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ABSTRACT

In the context of non-Gaussian polarimetric clutter mod-
els, this paper presents an application of the recent ad-
vances in the field of Spherically Invariant Random Vec-
tors (SIRV) modelling for coherency matrix estimation
in heterogeneous clutter. The complete description of the
POLSAR data set is achieved by estimating the span and
the normalized coherency independently. The normal-
ized coherency describes the polarimetric diversity, while
the span indicates the total received power. The main
advantages of the proposed Fixed Point estimator are
that it does not require any ”a priori” information about
the probability density function of the texture (or span)
and it can be directly applied on adaptive neighbour-
hoods. Interesting results are obtained when coupling
this Fixed Point estimator with an adaptive spatial sup-
port based on the scalar span information. Based on the
SIRV model, a new maximum likelihood distance mea-
sure is introduced for unsupervised POLSAR classifica-
tion. The proposed method is tested with airborne POL-
SAR images provided by the RAMSES system. Results
of entropy/alpha/anisotropy decomposition, followed by
unsupervised classification, allow discussing the use of
the normalized coherency and the span as two separate
descriptors of POLSAR data sets.

Key words: non-Gaussian clutter; POLSAR; estimation;
segmentation; high resolution.

1. INTRODUCTION

A Synthetic Aperture Radar (SAR) measures both am-
plitude and phase of the backscattered signal, producing
one complex image for each recording. The sensors being
able to emit or receive two orthogonal polarizations, fully
POLarimetric Synthetic Aperture Radar (POLSAR) sys-
tems describe the interactions between the electromag-
netic wave and the target area by means of the Sinclair

matrix [1]. The polarimetric diversity can be employed
for investigating various physical properties of the stud-
ied media. The recent availability of spaceborne POL-
SAR imagery from ALOS and RADARSAT–2 satellites
has resulted in increased interest in ground cover classi-
fication and monitoring, such as forests, snow, ice, agri-
cultural or urban areas.

In a particular frequency band, the wave-media interac-
tions over distributed areas are generally studied using
the polarimetric covariance matrix (called also coherency
when vectorizing in the Pauli basis). Its use is directly
linked to the basic Sinclair model, as this descriptor does
not depend on the wave propagation term common to all
polarimetric channels. However, among the difficulties
encountered when using POLSAR imagery, one impor-
tant feature is the presence of speckle. Occurring in all
types of coherent imagery, the speckle is due to the ran-
dom interference of the waves scattered by the elemen-
tary targets belonging to one resolution cell [2]. In gen-
eral, POLSAR data are locally modelled by the multi-
variate, zero mean, circular Gaussian probability density
function, which is completely determined by the covari-
ance matrix [3]. With Gaussian clutter, the covariance
Maximum Likelihood estimator is the Sample Covari-
ance Matrix (SCM).

The recently launched POLSAR systems are now capa-
ble of producing high quality images of the Earth’s sur-
face with meter resolution. The decrease of the resolution
cell offers the opportunity to observe much thinner spatial
features than the decametric resolution of the up-to-now
available SAR images. Recent studies [4] show that the
higher scene heterogeneity leads to non-Gaussian clutter
modelling, especially for urban areas. One commonly
used fully polarimetric non-Gaussian clutter model is the
product model [5]: the spatial non-homogeneity is incor-
porated by modelling the clutter as the product between
the square root of a scalar random variable (texture) and
an independent, zero mean, complex circular Gaussian
random vector (speckle). If the texture random variable
is supposed to be a Gamma spatial distributed intensity,
the product model is equivalent to the well-known K-



distributed clutter model [6]. When using the product
model, one can notice that the speckle presents a dual na-
ture depending on the involved polarimetric descriptor:

• intensity texture descriptor: speckle can be consid-
ered as a nuisance parameter as the Gaussian kernel
induces undesired spatial variations over the areas
homogeneous in terms of texture,

• covariance matrix descriptor: speckle represents the
useful signal as the covariance matrix is computed
using the Gaussian kernel, while the texture appears
as nuisance.

The POLSAR information allows the discrimination of
different scattering mechanisms. In [7], Cloude and
Pottier introduced the target entropy and the entropy-
alpha-anisotropy (H/α/A) model by assigning to each
eigenvector the corresponding coherent single scattering
mechanism. Based on this decomposition, unsupervised
classification for land applications was performed by an
iterative algorithm based on complex Wishart density
function [8].

