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We discuss the difficulties of effective statistical simulation by studying the case of functionals of multivariate Brownian motion. This leads us to a proposal of definition of s-functionals which could be a step toward a statement like a church thesis for simulatable random variates. The neologism "simulatable" is taken here in the sense of "•effective for statistical simulation".

I. Different ways of simulation of Brownian functionals

In this part, we discuss the main methods for computing the expectation of Brownian functionals by simulation with a particular interest on a.s. and L p approximation.

A. Almost sure versus L n approximation.

Let us consider for the discussion the case of a stochastic differential equation of Ito's type

ds Jo Jo where x € IR", (Z? ( )t>o is a d-dimensional standard Brownian motion starting at 0, and where a : HT -+ lR n * d and~6 : IFT -* IR" are suitably regular. It is well known (see especially [16] [10] [27]) that if the Frobenius commutativity condition Vr € IR n rr'(x)[(T(x)tl]t> = <r'{x)[cr(x)v}u \/u,v € B. d is fulfilled then a version of the solution can he chosen such that the Ito mapping (ar,w)e lR n xC([0, l],IR d )-» A'*(w)6C([0,l],IR B )

be locally Lipschitz. This occurs in particular when d -1. In that case it is possible to construct almost sure and L p approximations X x ' n (u>) of X x (u>) by approximating the Brownian path u> and using the continuity of the Ito mapping (see e.g. [6] [28] [21]). Actually, with or without the Frobenius assumption, direct discretization schemes X x ' n can be constructed which converge in V and for some schemes almost surely, let us quote among a large literature on this subject [17] [7] [22] [19] [29] [11]. Now there are essentially two ways of using these approximations to compute numerically the expectation of the functional t'{J) = f{X x (u>)) where / is a regular functional : 1. By L p -approximation results, a functional F e is first chosen, defined on a finite (eventually high) dimensional space, such that \\F-F t \\ L i<e and then E[F S ] is computed by simulation that is to say

where the u; n 's are picked out of fi independently, -either by an ergodic transform using Birskhoff's theorem EF e = lim I £ F.(T») "Too yv ^rj (see for instance [START_REF] Arous | Flots et series de Taylor stochastiques[END_REF] [2]) -or using equidistributed sequences. 2. An approximate value of F(u) is computed by taking f{X x,n {u>)) for n sufficiently large where X x,n is an almost sure approximation of the solution of the S.D.E. This procedure is repeated either for independently picked w n 's n > 1 and then averaging or for a sequence of points r n (u) (ergodic theorem) etc. approximation in£" average of direct \i^) computations of F{<J) for a sequence of points ut's" picked in Q computation of lEF e by simulation approximate value of EF

We emphasize the following points : only the second method uses almost sure approximation results.The first one only needs L p approximation or even approximation in law, (see part B below). In the second step of the first method, because the functional F e is chosen to be regular and defined on a finite dimensional space, there exists in general stopping criterion for the computation of JEF t by simulation. On the contrary, in the second method such stopping criteria are not always available. Let us remark, at least, that if, in the second method, we stop at an N which is selected independently of iw, we obtain actually a copy of the first method.

Let us consider a very simple example : Let

F{u) = 1 + (Jo' M*)l<fc) a be defined on C([0,1],IR). More F is continuous and even Lipschitz with ratio 1 on C([0,1],1R) equipped with the uniform norm. Thus the first method applies without difficulty : If where the constant A" can be explicitely computed. Now, a problem with the second method is to write down a stopping criterion which garrantees that G n (u) is near u> using only informations concerning G n (u>). We shall come back to this key point in part II and part IV.

B. About the approximation in law. Especially in the case of Wiener functionals, the approximation in law was largely studied in the literature, it is based on an invariance principle such as the Doob-Donsker theorem or on some of it generalisations to diffusion processes (see [START_REF] Knuth | The complexity of non uniform random number generation, in Algorithms and complexity[END_REF], [START_REF] Milstein | Approximate integration of stochastic differential equations[END_REF], [START_REF] Paley | Fourier transform in the complex domain[END_REF]). For a bounded continuous functional F or Riemann-integrable with respect to Wiener measure, it allows to approximate TEF by the expectation of F(Z.) where {Z t )t<o is a process which approximates weakly the Brownian motion. Just as there are results on the speed of convergence in the central limit theorem (cf. [START_REF] Platen | An approximate method for a class of Ito processes with jump component[END_REF]), estimates of the speed of convergence in the approximation of W,F by JEF(Z.) can be obtained. Thus in the discussion of the preceding paragraph the approximation in law plays a similar role as the approximation in L p : It yields a functional F e (on a different probability space) such that IE/'j is near IEF and can be computed by simulation.

