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Abstract
A fast and efficient estimation method is proposed that compensates the so-called pile-up
effect encountered in fluorescence lifetime measurements. The pile-up effect is due to the
fact that only the shortest arrival time of a random number of emitted fluorescence photons
can be detected. A likelihood-based estimator is developed for the more general nonlinear
transformation model that can be computed by an EM-type algorithm. The new estimator
is particularly well-suited for fluorescence lifetime measurements, where arrival times are
often modeled by a mixture of exponential distributions. The consistency of the estimator is
shown and its limit distribution is provided. The method is evaluated on real and synthetic
data. Compared to currently used methods in fluorescence, the new estimator should allow
a reduction of the acquisition time of an order of magnitude.

1 Introduction
In this paper we consider nonlinear transformation models where the observed dis-
tribution is the result of a nonlinear distortion of some initial distribution (Tsodikov,
2003). Special interest will be devoted to the so-called pile-up model where an ob-
servation is defined as the minimum of a random number of independent variables
from the target distribution. The goal is to estimate the parameters of the target
distribution from a sample of the distorted distribution. However, the nonlinear
distortion generally makes estimation difficult even for simple target distributions.



This work is motivated by an application in time-resolved fluorescence where a
specific pile-up model is encountered. Fluorescence is the emission of photons by
excited molecules and one of its characteristics is the duration that a molecule stays
in the excited state before emitting a fluorescence photon. This duration is called
the fluorescence lifetime and it is well known that these lifetimes have exponential
distribution whose parameter depends on the fluorescent molecule as well as on its
microenvironment as pH, viscosity or polarity (Lakowicz, 1999; Valeur, 2002). Due
to the high sensitivity of the exponential parameters on the microenvironment, fluo-
rescence lifetimes are a precious source of information on molecular processes and
they are used in many applications in biology, medicine or chemistry. For instance,
in biochemical applications of fluorescence imaging the effect of the environment
on the fluorescence lifetimes is used to map chemical or physical changes within
a sample (Crissman & Steinkamp, 2000). Further examples are the measurement
of molecular distances (Pin et al., 2007) or the measurement of molecular rotation
(Serdyuk et al., 2007) based on fluorescence lifetimes.

Measurements of fluorescence lifetimes are obtained by the technique Time-
Correlated Single Photon Counting (TCSPC) (O’Connor & Phillips, 1984). First
molecules are excited with a short laser pulse and then a random number of fluo-
rescence photons is emitted and hit the detector. The instrument measures the time
between the laser pulse and the arrival of the first fluorescence photon on the de-
tector. For technical reasons the arrival times of later arriving photons can not be
observed. Obviously, the distribution of the minimum arrival time is a distortion of
the distribution of the arrival times of all photons striking the detector referred to as
the pile-up effect.

The extent of distortion depends on the laser intensity which determines the
average number λ of photons per excitation cycle. In fact, the higher the laser in-
tensity, the more fluorescence photons are emitted. It is standard practice to discard
the pile-up effect by using a very low laser intensity. However, the study of the
Fisher information as a function of λ in Rebafka et al. (2008) has revealed that the
information can be maximized if data are collected at an intensity that causes a sig-
nificant pile-up effect. That is, this study suggests that a significant reduction of
the variance of the estimator compared to the standard practice can be obtained by
using pile-up affected observations. Due to the involved form of the pile-up density
standard estimation procedures as the maximum likelihood estimator or moment
estimators are intractable. Hence the question about an estimator which is numer-
ically achievable and yet performs well in comparison with the information bound
arises in order to reduce the variance.

The very first method dealing with pile-up observations is a ‘correction’ of a
pile-up histogram that goes back to Coates (1968). This approach is refined and
generalized in Walker (2002) and Souloumiac (2007). Okano et al. (2005) propose
a least-squares fitting of the histogram. It is well known that least-squares methods



are large sample methods that are unbiased on small samples, as pointed out by Hall
& Selinger (1981) for the particular fluorescence context. This method is hence not
appropriate to reduce the variance. In Rebafka (2007) a Gibbs sampler is presented
that is adapted to pile-up models with multi-exponential target distributions. This
algorithm is rather time-consuming and hence it is not appropriate to analyze a large
number of samples, which is often the case in fluorescence.

The pile-up model has also been used in carcinogenesis studies. At the end
of a cancer treatment there remains a random number of cells that will propagate
into a new detectable tumor. An individual random time is associated to each cell
representing the time it takes for this cell to produce a detectable tumor. Then
the time to tumor recurrence is the minimum of those cell individual times. In a
parametric setting Yakovlev & Tsodikov (1996) compute the maximum likelihood
estimator by some random search algorithm.

The paper is organized as follows. The formal definition of the nonlinear trans-
formation model and the pile-up model is given in Section 2. In Section 3 we
develop a likelihood-based contrast, whose maximization complexity is essentially
the same as the likelihood associated with the target distribution. In particular, if
the EM algorithm applies to the likelihood of the target distribution, then it applies
similarly to the new contrast. The asymptotic behavior of the new estimator is ana-
lyzed in Section 4. The numerical performance is evaluated in Section 5, where an
application on TCSPC measurements is provided as well as a comparison to the in-
formation bounds obtained in Rebafka et al. (2008). Appendix A contains the tech-
nical arguments for the results presented in the previous sections, while Appendix
B provides details on the derivation of the central limit theorem for L-statistics that
is used in Section 4.

2 General Setting and Notation
We first define the pile-up model, then we generalize the definition to the nonlinear
transformation model. Let {Yk, k ≥ 1} be a sequence of independent positive
random variables with distribution function F and survival function F̄ = 1 − F .
Denote by N a random variable that is independent of the sequence {Yk, k ≥ 1}
taking its values in N∗ = {1, 2, . . . }. Each pile-up observation Zi for i = 1, 2, . . . , n
is distributed as the random variable Z defined by

Z = min{Y1, . . . , YN} . (1)

By Rebafka et al. (2008), Lemma 1 the survival function Ḡ = 1−G of Z is given
by

Ḡ(z) = γ(F̄ (z)) , z ∈ R+ , (2)



where γ is the probability generating function associated withN , defined as γ(u) =
E[uN ] for all u ∈ [0, 1]. Moreover, if F admits a density f with respect to the
Lebesgue measure L+ defined on R+, then G admits a density g. Denoting γ̇(u) =
E[NuN−1] for all u ∈ [0, 1], the pile-up density g is given by

g(z) = f(z)γ̇(F̄ (z)), z ∈ R+ . (3)

In survival analysis the class of models defined by (2) where γ is the probability
generating function of any nonnegative random variable N , i.e. γ(u) = E[uN ],
is the family of proportional hazard mixture models also called univariate frailty
models (Kosorok et al., 2004; Hougaard, 1984). Note that in this case the hazard
function µG of G given N can be written as

µG(t|N) = NµF (t) ,

where µF is the hazard function of F and N is the frailty. Univariate frailty models
are an important subclass of nonlinear transformation models defined by (2) for any
function γ such that γ ◦ F̄ is a survival function (Tsodikov, 2003).

We will estimate the target distribution F based on a sample of the distorted
distribution G in a parametric setting. Our approach applies to models where γ
is a known function that is sufficiently smooth. The most general setting that will
be considered is described in the following assumption that is supposed to hold
throughout the paper.

Assumption 1. The target distribution F belongs to an identifiable parametric fam-
ily dominated by L+ and is thus described by a collection of densities {fθ, θ ∈ Θ}
with parameter set Θ ⊂ Rd. The function γ : [0, 1] → [0, 1] is known, increasing,
inversible and continuously differentiable with positive derivative γ̇ > 0 on [0, 1].

