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We consider a linear Schrödinger equation, on a bounded interval, with bilinear control, that represents a quantum particle in an electric field (the control). We prove the controllability of this system, in any positive time, locally around the ground state.

, in non optimal spaces, in long time and the proof relied on the Nash-Moser implicit function theorem in order to deal with an a priori loss of regularity.

In this article, the model is more general, the spaces are optimal, there is no restriction on the time and the proof relies on the classical inverse mapping theorem. A hidden regularizing effect is emphasized, showing there is actually no loss of regularity.

Then, the same strategy is applied to nonlinear Schrödinger equations and nonlinear wave equations, showing that the method works for a wide range of bilinear control systems.

Résumé

On considère une équation de Schrödinger linéaire, sur un intervalle borné, avec contrôle bilinéaire, représentant une particule quantique dans un champ électrique (le contrôle). On démontre la contrôlabilité locale de ce système, en tout temps positif, localement au voisinage de l'état fondamental.

, mais dans des espaces non optimaux, en temps long et leur preuve reposait sur le théorème de Nash-Moser, pour gérer une apparente perte de régularité.

Dans cet article, le modèle étudié est plus général, les espaces sont optimaux, il n'y a pas de restriction sur le temps et la preuve repose sur le théorème d'inversion locale classique. Un effet régularisant est exhibé, montrant qu'il n'y a finalement pas de perte de régularité.

La même stratégie est ensuite utilisée sur des équations de Schrödinger nonlinéaires et des équations des ondes nonlinéaires, montrant qu'elle s'applique de façon assez générale aux systèmes de contrôle bilinéaires.

Introduction 1.Main result

Following [START_REF] Rouchon | Control of a quantum particule in a moving potential well[END_REF], we consider a quantum particle, in a 1D infinite square potential well, subjected to an electric field. It is represented by the following Schrödinger equation i ∂ψ ∂t (t, x) = -∂ 2 ψ ∂x 2 (t, x) -u(t)µ(x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ), ψ(t, 0) = ψ(t, 1) = 0, [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF] where ψ is the wave function of the particle, u is the amplitude of the electric field and µ ∈ H 3 ((0, 1), R) is the dipolar moment. The system (1) is a bilinear control system, in which

• the state is ψ, with ψ(t) L 2 (0,1) = 1, ∀t ∈ (0, T ),

• the control is the real valued function u : [0, T ] → R.

Let us introduce some notations. The operator A is defined by

D(A) := H 2 ∩ H 1 0 ((0, 1), C), Aϕ := -d 2 ϕ dx 2 . (2) 
Its eigenvalues and eigenvectors are

λ k := (kπ) 2 , ϕ k (x) := √ 2 sin(kπx), ∀k ∈ N * . (3) 
The family (ϕ k ) k∈N * is an orthonormal basis of L 2 ((0, 1), C) and

ψ k (t, x) := ϕ k (x)e -iλ k t , ∀k ∈ N *
is a solution of (1) with u ≡ 0 called eigenstate, or ground state, when k = 1. We define the spaces H s (0) ((0, 1), C) := D(A s/2 ), ∀s > 0 (4) equipped with the norm

ϕ H s (0) := ∞ k=1 |k s ϕ, ϕ k | 2 1/2
.

We denote by ., the L 2 ((0, 1), C) scalar product

f, g = 1 0 f (x)g(x)dx
and by S the unit L 2 ((0, 1), C)-sphere. The first goal of this article is the proof of the following result.

Theorem 1 Let T > 0 and µ ∈ H 3 ((0, 1), R) be such that

∃c > 0 such that c k 3 | µϕ 1 , ϕ k |, ∀k ∈ N * . ( 5 
)
There exists δ > 0 and a C 1 map

Γ : V T → L 2 ((0, T ), R)
where V T := {ψ f ∈ S ∩ H 3 (0) ((0, 1), C); ψ f -ψ 1 (T ) H 3 < δ}, such that, Γ(ψ 1 (T )) = 0 and for every ψ f ∈ V T , the solution of [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF] with initial condition ψ(0) = ϕ 1 [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF] and control u = Γ(ψ f ) satisfies ψ(T ) = ψ f . Remark 1 Thanks to the time reversibility of the system, Theorem 1 ensures the local controllability of the system [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF] around the ground state: for every T > 0, there exists δ > 0 such that, for every ψ 0 , ψ f ∈ S ∩ H 3 (0) ((0, 1), C) with ψ 0 -ψ 1 (0) H 3 + ψ f -ψ 1 (T ) H 3 < δ, there exists a control u ∈ L 2 (0, T ) such that the solution of [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF] with initial condition ψ(0) = ψ 0 satisfies ψ(T ) = ψ f .