Let us remark nevertheless that the weak convergence can often be improved into stronger convergences. On one hand there is a well known general theorem of Skorohod which gives a framework where it becomes a convergence in probability, but on the other hand in the concrete cases of explicit settings this transformation can be done very naturally in general. So, in finite dimension for example, where the changes of spaces are easy, one has practically never to use weak convergence for computing an expectation.

II. Non-Riemann-integrability of multiple Wiener integrals.

When the Frobenius commutativity condition fails, the solution of SDE's with regular coefficients are not regular. To make the discussion simple we take the case of Jo where w = (u; 1 ,^2) € Q = C([0,1],IR 2 ). (We know, see especially [?], [START_REF] Azencott | Formule de Taylor stochastique et developpement asymptotique d'integrales de Feynmann[END_REF], [START_REF] Alaya | Contribution in this volume[END_REF], that multiple Wiener integrals are generic examples of diffusions at least for SDE's with analytical coefficients). In this case, F has no continuous version (see e.g. [START_REF] Talay | Resolution trajectorielle et analyse numerique des equations differentielles stochastiques[END_REF] and [START_REF] Newton | An asymptotic efficient difference formula for solving Ito stochastic differential equations[END_REF] for stronger results) and it is not difficult to prove that F is discontinuous at every point of C([0,1],IR JO Jo Let K(t) be the increasing process K(t) = /W) 2 + (wj)> Jo then /J WJCL; 2 -/J u^cL;] can be written (cf. [12]) £(A'(1)) where (B t ) t > 0 is a Brownian motion independent of ((u;/) 2 + (w 2 ) 2 ),>o-So thr probability to be evaluated is equal to

IK[/(A'(l))l|M|<r]
with f(t) = lP{B(t) > a) and is strictly positive since / > 0 and IP{|| u ||< r} > 0.

b) Let G be an open set. By density there is a Cameron-Martin function h € G. By Cameron-Martin theorem under P/, (which is equivalent to IP) u> -h is a Brownian motion to which part a) applies, which completes the proof. D Let us quote here the important result of Stroock and Varadhan [START_REF] Platen | Higher weak approximation of Ito diffusions by Markov chains, AdW der DDR IMATH[END_REF] that under suitable regularity assumptions on the coefficient of the SDE, the solution can be redefined to be approximately continuous at points u> belonging to C°°.

By the lemma if <p is a continuous non constant bounded function, the map u> -* y>(/o u>]<&*; 2 ) is not Riemann integrable. This is a fortiori still true when the Wiener space is equipped with weaker topologies such as the topology of pointwise convergence on dyadic points which we shall use later on.

Let us now emphasize that an almost sure approximation scheme is useless for direct simulation unless one has constructed a pointwise stopping criterion. Explicit examples are given in [START_REF] Arous | Flots et series de Taylor stochastiques[END_REF].

III. /^-approximation results.

The preceding discussion shows the importance of L p -approximation results and we quote here for completeness a result which can be used in applications, (see [START_REF] Kushner | Probabilistic methods for approximations in stochastic control and for elliptic equations[END_REF] [32] [START_REF] Sussmann | On the gap between deterministic and stochastic differential equations[END_REF] [24] [START_REF] Doss | Liens entre equations differentielles stochastiques et ordinaires[END_REF] for related results).

Consider the strong solution of the equation A-,=.r + r <T[\'"s)dB. + r b{x" S )ds 

Y 0 = •*' Y t = Y tk +<r(Y tk ,t k )(B t -B tk ) + b(Y tk ,t k )(t-t k ) iott e [**,*Ar+i[. Then for p € [1, oof, there is a constant G = C{p, K(T)) such that || sup IK, -X t \ ||"< T a "l\ <€[0,T1
As pointed out by 0. Faure [START_REF] Doss | Liens entre equations differentielles stochastiques et ordinaires[END_REF] this implies that, taking a dyadic partition of [0, T], the corresponding Y^ approximation converges almost surely to X for the uniform norm on [0,T]. A similar result holds for the piecewise linear Euler Scheme Z defined by

Zt = Y ik p±^ + Y tk+l -l-£- for *€[**, W
which allows a implementation by recursive simulation of the Brownian path. By the preceding discussion, the practical use of this fact is, however, questionable in general unless for particular functional as we shall see below.