Note that Assumption 1 is satisfied for the probability-generating function γ of
any nonnegative random variable N satisfying P(N = 1) > 0.

As we are especially interested in the fluorescence application, we define for-
mally the pile-up model as follows.

Definition 1. Under Assumption 1, where γ denotes the probability generating
function of some random variable N with values in N∗, we denote by {gθ, θ ∈ Θ}
the corresponding collection of densities obtained by Relation (3). This model, that
is dominated by L+, is called the pile-up model associated with the target model
{fθ, θ ∈ Θ} and the distribution of N .

Let us verify Assumption 1 in the fluorescence application. In general the num-
ber of photons per excitation cycle has Poisson distribution. It is clear that only
those cycles provide information on the unknown parameter θ where a photon is



detected. Hence, we suppose that N in (1) follows a Poisson distribution restricted
on N∗ with parameter λ > 0, that is

P(N = k) =
λke−λ

k!(1− e−λ)
, k ∈ N∗ . (4)

It follows that the probability generating function in this case is given by

γ(u) = E[uN ] =
eλu − 1

eλ − 1
. (5)

Obviously, γ depends on λ. A natural estimator of λ is based on the proportion of
excitation cycles where no photon is detected, namely

λ̂ = log

(
number of excitation cycles

number of cycles where no photon is detected

)
.

We can hence consider γ as a known function and thus Assumption 1 is verified.
Widely used target models in the fluorescence application include the exponen-

tial distribution or finite mixtures of exponential distributions, possibly polluted by
some additive instrument noise (see Ware et al., 1973; O’Connor & Phillips, 1984).
Often the exponential parameters permit a physical interpretation.

In the remainder of the paper we adopt the following notation: under the expec-
tation sign Eθ, Y has density fθ and Z has the corresponding distorted density gθ.
Moreover we denote by Fθ and Gθ the associated distribution functions.

3 Estimation Method
To construct a parameter estimate, we propose a modification of the maximum like-
lihood approach that results in an estimator that is often computable by an EM-type
algorithm.

3.1 Corrected Likelihood
Consider the log-likelihood associated with an i.i.d. sample (Y1, . . . , Yn) from the
target distribution Fθ0 , namely

Ln(θ) =
1

n

n∑
i=1

log fθ(Yi) . (6)

Recall that the rationale in using the log-likelihood as a contrast function is that,
by the strong law of large numbers, as n → ∞, Ln(θ) − Ln(θ0) converges to the



negated Kullback-Leibler divergence Eθ0 [log(fθ(Y )/fθ0(Y ))] and thus is asymptot-
ically maximized at θ = θ0. Now, from Equation (3), we have for any real-valued
integrable function h defined on R+,

Eθ0 [h(Y )] = Eθ0
[

h(Z)

γ̇(F̄θ0(Z))

]
. (7)

Denote by γ−1 the inverse of γ. Then Equation (2) gives F̄θ0 = γ−1 ◦ Ḡθ0 . Define

w(u) =
1

γ̇ ◦ γ−1(1− u)
, u ∈ [0, 1] , (8)

with the convention that 1/∞ = 0. Under Assumption 1, w is well defined since
γ̇ > 0. Note that (7) can be rewritten as

Eθ0 [h(Y )] = Eθ0 [w ◦Gθ0(Z) h(Z)] . (9)

Taking h = log fθ, we get that

L̃n(θ) =
1

n

n∑
i=1

w ◦Gθ0(Zi) log fθ(Zi) (10)

has the same property as the one pointed out before for the likelihood Ln. How-
ever, (10) involves θ0, so it cannot be used for parameter estimation. We propose
to modify (10) by replacing Gθ0 with the empirical distribution function Ĝn(z) =
1
n

∑n
i=1 1{Zi ≤ z}. Then a corrected log-likelihood function which reasonably es-

timates Ln(θ) in (6), but is obtained from the sample (Z1, . . . , Zn) instead of the
unobserved (Y1, . . . , Yn) is given by

L̂n(θ) =
1

n

n∑
i=1

w ◦ Ĝn(Zi) log fθ(Zi) =
1

n

n∑
i=1

w(i/n) log fθ(Z(i,n)) , (11)

where Z(i,n) denotes the i-th order statistic of the sample (Z1, . . . , Zn) satisfying
Z(1,n) ≤ Z(2,n) ≤ . . . ≤ Z(n,n). We define a new parameter estimate of θ0 by

θ̂n = arg max
θ∈Θ

L̂n(θ) = arg max
θ∈Θ

n∑
i=1

w(i/n) log fθ(Z(i,n)) , (12)

to which we will refer as the corrected maximum likelihood estimator (corrected
MLE). The weights w(i/n) appearing in L̂n(θ) are aimed to correct the distortion,
namely, the fact that (Z1, . . . , Zn) is a sample of gθ0 instead of fθ0 .



Relation (9) can be used more widely for correcting any statistical method based
on moments of the target distribution that one wishes to apply with distorted obser-
vations. More precisely, denote by P̂ c

n the corrected empirical distribution from
distorted observations Z1, . . . , Zn such that, for every function h,

P̂ c
n(h) =

1

n

∑
i

w(i/n)h(Z(i,n)) ,

where w is given by (8). It is different from the standard empirical distributions

P̂n(h) =
1

n

∑
i

h(Yi) and P̃n(h) =
1

n

∑
i

h(Zi) . (13)

The following result, which justifies the above approach, relies on the fact that
P̂ c
n(h), P̃n(w ◦ G × h) and P̂n(h) have the same limits. It is obtained by applying

Lemma 4 in Appendix A.

Theorem 1. Suppose that Assumption 1 holds. Let Y have distribution F and
(Zi)i≥1 be an i.i.d. sequence with distribution G defined in (2). Then, for any real
valued function h defined on R+ satisfying E[|h(Z)|] < ∞, we have P̂ c

n(h) →
E[h(Y )] almost surely as n→∞.

Theorem 1 implies that any consistent moment estimator based on a sample of
the target distribution remains consistent when the corrected empirical distribution
P̂ c
n is used. It also gives that the corrected log-likelihood L̂n(θ) is such that L̂n(θ)−
L̂n(θ0) converges to the Kullback-Leibler divergence of fθ0 with fθ almost surely.
This is the basic argument for proving the consistency of the corrected MLE, see
Section 4.1.

3.2 Maximization by an EM-type Algorithm
In general it is easier to maximize the corrected likelihood L̂n(θ) in (11) than the
likelihood function associated with the nonlinear transformation model, which has
the form

n∑
i=1

log fθ(Zi) +
n∑
i=1

log γ̇(1− Fθ(Zi)) . (14)

Note that the main difference with L̂n(θ) is the appearance of a second term in
(14) which generally complicates the maximization. In the special case of a pile-up
model with an exponential target distribution, i.e. fθ(y) = θe−θy, θ > 0, and where
N follows the restricted Poisson distribution given in (4), it turns out that corrected
MLE is given explicitly by

θ̂n =

∑n
i=1 w(i/n)∑n

i=1w(i/n)Z(i,n)

, with w(i/n) =
1− e−λ

λ[ i
n
(e−λ − 1) + 1]

. (15)



This is in sharp contrast with the classical maximum likelihood estimator associated
with the pile-up model, where the maximization of

θ 7→ n log θ − θ
n∑
i=1

Zi + λ

n∑
i=1

e−θZi (16)

has no explicit solution. This feature remains true in a large variety of situations.
Indeed, the only difference of the maximization problem given by (12) compared
to maximizing the target likelihood (6) are the nonnegative weights w(i/n). This
makes the two maximization problems of equivalent cost, while the maximization
of the likelihood in the nonlinear transformation model is in general much more
costly, if tractable at all.