Remark 2

The assumption [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] holds, for example, with µ(x) = x 2 , because

x 2 ϕ 1 , ϕ k = 1 0 2x 2 sin(kπx) sin(πx)dx = (-1) k+1 8k π 2 (k 2 -1) 2 if k 2, -3+2π 2 6π 2 if k = 1. ( 7 
)
But it does not hold when µϕ 1 , ϕ k = 0, for some k ∈ N * , or when µ has a symmetry with respect to x = 1/2. However, the assumption [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] holds generically with respect to µ ∈ H 3 ((0, 1), R) because

µϕ 1 , ϕ k = 4[(-1) k+1 µ ′ (1) -µ ′ (0)] k 3 π 2 - √ 2 (kπ) 3 1 0 (µϕ 1 ) ′′′ (x) cos(kπx)dx, ∀k ∈ N * . ( 8 
)
(see Appendix A for a proof ). Thus, Theorem 1 is very general.

A simpler proof

The local controllability of 1D Schrödinger equations, with bilinear control, has already been investigated in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], (see also [START_REF] Beauchard | Local Controllability of a 1-D beam equation[END_REF] for a similar result on a 1D beam equation). In these articles, three different models are studied. The local controllability of the nonlinear system is proved thanks to the linearization principle:

• first, we prove the controllability of a linearized system,

• then, we prove the local controllability of the nonlinear system, by applying an inverse mapping theorem.

This strategy is coupled with the return method and quasi-static deformations in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF] and with power series expansions in [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF] (see [START_REF] Coron | Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations[END_REF][START_REF] Coron | Control and nonlinearity[END_REF] by Coron for a presentation of these technics). In these articles, the most difficult part of the proof is the application of the inverse mapping theorem. Indeed, because of an a priori loss of regularity, we were lead to apply the Nash-Moser implicit function theorem (see, for instance [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF] by Alinhac, Gérard and [START_REF] Hörmander | On the Nash-Moser Implicit Function Theorem[END_REF] by Hörmander), instead of the classical inverse mapping theorem. The Nash-Moser theorem requires, in particular, the controllability of an infinite number of linearized systems, and tame estimates on the corresponding controls. These two points are difficult to prove and lead to long technical developments in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF]. In this article, we propose a simpler proof, that uses only the classical inverse mapping theorem (needing the controllability of only one linearized system), because we emphasize a hidden regularizing effect (see Proposition 2).

Therefore, the controllability result of Theorem 1 enters the classical framework of local controllability results for nonlinear systems, proved with fixed point arguments (see, for instance, [START_REF] Rosier | Exact boundary controllability for the korteweg-de vries equation on a bounded domain[END_REF] by Rosier, [START_REF] Cerpa | Boundary controlability for the non linear korteweg-de vries equation on any critical domain[END_REF] by Cerpa and Crépeau, [START_REF] Russel | Exact controllability and stabilizability of the Korteweg-de Vries equation[END_REF] by Russell and Zhang, [START_REF] Zhang | Exact boundary controllability of the Korteweg-de Vries equation[END_REF] by Zhang, [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF] by Zuazua; this list is not exhaustive).

Additionnal results

The proof we developed for Theorem 1 is quite robust, thus we could apply it to other situations: other linear PDEs and also nonlinear PDEs, that are presented in the next subsections. This shows that the strategy proposed in this article works for a wide range of bilinear systems.

Generalization to higher regularities

The first situation is the analogue result of Theorem 1, but with higher regularities: we prove the local exact controllability of (1) in smoother spaces and with smoother controls. Namely, we prove the following result.

Theorem 2 Let T > 0 and µ ∈ H 5 ((0, 1), R) be such that [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] holds. There exists δ > 0 and a C 1 map Γ : V T → H 1 0 ((0, T ), R)

ψ f → Γ(ψ f )
where

V T := {ψ f ∈ S ∩ H 5 (0) ((0, 1), C); ψ f -ψ 1 (T ) H 5 < δ}, such that, Γ(ψ 1 (T )) = 0 and for every ψ f ∈ V T , the solution of ( 1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF] with control u = Γ(ψ f ) satisfies ψ(T ) = ψ f .