The objective of this paper is to present a new coherency
estimation technique [9] based on the Spherically Invari-
ant Random Vectors (SIRV) model [10], and to analyze
the consequences that this model has on the conventional
POLSAR processing chain. The paper is organized as
follows. Sect. 2 is dedicated to the presentation of the
proposed estimation scheme. The heterogeneity of po-
larimetric textured scenes is taken into account by cou-
pling the ML normalized coherency estimator with adap-
tive neighborhoods driven on the scalar ML span estima-
tors. A new ML distance measure is presented in Sect. 3
introduced for classifying normalized coherency matrices
under the SIRV model. In Sect. 4, the results obtained
using the proposed approach are presented and compared
to those given by the Gaussian ML estimator. Results of
H/α/A decomposition, followed by unsupervised POL-
SAR classification allow to discuss the use of the normal-
ized coherency and the span as two separate descriptors
of POLSAR data sets. Eventually, in Sect. 5, some con-
clusions and perspectives are presented.

2. ML PARAMETER ESTIMATION

Spherically Invariant Random Vectors (SIRV) and their
applications to estimation and detection in communica-
tion theory were firstly introduced by Kung Yao [10]. The
SIRV is a class of non-homogeneous Gaussian processes
with random variance. The complex m-dimensional mea-

surement
−→
k is defined as the product between the inde-

pendent complex circular Gaussian vector −→z (speckle)
with zero mean and covariance matrix [M ] = E{−→z −→z †}
and the square root of the positive random variable τ (rep-
resenting the texture):

−→
k =

√
τ−→z , (1)

It is important to notice that in the SIRV definition, the
PDF of the texture random variable is not explicitly spec-
ified. As a consequence, SIRVs describe a whole class
of stochastic processes defined by Eq. 1. This class in-
cludes the conventional clutter models having Gaussian,
K-distributed, Chi, Rayleigh, Weibull or Rician PDFs
[11].

When using the product model, an identification prob-
lem can be pointed out: the SIRV model is uniquely
defined with respect to the covariance matrix parameter
up to a multiplicative constant. Let [M1] and [M2] be
two covariance matrices such that [M1] = κ · [M2], (∀)
κ ∈ R

∗
+. Notice that the two sets of parameters de-

fined as {τ1, [M1]} and
{

τ2 = τ1√
κ
, [M2]

}
describe the

same SIRV. For solving this identification problem, the
covariance matrix has to be normalized. In the follow-
ing the covariance matrix [M ] is normalized such that
Tr{[M ]} = m, with m the dimension of the target vec-
tor. One important consequence of the imposed normal-
ization condition is that the resulting normalized polari-
metric coherency matrix (NC) reveals information con-
cerning the polarimetric diversity only: the total power
information is transferred into the texture random vari-
able.

Let now p(τ) be the texture PDF associated to the
SIRV model. The Spherically Invariant Random Process
(SIRP) corresponding to Eq. 1 has the following PDF
[12]:

pm(
−→
k ) =

∫ +∞
0

1

(πτ)mdet{[M ]}

exp
(
−

−→
k †[M ]−1

−→
k

τ

)
p(τ)dτ.

(2)

Given a SIRP, this process is wide-sense stationary if and
only if both the texture random variable and the speckle
random vector are wide-sense stationary. As the speckle
is a zero mean complex Gaussian vector, the latter means

that the statistical samples
−→
k i used in the estimation pro-

cess must have the same theoretical covariance matrix
[M ]. This condition is called ”matrix stationarity”.

However, as the results presented in this section can be
applied whatever the texture PDF (∀ p(τ)), the previ-
ous properties can be reformulated using the SIRV class
of stochastic processes. Given a ”matrix stationary”
stochastic process, this process is ”SIRV homogeneous”
if and only if the texture random variable is ”texture ho-
mogeneous”. Where ”texture homogeneous” means that
it is possible to define a texture PDF (∃ p(τ)) such that the
stochastic process can be described by the product model
from Eq. 1.