A situation of particular interest is when the EM algorithm applies to the target
model {fθ, θ ∈ Θ}, as this is the case for a finite mixture of exponential distribu-
tions polluted by additive noise with known distribution, which is a broadly used
model in fluorescence. Then an EM-type algorithm resolves the maximization (12).
To be more precise, we make the assumption that the target model is an incomplete
data model.

Assumption 2. Suppose that Assumption 1 holds. Let µ be a measure on a state
space X . Suppose that {πθ, θ ∈ Θ} is a collection of densities with respect to
L+ ⊗ µ, such that fθ =

∫
πθ(·, s)µ(ds) for all θ ∈ Θ.

The second component of the distribution πθ corresponds to the missing or latent
variable, say X . When fθ is an exponential mixture, then the missing variable X
is the label of the mixture component that generated an observation Y from the
mixture fθ. Let qθ,θ′(y, x) denote the conditional expectation of the log-density of
(Y,X) at parameter θ given that Y = y at parameter θ′, namely

qθ,θ′(y) = Eθ′ [log πθ(Y,X) | Y = y] =

∫
x∈X

log πθ(y, x)
πθ′(y, x)

fθ′(y)
µ(dx) .

In analogy to the standard EM algorithm but using the approach with the corrected
likelihood, we define, for all θ, θ′ ∈ Θ,

Q(θ, θ′;Z1, . . . , Zn) =
n∑
i=1

w(i/n) qθ,θ′(Z(i,n)) , and (17)

H(θ, θ′;Z1, . . . , Zn) =
n∑
i=1

w(i/n)Eθ′
[
log

πθ(Y,X)

fθ(Y )
| Y = Z(i,n)

]
.

Note that the correted likelihood verifies, for all θ, θ′ ∈ Θ,

L̂n(θ) = Q(θ, θ′;Z1, . . . , Zn)−H(θ, θ′;Z1, . . . , Zn) .



Now, as for the standard EM algorithm, we define the sequence (θ(t))t≥0 for any
starting value θ(0) ∈ Θ in the following recurrent way, for all t ∈ N,

θ(t+1) = arg max
θ∈Θ

Q(θ, θ(t);Z1, . . . , Zn) . (18)

The sequence (θ(t))t≥0 has the same properties as a sequence obtained by the stan-
dard EM algorithm. Namely, at each iteration the value of the log-likelihood L̂n(θ(t))
increases and the sequence (θ(t))t≥0 tends to a critical point of the corrected log-
likelihood function L̂n(θ).

Theorem 2. The sequence (θ(t))t≥0 defined by (18) satisfies L̂n(θ(t+1)) ≥ L̂n(θ(t)),
for all t ≥ 0. Moreover, if (θ(t))t≥0 converges to some θ∗ in the closure of Θ and if

∇θQ(θ, θ(t);Z1, . . . , Zn)|θ=θ(t+1) = 0 , for all t ,

then θ∗ is a critical point of L̂n(θ), i.e. ∇θL̂n(θ)|θ=θ∗ = 0.

Theorem 1 and 4 in Dempster et al. (1977) correspond to the case wherew(i/n) ≡
1. Using that w(i/n) are non negative numbers, the arguments provided in Demp-
ster et al. (1977) continue to hold.

4 Asymptotic Behavior

In this section we study the asymptotic behavior of the corrected MLE θ̂n defined
in (12). We show its consistency and determine its limit distribution. To this end we
make use of the fact that the corrected likelihood function L̂n(θ) is an L-statistic,
that is a linear combination of order statistics.

4.1 Consistency
Although the process L̃n defined by (10) cannot be used in practice for estimation
because it depends on the unknown parameter θ0, it is a standard empirical mean
of the i.i.d. observations Z1, . . . , Zn and thus the standard theory for proving the
consistency of M -estimators (see e.g. van der Vaart (1998)) can be applied. This
theory says that, under standard conditions, the following assumption holds.

Assumption 3. Any random sequence (tn)n valued in Θ satisfies tn
P→ θ0, if

L̃n(tn) ≥ sup
t
L̃n(t) + oP (1) . (19)

For instance, by van der Vaart (1998), Theorem 5.7, this is true, if both



(3-i) the collection of functions F = {w ◦ Gθ0 log(fθ/fθ0), θ ∈ Θ} is a Gθ0-
Glivenko-Cantelli class;

(3-ii) for all ε > 0, inf
|θ−θ0|>ε

KL(fθ0‖fθ) > 0, where KL(f‖g) =
∫

log f(x)
g(x)

f(x)dx

denotes the Kullback-Leibler divergence of two densities f and g.

The Kullback-Leibler divergence KL(fθ0‖fθ) appears here as a consequence of (9).

Theorem 3. Suppose that Assumptions 1 and 3 hold and that

sup
θ∈Θ

1

n

n∑
i=1

∣∣∣∣log
fθ(Zi)

fθ0(Zi)

∣∣∣∣ = OP (1) . (20)

Then any random sequence (θ̂n) is consistent for θ0, i.e. θ̂n
P−→ θ0, if it satisfies

L̂n(θ̂n) ≥ sup
θ∈Θ

L̂n(θ) + oP (1) .

The following corollary provides a simple condition implying the general ones
of Theorem 3.

Corollary 1. Suppose that Assumption 1 holds. Let Θ be a compact subset of Rd.
If there exists a function K : R+ → R+ such that Eθ0 [K(Z)] <∞ and

|log fθ(z)− log fθ′(z)| ≤ K(z) ‖θ − θ′‖, θ, θ′ ∈ Θ, z ∈ R+ , (21)

then the conclusion of Theorem 3 is true.

4.1.1 Example

In all specific cases that are relevant in the fluorescence application the corrected
MLE is consistent. Consider a multi-exponential target density defined as

fθ(y) =
K∑
k=1

αkνke
−νky , y ∈ R+ , (22)

and let γ be the probability generating function of the restricted Poisson distribution
given in (5). For K = 1 we have the single-exponential case. We can use a par-
simonious parametrization where αK is given by 1 −

∑K−1
k=1 αk. Let the parameter

space Θ be defined as

Θ =

{
θ = (α1, . . . , αK−1, ν1, . . . , νK)T : νk ∈ (a, b), αk ∈ (δ, 1),

K−1∑
k=1

αk < 1− δ

}



where 0 < a < b < ∞ and δ > 0. The identifiability of exponential mixtures is
assured by the results of Teicher (1961). Now for all θ1 < θ2 ∈ Θ

| log fθ1(z)− log fθ2(z)| = |ḟθ̃(z)|
fθ̃(z)

|θ2 − θ1| ,

for some θ̃ ∈ [θ1, θ2] and where ḟθ̃(z) denotes the gradient of θ 7→ fθ(z) at θ̃.
Furthermore, since αk > δ and νk ∈ (a, b) for all k, we obtain∣∣∣∣∣

∂fθ
∂αj

(z)

fθ(z)

∣∣∣∣∣ =
|νje−νjz − νKe−νKz|

fθ(z)
=
|νje−νjz − νKe−νKz|∑K

k=1 αkνke
−νkz

≤ 1

αj
+

1

αK
≤ 2

δ
,∣∣∣∣∣

∂fθ
∂νj

(z)

fθ(z)

∣∣∣∣∣ =
|αj(1− νjz)e−νjz|

fθ(z)
≤ αj|1− νjz|e−νjz∑K

k=1 αkνke
−νkz

≤ |1− νjz|
νj

≤ 1 + bz

a
.

