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A Corrected Likelihood Approach for the Nonlinear Transformation Model with Application to Fluorescence Lifetime Measurements Using Exponential Mixtures

A fast and efficient estimation method is proposed that compensates the so-called pile-up effect encountered in fluorescence lifetime measurements. The pile-up effect is due to the fact that only the shortest arrival time of a random number of emitted fluorescence photons can be detected. A likelihood-based estimator is developed for the more general nonlinear transformation model that can be computed by an EM-type algorithm. The new estimator is particularly well-suited for fluorescence lifetime measurements, where arrival times are often modeled by a mixture of exponential distributions. The consistency of the estimator is shown and its limit distribution is provided. The method is evaluated on real and synthetic data. Compared to currently used methods in fluorescence, the new estimator should allow a reduction of the acquisition time of an order of magnitude.

Introduction

In this paper we consider nonlinear transformation models where the observed distribution is the result of a nonlinear distortion of some initial distribution [START_REF] Tsodikov | A generalized self-consistency approach[END_REF]. Special interest will be devoted to the so-called pile-up model where an observation is defined as the minimum of a random number of independent variables from the target distribution. The goal is to estimate the parameters of the target distribution from a sample of the distorted distribution. However, the nonlinear distortion generally makes estimation difficult even for simple target distributions. This work is motivated by an application in time-resolved fluorescence where a specific pile-up model is encountered. Fluorescence is the emission of photons by excited molecules and one of its characteristics is the duration that a molecule stays in the excited state before emitting a fluorescence photon. This duration is called the fluorescence lifetime and it is well known that these lifetimes have exponential distribution whose parameter depends on the fluorescent molecule as well as on its microenvironment as pH, viscosity or polarity [START_REF] Lakowicz | Principles of Fluorescence Spectroscopy[END_REF][START_REF] Valeur | Molecular Fluorescence[END_REF]. Due to the high sensitivity of the exponential parameters on the microenvironment, fluorescence lifetimes are a precious source of information on molecular processes and they are used in many applications in biology, medicine or chemistry. For instance, in biochemical applications of fluorescence imaging the effect of the environment on the fluorescence lifetimes is used to map chemical or physical changes within a sample [START_REF] Crissman | Flow cytometric fluorescence lifetime measurements[END_REF]. Further examples are the measurement of molecular distances [START_REF] Pin | Energy transfer technologies to monitor the dynamics and signaling properties of G-protein-coupled receptors in living cells[END_REF] or the measurement of molecular rotation [START_REF] Serdyuk | Methods in molecular biophysics: structure, dynamics, function[END_REF] based on fluorescence lifetimes.

Measurements of fluorescence lifetimes are obtained by the technique Time-Correlated Single Photon Counting (TCSPC) [START_REF] O'connor | Time-correlated single photon counting[END_REF]. First molecules are excited with a short laser pulse and then a random number of fluorescence photons is emitted and hit the detector. The instrument measures the time between the laser pulse and the arrival of the first fluorescence photon on the detector. For technical reasons the arrival times of later arriving photons can not be observed. Obviously, the distribution of the minimum arrival time is a distortion of the distribution of the arrival times of all photons striking the detector referred to as the pile-up effect.

The extent of distortion depends on the laser intensity which determines the average number λ of photons per excitation cycle. In fact, the higher the laser intensity, the more fluorescence photons are emitted. It is standard practice to discard the pile-up effect by using a very low laser intensity. However, the study of the Fisher information as a function of λ in [START_REF] Rebafka | Information bounds and MCMC parameter estimation for the pile-up model[END_REF] has revealed that the information can be maximized if data are collected at an intensity that causes a significant pile-up effect. That is, this study suggests that a significant reduction of the variance of the estimator compared to the standard practice can be obtained by using pile-up affected observations. Due to the involved form of the pile-up density standard estimation procedures as the maximum likelihood estimator or moment estimators are intractable. Hence the question about an estimator which is numerically achievable and yet performs well in comparison with the information bound arises in order to reduce the variance.

The very first method dealing with pile-up observations is a 'correction' of a pile-up histogram that goes back to [START_REF] Coates | The correction of photon 'pile-up' in the measurement of radiative lifetimes[END_REF]. This approach is refined and generalized in [START_REF] Walker | Iterative correction for 'pile-up' in single-photon lifetime measurements[END_REF] and [START_REF] Souloumiac | Apparatus and method for characterizing a system for counting elementary particles[END_REF]. [START_REF] Okano | Abstracting reliable parameters from time-correlated single photon counting experiments[END_REF] propose a least-squares fitting of the histogram. It is well known that least-squares methods are large sample methods that are unbiased on small samples, as pointed out by [START_REF] Hall | Better estimates of exponential decay parameters[END_REF] for the particular fluorescence context. This method is hence not appropriate to reduce the variance. In [START_REF] Rebafka | An MCMC approach for estimating a fluorescence lifetime with pile-up distorsion[END_REF] a Gibbs sampler is presented that is adapted to pile-up models with multi-exponential target distributions. This algorithm is rather time-consuming and hence it is not appropriate to analyze a large number of samples, which is often the case in fluorescence.

The pile-up model has also been used in carcinogenesis studies. At the end of a cancer treatment there remains a random number of cells that will propagate into a new detectable tumor. An individual random time is associated to each cell representing the time it takes for this cell to produce a detectable tumor. Then the time to tumor recurrence is the minimum of those cell individual times. In a parametric setting [START_REF] Yakovlev | Stochastic Models of Tumor Latency and their Biostatistical Applications[END_REF] compute the maximum likelihood estimator by some random search algorithm.

The paper is organized as follows. The formal definition of the nonlinear transformation model and the pile-up model is given in Section 2. In Section 3 we develop a likelihood-based contrast, whose maximization complexity is essentially the same as the likelihood associated with the target distribution. In particular, if the EM algorithm applies to the likelihood of the target distribution, then it applies similarly to the new contrast. The asymptotic behavior of the new estimator is analyzed in Section 4. The numerical performance is evaluated in Section 5, where an application on TCSPC measurements is provided as well as a comparison to the information bounds obtained in [START_REF] Rebafka | Information bounds and MCMC parameter estimation for the pile-up model[END_REF]. Appendix A contains the technical arguments for the results presented in the previous sections, while Appendix B provides details on the derivation of the central limit theorem for L-statistics that is used in Section 4.