We illustrate these properties using four local populations
which often occur in practical POLSAR applications:

• One zero mean Gaussian process with covariance
matrix [M ]: N (0, [M ]). Being a ”Gaussian sta-



tionary1” process, it is also ”SIRP stationary” and
”SIRV homogeneous”. This model is widely used
for POLSAR data analysis [13].

• Two adjacent Gaussian processes with
different covariance matrix: N ={
N (1)(0, [M ]1),N (2)(0, [M ]2)

}
. The Gaus-

sian mixture N is neither ”SIRP stationary” nor
”SIRV homogeneous” as the ”matrix stationarity”
condition is not respected. Generally, such cases
are treated by employing adaptive estimation
schemes [14], [15] in order to approximate the local
”Gaussian stationarity” condition.

• One K-distributed process [16] with Gamma dis-
tributed texture pG(τ ; τ , ν) and covariance matrix
[M ]: FK {pG(τ ; τ , ν), [M ]}. This process is ”SIRP
stationary” as it is ”K stationary2” but obviously it
is not ”Gaussian stationary”.

• Two adjacent K-distributed processes with two

different Gamma texture PDF p
(1)
G (τ ; τ1, ν1),

p
(2)
G (τ ; τ2, ν2) and the same covariance ma-

trix [M ]: FK =
{

F
(1)
K , F

(2)
K

}
. The K-

distributed processes F
(1)
K

{
p
(1)
G (τ ; τ1, ν1), [M ]

}

and F
(2)
K

{
p
(2)
G (τ ; τ2, ν2), [M ]

}
are ”SIRP station-

ary” and ”K stationary”, but the mixture FK is not
”K stationary”. Despite this, the process FK is
”SIRV homogeneous” as it is possible to define a
texture PDF which models the Gamma mixture. As
a consequence, the results presented in this section
can still be applied in this case.

In conclusion, the two properties to be verified in order
to apply the SIRV model are the ”matrix stationarity” and
the ”texture homogeneity”. Moreover, the latter consider-
ably relaxes the ”texture stationarity” condition required
when using explicit texture models such as the Gamma
or the Fisher PDF.

2.1. Normalized Covariance Matrix

In Eqs. 1 and 2, the normalized covariance matrix is an
unknown parameter which can be estimated from ML
theory. In [12], Gini et al. derived the exact ML esti-

mate [M̂ ] of the normalized covariance matrix when τi

are assumed to be unknown deterministic quantities. For
N independent and identically distributed (i.i.d.) data,
the likelihood function to maximize with respect to [M ]

1A ”Gaussian stationary” process is a stochastic process whose

Gaussian PDF does not change when shifted in time or space.
2A ”K stationary” process is a stochastic process whose K PDF does

not change when shifted in time or space.

and τi, is given by:

L−→
k
(
−→
k 1, ...,

−→
k N ; [M ], τ1, ..., τN ) = 1

πmN det{[M ]}N
×

×∏N

i=1
1

τm

i

exp

(
−

−→
k

†
i
[M ]−1

−→
k i

τi

)
.

(3)

Maximizing L−→
k
(
−→
k 1, ...,

−→
k N ; [M ], τ1, ..., τN ) with re-

spect to τi yields the texture ML estimator

τ̂i =

−→
k †

i [M ]−1−→k i

m
. (4)

Replacing τi in Eq. 3 by their ML estimates the general-
ized likelihood is obtained as:

L′−→
k
(
−→
k 1, ...,

−→
k N ; [M ]) = 1

πmN det{[M ]}N
×

×∏N

i=1
mmexp(−m)

(
−→
k

†
i
[M ]−1

−→
k i)m

.
(5)

The ML estimator of the normalized covariance matrix
in the deterministic texture case is obtained by cancelling
the gradient of L′−→

k
with respect to [M ] as the solution of

the following recursive equation:

[M̂ ]FP = f([M̂ ]FP ) =
m

N

N∑

i=1

−→
k i

−→
k †

i−→
k †

i [M̂ ]−1
FP

−→
k i

. (6)

This approach has been used in [17] by Conte et al. to de-
rive a recursive algorithm for estimating the matrix [M ].
This algorithm consists in computing the Fixed Point of
f using the sequence ([M ]i)i≥0 defined by:

[M ]i+1 = f([M ]i). (7)

It has been shown in [12] and [17] that the estimation
scheme from Eq. 6, developed under the deterministic
texture case, yields also an approximate ML estimator
under stochastic texture hypothesis. This study has been
completed by the work of Pascal et al. [9], [18], which re-
cently established the existence and the uniqueness, up to
a scalar factor, of the Fixed Point estimator of the normal-
ized covariance matrix, as well as the convergence of the
recursive algorithm whatever the initialization. The algo-
rithm can therefore be initialized with the identity matrix
[M ]0 = [Im].