Hence, (21) holds with K(z) = 2
δ
∧ 1+bz

a
and the corrected MLE is consistent.

Similar arguments apply to the case of a multi-exponential target distribution
polluted by additive noise, where we denote by η the probability density of the
instrument noise. Consider the convolution of η and the multi-exponential density
given by (22). The target density is then given by

fθ(z) = η ?
K∑
k=1

αkνke
−νk· (z) =

K∑
k=1

αkνke
−νkz

∫ z

0

η(u)eνkudu . (23)

Corollary 1 can be used to derive the consistency of the corrected MLE in this case.

4.2 Limit Distribution
We show that a theorem, similar to the central limit theorem for M -estimators of
Pollard (1985), holds for M -estimators maximizing an L-statistic. The theorem
applies to the corrected MLE θ̂n.

For an i.i.d. sample (Z1, . . . , Zn) from the distorted distribution G defined by
(2) and weight function w defined by (8), we consider a contrast process defined as
the L-statistic

Mn(t) = P̂ c
nh(·, t) =

1

n

n∑
i=1

w(i/n)h(Z(i,n), t) ,

with h(z, t) defined on R+ × Θ. If h(·, t) = log ft (or, equivalently h(·, t) =
log(ft/fθ0)), then Mn(t) is the corrected likelihood (11). Denote

M(t) = Eθ0 [h(Y, t)] ,



where θ0 is the true parameter. Furthermore, the corrected empirical process corre-
sponding to P̂ c

n is defined, for a function k on R+, as

νcnk =
√
n
(
P̂ c
n(k)− Eθ0 [k(Y )]

)
.

We have νcnh(·, t) =
√
n(Mn(t) −M(t)). Adapting Pollard (1985), the following

result holds.

Theorem 4. Suppose that the following assertions are true.

(i) θ0 is an interior point of Θ ⊂ Rd;
(ii) t 7→ M(t) has a nonsingular second derivative −J ≡ ∇2

tM(θ0) at its maxi-
mizing value θ0;

(iii) Let θn be a maximizer ofMn for every n ≥ 1 and suppose that (θn)n converges
in probability to θ0;

Furthermore, suppose that the following expansion holds for all z ∈ R+ and t ∈ Θ,

h(z, t) = h(z, θ0) + (t− θ0)T∆(z) + |t− θ0|r(z, t) , (24)

with functions r : R+ ×Θ→ R and ∆ : R+ → Rd satisfying

(iv) there exists a covariance matrix Σ such that νcn∆
d−→ N (0,Σ) ;

(v) for any sequence of balls Un that shrinks to θ0 as n→∞, we have

sup
t∈Un

|νcnr(·, t)|
1 +
√
n|t− θ0|

P−→ 0 .

Then, it follows that
√
n(θn − θ0)

d−→ N
(
0, J−1ΣJ−1

)
.

The proof of this result is omitted as it is easily obtained by adapting the proof
of the theorem in Pollard (1985) in the following way.

1. The standard empirical process νn defined by νnk =
√
n (
∑
k(Yi)− Eθ0 [k(Y )])

is replaced by the corrected empirical process νcn defined above.
2. The conditions Eθ0 [|∆(Y )|2] <∞ and Eθ0 [∆(Y )] = 0 are replaced by (iv).

These adaptations yield the two unusual conditions (iv) and (v). Condition (v) is
similar to the so called stochastic differentiability condition in Pollard (1985) except
that the empirical process νn is replaced by νcn which is based on an L-statistic.
However the following lemma shows that one can use a standard empirical process
to verify this condition. Recall that P̃n is defined in (13). Then denote by ν̃n the
standard empirical process associated with the i.i.d. sequence (Zi),

ν̃nk =
√
n
(
P̃n(k)− Eθ0 [k(Z)]

)
.



Lemma 1. Suppose that w defined in (8) is Lipschitz on [0, 1], that is, there exists
L > 0 such that |w(u)−w(v)| ≤ L |u− v|, for all u, v ∈ [0, 1]. Then Condition (v)
holds, if for any sequence of balls Un that shrinks to θ0 as n→∞, we have

sup
t∈Un

P̃n |r(·, t)|
P−→ 0 and sup

t∈Un

|ν̃n (w ◦G× r(·, t)) |
1 +
√
n|t− θ0|

P−→ 0 . (25)

In most cases, a smoothness condition on t 7→ h(z, t) holds with some unifor-
mity in z, which implies Condition (v), as described by the following lemma.

Lemma 2. Suppose that w is Lipschitz on [0, 1] and that for all z ∈ R+, h(z, ·) is
continuously differentiable in Θ with gradient denoted by ḣ(z, ·). Assume moreover
that there exists K defined on R+ and a neighborhood U of θ0 such that∣∣∣ḣ(z, t)− ḣ(z, θ0)

∣∣∣ ≤ K(z) |t− θ0|, for all t ∈ U, and E
[
K2(Z)

]
<∞. (26)

Then Condition (v) holds for r given by (24) with ∆(z) = ḣ(z, θ0).

To verify Condition (iv) the following result for L-statistics can be used. It is
an immediate application of Theorem 5 and Proposition 1 in Appendix B to the
nonlinear transformation model.

Lemma 3. Suppose that Assumption 1 holds. Let k be a continuous function
of bounded variation on bounded intervals and assume that the weight function
w is continuously differentiable. If furthermore Eθ0 [|k(Z)|] < ∞ and Eθ0 [(w ◦
G(Z)k(Z))2] <∞ and σ2(k) <∞, where σ2(k) is defined below, then

νcnk
d−→ N

(
0, σ2(k)

)
,

with limit variance σ2(k) given by

σ2(k) = Eθ0 [(w ◦Gθ0(Z))2 k2(Z)]

+ 2Eθ0 [ẇ1 ◦Gθ0(Z1)ẇ2 ◦Gθ0(Z2)k(Z1)k(Z2)1{Z1 > Z2}] ,

with w1(x) = (1− x)w(x) and w2(x) = xw(x) and ẇ1 and ẇ2 are the derivatives
of w1 and w2.

Using the Cramér-Wold device and the linearity of νcnk, a multidimensional
version of the central limit theorem holds. Namely, if the above conditions hold
for every function k1, . . . , km and denoting k = [k1, . . . , km]T , then νcn(k)

d−→
N (0,Σ(k)) where Σ(k) = (σ2(ki, kj))i,j and

σ2(ki, kj) = Eθ0 [(w ◦Gθ0(Z))2 ki(Z)kj(Z)]

+ 2Eθ0 [ẇ1 ◦Gθ0(Z1)ẇ′2 ◦Gθ0(Z2)ki(Z1)kj(Z2)1{Z1 > Z2}] .



4.2.1 Example

Theorem 4 applies to the corrected MLE defined in (12). In this case M(θ) =
Eθ0 [log fθ(Y )]. Hence J in Condition (ii) is the Fisher information matrix of the
target model, but Σ is not. This is why the asymptotic variance J−1ΣJ−1 does not
equal to the Fisher information, see further discussion in Subsection 6.2.