General Setting and Notation

We first define the pile-up model, then we generalize the definition to the nonlinear transformation model. Let {Y k , k ≥ 1} be a sequence of independent positive random variables with distribution function F and survival function F = 1 -F . Denote by N a random variable that is independent of the sequence {Y k , k ≥ 1} taking its values in N * = {1, 2, . . . }. Each pile-up observation Z i for i = 1, 2, . . . , n is distributed as the random variable Z defined by

Z = min{Y 1 , . . . , Y N } .
(1)

By [START_REF] Rebafka | Information bounds and MCMC parameter estimation for the pile-up model[END_REF], Lemma 1 the survival function

Ḡ = 1 -G of Z is given by Ḡ(z) = γ( F (z)) , z ∈ R + , ( 2 
)
where γ is the probability generating function associated with N , defined as γ(u) = E[u N ] for all u ∈ [0, 1]. Moreover, if F admits a density f with respect to the Lebesgue measure L + defined on R + , then G admits a density g. Denoting γ(u) = E[N u N -1 ] for all u ∈ [0, 1], the pile-up density g is given by

g(z) = f (z) γ( F (z)), z ∈ R + . (3) 
In survival analysis the class of models defined by (2) where γ is the probability generating function of any nonnegative random variable

N , i.e. γ(u) = E[u N ],
is the family of proportional hazard mixture models also called univariate frailty models [START_REF] Kosorok | Robust inference for univariate proportional hazards frailty regression models[END_REF][START_REF] Hougaard | Life table methods for heterogeneous populations: Distributions describing the heterogeneity[END_REF]. Note that in this case the hazard function µ G of G given N can be written as

µ G (t|N ) = N µ F (t) ,
where µ F is the hazard function of F and N is the frailty. Univariate frailty models are an important subclass of nonlinear transformation models defined by (2) for any function γ such that γ • F is a survival function [START_REF] Tsodikov | A generalized self-consistency approach[END_REF].

We will estimate the target distribution F based on a sample of the distorted distribution G in a parametric setting. Our approach applies to models where γ is a known function that is sufficiently smooth. The most general setting that will be considered is described in the following assumption that is supposed to hold throughout the paper.

Assumption 1. The target distribution F belongs to an identifiable parametric family dominated by L + and is thus described by a collection of densities {f θ , θ ∈ Θ} with parameter set Θ ⊂ R d . The function γ : [0, 1] → [0, 1] is known, increasing, inversible and continuously differentiable with positive derivative γ > 0 on [0, 1].

Note that Assumption 1 is satisfied for the probability-generating function γ of any nonnegative random variable N satisfying P(N = 1) > 0.

As we are especially interested in the fluorescence application, we define formally the pile-up model as follows.

Definition 1. Under Assumption 1, where γ denotes the probability generating function of some random variable N with values in N * , we denote by {g θ , θ ∈ Θ} the corresponding collection of densities obtained by Relation (3). This model, that is dominated by L + , is called the pile-up model associated with the target model {f θ , θ ∈ Θ} and the distribution of N .

Let us verify Assumption 1 in the fluorescence application. In general the number of photons per excitation cycle has Poisson distribution. It is clear that only those cycles provide information on the unknown parameter θ where a photon is detected. Hence, we suppose that N in (1) follows a Poisson distribution restricted on N * with parameter λ > 0, that is

P(N = k) = λ k e -λ k!(1 -e -λ ) , k ∈ N * . ( 4 
)
It follows that the probability generating function in this case is given by

γ(u) = E[u N ] = e λu -1 e λ -1 . (5) 
Obviously, γ depends on λ. A natural estimator of λ is based on the proportion of excitation cycles where no photon is detected, namely λ = log number of excitation cycles number of cycles where no photon is detected .

We can hence consider γ as a known function and thus Assumption 1 is verified.

Widely used target models in the fluorescence application include the exponential distribution or finite mixtures of exponential distributions, possibly polluted by some additive instrument noise (see [START_REF] Ware | Deconvolution of fluorescence and phosphorescence decay curves. Least-squares method[END_REF][START_REF] O'connor | Time-correlated single photon counting[END_REF]. Often the exponential parameters permit a physical interpretation.

In the remainder of the paper we adopt the following notation: under the expectation sign E θ , Y has density f θ and Z has the corresponding distorted density g θ . Moreover we denote by F θ and G θ the associated distribution functions.

Estimation Method

To construct a parameter estimate, we propose a modification of the maximum likelihood approach that results in an estimator that is often computable by an EM-type algorithm.

Corrected Likelihood

Consider the log-likelihood associated with an i.i.d. sample (Y 1 , . . . , Y n ) from the target distribution F θ 0 , namely

L n (θ) = 1 n n i=1 log f θ (Y i ) . (6) 
Recall that the rationale in using the log-likelihood as a contrast function is that, by the strong law of large numbers, as

n → ∞, L n (θ) -L n (θ 0 ) converges to the negated Kullback-Leibler divergence E θ 0 [log(f θ (Y )/f θ 0 (Y ))
] and thus is asymptotically maximized at θ = θ 0 . Now, from Equation (3), we have for any real-valued integrable function h defined on R + ,

E θ 0 [h(Y )] = E θ 0 h(Z) γ( Fθ 0 (Z)) . (7) 
Denote by γ -1 the inverse of γ. Then Equation (2) gives Fθ 0 = γ -1 • Ḡθ 0 . Define

w(u) = 1 γ • γ -1 (1 -u) , u ∈ [0, 1] , (8) 
with the convention that 1/∞ = 0. Under Assumption 1, w is well defined since γ > 0. Note that ( 7) can be rewritten as

E θ 0 [h(Y )] = E θ 0 [w • G θ 0 (Z) h(Z)] . (9) 
Taking h = log f θ , we get that

Ln (θ) = 1 n n i=1 w • G θ 0 (Z i ) log f θ (Z i ) (10) 
has the same property as the one pointed out before for the likelihood L n . However, (10) involves θ 0 , so it cannot be used for parameter estimation. We propose to modify (10) by replacing G θ 0 with the empirical distribution function Ĝn (z) =

1 n n i=1 1{Z i ≤ z}.
Then a corrected log-likelihood function which reasonably es-

timates L n (θ) in (6), but is obtained from the sample (Z 1 , . . . , Z n ) instead of the unobserved (Y 1 , . . . , Y n ) is given by Ln (θ) = 1 n n i=1 w • Ĝn (Z i ) log f θ (Z i ) = 1 n n i=1 w(i/n) log f θ (Z (i,n) ) , (11) 
where

Z (i,n) denotes the i-th order statistic of the sample (Z 1 , . . . , Z n ) satisfying Z (1,n) ≤ Z (2,n) ≤ . . . ≤ Z (n,n) . We define a new parameter estimate of θ 0 by θn = arg max θ∈Θ Ln (θ) = arg max θ∈Θ n i=1 w(i/n) log f θ (Z (i,n) ) , (12) 
to which we will refer as the corrected maximum likelihood estimator (corrected MLE). The weights w(i/n) appearing in Ln (θ) are aimed to correct the distortion, namely, the fact that (Z 1 , . . . , Z n ) is a sample of g θ 0 instead of f θ 0 .

