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Resume 
Cette etude est une analyse des difficultes inherentes a l'integration par des methodes 

de Monte Carlo ou de quasi- Monte Carlo. Contrairement a ce qui est ecrit parfois ces 
methodes ne sont praticables que dans certains cas. Pour le probleme important du calcul 
de l'esperance de fonctionnelles de processus stochastiques, on presente les avantages d'une 
methode de simulation en dimension grande ou infinie fondee sur une implementation de 
l'operateur de shift na.r des pointeurs. 

Abstract 
This study is an analysis of the natural difficulties of integration by Monte Carlo or 

quasi-Monte Carlo methods. In spite of what is sometimes written, these methods work 
only in some precise cases. For the important problem of the computation of expectations 
of functionals of stochastic processes, we present the advantages of a method based on the 
implementation of the Bernoulli shift operator by pointers. 
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On one hand simulation methods are often presented for solving stochastic prob
lems, as the only ones which work when no direct computation is possible, but on 
the other hand they are known to be slow. Some reservations have to be brought to 
these two statements, first because these methods dont work in any cases but need 
precise assumptions which are often not satisfied, second because several improve
ments allow in some cases significant speeding up. The first p a r t of this work is an 
at tempt to make this analysis more accurate to clarify what succeeds and what fails 
when computing the expectation of a random variable by simulation, i.e. by Monte 
Carlo or Quasi-Monte Carlo sampling and averaging. For quasi-Monte Carlo meth
ods this depends highly on the dimension of the space on which the random variable 
is defined. That leads to the concept of simulation morphisms. This is presented in 
paragraphs 1 and 2. But for both Monte Carlo and quasi-Monte Carlo cases a more 
fundamental difficulty comes from the fact that some random variables (often even 
very simple ones) are not Riemann integrable in the setting where they are naturally 
defined (see examples 2,3 and 4 of §3). Finding an other random variable with the 
same law and Riemann integrable, is in general a difficult problem which remains 
open in much cases. As exposed in §4 it is nevertheless possible to compute the 
expectation of non Riemann integrable random variables without proceeding to such 
a reduction to the Riemann integrable case, if the random variable can be shown 
to be effectively in L1 , that is, can be effectively approximated for the jL1-norm by 
bounded continuous functions. In this part many examples are given and some open 
questions are set. 

The second p a r t is devoted to the infinite dimensional case which is shown 
to be very usual when computing expectations of functionals of stochastic processes 
such as Markov chains or diffusions. 

This is just for introducing the third part in which the shift m e t h o d is exposed. 
Using Birkhoff 's pointwise ergodic theorem instead of the law of large numbers is 
quite a natural idea, but what is more interesting is that , despite the fact that there 
is no standard speed of convergence for this theorem, this method runs surprisingly 
fast in usual cases, so much so that it is the only available one in some situations. 
This is due to the efficient use of pointers that this method allows. As the law 
of large numbers the shift method has its Monte Carlo and its quasi-Monte Carlo 
version, the latter being in connexion with the notion of rapidely normal numbers 
or sequences which replace here low discrepancy sequences. The shift method was 
exposed in a course of the author at Universite Paris 6 in 1987-88, and in two lectures 
in European universities in 1988. At present time, this method asks several questions 
to fundamental research especially on inequalities for the speed of convergence and 
whether random sequences are the fastest or not in infinite dimension, a result of 
Flajolet, Kirschenhofer and Tichy [19] showing that , in a certain sense, they are not 
far to be the best ones. 



The word effective in the title and along the paper is only a preformalized and 
naive version of recursive predicate theory. 

I Difficulties of simulation 

1.1 Fast integration in small dimension 

Our study being mainly devoted to other cases (integration in large or infinite di
mension) we recall this case just for completeness. 

Here X is a real random variable defined on the space ([0,1]*, #([0,1]*), dx) and 
s is a small natural integer. Several papers tends to made the word "small" more 
precise (cf for instance Warnock [9] or Sarkar and Prasad [10]), (roughly, s < 15 say). 
More over X is supposed to be Riemann integrable i.e. can be inserted between two 
continuous functions whose integrals do not differ from much than e, for every e > 0. 