We propose to apply these results in estimating normal-
ized coherency matrices for high resolution POLSAR
data. The main advantage of this approach is that the lo-
cal ”scene heterogeneity” can be taken into account with-
out any ”a priori” hypothesis regarding the texture ran-
dom variable τ (Eq. 7 does not depend on τ ). The ob-
tained Fixed Point is the approximate ML estimate un-
der the stochastic τ assumption and the exact ML under
deterministic τ assumption. Moreover, the normalized
polarimetric coherency matrix estimated using the Fixed
Point method is unbiased and asymptotically Gaussian
distributed [9], [18].

Note that the multivariate Gaussian distribution is a mem-
ber of the SIRV class. Let us assume N i.i.d. realizations



of the target vector
−→
k . The SCM is the ML estimator

of [T ] in Gaussian clutter, but not in clutter described
by the product model [19]. In the specific case of com-
pletely correlated texture (τ = τi, ∀ i ∈ {1, ..N}), Rich-
mond proved that SCM is again the exact ML estimator
of [M ] provided the M-normalization is respected [20].
In fact, the completely correlated τ case is equivalent to
the Gaussian model for a given realization of data across
all resolution cells [12]. Consequently, it is possible to
define the Sample Covariance matrix Normalized (SCN)
as:

[M̂ ]SCN = m
[T̂ ]SCM

Tr{[T̂ ]SCM}
(8)

In this paper, we propose to use the SCN for assessing the
performance of the FP estimator.

2.2. Span

Note also that the texture estimator from Eq. 4 can be
directly linked to the total scattered power (span). By
estimating the normalized coherency as the Fixed Point
solution of Eq. 6, the derived NC is independent of the
total power and it contains polarimetric information only.
Using this matrix, it is possible to compute the SIRV span
ML estimator for unknown deterministic τ as:

P̂PWF =
−→
k †[M̂ ]−1

FP

−→
k . (9)

One can observe that the span estimator from Eq. 9
has the same form as the Polarimetric Whitening Filter
(PWF) introduced by Novak et al. in [21]. The only dif-
ference is the use of the NC given by the Fixed Point
estimator instead of the conventional Sample Covariance
Matrix.

Finally, it is possible to derive an estimate of the conven-
tional polarimetric coherency matrix according to Eq. 1:

[T̂ ]FP =
P̂PWF

m
[M̂ ]FP . (10)

3. OPTIMAL GLRT DISTANCE MEASURES

When the POLSAR data are modelled by a stochastic
process with a known PDF, it is possible to derive op-
timal ML distance measures (e.g. the Wishart distance
for Gaussian processes). For this purpose, we propose
the following general binary hypothesis test for a given
class ω: {

H0 : [C] = [C]ω
H1 : [C] 6= [C]ω

(11)

According to the Neyman-Pearson Lemma, the LRT
(Likelihood Ratio Test) provides the most powerful test
[22]:

Λ =
pm(

−→
k 1, ...,

−→
k N/H1)

pm(
−→
k 1, ...,

−→
k N/H0)

. (12)

After briefly introducing the Wishart distance as the result
of GLRT (Generalized LRT) maximization, the following
section is dedicated to deriving the optimal ML distance
measure associated to the SIRV model with deterministic
unknown texture.