Remark. What makes problem in the use of almost sure approximation is not that it converges a priori only outside a negligible set (it. can be shown moreover, under suitable regularity assumptions on the coefficients of the EDS, that the Euler scheme converges also in the quasieverywhere sense, that is to say outside a set of zero capacity for the Dirichlet form associated with the Ornstein-Uhlenbeck process on Wiener space [START_REF] Bouleau | On effective computation of expectations in large or infinite dimension[END_REF]). Even if the approximation would converge everywhere the irregularity of the functional puts a stopping criterion problem.

IV. Simulatable functionals.

In this part, we leave the Wiener space for more general frameworks and we draw from the preceding discussion a definition of functionals able to be pointwise simulated. We introduce first the ideas in the case of discrete probabilities.

A. Simulatable functionals on {0,1} N .

Let (x n ) n gN the coordinate mappings of {0,1 } N into each factor. As usual, we introduce the a-fields An = <r{x m m <n) and the product probability IP = (}-6 0 + -SA on Aoo.

Definition 1 . A Random variable from {0,1} N into IR is said to be simple if there exists an {A n )-stopping times T P-almost surely finite such that F be Aj-fneasurable.

Often F has to be supposed moreover bounded (cf. [START_REF] Arous | Flots et series de Taylor stochastiques[END_REF] 1.4 a)). By the fact F = J2^=o ^•l{r=n}P s * the law of F is necessarily discrete :

A-l
It can be shown that an ,4 n -stopping times S and a (,4s)-measurable random variable G with law fi can be constructed such that IE.S be minimal. For x € [0,1], let {x} be the fractional part of x, let us put u(x) -££Lo jsr--Then the minimal value of ES (finite or infinite) is (cf. [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]) We adopt now the hypothesis that it is possible to pick out of [0,1] a sequence of points according to Lebesgue measure and independently for reasoning on the simulation algorithms as does for example L. Devroye in his book [9].

Let (U n ) n >o, be the coordinate mappings of [0,1] N , F n = o(U m ,m < n), IP = dx® N . We are going to consider random variables F defined on [0,1] N and Ff-measurable for some (F n )stopping time T IP-almost surely finite. But which regularity has to be asked on F to get an interesting definition ?

At least, F has to be supposed IP-Riemann integrable (with [0,1] N equipped with the product topology) such that, outside a negligible set, the value of F at a point x can be approximated by an approximate knowledge of x. However, it is not difficult to define, quite explicitely a Borelian mapping ,\ from [0,1] into [0,1] N such that x De continuous outside a negligible set and that the image of the measure dx be cta® N : If

oo X k = E^T **€{0,1} Jfc=0 2*+i
is the canonical dyadic expansion of x € [0,1], define y = \(x) to be y = (y") n >o with Thus, if F is only supposed to be P-Riemann integrable, it is possible to come back to [0,1] by considering Fox-But, by the serious fact that the digits of y n depend on too faraway digits of x, this is useless practically for the simulation of functionals of random processes 1 .

So, we have to ask more regularity on F than the only Riemann-integrability. The following definition seems reasonable to be taken in consideration :

Definition 2 A random variable F from [0,1] N into
JR, d is said to be simple if there is an (Fn)stopping time T dx**-almost surely finite such that the sets {T = n} have negligible boundaries, F is Tr-measurable and, for every n, F is continuous in the inside of {T = n}.

As before, F has often to be supposed also bounded. It follows from this definition that F is continuous on a set of measure 1 and is therefore Riemann-integrable if it is bounded. T is an (,F n )-stopping time with geometric law, the sets {T -n} have negligible boundaries and X is simple in the sense of definition 2. More generally Definition 3 . Given a probability measure fi on (1R, N ,#(]R. N )) and a Polish space (E,S), we shall say that a measurable mapping G from (1R N ,51R N ) into (E,E) is simple if there is a stopping time S for the filtration (Q n ) of the coordinates (X n ) o/IR. N , (i-almost surely finite, such that the boundaries of the sets {S = n} be negligible and such that G be Q n -measurable and continuous on the inside of {T = n) for every n.

