-
orem 2 implies that the Hellinger differentiability of the pile-up model {gλ,θ, (λ, θ) ∈ Λ × Θ} at any
(λ0, θ0) follows from that of the model {fθ, θ ∈ Θ} at θ0. Moreover, we have

M̌λ(u) = eλ(u−1){1 + λ(u− 1)} . (12)

PROOF (THEOREM 2). We consider below the differentiability of ζλ,θ as an element of L2(L+). The
extension to L2(L+) is immediate in (8) because ζλ,θ(∞) does not depend on θ and in (9) as an appli-
cation of Condition (v). Let us first show that the model {gθ,λ0 , θ ∈ Θ} is Hellinger differentiable at θ0

for some given λ0. Let L∞(L+) denote the space of functions which are L+-essentially bounded, and
‖ · ‖∞ denote the corresponding norm. By Lemma 1, we have

ζλ0,θ = ξθṀ
1/2
λ0

(1− Fθ) .

Consider the function G : L2(L+)→ L∞(L+) defined by

G(ξ)(z) =

∫ ∞
z

ξ2(t) dt ,

and the function H with values in L∞(L+), defined on the unit ball of L∞(L+) by

H(u) = Ṁλ0 ◦ u .

By (i) and using the differentiability of (u,v) 7→ u×v defined from L2(L+)×L∞(L+) to L2(L+), the
differentiability (8) at θ0 follows from that of θ 7→

√
H ◦G◦ξθ as a function valued in L∞(L+). Observe

that G is differentiable at every point ξ ∈ L2(L+), with derivative function Ġξ : L2(L+) → L∞(L+)
given by

Ġξ(u)(z) = 2

∫ ∞
z

ξ(t)u(t) dt, z ∈ R+ .

We next show that
√
H is differentiable at any point of the set of non-negative functions in the unit

ball of L∞(L+) and conclude (11) by using that the derivative of a composition is the composition of
derivatives. By (ii), the function Ṁλ0 is twice continuously differentiable on [−1, 1] with first derivative
M̈λ0 and second derivative bounded by Eλ0{N(N − 1)(N − 2)}. Hence, for all t, s ∈ [−1, 1],

Ṁλ0(t) = Ṁλ0(s) + (t− s)M̈λ0(s) + r(t− s) , (13)

where |r(x)| ≤ Eλ0{N(N − 1)(N − 2)}x2/2. Applying (13), we obtain that H is differentiable at
any u in the unit ball of L∞(L+) with derivative v 7→ v × M̈λ0 ◦ u. Similarly, using (iii), since
Ṁλ0(u) ≥ pλ0(1) for all u ∈ [0, 1] and the square root function is twice continuously differentiable on
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R+ with a second derivative uniformly bounded on [pλ0(1),∞), we get that
√
H is differentiable at any

non-negative u in the unit ball of L∞(L+) with derivative v 7→ (v/2)M̈λ0Ṁ
−1/2
λ0

◦ u.
Let us now prove the Hellinger differentiability of ζλ,θ at (λ0, θ0). We write

ζλ,θ − ζλ0,θ0 = ζλ,θ − ζλ0,θ + ζλ0,θ − ζλ0,θ0 . (14)

For any λ ∈ Λ we have

sup
θ∈Θ

∥∥∥Ṁλ(1− Fθ)− Ṁλ0(1− Fθ)− (λ− λ0)M̌λ0(1− Fθ)
∥∥∥
∞

≤
∑
k≥1

|pλ(k)− pλ0(k)− (λ− λ0)p̌λ0(k)| = o(|λ− λ0|) ,

where the o-term holds as λ → λ0 and follows from Condition (iv). Since for all u ∈ [0, 1], Ṁλ0(u) ≥
pλ0(1) > 0 and |M̌λ0(u)| ≤

∑
k≥1 k|p̌λ0(k)| <∞, we obtain that, as λ→ λ0,

sup
θ∈Θ

∥∥∥∥∥Ṁ1/2
λ (1− Fθ)− Ṁ

1/2
λ0

(1− Fθ)− (λ− λ0)
M̌λ0(1− Fθ)

2Ṁ
1/2
λ0

(1− Fθ)

∥∥∥∥∥
∞

= o(|λ− λ0|) .

Thus, since ‖ξθ‖2 = 1 for all θ ∈ Θ and ‖uv‖2 ≤ ‖u‖2‖u‖∞, multiplying the previous equation by ξθ
yields, as λ→ λ0,

sup
θ∈Θ

∥∥∥∥∥ζλ,θ − ζλ0,θ − (λ− λ0)
ξθM̌λ0(1− Fθ)
2Ṁ

1/2
λ0

(1− Fθ)

∥∥∥∥∥
2

= o(|λ− λ0|) .

Observe that Ṁλ0 is continuous and positively lower bounded on [0, 1], M̌λ0 is continuous on [0, 1] since∑
k≥1 k|p̌λ0(k)| < ∞, θ 7→ ξθ is continuous at θ0 as a map valued in L2(L+) and θ 7→ 1 − Fθ is

continuous at θ0 as a map valued in L∞(L+). Hence, as θ → θ0,∥∥∥∥∥ ξθM̌λ0(1− Fθ)
2Ṁ

1/2
λ0

(1− Fθ)
− ξθ0M̌λ0(1− Fθ0)

2Ṁ
1/2
λ0

(1− Fθ0)

∥∥∥∥∥
2

→ 0 .