3.1. Gaussian clutter

For Gaussian clutter, the binary hypothesis test from
Eq. 11 becomes:

{
H0 : [T ] = [T ]ω ⇔ −→

k ∼ N (0, [T ])

H1 : [T ] 6= [T ]ω ⇔ −→
k ∼ N (0, [T ]ω)

(13)

By considering N i.i.d. samples, the Likelihood Ratio
Test (LRT) for the Gaussian model is:

ΛG =

∏N

n=1

exp
{
−−→

k †
n[T ]−1

ω

−→
k n

}

πmdet {[T ]ω}

∏N

n=1

exp
{
−−→

k †
n[T ]−1−→k n

}

πmdet {[T ]}

(14)

Taking the natural logarithm and maximizing the LRT
from Eq.14 is equivalent to minimizing the following dis-
tance with respect to [T ]:

DG = ln
det {[T ]ω}
det {[T ]} +

1

N

N∑

n=1

−→
k †

n

(
[T ]−1

ω − [T ]−1
)−→

k n

(15)
By replacing the pixel coherency matrix [T ] with the ML

estimate [T̂ ]SCM , the LRT from Eq. 14 becomes the Gen-
eralized LRT and the associated distance measure is the
conventional Wishart distance:

DW = ln det{[T ]ω}
det{[ bT ]SCM} + 1

N

∑N

n=1

−→
k †

n[T ]−1
ω

−→
k n

= ln det{[T ]ω}
det{[ bT ]SCM} + Tr

{
[T ]−1

ω [T̂ ]SCM

}

(16)
This distance has been widely used for supervised and
unsupervised POLSAR data clustering [8], [23].

3.2. SIRV clutter

For the SIRV model, one can rewrite the hypothesis test
as:

{
H0 : [M ] = [M ]ω ⇔ −→

k =
√

τ−→z , −→z ∼ N (0, [M ])

H1 : [M ] 6= [M ]ω ⇔ −→
k =

√
τ−→z , −→z ∼ N (0, [M ]ω)

where τ is the unknown deterministic texture.

For a given class [M ]ω, the LRT with respect to the tex-
ture τ and the normalized coherency matrix [M ] is given



by:

ΛSIRV =

∏N

n=1
1

πmτm
n

det{[M ]ω}exp

{
−
−→
k †

n[M ]−1
ω

−→
k n

τn

}

∏N

n=1
1

πmτm
n

det{[M ]}exp

{
−
−→
k †

n[M ]−1−→k n

τn

}

(17)
By taking the natural logarithm, one obtains:

ln(ΛSIRV ) = −N ln det{[M ]ω}
det{[M ]} −

− ∑N

n=1

−→
k †

n([M ]−1

ω
−[M ]−1)

−→
k n

τn
.

(18)

Now, since the τn’s and [M ] are unknown, they are re-
placed by their ML estimates from Eq. 4 and Eq. 6. The
resulting Generalized Likelihood Ratio Test Λ′

SIRV is
given by:

ln(Λ′
SIRV ) = −N ln det{[M ]ω}

det{[cM ]F P}−

− m
∑N

n=1

−→
k †

n
[M ]−1

ω

−→
k n−→

k
†
n[cM ]−1

F P

−→
k n

+ Nm.

(19)
Maximizing the GLRT over all classes is equivalent to
minimizing the following SIRV distance:

DSIRV = ln
det {[M ]ω}

det
{

[M̂ ]FP

} +
m

N

N∑

n=1

−→
k †

n[M ]−1
ω

−→
k n

−→
k †

n[M̂ ]−1
FP

−→
k n

.

(20)

In this paper, the distance measure from Eq. 20 is used
as a dissimilarity measure in the conventional K-means
clustering for POLSAR data. The full description of the
K-means algorithm can be found in [8].

4. RESULTS AND DISCUSSION

The POLSAR data (Fig. 1) set was acquired by the ON-
ERA RAMSES system over Toulouse, France with a
mean incidence angle of 500. It represents a fully po-
larimetric (monostatic mode) X-band acquisition with a
spatial resolution of approximately 50 cm in range and
azimuth.

Three different estimation techniques are analyzed: the
Sample Covariance matrix Normalized coupled with the
7 × 7 Boxcar Neighborhood (BN-SCN) and the Fixed
Point estimator coupled either with the 7 × 7 Box-
car Neighborhood (BN-FP) or with the Span-Driven-
Adaptive-Neighborhood (SDAN-FP) [24]. In all three
cases, the corresponding span image is estimated using
the LLMMSE estimator as presented in [24]. The pa-
rameters used for the SDAN algorithm are Leq = 3 and
Nmax = 50.