In this case which is quite usual for applications for engineers there is better to 
do than to pick randomly independently points Un in [0, l ] s and to compute E X by 
the law of large numbers: 

1 a 
E X = lim — V X(Un) dx - a.s. 

n = l 

that is to say, in practice, by using pseudo-random sequences. 
Indeed, if f = (£n)neN* is a uniformly distributed sequence on [0, l ] s , i.e. if the 

measure fx^ = jj ^2n=i ^U converges narrowly to the Lebesgue measure dx, it is well 
known, and easy to check, that X being Riemann integrable, it holds : 

/ X dfijy — • / X dx. 

But for some sequences this convergence is faster than with independent uniform 
random samples. The discrepancy being defined by 

£>*({) = sup |//n([0,Z!] x . . . x [0,xs]) -x1...xs\y 

for independent samples it cannot be asymptotically better than J ° s
2° 6 n , by a form 

of the iterated logarithm law, while several sequences are known for which it is of 
the order c ' o g n ' . 

n 

E x a m p l e s 
a) H a l t o n s equences 

Let r be an integer > 2. If the r-adic expansion of n is 

n = a0 + a i r + . . . + amrm a,- G { 0 , 1 , . . . , r — 1} 



then $ r ( n ) is defined by 
x. t \ a0 , ar 

which belongs to [0,1], and the Halton sequence is the following 

£n = ($ri(n),...,$r,(n)) 

where r i , . . . , rs are the s first prime numbers. Then it holds [1] 

Dl(£) < - TT —, as soon as n > rs 
nt\ lo&ri 

b) Hammers l ey sequences . The second time a simulation is run, it is generally 
possible to improve it by using finite sequences, that is the case for Halton sequences. 
If (£m)> 1 < m < n is defined by 

U = (f,$ri(m),...,$r,-i(™)) 

t h e n £ > ; ( 0 < i f f i ; ! 1 ^ as soon as n > r s_x . 

cf Hammersley [2] 
c) Irrational translat ions of the torus . Let a t G (0,1), i = l , . . . , s , be such 
that 1, a x , . . . , as be independent over Q, then the sequence 

£n = ({na i} , . . . , {nor ,} ) 

(where {x} = x mod 1 ) satisfies 

1 
V e > 0 , 3c(f,e), V7V J\T({) < < # , e) 

TV1-' 

cf Schmidt [3] 
With such sequences, moreover, the stopping criterions are deterministic when 

using the discrepancy with the Koksma-Hlawka inequality 

\mx-Jxd»N\<v(x)D*N(() 

cf [4], [5] where V(x) is the variation of X, in the sense of Hardy-Krauze (what is 
modulo some technical points related to the mass on the boundary of the cube, the 
total mass of the measure v if it exists such that ^([0, xi] x . . . x [0,:rs]) = X(x) — IEX 
where x = ( a j 1 ? . . . , xs) £ [0, l ] s . 

Other sequences are known (cf for instance [6]) satisfying the estimate 

ND*N(t) < Cs(log N)s + 0((log N)*-1) N>2 (1) 



some with constants Cs as small as possible such as Faure sequences [7] themselves 
improved by Niederreiter [8]. But the practical difficulty comes from the fact that 
in (1) the righthand side increases rapidely with the dimension s (despite the fact 
that Cs itself could be decreasing). That is so true that for s = 20 several millions 
of iterations are necessary to reach similar results as with random sampling (see [9], 
[10]). 
Remark. It is nevertheless interesting to note that equidistributed sequences allow 
the use of rejection method. More precisely, if Y is a real random variable which can 
be simulated by rejection method using a dominating random variable simulated on 
[0, l ] p and if the random variable X whose expectation is to be computed is given 

by ' 
X = F(Y,Uu...,Uq) 

where the U^s are independent uniform variables independent with Y and F is 
supposed to be Riemann integrable, then 1EX can be computed by an equidistributed 
sequence on [0, l]p+q, see for instance [11]. 