In the exponential case, when Θ = (a, b) with 0 < a < b < ∞, the conditions
of Theorem 4 are easily verified using Lemma 2 and 3. As M(θ) = log θ − θ

θ0
, we

have J = θ−2
0 . According to Theorem 4 and some straightforward computation,

√
n(θ̂n − θ0)

d−→ N (0, θ2
0τ), where

τ =
2

λ2

∞∑
n=1

(−λ)n

n!n2
− eλ

∞∑
n=1

(−λ)n

n!n

∞∑
m=0

(−λ)m

m!(m+ n)
. (27)

See Subsection 6.2 for a visualization of the limit variance and a comparison with
the Cramér-Rao bound computed in Rebafka et al. (2008).

In the multi-exponential case of Subsection 4.1.1, the same conditions hold,
yielding

√
n(θ̂n−θ0)

d→ N (0, J−1ΣJ−1), where J is the Fisher information matrix
of the multi-exponential distribution and

Σ =
1− e−λ

λ

∫ ∞
0

eλFθ0 (y) ḟ
T
θ0

(y)ḟθ0(y)

fθ0(y)
dy

− 2e−λ
∫ ∞

0

∫ ∞
y2

eλFθ0 (y1)+λFθ0 (y2)ḟTθ0(y1)ḟθ0(y2)dy1dy2 .

4.2.2 Confidence Intervals

Based on the corrected MLE θ̂n defined by (12), confidence intervals are easily con-
structed. For simplicity consider the one-dimensional case, i.e. θ ∈ R. Theorem 4
suggests the following asymptotic confidence interval of θ with confidence level
1− α

ICn =

[
θ̂n + qα/2

√
V̂n/n, θ̂n − qα/2

√
V̂n/n

]
,

where qα/2 is the α/2–quantile of the standard gaussian distributionN (0, 1) and V̂n
is an estimator of the limit variance V = J−1ΣJ−1 of Theorem 4. Note that here J
is the Fisher information of the target model {fθ, θ ∈ Θ} evaluated at θ0, that is

J = −E
[
∂2 log fθ0(Y )

∂2θ0

]
.

A natural estimator of J is hence given by

Ĵn = − 1

n

n∑
i=1

w(i/n)
∂2 log fθ̂n(Z(i,n))

∂2θ̂n
.



Then, with the estimator σ̂2
n of Σ given in Appendix B by (39), we obtain an esti-

mator of the limit variance V by

V̂n = σ̂2
n/(Ĵn)2 .

5 Application to Fluorescence Lifetime Measurements
When using the TCSPC fluorescence technique, the arrival time Yi of a photon on
the detector is the fluorescence lifetime, say Ỹi, plus some noise Ei, which is due to
the measuring instrument. That is, Yi = Ỹi + Ei for independent variables Ỹi and
Ei. The noise, which is mainly due to the lamp, is called the instrumental response
function. It is individual for every measuring instrument and does not belong to a
common parametric family. However, as the probability density function η of the
instrumental response function can easily be measured, η is assumed known in the
following. The target density fθ is given by (23).

For an observation Y = Ỹ +E let (S,E) be the latent variables, where S is the
label of the exponential component that has generated Ỹ , and E is the noise with
density η. The joint density of (Y, S,E) is given by

πθ(y, s, x) = η(x)αsνse
−νs(y−x), 0 < x < y, s = 1, . . . , K .

The maximization (18) of Q(θ, θ′;Z1, . . . , Zn) defined by (17) has the solutions

α
(t+1)
l =

∑n
i=1 w(i/n)Pθ(t)(S = l | Y = Z(i,n))∑n

i=1w(i/n)
,

ν
(t+1)
l =

∑n
i=1w(i/n)Pθ(t)(S = l | Y = Z(i,n))∑n

i=1 w(i/n)Pθ(t)(S = l | Y = Z(i,n))
{
Z(i,n) − Eθ(t) [E | Y = Z(i,n), S = l]

}
It remains to evaluate

Pθ′(S = l | Y = z) =
α′lν
′
le
−ν′lz

∫ z
0 η(x)eν

′
lxdx∑K

k=1 α
′
kν
′
ke
−ν′
k
z ∫ z

0 η(x)e
ν′
k
x
dx
,

Eθ′ [E | Y = z, S = l] =
∫ z
0 xη(x)eν

′
lxdx∫ z

0 η(x)e
ν′
l
x
dx

.
(28)

In the TCSPC-set up the instrumental response function is approximated by a his-
togram, so that the integrals in (28) are Riemann sums.

We apply the corrected MLE to real TCSPC measurements. Figure 1 shows
the histogram of photon arrival times and the instrument response function η of
the measuring instrument. Data were obtained at a laser intensity corresponding
to λ = 0.166. Hence, about 8% of the arrival times are the minimum of two or
more photons. Consequently, the pile-up effect is not negligible. The sample size



Figure 1: Histogram of TCSPC measurements and instrumental response function η of a
single exponential component with Poisson parameter λ = 0.166.

is n = 1, 743, 811 and there is a single-exponential component, K = 1. In this
experiment the lifetime constant of the molecule is known to be τ = 1/ν = 2.54
ns. For more details on the data we refer to Patting et al. (2007).

An estimator of the exponential parameter that does not take into account the
pile-up effect yields the value τ̃ = 2.40 ns which is significantly shorter than the
expected value. Applying the corrected MLE of the preceding paragraph provides
the estimated value τ̂ = 1/ν̂ = 2.5393 ns. We draw the conclusion that the cor-
rected MLE is well suited for the pile-up model and handles additive noise correctly.

6 Numerical Study
The numerical performance of the corrected MLE in the pile-up model is evaluated
in a twofold study. First we show that the acquisition time can be reduced by in-
creasing the Poisson parameter λ. Second we compare the variance of the estimator
to the Cramér-Rao bound of the pile-up model. Several single and multi-exponential
target models are considered, but, for simplicity, no additive noise.

6.1 Reduction of Acquisition Time
In the fluorescence set-up the acquisition time consists of all excitation cycles, in-
cluding those where no photon is detected. Hence, in the following N is assumed



K = 1, ν1 = 2
sample size m 100 500 1,000
classical EM ν1 0.8095 (3.1687) 0.1321 (0.4728) 0.0769 (0.3096)
λ = 0.05
corr. MLE ν1 0.0511 (0.3061) 0.0083 (0.1283) 0.0033 (0.0884)
λ = 1.32

K = 2, α1 = 0.25, ν1 = 0.2, ν2 = 2
sample size m 500 1,000 5,000
classical EM α1 0.0611 (0.1702) 0.0171 (0.1122) 0.0037 (0.0441)
λ = 0.05 ν1 0.1023 (0.2742) 0.0295 (0.1233) 0.0039 (0.0352)

ν2 0.9297 (6.3295) 0.2686 (1.0485) 0.0558 (0.2293)
corrected α1 0.0040 (0.0489) 0.0020 (0.0335) 0.0003 (0.0151)
MLE ν1 0.0065 (0.0429) 0.0024 (0.0280) 0.0001 (0.0122)
λ = 2 ν2 0.0226 (0.2061) 0.0107 (0.1394) 0.0018 (0.0641)

K = 3, α1 = 0.4, α2 = 0.3, ν1 = 0.1, ν2 = 0.5, ν3 = 2
sample size m 1,000 5,000 10,000
classical EM α1 0.0218 (0.1589) 0.0171 (0.1110) 0.0210 (0.0883)
λ = 0.05 α2 0.0850 (0.1381) 0.0803 (0.1031) 0.0593 (0.0965)