On the other hand, the previously proved Hellinger differentiability of ζλ0,θ0 at θ0 implies that, as θ → θ0,∥∥ζλ0,θ − ζλ0,θ0 − (θ − θ0)T∂θζλ0,θ0
∥∥

2
= o(‖θ − θ0‖) .

The two last displays and (14) conclude the proof. �

3. The effect of pile-up on information bounds

This section provides a study of the information inequality for the pile-up model. Our special interest
lies in the influence of the parameter λ on the information contained in the data, since in the context of
fluorescence measurements λ presents the average number of photons hitting the detector and can be
coarsely tuned in the experimental setup. At a low intensity λ the acquisition time is long since most of
the time no fluorescent photon is detected (N = 0 in (1)). At a high intensity the number of photons N
hitting the detector is very large and the distribution of Z is almost degenerated. Intuitively, we may find
that in both of these extreme cases the information about the parameter of interest θ0 is quite poor. The
question of finding an optimal value for λ arises.

The main result of this section is Theorem 4: If the underlying density fθ0 belongs to a scale family,
then the Cramér-Rao bound of the scale parameter θ0 achieves a minimum at a point λopt which is the
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same for all θ0 > 0. Evidently, this is of great practical use for fluorescence measurements when Fθ0
is considered to be the exponential distribution. Theorem 4 suggests tuning the parameter as close to
λopt as possible independently of the unknown parameter θ0, to minimize the asymptotic variance of the
maximum likelihood estimator of θ0. In Subsection 3.4 the optimal intensity is determined at λopt ≈ 1.32
using numerical evaluations of the information bounds. Carrying out the experiment at the intensity λopt,
instead of λ < 0.05 as currently done, results in an enormous increase in information and hence reduces
the acquisition time considerably. In the multi-exponential case the Cramér-Rao bound depends on the
parameter θ0. However, simulations reveal that an intensity in the range of [1, 2] remains a good choice.

To assure the existence of the Fisher information we will make the following assumption.

Assumption 2. In addition to Assumption 1 suppose that for a given (λ0, θ0) the density families
{fθ, θ ∈ Θ} and {pλ, λ ∈ Λ} satisfy Condition (i) and Conditions (ii)–(v) in Theorem 2, respec-
tively. Moreover, we assume that Θ and Λ are open sets.

The implication of Theorem 2 is that the pile-up model {gλ,θ, (λ, θ) ∈ Λ × Θ} is Hellinger differ-
entiable at (λ0, θ0), with derivative ζ̇λ0,θ0 given by (7), (8) and (9). We denote the corresponding Fisher
information matrix of the pile-up model by

I(λ0, θ0) = 4

∫
ζ̇λ0,θ0 ζ̇

T
λ0,θ0dL+ =

[
Iλ(λ0, θ0) Iλ,θ(λ0, θ0)
ITλ,θ(λ0, θ0) Iθ(λ0, θ0)

]
, (15)

where, in the given block description, Iλ(λ0, θ0) is defined as a scalar, Iλ,θ(λ0, θ0) as a row vector of
length d and Iθ(λ0, θ0) as a d × d matrix. If I(λ0, θ0) is nonsingular, its inverse, which appears in the
information bound (6), is denoted by

CR(λ0, θ0) = I−1(λ0, θ0) =

[
CRλ(λ0, θ0) CRλ,θ(λ0, θ0)
CRTλ,θ(λ0, θ0) CRθ(λ0, θ0)

]
, (16)

with a similar block description as above, that is, CRλ(λ0, θ0) is a scalar, CRλ,θ(λ0, θ0) is a row vector
of length d and CRθ(λ0, θ0) is a d× d matrix.

3.1. Fisher information of λ
In the pile-up model {gλ,θ, (λ, θ) ∈ Λ × Θ} the Fisher information of λ is independent of the

underlying distribution Fθ, as shown in the following result.

Theorem 3. Under Assumption 2 the Fisher information term Iλ(λ0, θ0) of the pile-up model {gλ,θ, (λ, θ) ∈
Λ×Θ} defined by (15) is independent of θ0 and {fθ, θ ∈ Θ}. More precisely,

Iλ(λ0, θ0) =

∫ 1

0

M̌2
λ0

(u)

Ṁλ0(u)
du+

p̌2
λ0

(0)

pλ0(0)
. (17)

PROOF. Using (9), we obtain

Iλ(λ0, θ0) = 4

∫
(∂λζλ0,θ0)2dL+ =

∫ ∞
0

ξ2
θ0

(z)M̌2
λ0

(1− Fθ0(z))

Ṁλ0(1− Fθ0(z))
dz +

p̌2
λ0

(0)

pλ0(0)
.

Let X be a random variable with density ξ2
θ0

. As its distribution function Fθ0 is continuous, Fθ0(X) has
uniform distribution on [0, 1] (see Devroye, 1986). Consequently,∫ ∞

0

ξ2
θ0

(z)M̌2
λ0

(1− Fθ0(z))

Ṁλ0(1− Fθ0(z))
dz = E

{
M̌2
λ0

(1− Fθ0(X))

Ṁλ0(1− Fθ0(X))

}
=

∫ 1

0

M̌2
λ0

(u)

Ṁλ0(u)
du .