1.2 Changes of dimension. 

Let (fii, Ai, P i ) and (f^, >^25 P2) be two Polish spaces equipped with their Borel 
(j-field and probability measures P i , P2 , then if $ is a mapping from Hi into f̂  
such that 

i) P i {a: : $ is not continuous at x} = 0 
ii) $ * P i = P 2 

then if / is Riemann integrable from Q2 into IR, / o $ is Riemann integrable over 
Hi and if £ = (£n) is Pi-uniformly distributed 

*> 1 A r r 
\ rdJp T 7 £ / ° * « » ) - / / ° * < f l P l = / / 

i V n= l J J 

hence $(£ n) is P2-uniformly distributed over fl2-
$ can be called a simulation morphism. 

Example 1. Let be 

0 0 0 0 

x = E •£ «n G {0,1} with V7V ^ c n / 0. 
n-1 Z n=N 

Then define a map $ s from (0,1] into [0, l ] s by 

$ s : * 6 ( 0 , 1 ] — > ( y i , . . . , J / , ) G [ 0 , l ] * 

with yp = Yl 
&sn+p—l 

27 
n=l Z 
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then $ 5 is a simulation morphism. 
Questions 1) Are there simulation morphisms which from good low discrepancy 
sequences on [0,1] give good sequences on [0, l]s ? 
2) Are there simulation morphisms $ from [0,1] into [0, l ] s such that / o $ be of 
bounded variation as soon / is of bounded variation on [0, l ] s ? 

1.3 Reduction of a non Riemann integrable random vari
able. 

a) Clearly, if X is a real random variable on ([0,1], H([0,1]), dx) which is not Rie
mann integrable it is not possible to use directly X to know the law of X by simu
lation. If (£n) is uniformly distributed, the average 

N 

N 
7 1 = 1 

does not converge to WJX in general. 
Example 2. Let be x 6 [0,1] given by 

oo oo 
x = £ £ «» € {0,1} with V7V £ an ? 0. 

n=l l n=N 

Let us define 
1 _n_ 

X(x) = sup - V ak 

then X is not Riemann integrable. Indeed, let be 

1 n 1 
A = {x : lim — £ ak = — and a\ = 0}, 

n k=i 2 

clearly for Lebesgue measure IP (A) = | and if x G A then X(rc) < 1. But in every 

neighbourhood of x there is a y with X(y) = 1. rj 

Example 3. Here is a more probabilistic example. The Xn 's being i.i.d. with law 
f on [-1,1], let 

Sn = X\ -f • • • + Xn 

be the symmetrical random walk. Let us put 

X = ((sup , , fn , J A 2 ) V 0 
VVn>2|V2nloglogny / 

then X is bounded but not Riemann integrable. I~l 

b) To see where the difficulty lies, let us recall what can be called the fundamental 
theorem of simulation 



T h e o r e m 1 For every probability measure \i on IRd with compact support, there is a 
Riemann integrable random variable H with value in IR defined on ([0,1], dx) with 
law ft. 

This theorem is effective, its proof gives h explicitely when fi is known ,see [11]. A 
more general theorem exists for stochastic processes ,see [12]. 
c) These facts lead us to introduce the following notion: 

Definit ion 2 A non Riemann integrable random variable X is said to be reduced if 
a Riemann integrable random variable Y can be exhibited with the same law as X. 

Most of almost sure convergence theorems of probability theory give examples of 
random variables whose reduction is known. The reduction is in general a less 
difficult operation than to find an analytical expression of the law even if analytical 
is understood in a large sense (allowing the use of non holomorphic usual functions). 
E x a m p l e 4. Let (Un) be the coordinate mappings of ([0,1]N , dx®1*). Let us consider 
the Markov chain 

{ xn = ;rb((™ + 1 K - I + l{t/„<xn_1}) 

1 a* e (0,1) 
which is a manner of writing Polya's urn. If Tn — cr(Ui,i < n) , (xn) is an Tn-
martingale in [0,1] and if x^ = l imsup n :c n , then x^ is not Riemann integrable. 
Nevertheless if x0 = | , the law of x^ is the Lebesgue measure on [0,1]. Hence x^ is 
reduced. 