α3 0.1068 (0.1060) 0.0632 (0.1245) 0.0383 (0.1171)
ν1 0.0095 (0.0398) 0.0011 (0.0204) 0.0014 (0.0150)
ν2 0.5903 (0.7436) 0.1939 (0.3714) 0.0926 (0.2717)
ν3 8.7287 (91.414) 2.6270 (13.257) 1.5467 (7.9115)

corrected α1 0.0173 (0.1019) 0.0086 (0.0462) 0.0037 (0.0286)
MLE α2 0.0542 (0.0927) 0.0168 (0.0485) 0.0093 (0.0338)
λ = 1.5 α3 0.0369 (0.1109) 0.0083 (0.0617) 0.0056 (0.0429)

ν1 0.0018 (0.0179) 0.0011 (0.0074) 0.0006 (0.0049)
ν2 0.0872 (0.2851) 0.0096 (0.1314) 0.0069 (0.0909)
ν3 0.7603 (4.0176) 0.0839 (0.3452) 0.0429 (0.2178)

Table 1: Empirical bias and standard deviation (in parentheses) of classical EM estimator
and corrected MLE for different choices of parameters.



to have classical Poisson distribution on N with parameter λ (and not restricted on
N∗ as in (4)). If N = 0 put the pile-up observation Z = ∞. Then Z admits a
density gθ with respect to L̄+, defined as the measure on R+ ∪ {+∞} which puts
mass 1 at +∞ and whose restriction on R+ is the Lebesgue measure L+. As shown
in Rebafka et al. (2008), Lemma 1 the pile-up density is given by

gθ(z) =

{
λfθ(z)e−λFθ(z), if x ∈ R+

e−λ, if x =∞ .
(29)

Obviously, only observations where a photon is detected (Z <∞) contain informa-
tion on θ0. The average number λ of fluorescence photons per light pulse depends
on the laser intensity which is tuned by the user. It increases, when λ does.

The current practice in fluorescence is to avoid pile-up by collecting data at a
very low intensity λ, such that it is unlikely to have more than one photon per laser
pulse, e.g. P(N > 1) = 0.0012 if λ = 0.05. Observed photon arrival times may
then be considered as realizations of the target distribution fθ0 and not of the pile-up
distribution gθ0 . Thus, if fθ is the multi-exponential density, standard estimators for
exponential mixtures apply as the classical EM algorithm, which we consider in the
following simulations.

Synthetic data are drawn from the pile-up density gθ0 in (29). For the classical
EM data are generated at λ = 0.05, while we use higher intensities for the cor-
rected MLE (λ = 1.32, 1.5, 2). Let m denote the sample size, or better, the total
number of excitation cycles. We stress that the observations where no photon event
occurs (Z = ∞) are discarded from the samples, such that the effective number
of observations used in the algorithms is much smaller than m. For λ = 0.05 we
have P(N = 0) = 0.951 compared to only P(N = 0) = 0.368 when λ = 1. The
empirical bias and standard deviations of both estimators are evaluated for different
sample sizes m, each based on 1,000 repetitions, see Table 1.

The results in Table 1 show that the estimation quality, measured in terms of bias
and standard deviation, obtained by the classical EM is achieved with only 10% of
the observations with the corrected MLE. Thus a significant reduction of 90% of the
acquisition time can be obtained by using data collected at a higher intensity and by
applying the new corrected MLE.

6.2 Comparison to Cramér-Rao Bound
A comparison of the variance of the corrected MLE to the Cramér-Rao bound pro-
vides an explanation of the significant reduction of the acquisition time in the TC-
SPC application. In Rebafka et al. (2008) the Cramér-Rao bound, which is a lower
bound of the variance of non biased estimators of θ0, is studied for the pile-up
model defined in (29), where the no-photon events are taken into consideration. In



Figure 2: Limit variance of the corrected MLE versus Cramér-Rao bound in the exponen-
tial case with ν1 = 1.

corrected MLE classical MLE
m bias std length cov. bias std length cov.
100 0.0511 0.3061 1.0641 0.927 0.0335 0.2800 0.9328 0.9140
500 0.0083 0.1238 0.4812 0.947 0.0051 0.1206 0.4109 0.9120
1,000 0.0033 0.0884 0.3417 0.944 0.0027 0.0828 0.2901 0.9210

Table 2: Comparison of the corrected MLE and the classical MLE associated with the
pile-up model for synthetic data in the case of a single-exponential target distribution with
exponential parameter ν1 = 2 and Poisson parameter λ = 1.32. Comparison of estimates
of the bias, standard deviation, length and coverage of confidence interval.



the single-exponential case with known λ, the Cramér-Rao bound of the exponen-
tial parameter θ0 decreases when λ increases, see Figure 2. Hence, for small λ, any
estimator has large variance and many data are necessary for reliable estimation of
θ0. In the exponential case the limit variance of the corrected MLE is given by

s2 =
θ2

0τ

P(N > 0)
=

θ2
0τ

1− e−λ
,

where τ is defined in (27). Figure 2 shows that the limit variance s2 attains the
Cramér-Rao bound when λ ≤ 0.7. The minimum is attained at λmin ≈ 1.329, where
the variance is ten times smaller than at λ = 0.05. This difference coincides with
the reduction of the acquisition time of a factor ten by using the corrected MLE
observed in Subsection 6.1. The point of minimum λmin is independent of θ0.

From the comparison with the Cramér-Rao bound, we see that the corrected
MLE is not efficient at λmin. Table 2 provides more details on the loss by comparing
the corrected MLE to the classical MLE associated with the pile-up model. Note
that in the special case of an single-exponential target distribution the classical MLE
can be computed numerically since the log-likelihood function given in (16) is con-
cave. The classical MLE is evaluated on the same synthetic datasets as in Table
1 and bias, standard deviation and length and coverage of confidence intervals are
estimated.

In the multi-exponential case the Cramér-Rao bound in not explicitly known,
but it can be estimated by the inverse of an approximation of the Fisher information
matrix obtained by Monte-Carlo. For the two-component model used in Table 1,
that is θ0 = (α1, ν1, ν2) = (0.25, 0.2, 2) and λ = 2, the Cramér-Rao bound CRB
and the covariance matrix Cov, both obtained by Monte-Carlo, are approximately

CRB =

 1.151 0.483 2.943
0.483 0.832 1.388
2.943 1.388 17.494

 and Cov =

 1.310 0.576 3.453
0.576 0.944 1.794
3.453 1.794 20.517

 .

From the relative closeness of the two matrices we conclude that the corrected MLE
almost attains the Cramér-Rao bound and is nearly optimal in this sense. For com-
pleteness the covariance matrix can be compared to the limit variance obtained by
Theorem 4 which is  1.193 0.471 2.794

0.471 0.804 1.535
2.794 1.535 19.113

 .

We close the section with a heuristic explanation of the bad performance of
the estimator for large λ. The corrected MLE is based on weighting the ordered
observations. When a rather long arrival time is observed, it is very likely that there
is no other photon and hence that we observe the ‘true’ distribution fθ0 . That is



why we associate higher weights with large observations. From (15) we note that
the weights for large observations grow exponentially with λ while the weights for
short observations decrease even more. It follows that if λ is large enough, the
estimator relies almost entirely on the largest observations. It is as if the sample
size diminishes. This movement is contrary to the augmentation of the proportion
of events where a photon is detected when λ increases. Obviously, for small λ the
latter augmentation is dominant, but for large λ the effect of large weights becomes
predominant and increases the variance of the estimator.

