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Abstract. The aim of the work is to integrate the information modula-
tion of the inter-relations between EEG scalp measurements of two brain
states in a connectivity graph. We present a sparse differential connec-
tivity graph (SDCG) to distinguish the effectively modulated connections
between epileptiform and non-epileptiform states of the brain from all the
common connections created by noise, artifact, unwanted background ac-
tivities and their related volume conduction effect. The proposed method
is applied on real epileptic EEG data. Clustering the extracted features
from SDCG may present valuable information about the epileptiform focus
and their relations.

1 Introduction

Connectivity analysis using scalp EEG or fMRI data have been done based
on different measures in the literature. The prominent among these measures
are synchronization likelihood [1], correlation coefficients [2], coherence [3], and
granger causality [4]. Furthermore, several types of evidences have been sug-
gested in the literature proposing some measures to characterize topographical
properties of the networks [2, 5]. There are also interests in simultaneous EEG
and fMRI connectivity [5, 6].

In this paper, we present a sparse differential connectivity graph (SDCG) to
study the relation between electrodes in two brain states based on the maximal
overlap discrete wavelet transform (MODWT) [7], wavelet correlation estimation
[2, 8] by means of connectivity measure, and multiple hypothesis t-test. In
particular we address whether it is possible to benefit from connectivity graphs
on scalp EEG for characterization of epileptiform sources.

The paper is organized as follows. In Section 2, we describe the background,
and the proposed approach. Section 3 is devoted to the experimental results of
the proposed method. Concluding remarks are presented in Section 4.

∗We gratefully acknowledge Frédéric Grouiller for acquiring the data of this study.



2 Material and methods

2.1 Epilepsy

In epilepsy an area of the brain begins to discharge abnormally during a sudden
and recurrent attack called seizure. Between two seizures, interictal epileptiform
discharges (IED) may appear in the EEG measurements. The IEDs are waves
or complexes (defined by International Federation of Societies for Electroen-
cephalography and Clinical Neurophysiology (IFSECN), 1974) discriminated
from background activity. Since the appearance of IED has low probability,
their quantitative analysis is rather challenging.

2.2 MODWT correlation estimation

In this purpose, wavelet correlation [8, 9] has been used as a measure of con-
nectivity. The estimation of this measure is carried out utilizing the maximal
overlap discrete wavelet transform (MODWT) [7], which is similar to discrete
wavelet transform, but the signal is not subsampled and instead the filters are
upsampled at each scale.

Suppose ds1

j [k] and ds2

j [k] are the jth level MODWT coefficients of two sto-
chastic processes with zero-mean stationary Gaussian backward differences (s1[k]
and s2[k]) [10]. The MODWT estimator of the cross- correlation of s1[k] and
s2[k] at scale j is:
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where ˆCov and ˆV ar [8, 10] are the estimations of covariance and variance respec-
tively. This estimation is asymptotically normally distributed with characterized
confidence interval [10].

2.3 Proposed method

The flowchart of the proposed method has been shown in Fig. 1.

1. EEG data preprocessing: Since our final project is simultaneous EEG
and fMRI analysis, the EEG data was recorded inside the MR scanner.
The first preprocessing step is to remove MR artifact using the method
introduced in [11]. Next the expert neurologist labels the cleaned data
by determining the start and end time points of IED occurrences as IED
labels and time intervals without any IED as Non-IED labels. At the end,
the 2-4 Hz MODWT coefficients of cleaned data are segmented using these
labels.

We have experimentally found 2-4 Hz wavelet coefficients as the best repre-
senting features of IED signals. The advantages of wavelet cross-correlation
over Fourier cross-correlation has been cited in [8]. Moreover low frequency



Fig. 1: Flowchart of the proposed method. The EEG preprocessing (top), graph
computation and characterization (bottom).

trends of the EEG data, which have unwanted effects on correlation esti-
mation, can be easily removed by wavelet decomposition.

2. Graph computation and characterization:

MODWT Correlation estimation: The MODWT cross-correlation esti-
mation described in section 2.2 has been used to calculate the correlation
coefficients between each pair channels of IED (Non-IED) segments de-
noted as cIED

l [k] (cNon-IED
l [k])∈ R1×NC , k = {1, 2, . . . , NC}, l = {1, 2, . . . , NL}

where NC , and NL are respectively number of possible connections, and
number of IED (Non-IED) labels. The matrix of row concatenation of
cIED

l [k] (cNon-IED
l [k]) vectors, i.e. wavelet correlation of all the connections

and all the time IED (Non-IED) labels are denoted as IIED[k] (INon-IED[k]).