Relation ( 9) can be used more widely for correcting any statistical method based on moments of the target distribution that one wishes to apply with distorted observations. More precisely, denote by P c n the corrected empirical distribution from distorted observations Z 1 , . . . , Z n such that, for every function h,

P c n (h) = 1 n i w(i/n)h(Z (i,n) ) ,
where w is given by ( 8). It is different from the standard empirical distributions

Pn (h) = 1 n i h(Y i ) and Pn (h) = 1 n i h(Z i ) . ( 13 
)
The following result, which justifies the above approach, relies on the fact that P c n (h), Pn (w • G × h) and Pn (h) have the same limits. It is obtained by applying Lemma 4 in Appendix A.

Theorem 1. Suppose that Assumption 1 holds. Let Y have distribution F and (Z i ) i≥1 be an i.i.d. sequence with distribution G defined in (2). Then, for any real valued function

h defined on R + satisfying E[|h(Z)|] < ∞, we have P c n (h) → E[h(Y )] almost surely as n → ∞.
Theorem 1 implies that any consistent moment estimator based on a sample of the target distribution remains consistent when the corrected empirical distribution P c n is used. It also gives that the corrected log-likelihood Ln (θ) is such that Ln (θ) -Ln (θ 0 ) converges to the Kullback-Leibler divergence of f θ 0 with f θ almost surely. This is the basic argument for proving the consistency of the corrected MLE, see Section 4.1.

Maximization by an EM-type Algorithm

In general it is easier to maximize the corrected likelihood Ln (θ) in (11) than the likelihood function associated with the nonlinear transformation model, which has the form

n i=1 log f θ (Z i ) + n i=1 log γ(1 -F θ (Z i )) . ( 14 
)
Note that the main difference with Ln (θ) is the appearance of a second term in (14) which generally complicates the maximization. In the special case of a pile-up model with an exponential target distribution, i.e. f θ (y) = θe -θy , θ > 0, and where N follows the restricted Poisson distribution given in (4), it turns out that corrected MLE is given explicitly by

θn = n i=1 w(i/n) n i=1 w(i/n)Z (i,n) , with w(i/n) = 1 -e -λ λ[ i n (e -λ -1) + 1] . ( 15 
)
This is in sharp contrast with the classical maximum likelihood estimator associated with the pile-up model, where the maximization of

θ → n log θ -θ n i=1 Z i + λ n i=1 e -θZ i (16) 
has no explicit solution. This feature remains true in a large variety of situations. Indeed, the only difference of the maximization problem given by ( 12) compared to maximizing the target likelihood ( 6) are the nonnegative weights w(i/n). This makes the two maximization problems of equivalent cost, while the maximization of the likelihood in the nonlinear transformation model is in general much more costly, if tractable at all. A situation of particular interest is when the EM algorithm applies to the target model {f θ , θ ∈ Θ}, as this is the case for a finite mixture of exponential distributions polluted by additive noise with known distribution, which is a broadly used model in fluorescence. Then an EM-type algorithm resolves the maximization (12). To be more precise, we make the assumption that the target model is an incomplete data model.

Assumption 2. Suppose that Assumption 1 holds. Let µ be a measure on a state space X . Suppose that {π θ , θ ∈ Θ} is a collection of densities with respect to L + ⊗ µ, such that f θ = π θ (•, s)µ(ds) for all θ ∈ Θ.

The second component of the distribution π θ corresponds to the missing or latent variable, say X. When f θ is an exponential mixture, then the missing variable X is the label of the mixture component that generated an observation Y from the mixture f θ . Let q θ,θ (y, x) denote the conditional expectation of the log-density of (Y, X) at parameter θ given that Y = y at parameter θ , namely

q θ,θ (y) = E θ [log π θ (Y, X) | Y = y] = x∈X log π θ (y, x) π θ (y, x) f θ (y) µ(dx) .
In analogy to the standard EM algorithm but using the approach with the corrected likelihood, we define, for all θ, θ ∈ Θ,

Q(θ, θ ; Z 1 , . . . , Z n ) = n i=1 w(i/n) q θ,θ (Z (i,n) ) , and (17) 
H(θ, θ ; Z 1 , . . . , Z n ) = n i=1 w(i/n)E θ log π θ (Y, X) f θ (Y ) | Y = Z (i,n) .
Note that the correted likelihood verifies, for all θ, θ ∈ Θ,

Ln (θ) = Q(θ, θ ; Z 1 , . . . , Z n ) -H(θ, θ ; Z 1 , . . . , Z n ) .
Now, as for the standard EM algorithm, we define the sequence (θ (t) ) t≥0 for any starting value θ (0) ∈ Θ in the following recurrent way, for all t ∈ N,

θ (t+1) = arg max θ∈Θ Q(θ, θ (t) ; Z 1 , . . . , Z n ) . ( 18 
)
The sequence (θ (t) ) t≥0 has the same properties as a sequence obtained by the standard EM algorithm. Namely, at each iteration the value of the log-likelihood Ln (θ (t) ) increases and the sequence (θ (t) ) t≥0 tends to a critical point of the corrected loglikelihood function Ln (θ).

Theorem 2. The sequence (θ (t) ) t≥0 defined by ( 18) satisfies Ln (θ (t+1) ) ≥ Ln (θ (t) ), for all t ≥ 0. Moreover, if (θ (t) ) t≥0 converges to some θ * in the closure of Θ and if

∇ θ Q(θ, θ (t) ; Z 1 , . . . , Z n )| θ=θ (t+1) = 0 , for all t , then θ * is a critical point of Ln (θ), i.e. ∇ θ Ln (θ)| θ=θ * = 0.
Theorem 1 and 4 in [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] correspond to the case where w(i/n) ≡ 1. Using that w(i/n) are non negative numbers, the arguments provided in [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] continue to hold.

Asymptotic Behavior

In this section we study the asymptotic behavior of the corrected MLE θn defined in (12). We show its consistency and determine its limit distribution. To this end we make use of the fact that the corrected likelihood function Ln (θ) is an L-statistic, that is a linear combination of order statistics.

Consistency

Although the process Ln defined by ( 10) cannot be used in practice for estimation because it depends on the unknown parameter θ 0 , it is a standard empirical mean of the i.i.d. observations Z 1 , . . . , Z n and thus the standard theory for proving the consistency of M -estimators (see e.g. van der Vaart (1998)) can be applied. This theory says that, under standard conditions, the following assumption holds.