This completes the proof. �
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Remark 6. In the Poisson case where M̌ and Ṁ are given by (4) and (12), we have

Iλ(λ0, θ0) =
1

λ0

∫ 1

0
eλ0(u−1)(1 + λ0(u− 1))du+ e−λ0 =

1− e−λ0

λ2
0

. (18)

Figure 1: Fisher information λ 7→ Iλ(θ0, λ) of λ for the pile-up model in the Poisson case versus the Fisher information of the
Bernoulli model with parameter e−λ.

The independence of Iλ of the underlying distribution Fθ0 may appear surprising, but it indicates that
the main part of information about λ is the proportion of observations equal to infinity. This quantity
is a natural estimator of pλ(0), the probability of detecting no photons, which is independent of Fθ0 .
A comparison of the information Iλ in the Poisson case to the Fisher information of a Bernoulli model
with parameter pλ(0) = e−λ, equal to Ĩλ = (eλ − 1)−1, indicates that for values of λ close to 0 the two
information values almost coincide, see Figure 1. Furthermore, observe that the Fisher information Iλ of
the pile-up model slightly exceeds the information Ĩλ of the Bernoulli model, for all λ > 0. This is clear
because a Bernoulli model can be obtained from the pile-up observations by projecting them on the pair
{0, 1}.

3.2. Scale family

We now consider the pile-up model where the underlying density fθ0 belongs to a scale family
{θf1(θ·), θ > 0} with d = 1. We show that the Cramér-Rao bound λ 7→ CRθ(λ, θ0) achieves a
minimum at a point λopt which is the same for all θ0 > 0.

Lemma 2. Let {fθ, θ > 0} be a scale family. Then, for any θ0 > 0, {fθ, θ > 0} is Hellinger differen-
tiable at θ = θ0 if and only if {fθ, θ > 0} is Hellinger differentiable at θ = 1, and ξ̇θ0(x) = 1√

θ0
ξ̇1(θ0x).

PROOF. Let {fθ, θ > 0} be Hellinger differentiable at θ = 1 with derivative ξ̇1(x) and let θ0 > 0.
Denote

rθ(x) = ξθ(x)− ξ1(x)− (θ − 1)ξ̇1(x) ,

then ‖rθ‖2 = o(|θ− 1|) as θ → 1. As {fθ, θ > 0} is a scale family, one can show by changing variables
that ∥∥∥∥ξθ(x)− ξθ0(x)− (θ − θ0)√

θ0

ξ̇1(θ0x)

∥∥∥∥2

2

=

∫ ∞
0

(
ξθ/θ0(u)− ξ1(u)−

(
θ

θ0
− 1

)
ξ̇1(u)

)2

du

= ‖rθ/θ0‖
2
2 .

8



Since ‖rθ/θ0‖2 = o(|θ/θ0 − 1|) = o(|θ − θ0|), as θ → θ0, we obtain the Hellinger differentiability at θ0

with the given derivative. The converse is shown in the same way. �

Theorem 4. Let {fθ, θ > 0} be a scale family. If Assumption 2 holds for some (λ0, θ0) and the Fisher
information matrix I(λ0, θ0) is nonsingular, then Assumption 2 and the invertibility of I(λ0, θ0) hold for
any positive value of θ0 and the Cramér-Rao bound is given by

CR(λ0, θ0) =

[
CRλ(λ0, 1) θ0CRλ,θ(λ0, 1)

θ0CR
T
λ,θ(λ0, 1) θ2

0CRθ(λ0, 1)

]
. (19)

Consequently, arg min
λ0

CRθ(λ0, θ0) = arg min
λ0

CRθ(λ0, 1), and thus the value of λ0 minimizing the

Cramér-Rao bound CRθ(λ0, θ0) does not depend on θ0.

PROOF. Lemma 2 implies the Hellinger differentiablity of {fθ, θ > 0} at any θ0 > 0 with derivative
given by

ξ̇θ0(x) =
1√
θ0

ξ̇1(θ0x) .

By applying Theorem 2, we have

∂θζλ0,θ0(∞) = ∂θζλ0,1(∞) = 0 and ∂λζλ0,θ0(∞) = ∂λζλ0,1(∞) .

Further, using that Fθ0(z) = F1(θ0z), ξθ0(x) =
√
θ0ξ1(θ0x) and∫ ∞

z
ξ1(θ0t)ξ̇1(θ0t) dt =

1

θ0

∫ ∞
θ0z

ξ1(t)ξ̇1(t) dt, z ∈ R+ ,

gives for all z ∈ R+,

∂θζλ0,θ0(z) =
1√
θ
∂θζλ0,1(θz) and ∂λζλ0,θ0(z) =

√
θ∂λζλ0,1(θz) .

Therefore,

Iθ(λ0, θ0) = 4

∫ ∞
0

(∂θζλ0,θ0(z))2dz =
4

θ2
0

∫ ∞
0

(∂θζλ0,1(z))2dz =
1

θ2
0

Iθ(λ0, 1) , (20)

and, likewise, Iλ,θ(λ0, θ0) = 1
θ0
Iλ,θ(λ0, 1). Note that Iλ(λ0, θ0) = Iλ(λ0, 1), by Theorem 3. The

theorem follows by applying the preceding relations to the inverse of the 2×2 Fisher information matrix

CR(λ0, θ0) =
1

Iλ(λ0, θ0)Iθ(λ0, θ0)− Iλ,θ(λ0, θ0)2

[
Iθ(λ0, θ0) −Iλ,θ(λ0, θ0)
−Iθ,λ(λ0, θ0) Iλ(λ0, θ0)

]
.