Reference sensitivity reduction and multiple hypothesis t-test (MHT): By
thresholding matrix of wavelet correlation, IIED[k] (INon-IED[k]) the com-
mon connectivity graph [2] for IED (Non-IED) state will be obtained (two
separate graphs for each state). These common graphs have several prob-
lems in our application: (1) To obtain a sparse graph, thresholding is
needed, and the graph depends on the thresholding; (2) The neighbor-
hood nodes are connected due to the volume conduction effect; (3) Com-
paring two separate connectivity graphs of two brain states to determine
the distinguished connections is rather challenging. These problems have
been solved by applying multiple hypothesis t-test between IIED[k] and
INon-IED[k]. For each connection a t-test upon the following hypothesis is
carried out:

{

Ht
0 : µt

1 = µt
2

Ht
1 : µt

1 6= µt
2

(2)



where t = 1, . . . , NC , and µi is the mean of IED (i = 1) and Non-IED
(i = 2) groups. The non-zero t − values construct the SDCG. We sepa-
rated the positive and negative t−values for better analysis. The positive
(negative) t− values construct positive (negative) t− value graph. A con-
nection in positive (negative) t−value graph shows the increase of wavelet
correlations in IED (Non-IED) time intervals.
A problem regarding the effect of the EEG reference (EEG data of a spe-
cific reference is the subtraction of all the channels from that reference)
is the sensitivity of the connectivity graph to the reference. If we cal-
culate the IIED [k] (INon-IED[k]) matrix for two different references, the
resulted graphs are not exactly the same, but not completely different.
To solve this problem, the IIED[k] (INon-IED[k]) matrix is calculated for
all possible references. Row concatenation of these matrices is denoted
as RIED [k] (RNon-IED[k]). Then the MHT is applied between RIED[k]
and RNon-IED[k]. The resulted graph gives the significant robust connec-
tions between the two brain states (IED and Non-IED) by considering the
temporal and spatial information.

Feature extraction and clustering: The nodes of the resulted SDCG are
quantified by global and local efficiency (GE and LE) [12, 13]. High global
efficiency of one node shows that the node is connected to many nodes of
the graph. Local efficiency of one node is high when the neighbors of this
node are highly connected. GE and LE are calculated for all the nodes
of positive and negative t − value graphs. The k -means method has been
utilized to cluster the nodes (EEG electrodes) of the SDCG based on five
features including GE, LE of positive and negative t − value graphs and
power t−values. We can calculate the power of each electrode in IED and
Non-IED time intervals in addition to correlations between the electrodes.
Power t− values are results of MHT between the powers of IED and Non-
IED time intervals in the related frequency band. The cluster related to the
sources is labeled due to the physiological information about the patient.

3 Results and discussion

The proposed method has been applied on the real EEG data of epileptic pa-
tients. Please refer to [11] for the protocol of the data. The SDCG of a right
frontal epilepsy has been shown in Fig. 2. Parts (a) and (b) show the positive
and negative t−value SDCG respectively. Each connection in the positive (neg-
ative) t − value graph indicates the increase of wavelet correlations during IED
(Non-IED) time intervals. The thickness of the connections is proportional to
the absolute of t − values. The source cluster (obtained by k-means) has been
shown in bold which demonstrates mostly the right and frontal electrodes. The
source cluster is labeled due to the physiological information of the patient.

The electrodes near the source receive IED signals (volume conduction ef-
fect related to IED sources), hence the source electrodes (electrodes close to
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(a) Positive t − value graph
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(b) Negative t − value graph

Fig. 2: Sparse differential connectivity graph (SDCG) for right frontal epileptic
patient. (a) Positive t− value graph, (b) negative t− value graph. Connections
of positive (negative) t − value graph shows that the wavelet correlations of
IED (Non-IED) time intervals are significantly higher than Non-IED (IED) time
intervals. The thickness of the connections are proportional to the absolute of
t − values. The source cluster has been shown in bold.

the source) have high LE in positive t − value graph. Moreover, the GE of
the source electrodes is high in negative t − value graph, since the correlation
between electrodes far from the source and source electrodes decreases during
IED time interval. Therefore, GE, LE of positive and negative t− value graphs
and power t − values (Section 2) were selected to cluster the electrodes. The
noise, artifact, background activity and their volume conduction effect were re-
moved since SDCG indicates the connections whose wavelet correlations chang-
ing during IED and Non-IED time intervals. But the volume conduction of the
IED sources exists which promotes clustering the source electrodes as described
above. The validity of the results has been proven in a simulated data [14] in
which the electrodes close to the true source were detected. This result in real
data is in accordance with the expert neurologist witness.
Previous EEG connectivity studies suggested connectivity analysis on EEG ac-
tivities (results of applying linear inverse problem). However any inverse problem
method is based on some assumptions about the sources. The validity of the
sources are dependent on these assumptions and the problem of volume con-
duction exists. To avoid these problems we applied connectivity analysis on the
scalp EEG directly. However our aim is to study the brain functionality during
epileptic and non-epileptic states of the brain to determine the related electrodes
to the epileptiform sources from non-invasive EEG. This information is valuable
for the intracranial electrode insertion. For precise seizure focus localization, we
will apply the connectivity analysis on the intracranial EEG.



4 Conclusion

The proposed connectivity graph indicates the significant distinguished connec-
tions between two different brain states. By integrating complicated temporal
information of EEG signal of the epileptic patient into a sparse differential con-
nectivity graph and clustering the extracted features from the graph, we could
determine the closer electrodes to the epileptiform sources.
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