1.4 Computat ion of the expectations of non bounded or 
non Riemann integrable random variables: random vari
ables effectively in L1. 

a) Non bounded random variables are very commonly used in simulation. For in
stance the log function on [0,1] is used for simulating the exponential law by 

X = ~\ogU. 

But the use of non bounded random variable is impossible in simulation if the position 
of the poles are unknown. Even when this position is known, the result will depend 
on the speed with which the uniformly distributed sequence nears the poles. 
Example 5 . To compute f0 4 | = 2 by simulation, let us use a uniformly distributed 
sequence £ = (£n) over (0,1) and let us consider 

if j_ 



If the sequence £n is changed on a nul set A C IN (i.e. such that jj ]Cn=i l ^ ( n ) ~~¥ 0) 
the new sequence is still uniformly distributed'. Let us take £p2 = 4- then 

1 N 1 
limsup — J2-77= = +°°-

n i V
 n = l VSn 

b) Nevertheless, it is often possible to compute the expectation of non bounded or 
even of non Riemann integrable functions (without to proceed to a reduction to the 
Riemann integrable case). 
Example 6. Let Un be the coordinates of ( [0 , l ] w , dx®1*). Let us put 

» 977. _ i 

and Y = l imsup \Xn\ 

n 

It can be proved that , Y is not bounded and that ( 7 A l ) V (—1) is not Riemann 
integrable. But the martingale Xn converges almost surely and in L2 and 

OO 1 

\\y - \xn\\\h < E 3-
i=n+l l 

Hence to compute WY with the precision e > 0, it is sufficient to chose n large enough 

so that Y£f+i ^ f a n c^ ^ n e n ^° compute by simulation E|Jfn | with the accuracy | . rj 
On the classical probability spaces used in simulation which are compact, lEF can 

be computed as soon as a sequence of continuous functions fn is effectively known 
such that | | y — /n | |^ i —> 0. 

In practice on [0, l ] s , this property of being effectively in L1 splits into two prop
erties : 

i) An effective bound decreasing to zero is known showing that 

lim f \Y\ dJP = 0 
fcToo./|r|>fc 

ii) For each k a sequence fn^ of polynomials with rational coefficients is known 
such that the limit 

\im\\fn,k-(YAk)V(-k)\\Li=0 

is proved with effective bound. 
Remark : If the belonging of Y to L1 is known only by Fatou's lemma, the variable 
Y does not need to be effectively in L1. In general the almost sure limits of non 
uniformly integrable positive supermartingales are not effectively in L1 unless they 
can be obtained also by an other way. Even the dominated convergence theorem 
does not yield the fn,k's-



II Integration of functionals of stochastics pro
cesses 

In situations related to stochastic processes, one has often to do with integration in 
infinite dimension. When computing (expectations of functions of) entrance times 
or entrance points of a stochastic process in a set or in a event, or more general 
functionals of the sample paths, one is dealing with random variables which can be 
bounded and Riemann integrable but defined on ([0,1]™, £([0 ,1] N ) , dx®™). 

Let us consider as a generic example the case of Markov chains (to which reduces 
also the case of diffusions by discretization of SDE's) and let us look how the classical 
simulation method works. 

Let Xn be a Markov chain defined by 

Xn+1 = F(Xn, n, Un+1) , X 0 = x, (2) 

where F : IRd x IN x [0, l]k — • IRd is given and where the C/»'s are i.i.d. with law 
ebon [0,1]*. 