�

3.3. Asymptotic behaviour in the Poisson case

Our main motivation is to investigate whether, from an information point of view, it is legitimate to
collect fluorescence lifetime data at a very low intensity λ. Recall that in the fluorescence context N
follows a Poisson distribution Poi(λ0) and literature advises to use λ0 < 0.05. The question is, whether
the currently used low intensity λ0 is optimal. We now provide an approximation of the information
bound of the parameter θ0 as λ0 tends to 0 in the Poisson case, and deduce that the Cramér-Rao bound
increases greatly as λ0 → 0.

In the Poisson case the parameter λ coincides with the expected number of photons hitting the de-
tector per light pulse. If λ is sufficiently small the probability of detecting two or more photons becomes

9



negligible and the model is similar to the distribution where the value∞ is observed with probability e−λ

and otherwise a random variable Y with density fθ. Formally, we define the following random variable

X =

{
Y with probability 1− e−λ

∞ with probability e−λ .
(21)

Hence, for a small λ0, the density of X is a good approximation of gλ0,θ0 . Moreover, the corresponding
information matrix is easier to calculate and to inverse.

Lemma 3. Let, for all λ > 0,

Aλ =

[
aλ λbTλ
λbλ λdλ

]
,

where aλ ∈ R, bλ = (bλ,1, . . . , bλ,p)
T ∈ Rp and dλ ∈ Rp×p. Suppose that

bλ = O(1), λaλ → 1 and dλ → d when λ→ 0 ,

where d is an invertible matrix. Then, when λ→ 0,

det(Aλ) ∼ λp−1 det(dλ) .

Further, denote the two diagonal blocks of the inverse of Aλ by mλ and Mλ, where mλ is a scalar and
Mλ a p× p matrix,

A−1
λ =

[
mλ . . .

... Mλ

]
.

Then, when λ→ 0,

mλ ∼ λ and Mλ ∼
d−1

λ
.

PROOF. Using the Laplace expansion for the determinant of Aλ along the first row, we obtain with the
notation d−(j)

λ for the p× (p− 1) matrix that results from dλ by removing the j-th column,

det(Aλ) = aλλ
p det(dλ) +

p∑
j=1

(−1)j+1bλ,jλ
p+1 det

([
bTλ , d

−(j)
λ

])
.

Further,

det
([
bTλ , d

−(j)
λ

])
=

p∑
k=1

(−1)k+1bλ,k det
(
d
−(k,j)
λ

)
,

where the (p−1)× (p−1) matrix d−(k,j)
λ results from dλ by removing the k-th row and the j-th column.

By the assumptions of the theorem it follows det(Aλ) = λpaλ det(dλ) + O(λp+1) ∼ λp−1 det(d), as
λ→ 0. For the second part of the theorem, we use the representation of the inverse matrix using minors.
For all i, j > 1 we have, similarly as above,

(
A−1
λ

)
i,j

=
(−1)i+j

det(Aλ)

(
aλλ

p−1 det
(
d
−(i−1,j−1)
λ

)
+O(λp)

)
=

(−1)i+j det
(
d
−(i−1,j−1)
λ

)
λ det(d)

+ o

(
1

λ

)
=

(d−1)i,j
λ

+ o

(
1

λ

)
.

And finally, to complete the proof, we get
(
A−1
λ

)
1,1

= λp det(dλ)
det(Aλ) ∼ λ, as λ→ 0. �
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Lemma 4. If a collection of densities P = {fθ, θ ∈ Θ} has a Hellinger derivative ξ̇θ0 in θ0, and if θ0 is
an interior point of Θ, then

∫
ξ̇θ0(z)ξθ0(z) dz = 0.

PROOF. Differentiating the relationship
∫
ξ2
θ (z)dz = 1 yields the Lemma (see Pollard, 2001; Bickel

et al., 1998). �

Theorem 5. Let pλ be the Poisson distribution Poi(λ). Suppose that {fθ, θ ∈ Θ} is Hellinger differen-
tiable at θ0. Denote by I(λ0, θ0) the Fisher information of the pile-up model, and by If (θ0) the Fisher
information associated with the original model {fθ, θ ∈ Θ}. Assume that If (θ0) is nonsingular. Then for
every λ0 small enough, I(λ0, θ0) is nonsingular and the Cramér-Rao bound CR given by (16) satisfies
the following asymptotic equivalences, as λ0 → 0,

CRλ(λ0, θ0) ∼ λ0, and CRθ(λ0, θ0) ∼ (If )−1(θ0)

λ0
.