A Technical Arguments

A.1 Preliminary Results
Lemma 4. Under Assumpion 1, the weight function w defined in (8) is uniformly
continuous on [0, 1] taking its values in [1/maxu∈[0,1] γ̇(u), 1/minu∈[0,1] γ̇(u)]. In
addition, as n→∞,

sup
u≥0

∣∣∣w ◦ Ĝn(u)− w ◦Gθ0(u)
∣∣∣→ 0, a.s. (30)

Proof. The first assertions are clear. The Glivenko-Cantelli theorem gives that
supu>0

∣∣∣Ĝn(u)−Gθ0(u)
∣∣∣→ 0 a.s. and the uniform continuity of w yields (30).

A.2 Proof of Theorem 3
It suffices to show that θ̂n verifies (19). Denote for all t

L̃n(t, θ0) = L̃n(t)− L̃n(θ0) and L̂n(t, θ0) = L̂n(t)− L̂n(θ0) .

Lemma 4 and Condition (20) imply that

∣∣∣L̃n(θ̂n, θ0)− L̂n(θ̂n, θ0)
∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

{
w ◦ Ĝn(Zi)− w ◦Gθ0(Zi)

}
log

fθ̂n(Z(i))

fθ0(Z(i))

∣∣∣∣∣
≤ sup

z
|w ◦ Ĝn(z)− w ◦Gθ0(z)| sup

θ∈Θ

1

n

n∑
i=1

∣∣∣∣log
fθ(Zi)

fθ0(Zi)

∣∣∣∣
= op(1) . (31)



It follows together with the fact that θ̂n is a maximizer of θ 7→ L̂n(θ, θ0) that

L̃n(θ̂n, θ0) = L̃n(θ̂n, θ0)− L̂n(θ̂n, θ0) + L̂n(θ̂n, θ0)

≥ sup
t
L̂n(t, θ0) + op(1) (32)

≥ sup
t
L̃n(t, θ0) + op(1) ,

where the last inequality is obtained by (31). Finally (32) is equivalent to (19).

A.3 Proof of Corollary 1
Using that minu γ̇(u) > 0, we have supuw(u) ≤ 1/minu γ̇(u) < ∞ and Condi-
tion (21) gives that, for any θ, θ′ ∈ Θ and z ∈ R+,∣∣∣∣w ◦Gθ0(z) log

fθ(z)

fθ0(z)
− w ◦Gθ0(z) log

fθ′(z)

fθ0(z)

∣∣∣∣ ≤ 1

minu γ̇(u)
K(z) ‖θ − θ′‖ .

This and the compactness of Θ imply (3-i). By the identifiability condition of As-
sumption 1, we know that θ 7→ KL(fθ0‖fθ) has a unique minimum at θ = θ0.
Moreover, observing that

KL(fθ0‖fθ)−KL(fθ0‖fθ′) = Eθ0 [log fθ′(Y )− log fθ(Y )] ,

we see that (21) and Eθ0 [K(Y )] ≤ Eθ0 [K(Z)]/minu γ̇(u) <∞ imply the continu-
ity of θ 7→ KL(fθ0‖fθ) over the compact Θ, so that (3-ii) holds. Thus Assumption 3
holds. To apply Theorem 3, we now need to verify Condition (20), which follows
from (21), the compactness of Θ and the fact that 1

n

∑n
i=1 K(Zi) has finite mean

Eθ0 [K(Z)].

A.4 Proof of Lemma 1
By P̂ c

n(h) = P̃n(w ◦ Ĝn × h) and by (9), we observe that,

νcnr(·, t)− ν̃n (w ◦G× r(·, t)) =
√
nP̃n

{(
w ◦ Ĝn − w ◦G

)
× r(·, t)

}
.

Hence

|νcnr(·, t)− ν̃n (w ◦G× r(·, t))| ≤
√
n‖w ◦ Ĝn − w ◦G‖∞ P̃n|r(·, t)| .

By (Kallenberg, 2002, Theorem 14.15), we have
√
n‖Ĝn − G‖∞ = OP (1) and by

assumption on w,
√
n‖w ◦ Ĝn − w ◦ G‖∞ = OP (1). Hence Condition (v) follows

from (25).



A.5 Proof of Lemma 2
Since ḣ(z, ·) denotes the gradient of h(z, ·) in U , we have, for all s, t ∈ U ,

h(z, t) = h(z, s) +

∫ 1

u=0

(t− s)tḣ(z, tu+ s(1− u)) du .

By definition of r in (24) with ∆ = ḣ(·, θ0), we obtain

r(z, t) = |t− θ0|−1
(
h(z, t)− h(z, θ0)− (t− θ0)T ḣ(z, θ0)

)
=

(t− θ0)T

|t− θ0|

∫ 1

u=0

(
ḣ(z, tu+ θ0(1− u))− ḣ(z, θ0)

)
du . (33)

It also follows that

r(z, t)−r(z, s) =

(
(t− θ0)T

|t− θ0|
− (s− θ0)T

|s− θ0|

)∫ 1

0

ḣ(z, tu+θ0(1−u))−ḣ(z, θ0) du

+
(s− θ0)T

|s− θ0|

∫ 1

0

ḣ(z, tu+ θ0(1− u))− ḣ(z, su+ θ0(1− u)) du . (34)

We apply Lemma 1 so that it is sufficient to verify that (25) holds. Condition (25)
holds because, by (26) and (33),

|r(z, t)| ≤ K(z)|t− θ0| , (35)

ν̃n(K) = OP (1). We now prove the second part of Condition (25) as an application
of (Pollard, 1985, Lemma 4). Using (26), (34) and∣∣∣∣(t− θ0)T

|t− θ0|
− (s− θ0)T

|s− θ0|

∣∣∣∣ ≤ 2
|t− s|
|t− θ0|

,

we have
|r(z, t)− r(z, s)| ≤ 3K(z)|t− s| .

Thus, since E [|w ◦G(Z)K(Z)|] is bounded by (26) and the assumption on w, the
class of functions F = {w ◦ G × r(·, t), t ∈ U} satisfies the bracketing condition
of Pollard (1985). The other condition for applying (Pollard, 1985, Lemma 4) is

E

[
sup

|t−θ0|≤R
|w ◦G(Z) r(Z, t)|2

]
→ 0 as R→ 0 .

This follows from (35) and (26). This concludes the proof.



B A New Central Limit Theorem for L-statistics
To verify Condition (iv) of Theorem 4 a central limit theorem for linear combina-
tions of (transformed) order statistics, so-called L-statistics, is required. The exist-
ing theorems can be divided into two groups. One approach consists in approximat-
ing the L-statistic by a sum of i.i.d. random variables such that the classical central
limit theorem can be applied. This can be accomplished by using Hájek projection
(van der Vaart, 1998, p. 318), defining pseudo-random variables (Shorack, 2000)
or using the influence function (Serfling, 1984). All these theorems require that the
L-statistic has the form Ln =

∑n
i=1 ci,nh(X(i,n)), where h is a monotone function or

even the identity. Alternatively the L-statistic can be represented as a functional ϕ
evaluated at the empirical distribution function F̂n, that is Ln = ϕ(F̂n). In van der
Vaart (1998), p.322, the functional delta method is used to derive the asymptotic
distribution, in the case where the weights have the form ci,n =

∫ i/n
(i−1)/n

J(t)dt with
some function J that vanishes at the borders of the interval [0, 1].

The L-statistic encountered in Condition (iv) of Theorem 4 is not covered by
the existing theorems. Notably, h is not necessarily monotone and the weights do
not vanish at the borders. In the following we consider L-statistics of the form

Ln(h) ≡ 1

n

n∑
i=1

w(i/n)h(X(i,n)) =
1

n

n∑
i=1

w ◦ F̂n(Xi)h(Xi) ,

for functions h : R → R and w : [0, 1] → R and where F̂n denotes the empirical
distribution function associated with the sample (X1, . . . , Xn) with distribution F .