If the following quantities have to be computed 
o E ( T ) , JE(Xr), JE[G{XT,T)] for T stopping time such as T = inf{n : 

(Xn,n) eA}, 
o 1EYlk=i C(Xk,Xk+i) for C : IR2 —> IR representing costs, 
o or more generally E[H(X9)] where H : IR™ -» IR, 

by (2) Xn can actually be defined on the probability space ([0, l]k)^ with Ui being 
the coordinates, and the problem is to find good double sequences 

m = (tioi,...,w,i,...) e ([o,i]*)N 

U j = (tic,.,...,^,..-!) e ( [ 0 , 1 ] ^ 

in such a way that 
N 

v 
1 E^(^.(ui)) 

i=i 
converges rapidely to IE[i7(X#)]. 
a) Let us take k = 1 for simplicity. Then let us remark at first that if we take 

Uij = Vi + (j mod 1 

where (Vf)*€W i s i-i-d. on [0,1] and (Cj)j>i is a (low-discrepancy) uniformly dis
tributed sequence on [0,1], one gets a sequence (iij) which is not uniformly dis
tributed over ([0,1])N for dx®^. 
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b) On the contrary if (u{j) is chosen in such a way that for every q E IN 

u) = (uoji...iuqj) 

be uniformly distributed over [0, l]q then (UJ ) is uniformly distributed over [0,1]^ 
and 

in the narrow sense. 
With Halton sequences, we get infinite dimensional Halton sequences which where 

studied by Sobol' [13], For such sequences (UJ ) the average 

1 N 

i V n=l 

converges to E g for smooth g i.e. for "almost cylindrical" functions g. Nevertheless 
these sequences are unusable in practice because, even for cylindrical functions, the 
convergence is two slow (or more exactly two late) in high dimension as we have 
already seen in part I. 

I l l The Bernoulli shift method. 

The infinite or high dimensional case turns out to have its specific features which 
allow to avoid picking completely different sample paths and doing the average on 
them. 

III . l A n efficient method. 

Although the pointwise ergodic theorem has no typical speed of convergence (such 
as the iterated logarithm law) the method, we shall explain now, seems to be the 
most efficient one at present for computing high dimensional functionals of stochastic 
processes: The implementation of this algorithm takes great advantage of the notion 
of pointers (or equivalent device of piles management). 

Let us consider the preceding Markov chain 

Xn+i = F(Xnin,Unii) ,X0 = x 

where the (Un) are i.i.d. random variables with law dx on [0,1]. As we saw the 
process (Xn)n>i can be represented on ([0,1]^, dx®1*). For the notations to be 
simple, it is actually convenient here to represent it on ([0,1]^ , dx®1* ). The f/n's 
being the coordinate mappings, n > 1. 
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Let us take, for instance, an entrance time T, T = inf{n > 1 : Xn E A} and 
a functional G(XT,T). The expectation JEG(Xt,T) can be computed by Birkhoff's 
theorem 

E G ( X r , r ) = l i m l i £ I G ( X j , T ) o r a.s. (3) 
iV|oo N 

n = 0 

as soon as G(XT,T) £ L1 , where 0 is the shift operator satisfying 

\/UJ e [0,1]N* Un o 0(u>) = ^n + 1 (w) Vn > 1 

The use of pointers can be explained as follows. For applying formula (3) we have 
to compute G(XT, T) on successive points u>, 0(LO), 02(LO), . . . of [0, l]1^ , these points 
are sequences of points in [0,1] 

« = ( [ / , (u ; ) , t / 2 (u , ) , . . . , t4 (u , ) , . . . ) 
*(w) = (U2(u),U3(u),...,UM(u),...) 

Then if the stopping time T is finite , what we suppose here, only a finite length of 
each of these sequences have to be computed : the sequence LO being computed until 
T(u) and this is told by the test 

jtest^ 
Xk(u) still outside A =» k < T(LJ) 
X^LO) 6 A for the first time =>• k = T(u) 

Suppose the sequence to = (U\, U2,...) has been picked out, and the pseudo-random 
numbers Ui, U2,... have been put in pointers as indicated below : 

Figure 1 
X \ / \y*X 2 \/\^+ --- v/\/+ Xk 

testj^F) (test=^F) 

The following sequence 0{UJ) = (C/2, C/3,...) is partially already chosen, either it 
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is long enough or it must be lengthened in what case we have the new scheme : 

U 2 r 
i 

U 3 f f r r 

I I 
Figure 2 

X \^v^X2 \s^* ••• \/\/» Xk. lV/\^. X . , 

(test = F) <5est = FJ 

In these pictures the arrows ~» represent computations to do, that is, mainly, to 
compute 

Xn+i = F{Xn,n,Un+i) 

but in this computation of F(x, n, y) only the variable x (and n) is new and partial 
computations depending only on y can be stored in the box of Un+i in such a way 
that only easy computations remain to be done. This storage has of course to be 
made during the lengthening of the sequence when it occurs as explained above. 