PROOF. The random variable X defined in (21) has a density with respect to L+ given by

hλ,θ(x) =

{
fθ(x)(1− e−λ) if x ∈ R+

e−λ if x =∞ .
(22)

First we show that the Cramér-Rao bound associated with the model {hλ,θ, (λ, θ) ∈ Λ×Θ} is given by

CRh(λ0, θ0) =

[
eλ0 − 1 0

0 (If )−1(θ0)

1−e−λ0

]
. (23)

The family {hλ,θ, (λ, θ) ∈ Λ×Θ} is a pile-up model withN having Bernoulli distribution with parameter
(1 − eλ0). Set ρλ0,θ0 :=

√
hλ0,θ0 . Applying Theorem 2 gives the Hellinger differentiability at (λ0, θ0)

with derivative

∂λρλ0,θ0(x) =


−ξθ0 (x)e−λ0

2
√

1−e−λ0
if x ∈ R+

− e−λ0/2

2 if x =∞ ,

∂θρλ0,θ0(x) =

{√
1− e−λ0 ξ̇θ0(x) if x ∈ R+

0 if x =∞ .

Obviously, we obtain for the Fisher information Ih(λ0, θ0) of {hλ,θ, (λ, θ) ∈ Λ×Θ}

Ihλ (λ0, θ0) = 4

∫
(∂λρλ0,θ0)2dL+ =

e−2λ0

1− e−λ0

∫ ∞
0

ξ2
θ0(x)dx+ e−λ0 =

1

eλ0 − 1
, (24)

and

Ihθ (λ0, θ0) = 4(1− e−λ0)

∫ ∞
0

ξ̇θ0(x)ξ̇Tθ0(x)dx = (1− e−λ0)If (θ0) . (25)

Finally, by applying Lemma 4, it follows that

Ihλ,θ(λ0, θ0) = 4

∫ ∞
0

∂λρλ0,θ0(x)∂θρλ0,θ0(x)dx = 2e−λ0
∫ ∞

0
ξθ0(x)ξ̇θ0(x)dx = 0 . (26)

Inverting the Fisher information matrix

Ih(λ0, θ0) =

(
Ihθ (λ0, θ0) 0

0 Ihλ (λ0, θ0)

)
11



yields (23). Now we show that the following asymptotic equivalences hold, as λ0 → 0,

Ihλ (λ0, θ0) ∼ λ−1
0 and Igλ(λ0, θ0)− Ihλ (λ0, θ0) = O(λ0), (27)

Ihθ (λ0, θ0) ∼ λ0I
f (θ0) and Igθ (λ0, θ0)− Ihθ (λ0, θ0) = O(λ2

0), (28)

Ihλ,θ(λ0, θ0) = 0 and Igλ,θ(λ0, θ0) = O(λ0) . (29)

Combining (18) and (24) yields (27). To establish (28), applying Theorem 2 in the Poisson case
(see (4) and (12)), and using the notation therein, we obtain, for all z ∈ R+,

∂θζλ0,θ0(z) =
√
λ0e−λ0Fθ0 (z)/2

[
ξ̇θ0(z) + λ0ξθ0(z)

∫ ∞
z

ξ̇θ0(t)ξθ0(t)dt

]
.

By the Cauchy–Schwarz Inequality and since ‖ξθ0‖2 = 1, we have

sup
z≥0

∣∣∣∣∫ ∞
z

ξ̇θ0(t)ξθ0(t)dt

∣∣∣∣ ≤ ‖ξ̇θ0‖2 .
Using supz |1 − e−λ0Fθ0 (z)/2| ≤ |1 − e−λ0/2| and the two previous displays, we obtain, as λ0 → 0,∥∥∥∂θζλ0,θ0 −√λ0ξ̇θ0

∥∥∥
2

= O(λ
3/2
0 ). This combined with (25) yields (28). Further applying Theorem 2

and using similar arguments as above and Lemma 4 yields (29). Apply Lemma 3 and (24)–(26) complete
the proof of the theorem. �

The assertion of the theorem is that the information bound CRθ(λ0, θ0) for estimating the parameter
of interest θ0 increases as λ0 decreases to 0, which indicates that a microscopic λ0 results in a significant
loss of information.

3.4. Exponential case

In view of the TCSPC application, we consider the special case where fθ0 belongs to the family of
exponential distributions {fθ(x) = θe−θx, θ > 0} and pλ is the Poisson distribution Poi(λ). We will see
that in this case it is relatively easy to determine the optimal value of λ0 since {fθ, θ ∈ Θ} is a scale
family that is Hellinger differentiable at all θ > 0. In view of Theorem 4, our study of the pile-up model
can be restricted to the case of θ0 = 1. Furthermore, Theorem 5 implies that the Cramér-Rao bound
becomes large when λ is small.

The following theorem describes the asymptotic behaviour of the Fisher information Iθ when λ tends
to infinity. We state that the pile-up model with large λ contains (asymptotically) the same amount of
information on the exponential parameter θ as a random variable with exponential distribution E(θ).

Theorem 6. Let {fθ(x) = θe−θx, θ > 0} be the family of exponential densities and let pλ be the Poisson
distribution Poi(λ). Denote the Fisher information of the parameter θ associated with the pile-up model
by Iθ. Then, for all θ0 > 0,

lim
λ0→∞

Iθ(λ0, θ0) =
1

θ2
0

. (30)

Note that the following property holds for the functions bλ(m,n) defined by

bλ(m,n) =

∫ ∞
0

zme−nz+λe−zdz =

∞∑
k=0

λk

k!

∫ ∞
0

zme−z(n+k)dz = m!

∞∑
k=0

λk

k!(k + n)m+1
.