Assumption 3. Any random sequence (t n ) n valued in Θ satisfies t n P → θ 0 , if Ln (t n ) ≥ sup t Ln (t) + o P (1) . ( 19 
)
For instance, by van der Vaart (1998), Theorem 5.7, this is true, if both

(3-i) the collection of functions F = {w • G θ 0 log(f θ /f θ 0 ), θ ∈ Θ} is a G θ 0 - Glivenko-Cantelli class; (3-ii) for all ε > 0, inf |θ-θ 0 |>ε KL(f θ 0 f θ ) > 0, where KL(f g) = log f (x)
g(x) f (x)dx denotes the Kullback-Leibler divergence of two densities f and g.

The Kullback-Leibler divergence KL(f θ 0 f θ ) appears here as a consequence of (9).

Theorem 3. Suppose that Assumptions 1 and 3 hold and that

sup θ∈Θ 1 n n i=1 log f θ (Z i ) f θ 0 (Z i ) = O P (1) . ( 20 
)
Then any random sequence ( θn ) is consistent for θ 0 , i.e. θn

P -→ θ 0 , if it satisfies Ln ( θn ) ≥ sup θ∈Θ Ln (θ) + o P (1) .
The following corollary provides a simple condition implying the general ones of Theorem 3.

Corollary 1. Suppose that Assumption 1 holds. Let Θ be a compact subset of R d . If there exists a function K : R

+ → R + such that E θ 0 [K(Z)] < ∞ and |log f θ (z) -log f θ (z)| ≤ K(z) θ -θ , θ, θ ∈ Θ, z ∈ R + , (21) 
then the conclusion of Theorem 3 is true.

Example

In all specific cases that are relevant in the fluorescence application the corrected MLE is consistent. Consider a multi-exponential target density defined as

f θ (y) = K k=1 α k ν k e -ν k y , y ∈ R + , (22) 
and let γ be the probability generating function of the restricted Poisson distribution given in (5). For K = 1 we have the single-exponential case. We can use a parsimonious parametrization where α K is given by 1 -K-1 k=1 α k . Let the parameter space Θ be defined as

Θ = θ = (α 1 , . . . , α K-1 , ν 1 , . . . , ν K ) T : ν k ∈ (a, b), α k ∈ (δ, 1), K-1 k=1 α k < 1 -δ
where 0 < a < b < ∞ and δ > 0. The identifiability of exponential mixtures is assured by the results of [START_REF] Teicher | Identifiability of mixtures[END_REF]. Now for all θ

1 < θ 2 ∈ Θ | log f θ 1 (z) -log f θ 2 (z)| = | ḟθ (z)| f θ(z) |θ 2 -θ 1 | ,
for some θ ∈ [θ 1 , θ 2 ] and where ḟθ (z) denotes the gradient of θ → f θ (z) at θ. Furthermore, since α k > δ and ν k ∈ (a, b) for all k, we obtain

∂f θ ∂α j (z) f θ (z) = |ν j e -ν j z -ν K e -ν K z | f θ (z) = |ν j e -ν j z -ν K e -ν K z | K k=1 α k ν k e -ν k z ≤ 1 α j + 1 α K ≤ 2 δ , ∂f θ ∂ν j (z) f θ (z) = |α j (1 -ν j z)e -ν j z | f θ (z) ≤ α j |1 -ν j z|e -ν j z K k=1 α k ν k e -ν k z ≤ |1 -ν j z| ν j ≤ 1 + bz a .
Hence, (21) holds with K(z) = 2 δ ∧ 1+bz a and the corrected MLE is consistent. Similar arguments apply to the case of a multi-exponential target distribution polluted by additive noise, where we denote by η the probability density of the instrument noise. Consider the convolution of η and the multi-exponential density given by ( 22). The target density is then given by

f θ (z) = η K k=1 α k ν k e -ν k • (z) = K k=1 α k ν k e -ν k z z 0 η(u)e ν k u du . ( 23 
)
Corollary 1 can be used to derive the consistency of the corrected MLE in this case.

Limit Distribution

We show that a theorem, similar to the central limit theorem for M -estimators of [START_REF] Pollard | New ways to prove central limit theorems[END_REF], holds for M -estimators maximizing an L-statistic. The theorem applies to the corrected MLE θn . For an i.i.d. sample (Z 1 , . . . , Z n ) from the distorted distribution G defined by (2) and weight function w defined by (8), we consider a contrast process defined as the L-statistic

M n (t) = P c n h(•, t) = 1 n n i=1 w(i/n)h(Z (i,n) , t) , with h(z, t) defined on R + × Θ. If h(•, t) = log f t (or, equivalently h(•, t) = log(f t /f θ 0 )), then M n (t) is the corrected likelihood (11). Denote M(t) = E θ 0 [h(Y, t)] ,
where θ 0 is the true parameter. Furthermore, the corrected empirical process corresponding to P c n is defined, for a function k on R + , as

ν c n k = √ n P c n (k) -E θ 0 [k(Y )] .
We have

ν c n h(•, t) = √ n(M n (t) -M(t)).
Adapting [START_REF] Pollard | New ways to prove central limit theorems[END_REF], the following result holds.

Theorem 4. Suppose that the following assertions are true.

(i) θ 0 is an interior point of Θ ⊂ R d ; (ii) t → M(t) has a nonsingular second derivative -J ≡ ∇ 2 t M(θ 0 ) at its maximizing value θ 0 ; (iii) Let θ n be a maximizer of M n for every n ≥ 1 and suppose that (θ n ) n converges in probability to θ 0 ; Furthermore, suppose that the following expansion holds for all z ∈ R + and t ∈ Θ,

h(z, t) = h(z, θ 0 ) + (t -θ 0 ) T ∆(z) + |t -θ 0 |r(z, t) , (24) 
with functions r : R + × Θ → R and ∆ : R + → R d satisfying (iv) there exists a covariance matrix Σ such that ν c n ∆ d -→ N (0, Σ) ; (v) for any sequence of balls U n that shrinks to θ 0 as n → ∞, we have

sup t∈Un |ν c n r(•, t)| 1 + √ n|t -θ 0 | P -→ 0 . Then, it follows that √ n(θ n -θ 0 ) d -→ N 0, J -1 ΣJ -1 .
The proof of this result is omitted as it is easily obtained by adapting the proof of the theorem in [START_REF] Pollard | New ways to prove central limit theorems[END_REF] in the following way.

1. The standard empirical process ν n defined by

ν n k = √ n ( k(Y i ) -E θ 0 [k(Y )]
) is replaced by the corrected empirical process ν c n defined above.