C. Regularity properties of simulatable functionals.

If the stopping time used in the definition is not only almost surely finite but everywhere finite, the laws of simple random variables have the property to depend continuously on the perturbations of the random number generator and analytically if the stopping time possesses an exponential moment. Let us take first the case of {0,1} N and suppose that the generator yields independent bits but with law pSi + (1 -p)6o for p € [0,1] : # p (i) is therefore the sum of a series of holomorphic functions in {z : \z -1| < o} uniformly convergent in every compact of this domain and the result follows.

Proposition 1 . 1) Let F be simple on {0,1 } N with respect to the stopping time T which is finite, then the distribution function H p (t) = JP P {F < t} under probability JP

P = {p8\ + (1 - p)^o)® N is continuous in p € [0,1]. 2) If
• These properties extend to ^V-measurable functionals an in particular to simple functionals on [0,1] N : let h be a bounded Borelian function on [0,1] such that /J h(x)dx = 0, and let us put C =|| h ||oo. Suppose that our generator yield independent points distributed according to the law (1 + Xh{x)).dx for A € [-£, £]. Then

Proposition 2 . 1) Let F be an T?-measurable function from [0,1] N into JR. where T is an {Fn)-stopping time which is almost surely finite for all the probability measures JP\

= [(1 + A.h(x))<ix]® N for A € [-a, a] (a < ^) then the distribution function H\(t) = JPA{-F < *} w continuous in A on [-a,a].
2) Suppose moreover 1E 0 [(1 + ac) T ] < +oo for some a > 0 fAen //\(0 IS analytical in {A:|A|<a}.

The proof is similar to preceding one.

D. Simulatable functionals on a general probability space

We are going to propose a definition of simulatable functionals in general.

Let us consider a Polish space W equipped with its Borelian <7-field W and with a probability m. For example (W, W,m) could be the Wiener space or a canonical space of some stochastic process.

As the preceding discussion shows, the topology on the space W is in general too strong to be used in simulation. Indeed to be effectively used the topology has to be such that a fundamental system of neighbourhoods of a point be composed of sets described by a finite number of rational numbers i.e. by an integer. On the Wiener space, for instance, it could be the simple convergence on rational numbers (cf. part V below).

Then we define a presentation of (W, W, m) as a copy of its measurable structure equipped with a weaker topology : Definition 4 . Let (W,W,m) be a polish space, a presentation of(W,W,m) in a mapping <pofW mR N such that -tp is an isomorphism of measurable spaces between (W, W,m) and (lR N ,5(IR N ),/x) [i.e. fi = <p+m and 3N,m(N) = 0, SN^niN 1 ) = 0 such that <p : W\N -• U^N 1 be one to one and bimeasurable],

• y> is continuous.

Then we need to be able to simulate progressively the coordinate process X = (A" n ) n > 0 of (IR. N , 5(Irt N ), fi) so that if we are given a simple functional G on (IR N , 5(1R N ), fi) we can simulate G too.

Definition 5 . Let X = {X n ) n >o the coordinate o/IR N and (G n ) = a(X m m < n), we shall say that ij>: [0,1] N -• IR N is a progressive simulation of X = {X n ) n > 0 under ft if -rj> is measurable from ([0,1] N ,5[0,1] N ) into (IR N ,S(|IR N |
) and ^(dx N ) = fi -There exists an increasing sequence of (T n )-stopping times Tk,k > 0, dx®**-almost surely finite such that V& the map (X 0 ,..., A'fc)oi/' from [0,1] N into JR. k+l be F^-measurable.

At last, we shall say that a functional F defined on (W,W,m) with values in the Polish space (E,S) is an s-functional if a presentation <p of (W, W,m), a simple functional G from (1R 1N The preceding definitions will be enlightened by their application to the case of Wiener space.

V. The case of Wiener space

Let (W,W,m) be the space of standard Brownian motion vanishing at 0, where W = Co([0,1],IR ), W is the Borelian <x-field on W equipped with the uniform convergence, m is the Wiener measure.