The following theorem gives conditions under which the empirical process

νn(h) =
√
n (Ln(h)− E[w ◦ F (X)h(X)]) (36)

is asymptotically normal.

Theorem 5. Supppose that

(i) h is of bounded variation on bounded intervals;
(ii) w is Lipschitz continuous on [0, 1];

(iii) F is a continuous distribution function;
(iv) E[|h(X)|] < ∞, E[w2 ◦ F (X)h2(X)] < ∞ and σ2(h) < ∞ where σ2(·) is

defined by (37).

Then νn(h)
d−→ N (0, σ2(h)) with limit variance given by

σ2(h) =

∫
R2

w ◦ F (x)w ◦ F (y)(F (x ∧ y)− F (x)F (y)) dh(x)dh(y) . (37)



Proof. Denote by S the set of all right-continuous functions f : R→ R with finite
left limit at all points endowed with the uniform norm. Let DF ⊂ S be the set of
all distribution functions defined on R. Define the functional ϕ on DF by

ϕ(G) ≡
∫
hw ◦G dG =

∫
h ◦G−1(u)w ◦G ◦G−1(u)du ,

where G−1(u) ≡ inf{x ∈ R : G(x) ≥ u} denotes the quantile function associated
with G. Then νn(h) =

√
n(ϕ(F̂n)−ϕ(F )). We further define on DF the functional

ψ(G) ≡
∫
h ◦G−1 dW =

∫
h ◦G−1(u)w(u)du ,

where W (t) =
∫ t

0
w(u)du. If G ∈ DF is continuous, then G ◦G−1 = Id, and thus

ϕ(G) = ψ(G) for all continuous G. Then for any continuous F ∈ DF we have

νn(h) =
√
n(ϕ(F̂n)− ψ(F̂n)) +

√
n(ψ(F̂n)− ψ(F )) . (38)

Using supu∈(0,1) |F̂n ◦ F̂−1
n (u)− u| ≤ 1

n
, it follows that

√
n|ϕ(F̂n)− ψ(F̂n)| =

√
n

∣∣∣∣∫ (w ◦ F̂n ◦ F̂−1
n (u)− w(u))h ◦ F̂−1

n dt

∣∣∣∣
≤ 1√

n

∫
|h| dF̂n = n−3/2

n∑
i=1

|h(Xi)|
P−→ 0 ,

since E|h(X)| < ∞. Now we show that the second term of (38) converges in
distribution. To start with, suppose that h is of bounded variation and has compact
support. Then the conditions of Lemma 22.10, van der Vaart (1998) are verified and
hence ψ is Hadamard differentiable at F with Hadamard derivative ψ′F defined on
the tangent space of bounded continuous functions by

ψ′F (G) ≡ −
∫
G× w ◦ F dh ,

when F is continuous. Furthermore, we know that
√
n(F̂n−F ) converges weakly to

an F -Brownian bridge, denoted byB, with covariance function Cov(B(x), B(y)) =
F (x ∧ y)− F (x)F (y). Hence, from the functional delta method it follows that

√
n(ψ(F̂n)− ψ(F ))

d−→ −
∫
B × w ◦ F dh .

The random variable on the right-hand side is normally distributed with zero mean
and variance

σ2(h) = E

[(∫
w ◦ F (x)B(x) dh(x)

)2
]

=

∫ ∫
w ◦ F (x)w ◦ F (y)(F (x ∧ y)− F (x)F (y)) dh(x)dh(y) .



Thus, the theorem holds for h with compact support.
Now let h be a function with arbitrary support satisfying the assumptions of

the theorem. The assertion follows from an approximation of h by a sequence of
functions with compact support. More precisely, for a given compact intervalA and
its complement Ac define the functions ζA = h1A and ζAc = h− ζA. Note that

νn(h) = νn(ζA) + νn(ζAc) .

The first term on the right-hand side is asymptotically normal since ζA has compact
support and is of bounded variation. In addition, by a convenient choice of A the
second term can be made arbitrarily small. This yields the asymptotic normality of
νn(h). More formally, we have

νn(ζAc) =
√
n

(
1

n

n∑
i=1

{
w ◦ F̂n(Xi)− w ◦ F (Xi)

}
ζAc(Xi)

)

+
√
n

(
1

n

n∑
i=1

w ◦ F (Xi)ζAc(Xi)− E [w ◦ F (X)ζAc(X)]

)
.

By (iv) the second term on the right side converges weakly to a normal distribution
with zero mean and variance Var(w ◦ F (X)ζAc(X)). Furthermore,

√
n

∣∣∣∣∣ 1n
n∑
i=1

{
w ◦ F̂n(Xi)− w ◦ F (Xi)

}
ζAc(Xi)

∣∣∣∣∣
≤ L sup

z∈R

{√
n
∣∣∣F̂n(z)− F (z)

∣∣∣} 1

n

n∑
i=1

|ζAc(Xi)|

= Op(1)
1

n

n∑
i=1

|ζAc(Xi)| .

Since E[|h(X)|] < ∞ and E[(w ◦ F (X)h(X))2] < ∞ by (iv), the set A can be
chosen such that E|ζAc(X)| and Var(w◦F (X)ζAc(X)) are arbitrarily small. Hence,
for every ε > 0, η > 0 there exists a compact interval A such that ζAc satisfies

lim sup
n→∞

P (|νn(ζAc)| > η) < ε .

Now let (Am)m be a sequence of compact sets such that ζm ≡ h1Am tends to h.
By the dominated convergence theorem and (iv) we obtain that limm→∞ σ

2(ζm) =
σ2(h). Then Billingsley (1999), Theorem 3.2, p.28, implies the weak convergence
of νn(h) to a centered normal distribution with variance σ2(h) given by (37).



If w is continuously differentiable on [0, 1] and E[|h(X)|] <∞, it can be shown
that

E[w ◦ F (X)h(X)] = E[Ln(h)] + o(n−1/2) .

Thus, in this case the centering constant E[w ◦ F (X)h(X)] in (36) can be replaced
by E[Ln(h)]. We finally provide an estimator of the limit variance, which is useful
for constructing asymptotic confidence intervals.

Proposition 1. If h is continuous and w is differentiable with derivative ẇ, then
Condition (iv) of Theorem 5 can be replaced by

(iv’) E[|h(X)|] <∞, E[w2 ◦ F (X)h2(X)] <∞ and E[|ẇ ◦ F (X)h(X)|] <∞ ,

and the limit variance writes

σ2(h) = E
[
w2 ◦ F (X)h2(X)

]
+ 2E [ẇ1 ◦ F (X1)ẇ2 ◦ F (X2)h(X1)h(X2)1{X1 > X2}] ,

where w1(t) = (1 − t)w(t) and w2(t) = tw(t) with derivatives ẇ1 and ẇ2. If
moreover E[w ◦F (X)ẇ ◦F (X)h2(X)] <∞ and E[ẇ2 ◦F (X)h2(X)] <∞ , then
σ̂2
n(h)

P−→ σ2(h) as n→∞, where

σ̂2
n(h) =

1

n

n∑
i=1

w2(i/n)h2(X(i,n)) (39)

+
2

n(n− 1)

∑
i>j

ẇ1(i/n)ẇ2(j/n)h(X(i,n))h(X(j,n)) .
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