The conditions

E θ 0 [|∆(Y )| 2 ] < ∞ and E θ 0 [∆(Y )] = 0 are replaced by (iv).
These adaptations yield the two unusual conditions (iv) and (v). Condition (v) is similar to the so called stochastic differentiability condition in [START_REF] Pollard | New ways to prove central limit theorems[END_REF] except that the empirical process ν n is replaced by ν c n which is based on an L-statistic. However the following lemma shows that one can use a standard empirical process to verify this condition. Recall that Pn is defined in (13). Then denote by νn the standard empirical process associated with the i.i.d. sequence

(Z i ), νn k = √ n Pn (k) -E θ 0 [k(Z)] .
Lemma 1. Suppose that w defined in ( 8) is Lipschitz on [0, 1], that is, there exists 

L > 0 such that |w(u) -w(v)| ≤ L |u -v|, for all u, v ∈ [0, 1].
(w • G × r(•, t)) | 1 + √ n|t -θ 0 | P -→ 0 . (25) 
In most cases, a smoothness condition on t → h(z, t) holds with some uniformity in z, which implies Condition (v), as described by the following lemma.

Lemma 2. Suppose that w is Lipschitz on [0, 1] and that for all z ∈ R + , h(z, •) is continuously differentiable in Θ with gradient denoted by ḣ(z, •). Assume moreover that there exists K defined on R + and a neighborhood U of θ 0 such that

ḣ(z, t) -ḣ(z, θ 0 ) ≤ K(z) |t -θ 0 |, for all t ∈ U, and E K 2 (Z) < ∞. (26)
Then Condition (v) holds for r given by ( 24) with ∆(z) = ḣ(z, θ 0 ).

To verify Condition (iv) the following result for L-statistics can be used. It is an immediate application of Theorem 5 and Proposition 1 in Appendix B to the nonlinear transformation model. Lemma 3. Suppose that Assumption 1 holds. Let k be a continuous function of bounded variation on bounded intervals and assume that the weight function w is continuously differentiable. If furthermore

E θ 0 [|k(Z)|] < ∞ and E θ 0 [(w • G(Z)k(Z)) 2 ] < ∞ and σ 2 (k) < ∞, where σ 2 (k) is defined below, then ν c n k d -→ N 0, σ 2 (k) ,
with limit variance σ 2 (k) given by

σ 2 (k) = E θ 0 [(w • G θ 0 (Z)) 2 k 2 (Z)] + 2E θ 0 [ ẇ1 • G θ 0 (Z 1 ) ẇ2 • G θ 0 (Z 2 )k(Z 1 )k(Z 2 )1{Z 1 > Z 2 }] ,
with w 1 (x) = (1 -x)w(x) and w 2 (x) = xw(x) and ẇ1 and ẇ2 are the derivatives of w 1 and w 2 .

Using the Cramér-Wold device and the linearity of ν c n k, a multidimensional version of the central limit theorem holds. Namely, if the above conditions hold for every function k 1 , . . . , k m and denoting k

= [k 1 , . . . , k m ] T , then ν c n (k) d -→ N (0, Σ(k)) where Σ(k) = (σ 2 (k i , k j )) i,j and σ 2 (k i , k j ) = E θ 0 [(w • G θ 0 (Z)) 2 k i (Z)k j (Z)] + 2E θ 0 [ ẇ1 • G θ 0 (Z 1 ) ẇ 2 • G θ 0 (Z 2 )k i (Z 1 )k j (Z 2 )1{Z 1 > Z 2 }] .

Example

Theorem 4 applies to the corrected MLE defined in (12). In this case

M(θ) = E θ 0 [log f θ (Y )].
Hence J in Condition (ii) is the Fisher information matrix of the target model, but Σ is not. This is why the asymptotic variance J -1 ΣJ -1 does not equal to the Fisher information, see further discussion in Subsection 6.2. In the exponential case, when Θ = (a, b) with 0 < a < b < ∞, the conditions of Theorem 4 are easily verified using Lemma 2 and 3. As M(θ) = log θ -θ θ 0 , we have J = θ -2 0 . According to Theorem 4 and some straightforward computation,

√ n( θn -θ 0 ) d -→ N (0, θ 2 0 τ ), where τ = 2 λ 2 ∞ n=1 (-λ) n n!n 2 -e λ ∞ n=1 (-λ) n n!n ∞ m=0 (-λ) m m!(m + n) . ( 27 
)
See Subsection 6.2 for a visualization of the limit variance and a comparison with the Cramér-Rao bound computed in [START_REF] Rebafka | Information bounds and MCMC parameter estimation for the pile-up model[END_REF].

In the multi-exponential case of Subsection 4.1.1, the same conditions hold, yielding

√ n( θn -θ 0 ) d → N (0, J -1 ΣJ -1
), where J is the Fisher information matrix of the multi-exponential distribution and

Σ = 1 -e -λ λ ∞ 0 e λF θ 0 (y) ḟ T θ 0 (y) ḟθ 0 (y) f θ 0 (y) dy -2e -λ ∞ 0 ∞ y 2
e λF θ 0 (y 1 )+λF θ 0 (y 2 ) ḟ T θ 0 (y 1 ) ḟθ 0 (y 2 )dy 1 dy 2 .

Confidence Intervals

Based on the corrected MLE θn defined by ( 12), confidence intervals are easily constructed. For simplicity consider the one-dimensional case, i.e. θ ∈ R. Theorem 4 suggests the following asymptotic confidence interval of θ with confidence level 1 -α

IC n = θn + q α/2 Vn /n, θn -q α/2 Vn /n ,
where q α/2 is the α/2-quantile of the standard gaussian distribution N (0, 1) and Vn is an estimator of the limit variance V = J -1 ΣJ -1 of Theorem 4. Note that here J is the Fisher information of the target model {f θ , θ ∈ Θ} evaluated at θ 0 , that is

J = -E ∂ 2 log f θ 0 (Y ) ∂ 2 θ 0 .
A natural estimator of J is hence given by

Ĵn = - 1 n n i=1 w(i/n) ∂ 2 log f θn (Z (i,n) ) ∂ 2 θn .
Then, with the estimator σ2 n of Σ given in Appendix B by (39), we obtain an estimator of the limit variance V by

Vn = σ2

n /( Ĵn ) 2 .

Application to Fluorescence Lifetime Measurements

When using the TCSPC fluorescence technique, the arrival time Y i of a photon on the detector is the fluorescence lifetime, say Ỹi , plus some noise E i , which is due to the measuring instrument. That is, Y i = Ỹi + E i for independent variables Ỹi and E i . The noise, which is mainly due to the lamp, is called the instrumental response function. It is individual for every measuring instrument and does not belong to a common parametric family. However, as the probability density function η of the instrumental response function can easily be measured, η is assumed known in the following. The target density f θ is given by ( 23).

For an observation Y = Ỹ + E let (S, E) be the latent variables, where S is the label of the exponential component that has generated Ỹ , and E is the noise with density η. The joint density of (Y, S, E) is given by π θ (y, s, x) = η(x)α s ν s e -νs(y-x) , 0 < x < y, s = 1, . . . , K .