Lemma 5. For all m ≥ n ≥ 1, we have bλ(m,n) = o(λ−neλ) as λ→∞.
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PROOF. The result follows by applying n times Hospital’s rule to

lim
λ→∞

λnbλ(m,n)

eλ
= lim

λ→∞

m!
∑∞

k=0
λk+n

k!(k+n)m+1

eλ
= lim

λ→∞

m!
∑∞

k=0
λk(k+n)...(k+1)
k!(k+n)m+1

eλ

≤ m! lim
λ→∞

e−λ
∞∑
k=0

λk

k!(k + n)m+1−n ≤ m! lim
λ→∞

e−λ
∞∑
k=0

λk

(k + 1)!

= m! lim
λ→∞

1− e−λ

λ
= 0 .

�

PROOF (THEOREM 6). Note that the Fisher information of θ has the following explicit form

Iθ(λ0, 1) = 4

∫
(∂θζλ0,1(z))2dz = λ0eλ0

∫ ∞
0

e−z+λ0e−z
(
1− z + λ0ze

−z)2 dz
= 1− e−λ0 + λ0e−λ0

{
bλ0(2, 1) + λ2

0bλ0(2, 3)− 2bλ0(1, 1)− 2λ0bλ0(1, 2) + 2λ0bλ0(2, 2)
}
.

Without loss of generality take θ0 = 1, by Theorem 4. By Lemma 5, the terms e−λ0λ0bλ0(2, 1),
e−λ0λ0bλ0(1, 1) and e−λ0λ2

0bλ0(2, 2) tend to 0 as λ0 → ∞. By applying Hospital’s rule to the first
term three times and to the second term two times, we obtain

lim
λ0→∞

∣∣∣e−λ0λ3
0bλ0(2, 3)− 2e−λ0λ2

0bλ0(1, 2)
∣∣∣

= 2

∣∣∣∣∣ lim
λ0→∞

e−λ0
∞∑
k=0

λk0(k + 1)(k + 2)

k!(k + 3)2
− 2 lim

λ0→∞
e−λ0

∞∑
k=0

λk0(k + 1)

k!(k + 2)

∣∣∣∣∣
= 2 lim

λ0→∞
e−λ0

∣∣∣∣∣
∞∑
k=0

λk0
k!

2k2 + 7k + 5

k3 + 8k2 + 21k + 18

∣∣∣∣∣
≤ 28 lim

λ0→∞
e−λ0

∣∣∣∣∣
∞∑
k=0

λk0
(k + 1)!

∣∣∣∣∣
= 0 .

Thus e−λ0λ3
0bλ0(2, 3) − 2e−λ0λ2

0bλ0(1, 2) tends to 0 as λ0 →∞. This implies that Iθ(λ0, 1) tends to 1
as λ0 →∞, and (20) gives (30). �

From Figure 2 we see that the Cramér-Rao bound λ 7→ CRθ(λ, 1) is convex in λ. A numerical mini-
mization yields a minimum at λopt ≈ 1.3275 and Theorem 4 implies that λopt minimizes the Cramér-Rao
bound λ 7→ CRθ(λ, θ0) for all θ0 > 0. The value of λopt is much larger than the intensity usually used
in fluorescence measurements (λ < 0.05). We conclude that it is worthwhile to increase the intensity
λ because this opens the way for estimators with smaller variance. In Section 4 we propose such an
estimator that is adapted to the pile-up model.

3.5. Multi-exponential case

In experiments where there are more than one fluorescent molecule, a pile-up model with underlying
exponential mixture distribution is considered. The density is given by

fθ(y) =
K∑
k=1

αkνke
νky, (31)
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Figure 2: Cramér-Rao bound λ 7→ CRθ(λ, 1) of θ for the pile-up model with underlying exponential distribution in the Poisson
case. The minimum is attained at λopt ≈ 1.3275.

Figure 3: Cramér-Rao bounds λ 7→ CR(λ, θ0) for two-component models.

where νk > 0 and 0 < αk < 1. Note that αK is given indirectly by αK = 1 −
∑K−1

k=1 αk. Denote
by θ = (α1, . . . , αK−1, ν1, . . . , νK)T the parameter vector. We assume that the order of the mixture
model K is fixed and known. The family of multi-exponential distributions {fθ, θ ∈ Θ} is Hellinger
differentiable on Θ. However, mixtures with two components or more (K ≥ 2) do not form a scale
family. Consequently, Theorem 4 concerning the existence of a global optimal value λopt that minimizes
the Cramér-Rao bound, does not apply.

For a two-component mixture, Figure 3 shows the graphs of the Cramér-Rao bounds of the associated
pile-up model for different choices of parameters θ0 in the Poisson case. Although all functions are
convex in λ, note that no unique optimal value λopt minimizing all Cramér-Rao bounds simultaneously
exists. The minimum values depend on θ0. Nevertheless, the graphs suggest choosing λ within the
interval [1, 2] for a two-component model. All graphs are obtained by inverting an approximation of the
Fisher information matrix obtained by Monte Carlo simulation.