We shall look at several presentations of the Wiener space.

A. Dyadic presentation

Let, as before, X n be the coordinate mappings of 1R N let us put

X 0 o<p(io) = tt'(l)
X 2 n +k o<p(iv) = t»(2ftf) fc = 0,l,...,2 n -l;n>0.

This defines a continuous mapping v? from W into 1R N (equipped with the product topology). Under the probability measure v?*m the coordinates [X n ) constitute a Gaussian process and the law of the vector (Xo,...,Xin.x) is a permutation of the one of (tw(i),... ,iw(£),... ,w(l)). Clearly <p is an isomorphism of measurable spaces.

It is easy here to explicit a pmynssivt simulation ip of the process X = (X n ) on the space ([0,1] N , J5[0, l] N ,ota N ). This consists of simulating AV* AV+i,..., AV+i-i given Xo,..., AV-i, and that can be done by the cclcbraicd recursive definition of the Brownian motion of Paul Levy. We dont write the details.

Thus we have the diagram Proof. It is easily seen that we have to proved the properties of definition 3 for F e and T e when W is equipped with the topology of simple convergence on dyadic points and with the <r-fields

H 2 » = *(w(±)k = l,...,2 n ). a)
Clearly T e is an (?i2 n )-s topping time m-almost surely finite, and F e is Tir,-measurable. Let us put

k k -1 b) Let us put A 2 n(W) = sup | w (--) _ w (_-)|.
F n = E[F|W 2 «] = £ g 2 g (% -u>i. 0% -"fc) of course F n -• F almost surely and in L p p € [1, oof. Hi) E[(F-F n )W = ~E 1 ^~ Jfc=0 fc + 1 * + 6 2»
Then putting V^ for this last expression, let us define

S t = inf{n > 0 : V 2 < e 2 }.
Then by the same argument as in the preceding example Fs, is an s-functional. There obviously holds E[(F -Fs t ) 2 \H2s t ] < e 2 hence taking the expectation \\F-F s ,\\<e.

Then the simulation of h(F e ) to compute the expectation of h(F), for h Lipschitz and bounded say, is a manner to give an effective sense to the second method exposed in the part I. Remark. If, instead of f 0 l u\dui 2 3 we would have taken the Levy area itself L(t) = \ fo(uldu 2 -wjdu}]) it would be easy to find explicitely a continuous random variable with the same law as L(t) on the Wiener space of three dimensional Brownian motion. This is due to the independence property used in the proof of the lemma of part II. Thus the random variable L(t) can be reduced in the sense of [START_REF] Arous | Flots et series de Taylor stochastiques[END_REF] section 1.3.

B.Presentation with general partitions

Instead of choosing dyadic partitions, it is possible to choose all the rational numbers. Let r : IN -» Q D [0,1] be a numbering of the rational numbers E € [0,1] and let us put

X n c*p(io) = w(r(n))
with this presentation it is possible to define s-functionals which depend on the points of a partition of [0,1] whose "deepth" is random as precedingly but now whose "thiness" can vary from place to place in [0,1] in function of the values at points already picked. This family includes the discretization in space for diffusion studied by 0. Faure in this volume. Of course a lot of other presentations of Wiener space can be constructed giving each time its own family of s-functionals. I am gratefull to W. Kendall for comments and very usefull discussion on the concept of effectiveness in simulation. In the oral lecture, s-functionals were called graphic functionals. It is indeed clear now, that if one consider a graphic simulation of, e.g. a Brownian path as on the picture below, this simulation, that is to say the program which yields the picture, defines a map from the Wiener space into the Polish space of piecewise affine lines of the plane which is an s-functional.

  linear dyadic approximation of the order n of u>, and if we take F n (u>) = F(G n (u>)), we have |EF -EF n \ <|| sup Ms) -G»(*)| || 2 < JL

Lemma 1 .