The maximization (18) of Q(θ, θ ; Z 1 , . . . , Z n ) defined by ( 17) has the solutions

α (t+1) l = n i=1 w(i/n)P θ (t) (S = l | Y = Z (i,n) ) n i=1 w(i/n) , ν (t+1) l = n i=1 w(i/n)P θ (t) (S = l | Y = Z (i,n) ) n i=1 w(i/n)P θ (t) (S = l | Y = Z (i,n) ) Z (i,n) -E θ (t) [E | Y = Z (i,n) , S = l]
It remains to evaluate

P θ (S = l | Y = z) = α l ν l e -ν l z z 0 η(x)e ν l x dx K k=1 α k ν k e -ν k z z 0 η(x)e ν k x dx , E θ [E | Y = z, S = l] = z 0 xη(x)e ν l x dx z 0 η(x)e ν l x dx . (28) 
In the TCSPC-set up the instrumental response function is approximated by a histogram, so that the integrals in (28) are Riemann sums.

We apply the corrected MLE to real TCSPC measurements. Figure 1 shows the histogram of photon arrival times and the instrument response function η of the measuring instrument. Data were obtained at a laser intensity corresponding to λ = 0.166. Hence, about 8% of the arrival times are the minimum of two or more photons. Consequently, the pile-up effect is not negligible. The sample size is n = 1, 743, 811 and there is a single-exponential component, K = 1. In this experiment the lifetime constant of the molecule is known to be τ = 1/ν = 2.54 ns. For more details on the data we refer to [START_REF] Patting | Dead-time effects in TCSPC data analysis[END_REF].

An estimator of the exponential parameter that does not take into account the pile-up effect yields the value τ = 2.40 ns which is significantly shorter than the expected value. Applying the corrected MLE of the preceding paragraph provides the estimated value τ = 1/ν = 2.5393 ns. We draw the conclusion that the corrected MLE is well suited for the pile-up model and handles additive noise correctly.

Numerical Study

The numerical performance of the corrected MLE in the pile-up model is evaluated in a twofold study. First we show that the acquisition time can be reduced by increasing the Poisson parameter λ. Second we compare the variance of the estimator to the Cramér-Rao bound of the pile-up model. Several single and multi-exponential target models are considered, but, for simplicity, no additive noise.

Reduction of Acquisition Time

In the fluorescence set-up the acquisition time consists of all excitation cycles, including those where no photon is detected. Hence, in the following N is assumed to have classical Poisson distribution on N with parameter λ (and not restricted on N * as in ( 4)). If N = 0 put the pile-up observation Z = ∞. Then Z admits a density g θ with respect to L+ , defined as the measure on R + ∪ {+∞} which puts mass 1 at +∞ and whose restriction on R + is the Lebesgue measure L + . As shown in [START_REF] Rebafka | Information bounds and MCMC parameter estimation for the pile-up model[END_REF], Lemma 1 the pile-up density is given by

K = 1, ν 1 =
K = 3, α 1 = 0.4, α 2 = 0.3, ν 1 = 0.1, ν 2 = 0.5, ν 3 = 2 sample size m 1,
g θ (z) = λf θ (z)e -λF θ (z) , if x ∈ R + e -λ , if x = ∞ . (29) 
Obviously, only observations where a photon is detected (Z < ∞) contain information on θ 0 . The average number λ of fluorescence photons per light pulse depends on the laser intensity which is tuned by the user. It increases, when λ does. The current practice in fluorescence is to avoid pile-up by collecting data at a very low intensity λ, such that it is unlikely to have more than one photon per laser pulse, e.g. P(N > 1) = 0.0012 if λ = 0.05. Observed photon arrival times may then be considered as realizations of the target distribution f θ 0 and not of the pile-up distribution g θ 0 . Thus, if f θ is the multi-exponential density, standard estimators for exponential mixtures apply as the classical EM algorithm, which we consider in the following simulations.

Synthetic data are drawn from the pile-up density g θ 0 in (29). For the classical EM data are generated at λ = 0.05, while we use higher intensities for the corrected MLE (λ = 1.32, 1.5, 2). Let m denote the sample size, or better, the total number of excitation cycles. We stress that the observations where no photon event occurs (Z = ∞) are discarded from the samples, such that the effective number of observations used in the algorithms is much smaller than m. For λ = 0.05 we have P(N = 0) = 0.951 compared to only P(N = 0) = 0.368 when λ = 1. The empirical bias and standard deviations of both estimators are evaluated for different sample sizes m, each based on 1,000 repetitions, see Table 1.

The results in Table 1 show that the estimation quality, measured in terms of bias and standard deviation, obtained by the classical EM is achieved with only 10% of the observations with the corrected MLE. Thus a significant reduction of 90% of the acquisition time can be obtained by using data collected at a higher intensity and by applying the new corrected MLE.

Comparison to Cramér-Rao Bound

A comparison of the variance of the corrected MLE to the Cramér-Rao bound provides an explanation of the significant reduction of the acquisition time in the TC-SPC application. In [START_REF] Rebafka | Information bounds and MCMC parameter estimation for the pile-up model[END_REF] the Cramér-Rao bound, which is a lower bound of the variance of non biased estimators of θ 0 , is studied for the pile-up model defined in (29), where the no-photon events are taken into consideration. In the single-exponential case with known λ, the Cramér-Rao bound of the exponential parameter θ 0 decreases when λ increases, see Figure 2. Hence, for small λ, any estimator has large variance and many data are necessary for reliable estimation of θ 0 . In the exponential case the limit variance of the corrected MLE is given by

s 2 = θ 2 0 τ P(N > 0) = θ 2 0 τ 1 -e -λ ,
where τ is defined in (27). Figure 2 shows that the limit variance s 2 attains the Cramér-Rao bound when λ ≤ 0.7. The minimum is attained at λ min ≈ 1.329, where the variance is ten times smaller than at λ = 0.05. This difference coincides with the reduction of the acquisition time of a factor ten by using the corrected MLE observed in Subsection 6.1. The point of minimum λ min is independent of θ 0 .

From the comparison with the Cramér-Rao bound, we see that the corrected MLE is not efficient at λ min . Table 2 provides more details on the loss by comparing the corrected MLE to the classical MLE associated with the pile-up model. Note that in the special case of an single-exponential target distribution the classical MLE can be computed numerically since the log-likelihood function given in ( 16) is concave. The classical MLE is evaluated on the same synthetic datasets as in Table 1 and bias, standard deviation and length and coverage of confidence intervals are estimated.