The effectiveness of the Fixed Point estimator in com-
pound Gaussian clutter can be observed in Fig. 2. While
the BN-SCN normalized coherency [Fig. 2-(a)] presents

Figure 1. RAMSES POLSAR data, X-band (501 × 501
pixels). Amplitude color composition of the target vector
elements k1-k3-k2 .

a ”patchy” appearance, the BN-FP estimation [Fig. 2-(b)]
provides better visual homogeneity within each quadrant.
This shows that the FP estimate of the covariance matrix
does not depend on the texture PDF.

One key issue to be discussed is weather the normalized
coherency matrix (NC) and the span should be aggre-
gated in the final estimation step or not. Most of the ex-
isting processing chains use the conventional coherency
matrix for representing POLSAR data for unsupervised
land cover classification [8], [23], and for target detec-
tion applications [16]. Due to the SIRV model identi-
fication problem, the complete description of the POL-
SAR data set is achieved by estimating the span and the
normalized coherency independently. The NC describes
the polarimetric diversity, while the span indicates the to-
tal received power. Moreover, the Fixed Point estima-
tion of the normalized coherence does not depend on the
span information. Given these facts, we propose to in-
vestigate this problem in the framework of unsupervised
POLSAR classification. The classification scheme dis-
cussed in the following is the standard Wishart H/α seg-
mentation [8]. For segmenting the normalized coherency,
we have modified the Wishart H/α algorithm by replac-
ing the Wishart distance with the SIRV ML distance dis-
cussed in Sect. 3.2. For comparison, we have also used
the scalar Gamma K-means classification with H/α ini-
tialization. The corresponding ML distance measure is
obtained using the GLRT with the Gamma PDF.

Fig. 3 illustrates the POLSAR unsupervised classification
results using three descriptors estimated by SDAN-FP:
span [Fig. 3-(a)], normalized coherency [Fig. 3-(c)] and
coherency [Fig. 3-(e)]. The selected scene is composed
of both Gaussian (streets) and non-Gaussian (urban) ar-
eas. Fig. 3-(f) presents the standard classification map
obtained using the SDAN-FP coherency matrix. When
compared to the scalar unsupervised classification map
[Fig. 3-(b)] obtained using span only, one can observe



(a)

(b)

Figure 2. RAMSES POLSAR data, X-band (501 × 501
pixels). Color composition of the normalized coherency
diagonal elements [M ]11-[M ]33-[M ]22 estimated within
the 7×7 boxcar neighborhood using: (a) the Sample Co-
variance matrix Normalized estimator BN-SCN and (b)
the Fixed Point estimator BN-FP.

the high degree of similarity between them. This leads
to the following conclusion: the Wishart H/α classifica-
tion is mainly influenced by the information contained in
the span image. Regarding the polarimetric information,
Fig. 3-(d) presents the classification map computed us-
ing the normalized coherency matrix and the associated
SIRV distance. The visual assessment of Fig. 3-(d) and
Fig. 3-(f) reveals that a significant part of the polarimet-
ric information is lost when using the standard coherency
matrix.

Finally, the joint analysis of the span and the normalized
coherency (NC) presents several advantages with respect
to the coherency matrix descriptor: separation between
the total received power and the polarimetric informa-
tion, estimation of the NC independently of the span and
the existence of the SIRV distance measure for unsuper-

vised ML classification of normalized coherencies. How-
ever, the span-NC description of POLSAR images raises
new problems which still remain under investigation. The
first issue concerns the use of span for testing the ”matrix
stationarity” condition for the normalized coherency es-
timation. This test is currently used for POLSAR data
speckle filtering and it is founded on the basic princi-
ple that changes within the polarimetric signature are re-
vealed by changes in the total received power. Conse-
quently, one may envisage other estimation schemes ded-
icated to the SIRV model with stochastic texture by con-
sidering external estimators of ”matrix stationarity”. The
second important remark concerns the Wishart unsuper-
vised classification scheme. Although all statistical re-
quirements employed for unsupervised classification are
met, the polarimetric information is quite difficult to ex-
tract using the K-means clustering. As it can be noticed
in Fig. 3-(c),(d), the polarimetric signatures are strongly
mixed and the class boundaries are smoothed within high
resolution POLSAR images (even for highly heteroge-
neous target areas). Therefore, other clustering strategies
[25] should be better suited to capture the spatial distri-
bution of different polarimetric signatures.