Remark 7. If we introduce a finite observation time T < ∞ as in Remark 1, then even in the case of
scale families no global optimal value λopt minimizing the Cramér-Rao bound exists. Simulations in
the Poisson case reveal that the optimal value depends on the underlying distribution Fθ0 , the larger the
probability of censored observations, the larger the optimal value λopt. This phenomenon suggests that
if the maximal observation time T is relatively short with respect to the tail of the distribution Fθ0 then
it is preferable to increase the average number of photons hitting the detector such that the observed
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minimum falls within the interval (0, T ) with high probability.

4. Gibbs Sampler for the pile-up model with an exponential mixture

The goal of this section is to construct a parameter estimate adapted to pile-up affected fluorescence
measurements. Coates (1968) proposes a correction method for pile-up affected histograms, but no
parameter estimates. We consider the multi-exponential case where N has Poisson distribution Poi(λ).
Note that exponential mixtures are of general interest for survival or duration setups. Rewriting the
distribution of a pile-up observation Z defined in (1) in the multi-exponential case

Gθ(z) = 1−
∞∑
n=0

pλ(n)n!
∑

(m1,...,mK):
∑
j mj=n

∏K
j=1 α

mj
j∏K

j=1mj !
e−z

∑K
j=1mjνj ,

shows that Z has an infinite exponential mixture distribution where the set of exponential parameters is
given by ν1N + ν2N + . . . + νKN. Existing methods for estimating the mixing distribution of a finite
or infinite exponential mixture are the EM algorithm as proposed in Jewell (1982), the penalized dual
method (Pilla et al., 2006) or the rotated EM algorithm (Pilla & Lindsay, 2001) both searching for the
nonparametric maximum likelihood estimator (NPMLE). Another method is the Markov Chain Monte-
Carlo (MCMC) approach proposed in Gruet et al. (1999). In our context the EM algorithm is hard to
handle since the maximization step does not provide explicit solutions for all parameters. The NPMLE
methods seem to be inappropriate unless one takes into account the specific structure of the parameter
set and the weights. The MCMC approach, in contrast, can be adapted to the pile-up density despite the
more involved structure of the model by defining a new set of missing variables.

4.1. Algorithm

Here a Gibbs sampler is presented to estimate the parameters of the pile-up model. In view of Remark
1, we consider a model with a finite maximal observation time T . Then the pile-up observation Z admits
a density with respect to the measure L(0,T ) ⊗ δT where L(0,T ) denotes the Lebesgue measure on (0, T )
and δT the measure having mass one in T given by

gλ,θ(z) =

{
λfθ(z)e

−λFθ(z) if z ∈ (0, T )

e−λFθ(T ) if z = T .

Following the approach of Gruet et al. (1999) identifiability of the model is obtained by ordering the
exponential parameters: ν1 > ν2 > . . . > νK . In order to use improper priors as in Marin et al. (2005),
the exponential parameters are reparametrized as follows

ϕ = ν1, τk =
νk
νk−1

, k = 2, . . . ,K .

As the weights verify the constraint
∑K

k=1 αk = 1, a further reparametrization is necessary to assure that
at every iteration of the Gibbs sampler the new values of αk are chosen in the entire set {(α1, . . . , αK) ∈
[0, 1]K :

∑K
k=1 αk = 1}. We set

qk =
αk

1−
∑k−1

j=1 αj
, k = 1, . . . ,K − 1 .

Using the following noninformative prior leads to proper posterior distributions as shown in Gruet et al.
(1999)

π(λ, q1, . . . , qK−1, ϕ, τ2, . . . , τK) =
1

λϕ

K−1∏
k=1

1{qk ∈ [0, 1]}
K∏
k=2

1{τk ∈ [0, 1]} .
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The Gibbs sampling algorithm consists of iterating the steps (a) data augmentation of the missing
data and (b) generation of new parameter values drawn from the posterior distributions. Denote b =
(B1, . . . , BK) the missing data associated with the pile-up observation Z, where Bk is the number of
photons generated from the k-th mixture component. Let Xz be a random variable with Poisson distri-
bution Poi(λ(1−Fθ(z))). The missing data is generated by first drawing the total number of photons N
from the distribution

N |Z D=
{
XZ + 1 if Z ∈ (0, T )
XT if Z = T ,

then by drawing a vector b = (B1, . . . , BK) from the distribution

P(b = (b1, . . . , bK)|N = n,Z)

=


(n−1)!

∏
k α

bk
k

∑
k bkνk

f(Z)(1−F (Z))n−1
∏
k bk!

e−Z
∑
k bkνk for n ≥ 1, if Z ∈ (0, T )

n!
∏
k α

bk
k

(1−F (T ))n
∏
k bk!e

−T
∑
k bkνk for n ≥ 0, if Z = T ,

where bk ∈ N and
∑

k bk = n. We denote by θ = (λ, φ, τ2, . . . , τK , q1,. . . , qK−1) the parameter
vector and by θ(−λ) the vector θ where the element λ is missing. The notations θ(−φ), θ(−τl) and θ(−q)

are defined likewise. Then the posterior distributions for the different parameters given the data Z =
(Z1, . . . , ZM ), the missing data B = (Bik, i = 1, . . . ,M, k = 1, . . . ,K) and the other parameters turn
out to be

λ|(Z, B, θ(−λ)) ∼ Γ

(
M∑
i=1

K∑
k=1

Bik,M

)

φ|(Z, B, θ(−φ)) ∼ Γ

(
M∑
i=1

1{
K∑
k=1

Bik > 0},
K∑
k=1

τ1 . . . τk

M∑
i=1

BikZi}

)

ql|(Z, B, θ(−ql)) ∼ Beta

(
M∑
i=1

Bil + 1,
M∑
i=1

K∑
k=l+1

Bik + 1

)
,

where τ1 = 1 and qK = 1. Furthermore, the posterior distribution of τl is a mixture of Gamma distribu-
tions restricted to the interval [0, 1] with

∑M
i=1 1{

∑K
k=1Bik > 0} components given by

p(τl|Z, B, θ(−τl)) ∝ exp

{
−φ

K∑
k=1

τ1 . . . τk

M∑
i=1

BikZi

} ∏
i:
∑K
k=1Bik>0

(
φ

K∑
k=1

τ1 . . . τkBik

)
1[0,1](τl) .