In the multi-exponential case the Cramér-Rao bound in not explicitly known, but it can be estimated by the inverse of an approximation of the Fisher information matrix obtained by Monte-Carlo. For the two-component model used in Table 1, that is θ 0 = (α 1 , ν 1 , ν 2 ) = (0.25, 0. From the relative closeness of the two matrices we conclude that the corrected MLE almost attains the Cramér-Rao bound and is nearly optimal in this sense. For completeness the covariance matrix can be compared to the limit variance obtained by We close the section with a heuristic explanation of the bad performance of the estimator for large λ. The corrected MLE is based on weighting the ordered observations. When a rather long arrival time is observed, it is very likely that there is no other photon and hence that we observe the 'true' distribution f θ 0 . That is why we associate higher weights with large observations. From (15) we note that the weights for large observations grow exponentially with λ while the weights for short observations decrease even more. It follows that if λ is large enough, the estimator relies almost entirely on the largest observations. It is as if the sample size diminishes. This movement is contrary to the augmentation of the proportion of events where a photon is detected when λ increases. Obviously, for small λ the latter augmentation is dominant, but for large λ the effect of large weights becomes predominant and increases the variance of the estimator. (30)

A Technical Arguments

Proof. The first assertions are clear. The Glivenko-Cantelli theorem gives that sup u>0 Ĝn (u) -G θ 0 (u) → 0 a.s. and the uniform continuity of w yields (30).

A.2 Proof of Theorem 3

It suffices to show that θn verifies (19). Denote for all t Ln (t, θ 0 ) = Ln (t) -Ln (θ 0 ) and Ln (t, θ 0 ) = Ln (t) -Ln (θ 0 ) .

Lemma 4 and Condition (20) imply that

Ln ( θn , θ 0 ) -Ln ( θn

, θ 0 ) = 1 n n i=1 w • Ĝn (Z i ) -w • G θ 0 (Z i ) log f θn (Z (i) ) f θ 0 (Z (i) ) ≤ sup z |w • Ĝn (z) -w • G θ 0 (z)| sup θ∈Θ 1 n n i=1 log f θ (Z i ) f θ 0 (Z i ) = o p (1) . ( 31 
)
It follows together with the fact that θn is a maximizer of θ → Ln (θ, θ 0 ) that Ln ( θn , θ 0 ) = Ln ( θn , θ 0 ) -Ln ( θn , θ 0 ) + Ln ( θn , θ 0 ) 

≥

A.3 Proof of Corollary 1

Using that min u γ(u) > 0, we have sup u w(u) ≤ 1/ min u γ(u) < ∞ and Condition (21) gives that, for any θ, θ ∈ Θ and z ∈ R + ,

w • G θ 0 (z) log f θ (z) f θ 0 (z) -w • G θ 0 (z) log f θ (z) f θ 0 (z) ≤ 1 min u γ(u) K(z) θ -θ .
This and the compactness of Θ imply (3-i). By the identifiability condition of Assumption 1, we know that θ → KL(f θ 0 f θ ) has a unique minimum at θ = θ 0 . Moreover, observing that

KL(f θ 0 f θ ) -KL(f θ 0 f θ ) = E θ 0 [log f θ (Y ) -log f θ (Y )] ,
we see that ( 21) and E θ 0 [K(Y )] ≤ E θ 0 [K(Z)]/ min u γ(u) < ∞ imply the continuity of θ → KL(f θ 0 f θ ) over the compact Θ, so that (3-ii) holds. Thus Assumption 3 holds. To apply Theorem 3, we now need to verify Condition (20), which follows from (21), the compactness of Θ and the fact that 1 

νn (K) = O P (1). We now prove the second part of Condition (25) as an application of (Pollard, 1985, Lemma 4). Using ( 26), ( 34) and 26) and the assumption on w, the class of functions F = {w • G × r(•, t), t ∈ U } satisfies the bracketing condition of [START_REF] Pollard | New ways to prove central limit theorems[END_REF]. The other condition for applying (Pollard, 1985, Lemma 4) is

E sup |t-θ 0 |≤R |w • G(Z) r(Z, t)| 2 → 0 as R → 0 .
This follows from ( 35) and ( 26). This concludes the proof.
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 1 Figure 1: Histogram of TCSPC measurements and instrumental response function η of a single exponential component with Poisson parameter λ = 0.166.

Figure 2 :

 2 Figure 2: Limit variance of the corrected MLE versus Cramér-Rao bound in the exponential case with ν 1 = 1.
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A. 1

 1 Preliminary ResultsLemma 4. Under Assumpion 1, the weight function w defined in (8) is uniformly continuous on[0, 1] taking its values in [1/ max u∈[0,1] γ(u), 1/ min u∈[0,1] γ(u)]. In addition, as n → ∞, sup u≥0 w • Ĝn (u) -w • G θ 0 (u) → 0, a.s.

  Z i ) has finite mean E θ 0 [K(Z)].A.4 Proof of Lemma 1By P c n (h) = Pn (w • Ĝn × h) and by (9), we observe that,ν c n r(•, t) -νn (w • G × r(•, t)) = √ n Pn w • Ĝn -w • G × r(•, t) .Hence|ν c n r(•, t) -νn (w • G × r(•, t))| ≤ √ n w • Ĝn -w • G ∞ Pn |r(•, t)| .By(Kallenberg, 2002, Theorem 14.15), we have √ n Ĝn -G ∞ = O P (1) and by assumption on w, √ n w • Ĝn -w • G ∞ = O P (1). Hence Condition (v) follows from (25).

A. 5

 5 Proof of Lemma 2Since ḣ(z, •) denotes the gradient of h(z, •) in U , we have, for all s, t ∈ U ,h(z, t) = h(z, s) + 1 u=0 (t -s) t ḣ(z, tu + s(1 -u)) du .By definition of r in (24) with ∆ = ḣ(•, θ 0 ), we obtainr(z, t) = |t -θ 0 | -1 h(z, t) -h(z, θ 0 ) -(t -θ 0 ) T ḣ(z, θ 0 ) = (t -θ 0 ) T |t -θ 0 | 1 u=0 ḣ(z, tu + θ 0 (1 -u)) -ḣ(z, θ 0 ) du . (33)It also follows thatr(z, t)-r(z, s) = (t -θ 0 ) T |t -θ 0 | -(s -θ 0 ) T |s -θ 0 | 1 0 ḣ(z, tu+θ 0 (1-u))-ḣ(z, θ 0 ) du + (s -θ 0 ) T |s -θ 0 | 1 0 ḣ(z, tu + θ 0 (1 -u)) -ḣ(z, su + θ 0 (1 -u)) du . (34)We apply Lemma 1 so that it is sufficient to verify that (25) holds. Condition (25) holds because, by (26) and (33), |r(z, t)| ≤ K(z)|t -θ 0 | ,

  (t -θ 0 ) T |t -θ 0 | -(s -θ 0 ) T |s -θ 0 | ≤ 2 |t -s| |t -θ 0 | , we have |r(z, t) -r(z, s)| ≤ 3K(z)|t -s| . Thus, since E [|w • G(Z) K(Z)|] is bounded by (

  Then Condition (v) holds, if for any sequence of balls U n that shrinks to θ 0 as n → ∞, we have

	sup	Pn |r(•, t)|	P -→ 0	and	sup
	t∈Un				

t∈Un

|ν n

Table 1 :

 1 Empirical bias and standard deviation (in parentheses) of classical EM estimator and corrected MLE for different choices of parameters.