5. CONCLUSION

This paper presented a new estimation scheme for deriv-
ing normalized coherency matrices and the resulting es-
timated span with high resolution POLSAR images. The
proposed approach couples nonlinear ML estimators with
span driven adaptive neighborhoods for taking the local
scene heterogeneity into account.

The heterogeneous clutter in POLSAR data was de-
scribed by the SIRV model. Two estimators were in-
troduced for describing the POLSAR data set: the Fixed
Point estimator of normalized coherency matrix and the
corresponding LLMMSE span. The Fixed Point estima-
tion is independent on the span PDF and represents an
approximate ML estimator for a large class of stochastic
processes obeying the SIRV model. Moreover, the de-
rived normalized coherency is asymptotically Gaussian
distributed.

For SIRV clutter, a new ML distance measure was intro-
duced for unsupervised POLSAR classification. This dis-
tance was used in conventional K-means clustering ini-
tialized by the H/α polarimetric decomposition. Other
extensions of the existing unsupervised or supervised
POLSAR clustering methods (e.g. Bayes ML or fuzzy
K-means) can be derived by replacing the conventional
Wishart distance with the proposed SIRV distance.
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Figure 3. RAMSES POLSAR data, X-band (501 × 501 pixels), Fixed Point normalized coherency estimator within the
SDAN neighborhood SDAN-FP. (a) LLMMSE span and (b) unsupervized scalar Gamma span segmentation. (c) Color
composition of the normalized coherency diagonal elements [M ]11-[M ]33-[M ]22 and (d) unsupervized H/α SIRV normal-
ized coherency segmentation. (e) Color composition of the diagonal elements of the diagonal elements [T ]11-[T ]33-[T ]22
and (f) unsupervized H/α Wishart coherency segmentation.
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[15] G. Vasile, E. Trouvé, J. S. Lee, and V. Buzu-
loiu. Intensity-Driven-Adaptive-Neighborhood
technique for polarimetric and interferometric SAR
parameters estimation. IEEE Transactions on Geo-
science and Remote Sensing, 44(5):1609–1621,
2006.

[16] L. M. Novak, M. B. Sechtin, and M. J. Car-
dullo. Studies of target detection algorithms that
use polarimetric radar data. IEEE Transactions on
Aerospace and Electronic Systems, 25(2):150–165,
1989.

[17] E. Conte, A. DeMaio, and G. Ricci. Recursive es-
timation of the covariance matrix of a compound-
Gaussian process and its application to adaptive
CFAR detection. IEEE Transactions on Image Pro-
cessing, 50(8):1908–1915, 2002.

[18] F. Pascal, P. Forster, J. P. Ovarlez, and P. Larza-
bal. Performance analysis of covariance matrix es-
timates in impulsive noise. IEEE Transactions on
Signal Processing, 56(6):2206–2216, 2008.

[19] E. J. Kelly. An adaptive detection algorithm. IEEE
Transactions on Aerospace and Electronic Systems,
AES-22(2):115–127, 1986.

[20] C. D. Richmond. A note on non-Gaussian adap-
tive array detection and signal parameter estima-
tion. IEEE Signal Processing Letters, 3(8):251–
252, 1996.

[21] L. M. Novak and M. C. Burl. Optimal speckle
reduction in polarimetric SAR imagery. IEEE
Transactions on Aerospace and Electronic Systems,
26(2):293–305, 1990.

[22] E. L. Lehmann. Testing statistical hypotheses. John-
Wiley&Sons, Springer-Verlag, New York, USA,
2nd edition, 1986.

[23] P. R. Kersten, J. S. Lee, and T. L. Ainsworth. Un-
supervised classification of polarimetric synthetic
aperture radar images using fuzzy clustering and
EM clustering. IEEE Transactions on Geoscience
and Remote Sensing, 43(3):519–527, 2005.

[24] G. Vasile, J. P. Ovarlez, F. Pascal, C. Tison, L. Bom-
brun, M. Gay, and E. Trouvé. Normalized co-
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