Parameter estimators are obtained by taking the mean of the generated values. The algorithm is
robust to different starting values. We recommend to use uniformly distributed values for the weights αk
and any distinct values for the exponential parameters νk. For the intensity λ the initial value

− log

(
M∑M

i=1 1{Zi = T}

)
,

may be used since pλ(0) = e−λ.

4.2. Experimental Results
Simulations are carried out to evaluate the performance of the new Gibbs sampler. Table 1 presents

results obtained for data simulated from models with different numbers of components K. Note that
all estimated values are close to the true parameter values and, of course, by increasing the number of
observations one may obtain even higher precision. Especially in the exponential case (K = 1) very
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good estimates are provided for a quite high intensity (λ = 3). For illustration the quantile-quantile plot
for the two-component model is presented in Figure 6. It shows that the estimated distribution is close to
the true one, which is also confirmed by a high p-value of the Kolmogorov-Smirnov test (0.984).

Table 1: Simulation results for K = 1, 2, 3 components and 3,000, 3,000, 10,000 observations, resp.
K = 1 K = 2

λ ν λ ν1 ν2 α1

true values 3 0.1 1 6 0.5 .75
estimated values 3.05 .101 .994 6.03 .518 .742

K = 3

λ ν1 ν2 ν3 α1 α2

true values 1 5 1 0.1 .33 .33
estimated values 1.01 4.88 .970 .101 .347 .329

Let us compare the covariance matrix of the Gibbs sampler with the corresponding Cramér-Rao
bound matrix in a specific case. We consider the two-component model with parameters λ = 1.5, ν1 =
2, ν2 = 0.5, α1 = 0.3 and 5,000 observations. From 50 simulations we obtain the following empirical
covariance matrix for the estimates of (λ, ν1, ν2, α1)

10−3


0.614 −1.248 0.025 −0.027
−1.248 61.604 2.767 −10.782

0.025 2.767 0.440 −0.698
−0.027 −10.782 −0.698 2.433

 ,

while the Cramér-Rao bound obtained by the inverse of a Monte-Carlo approximation of the Fisher
information matrix is

10−3


0.696 0.057 −0.034 −0.156
0.057 58.052 3.990 −10.053
−0.034 3.990 0.610 −0.933
−0.156 −10.053 −0.933 2.181

 .

We conclude that the Gibbs sampler is well adapted to pile-up affected data, and as it attains the
Cramér-Rao bound it might lead to a significant reduction of the acquisition time. Therefore, we compare
the MCMC method to the following estimation practice. Data from the pile-up model are obtained at a
low laser intensity (λ = 0.05) such that the probability for 2 or more photons per laser pulse is negligible.
Then the observed arrival times are considered as independent observations from the exponential mixture
distribution given by (31) and the classical EM algorithm is applied. Repeated simulations provide
estimates of the bias and the variance of the estimators for a two-component model and various numbers
of observations. For the same two-component model we simulated data using the laser intensity λopt =
1.32 and applied the MCMC method. From the results shown in Table 2 we see that any bias and
any variance of the standard method exceeds the corresponding value of the MCMC method. Actually,
comparing the results for 10,000 observations of the first method to the results for 1,000 observations of
the new method shows that all values from the MCMC method are smaller than the first. Thus, we obtain
estimates of comparable statistical quality by using ten times less, but piled up observations instead of
data without pile-up. Hence, there is a significant reduction of the acquisition time. For further simulation
results we refer to Rebafka (2007).
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Table 2: Comparison of the standard estimation method and the MCMC method for a two-component model with true parameter
values α1 = .33, α2 = .66, ν1 = .5, ν2 = 6 .

Standard estimation method (λ = 0.05)

nb of obs 1000 3000 5000 10000
α1 bias 0.0051 0.0040 0.0036 0.0028

var 0.0112 0.0035 0.0021 0.0010
ν1 bias 0.0488 0.0143 0.0098 0.0056

var 0.0447 0.0092 0.0054 0.0025
ν2 bias 0.6523 0.2198 0.1626 0.1080

var 6.6068 0.9788 0.5520 0.2606
MCMC method (λ = 1.32)

nb of obs 1000 3000 5000 10000
α1 bias 0.0006 0.0001 0.0001 .492e−4

var 0.0008 0.0003 0.0002 0.0001
ν1 bias 0.0049 0.0018 0.0010 0.0006

var 0.0023 0.0008 0.0005 0.0002
ν2 bias 0.0278 0.0069 0.0057 0.0023

var 0.1499 0.0491 0.0294 0.0147
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