		000	5,000	10,000
	classical EM α 1 0.0218 (0.1589) 0.0171 (0.1110) 0.0210 (0.0883)
	λ = 0.05	α 2 0.0850 (0.1381) 0.0803 (0.1031) 0.0593 (0.0965)
		α 3 0.1068 (0.1060) 0.0632 (0.1245) 0.0383 (0.1171)
		ν 1 0.0095 (0.0398) 0.0011 (0.0204) 0.0014 (0.0150)
		ν 2 0.5903 (0.7436) 0.1939 (0.3714) 0.0926 (0.2717)
		ν 3 8.7287 (91.414) 2.6270 (13.257) 1.5467 (7.9115)
	corrected	α 1 0.0173 (0.1019) 0.0086 (0.0462) 0.0037 (0.0286)
	MLE	α 2 0.0542 (0.0927) 0.0168 (0.0485) 0.0093 (0.0338)
	λ = 1.5	α 3 0.0369 (0.1109) 0.0083 (0.0617) 0.0056 (0.0429)
		ν 1 0.0018 (0.0179) 0.0011 (0.0074) 0.0006 (0.0049)
		ν 2 0.0872 (0.2851) 0.0096 (0.1314) 0.0069 (0.0909)
		ν 3 0.7603 (4.0176) 0.0839 (0.3452) 0.0429 (0.2178)

Table 2 :

 2 Comparison of the corrected MLE and the classical MLE associated with the

			corrected MLE		classical MLE
	m	bias	std	length cov.	bias	std	length cov.
	100	0.0511 0.3061 1.0641 0.927 0.0335 0.2800 0.9328 0.9140
	500	0.0083 0.1238 0.4812 0.947 0.0051 0.1206 0.4109 0.9120
	1,000 0.0033 0.0884 0.3417 0.944 0.0027 0.0828 0.2901 0.9210

  sup Ln (t, θ 0 ) + o p (1) ,where the last inequality is obtained by (31). Finally (32) is equivalent to (19).

	Ln (t, θ 0 ) + o p (1)	(32)
	t	
	≥ sup	

t

B A New Central Limit Theorem for L-statistics

To verify Condition (iv) of Theorem 4 a central limit theorem for linear combinations of (transformed) order statistics, so-called L-statistics, is required. The existing theorems can be divided into two groups. One approach consists in approximating the L-statistic by a sum of i.i.d. random variables such that the classical central limit theorem can be applied. This can be accomplished by using Hájek projection (van der Vaart, 1998, p. 318), defining pseudo-random variables [START_REF] Shorack | Probability for Statisticians[END_REF] or using the influence function [START_REF] Serfling | Generalized L-, M-, and R-statistics[END_REF]. All these theorems require that the L-statistic has the form

, where h is a monotone function or even the identity. Alternatively the L-statistic can be represented as a functional ϕ evaluated at the empirical distribution function Fn , that is L n = ϕ( Fn ). In van der Vaart (1998), p.322, the functional delta method is used to derive the asymptotic distribution, in the case where the weights have the form c i,n = i/n (i-1)/n J(t)dt with some function J that vanishes at the borders of the interval [0, 1].

The L-statistic encountered in Condition (iv) of Theorem 4 is not covered by the existing theorems. Notably, h is not necessarily monotone and the weights do not vanish at the borders. In the following we consider L-statistics of the form

for functions h : R → R and w : [0, 1] → R and where Fn denotes the empirical distribution function associated with the sample (X 1 , . . . , X n ) with distribution F .

The following theorem gives conditions under which the empirical process

is asymptotically normal.

Theorem 5. Supppose that

with limit variance given by

Proof. Denote by S the set of all right-continuous functions f : R → R with finite left limit at all points endowed with the uniform norm. Let DF ⊂ S be the set of all distribution functions defined on R. Define the functional ϕ on DF by

We further define on DF the functional

where

and thus ϕ(G) = ψ(G) for all continuous G. Then for any continuous F ∈ DF we have

Using

since E|h(X)| < ∞. Now we show that the second term of (38) converges in distribution. To start with, suppose that h is of bounded variation and has compact support. Then the conditions of Lemma 22.10, van der Vaart (1998) are verified and hence ψ is Hadamard differentiable at F with Hadamard derivative ψ F defined on the tangent space of bounded continuous functions by

when F is continuous. Furthermore, we know that √ n( Fn -F ) converges weakly to an F -Brownian bridge, denoted by B, with covariance function Cov(B(x), B(y)) = F (x ∧ y) -F (x)F (y). Hence, from the functional delta method it follows that

The random variable on the right-hand side is normally distributed with zero mean and variance

Thus, the theorem holds for h with compact support. Now let h be a function with arbitrary support satisfying the assumptions of the theorem. The assertion follows from an approximation of h by a sequence of functions with compact support. More precisely, for a given compact interval A and its complement A c define the functions

The first term on the right-hand side is asymptotically normal since ζ A has compact support and is of bounded variation. In addition, by a convenient choice of A the second term can be made arbitrarily small. This yields the asymptotic normality of ν n (h). More formally, we have

By (iv) the second term on the right side converges weakly to a normal distribution with zero mean and variance Var(w

) are arbitrarily small. Hence, for every ε > 0, η > 0 there exists a compact interval

Now let (A m ) m be a sequence of compact sets such that ζ m ≡ h1 Am tends to h. By the dominated convergence theorem and (iv) we obtain that lim m→∞ σ 2 (ζ m ) = σ 2 (h). Then [START_REF] Billingsley | Convergence of Probability Measures[END_REF], Theorem 3.2, p.28, implies the weak convergence of ν n (h) to a centered normal distribution with variance σ 2 (h) given by (37).

If w is continuously differentiable on

Thus, in this case the centering constant E[w • F (X)h(X)] in ( 36) can be replaced by E[L n (h)]. We finally provide an estimator of the limit variance, which is useful for constructing asymptotic confidence intervals.

Proposition 1. If h is continuous and w is differentiable with derivative ẇ, then Condition (iv) of Theorem 5 can be replaced by

and the limit variance writes

where w 1 (t) = (1 -t)w(t) and w 2 (t) = tw(t) with derivatives ẇ1 and ẇ2 . If moreover w 2 (i/n)h 2 (X (i,n) ) (39) + 2 n(n -1) i>j ẇ1 (i/n) ẇ2 (j/n)h(X (i,n) )h(X (j,n) ) .