 1 For every open set G C C([0,1], IR 2 ) and a € 1R JP[{F > a} D G) > 0 and P[{F < a} n G] > 0. Proof a) Let us first show that Va € IR, Vr > 0 IP{ f u\du] > a, II w ||< r} > 0. Jo For this, by the relation u*{\)u 2 (\) = f »\<L>] + f JM, Jo Jo it is sufficient to prove Va € IR, Vr > 0 JP{[ 1 u\dw] -C u^du] > a, || u ||< r} > 0.

  a : IR" x IK + -IK" X/ b: lR n x 1R+ -* IR n and Vx,y 6 IR" and s,t < T \<T(X,S) -<r(y,0| + \b(.v,s) -b(y,t)\ < K(T){\x -y\ + \t-s\ a ) for an a > 0, where |.| is an Euclidean norm. Let 0 < t\ < ... < t p < ik+\ < . • • < T be a partition of [0, T] and r = sup \t k +i -t k \, the k Euler scheme Y t is defined by induction on k by

fc=l

  In general however, the laws of the simple random variables to be simulated, are not known. It is precisely for this reason that the simulation is usefull. Examples are numerous : -solving the Dirichlet problem in an open set of JR d for large d by spatial discretization and simulation of a symmetric random walk -pricing of European or American options by discretization of the Black-Scholes model, cf. [8] -modelling of queuing systems, etc. B. Simulatable functionals on [0,1] N .

1

  The mapping \ and its reciprocal are the transformations by fusion and splitting of Paley and Wiener [?] and used in the probabilistic interpretation of quantum mechanics of Wiener and Siegel [?] [?]. The physical meaning of the probabilistic hidden variable of this model was criticized for the same reason as here (see [?] p 149).

  Example. Let X be a random variable with values in JR d with density / continuous (or Riemann integrable) on IR d . If A' is simulated by the rejection method with a random variable Y with continuous density g such that / < kg, and if Y is simulated by Y = (p(x) x € [0,1] with <p continuous, this can be writen T = mf{2n+l:kU 2n +igotp(U 2n )<fo<p(U2n)} and .V = ^(UT-I).

2

 2 One has // p (/) = £Ei[M n l {F < t} l {t=n} ]. n=0 Let us put q = p -4, the expectation El [M n l {F < 0 l {T =n}] = E 11(1 + 2q(2x k -l))l {F <t}l{T=n} LJt=0 is bounded in absolute value by (1 + 2|^|)" +1 IP^[{T = n}].

  ,5(]R ),y>*m) into (E,£) and a progressive simulation xp were found such that F = Gap. {W,W,m) (IR N ,8(IR N ),V>.m) _£ .

(

  W,W,m) (IR N ,5(IR N ),^m) _JL " (E,S)([0,l] N ,S([0,l] N ),dx N )We shall see now that there are simple functional G which define interesting s-functionalsF = Goip. Example 1.For e > 0 let us define 7; = inf{2": sup |«,(1) -to(^i)| < e} and let us denote by Z,2"(u>, 0 the piecewise linear dyadic approximation of order n of w € W. So, w -• L^n(w,t) is an mapping with values in CQ([0,1], 1R. ) equipped with its Borelian sets. This is a Polish space. Let us put Fg = LT, • Then F e is an s-functional : it factorizes in F e = G € cnp and we have Lemma 2 . G s is a simple functional (definition 3).

2 .

 2 Let us remark that the set A € = {w : A Tt (w) < e} is open for the topology of simple convergence on dyadic points. Indeed if wo 6 A e and if the T e (w 0 ) points Nsfr), k = l,...,Tg(w 0 )) are sufficiently closed respectively to the points k ( w o(^r>-r),*s l,...,T e (u;o)) then T e (w) = T e (tw 0 ) and hence Lj t {io) is closed to L,T t (w 0 ). It follows that F e is continuous on the inside of {T e = 2 n } and it. can be proved that the boundary of {T e = 2 n } is negligible, d In the same way the following functional F} = L T} where T e l = inf{2" : 5>(£) -"(^l > \) F 2 = L n where T 2 = inf {2" : £ |w( A) -»(^r )| a 6 [1 -e, 1 + «]} are s-functionals. Example Let us take again the example of part II F(w)= fu\dw]. Jo Let us notice the following facts which are simple to prove. t) E[/>i<KK = (a,,6i) f a» ( = (02,63)] = ^(fc -6 X ) ») E[(J»£ -^(6 2 -6,)) 2 K = (o,,6,),w* = (02,62)] = ^((«2-«.) 2 + (62-6i) 2 ) + ii T li