III.2 Speed of convergence 
Let us quote the following two results on speed of convergence for the Bernoulli shift 
([0,1]N , dx®**), cf Krengel [14]. 

Propos i t ion 3 For every sequence (ctn)n£f^, an > 0, an —> 0, there exists a contin
uous function f from [0, l]1^ into IR such that 

IjESb1/ ° t - E/| 
+oo a.s. 

a, 

Propos i t ion 4 For every sequence (cn), cn > 0, increasing to infinity, with c\ > 2, 
there exists a Borel set A with IP (A) = | on which 

i n - l -i 

1=0 

<— Vn 
n 

They show that the speed of convergence can be arbitrarily slow or arbitrarily near 

of o(i) . 
Nevertheless, a speed of convergence can be obtained if the function whose ex

pectation is to be computed fulfills additional assumptions. Some of these results 
will be published elsewhere. 
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III.3 Connexion with normal numbers 

Let us replace [0, l ] w by {0, l } 1 ^ for simplicity of the discussion. 
The best points for integration by the shift method are fast normal numbers. Let 

us recall that a real number x in [0,1], or a sequence of binary digits, is called normal 
if the sequence xo9n is uniformly distributed over { 0 , 1 } ^ equipped with the measure 
(|<S0 + \&\)®^. Explicit normal numbers are known, the Champernowne sequence 
for instance. There are other known normal sequences which are generalisations 
of Champernowne's one (see for instance Rauzy [15] [16] or Dumont [18]). Some 
of these constructions make use of (.s, ra)-de Bruijn sequences which are periodic 
mappings u from IN into { 0 , . . . , m — 1} of period ms such that the ms strings of 
length s 

( u ( n ) , . . . , u(n + 5 — 1)) n = 0 , 1 , . . . , ms — 1 

are all different. Algorithms are known for generating infinite de Bruijn sequences 
(see Ivanyi [17] and its references), that is to say infinite sequences whose initial 
sections of length ms, considered as loops, are (s,m)-de Bruijn sequences for every 
s. 

The efficiency of these sequences is difficult to evaluate, and is largely an open 
subject. One of the main difficulty is to summarize the performance of a sequence by 
a single scale while there is naturally an infinity of discrepancies one on each finite 
product space. 

On the space { 0 , 1 } ^ Flajolet et al. [19] give an asymptotic result which shows 
that in a certain sense, random sequences are not far to be the best ones. 
Ending remarks. 
a) What was explained for a Markov chain is of course valid for a large class of 
stochastic processes or stochastic fields which, in usual cases, can be defined in a 
natural way on ([0, l]^, B([0, l]1^), dx®^) after discretization if necessary. 
b ) It can happen that the process, whose functional is studied, be itself mixing or 
simply ergodic. In this case the shift method can be applied to the process itself 
instead of to the underlying coordinates. This works as soon as a sample path of 
arbitrary length of the process can be simulated. 
c) It is well known that pointers are particularly convenient to represent tree struc
tures, for instance binary trees. Then the space which takes the place of the product 
[0,1]^ is the space [0,1]B or a space of the form AB where A is some probability 
space and B = {/, r}^' (finite sequences of /'s and r ' s ) . Such a space with a suitable 
extension of Birkhoff's theorem is an interesting device for dealing with branching 
processes which are of great practical interest. Nevertheless the "linear" above ex
plained shift method works actually for branching processes as well, and after our 
experiments this "linear" implementation runs even faster. 

d ) The shift method can be slightly improved by using the two-sided Bernoulli shift, 
which allows to never throw a box away. The idea is to simulate two independent 
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copies of the process, one with the classical right to left shift the other with a left to 
right shift beginning with the box left by the first one. But the benefit is negligible 
in high dimension. 
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