Of course, the strategy may be used to go further and prove the local exact controllability of (1) around the ground state

• in H 7 (0) (0, 1) with controls in H 2 0 ((0, T ), R),

• in H 9 (0) (0, 1) with controls in H 3 0 ((0, T ), R), etc.

On the 3D ball with radial data

The second situation is the analogue result of Theorem 1, but for the Schrödinger equation posed on the three dimensional unit ball B 3 for radial data. In polar coordinates, the Laplacian for radial data can be written

∆u(r) = ∂ 2 r u(r) + 2 r ∂ r u(r).
In particular, we have ∆

g(r) r = ∂ 2 r u(r) r
. The eigenfunctions of the Dirichlet operator

A = -∆ with domain D(A) := H 2 radial ∩ H 1 0 (B 3 ) are ϕ k = sin(kπr) r √ 2π
with eigenvalues λ k = (kπ) 2 . Thus, we study the Schrödinger equation i ∂ψ ∂t (t, r) = -∆ψ(t, r) -u(t)µ(r)ψ(t, r), r ∈ (0, 1), ψ(t, 1) = 0.

(

) 9 
The theorem we obtain is very similar to Theorem 1.

Theorem 3 Let T > 0 and µ ∈ H 3 (B 3 , R) radial be such that ∃c > 0 such that c k 3 | µϕ 1 , ϕ k |, ∀k ∈ N * . ( 10 
)
There exists δ > 0 and a C 1 map

Γ : V T → L 2 ((0, T ), R)
where

V T := {ψ f ∈ S ∩ H 3 (0),rad (B 3 , C); ψ f -ψ 1 (T ) H 3 <
δ}, such that, Γ(ψ 1 (T )) = 0 and for every ψ f ∈ V T , the solution of ( 9) with initial condition

ψ(0) = ϕ 1 ( 11 
)
and control u = Γ(ψ f ) satisfies ψ(T ) = ψ f .
The analysis is very close to the 1D case since for this particular data, the Laplacian behaves as in dimension 1. We refer to Appendix A for the proof of the genericity of the assumption [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]. Note that this simpler situation has also been used by Anton for proving global existence for the nonlinear Schrödinger equation [START_REF] Anton | Cubic nonlinear Schrödinger equation on three dimensional balls with radial data[END_REF].

Nonlinear Schrödinger equations

The third situation concerns nonlinear Schrödinger equations. More precisely we study the following nonlinear Schrödinger equation with Neumann boundary conditions

i ∂ψ ∂t (t, x) = -∂ 2 ψ ∂x 2 (t, x) + |ψ| 2 ψ(t, x) -u(t)µ(x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ), ∂ψ ∂x (t, 0) = ∂ψ ∂x (t, 1) = 0. (12) 
It is a nonlinear control system where

• the state is ψ, with ψ(t) L 2 (0,1) = 1, ∀t ∈ [0, T ],
• the control is the real valued function u : [0, T ] → R.

We study its local controllability around the reference trajectory

(ψ ref (t, x) := e -it , u ref (t) = 0).
More precisely, we prove the following result.

Theorem 4 Let T > 0 and µ ∈ H 2 (0, 1) be such that

∃c > 0 such that 1 0 µ(x) cos(kπx)dx c max{1, k} 2 , ∀k ∈ N. ( 13 
)
There exists η > 0 and a C 1 -map

Γ : V T → L 2 ((0, T ), R)
where

V T := {ψ f ∈ S ∩ H 2 (0, 1); ψ ′ f (0) = ψ ′ f (1) = 0 and ψ f -e -iT H 2 < η}
such that, for every ψ f ∈ V T , the solution of [START_REF] Baudouin | Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control[END_REF] with initial condition

ψ(0, x) = 1, ∀x ∈ (0, 1) (14) 
and control u := Γ(ψ f ) is defined on [0, T ] and satisfies ψ(T ) = ψ f .

Remark 3

The assumption [START_REF] Baudouin | Constructive solutions of a bilinear control problem for a Schrödinger equation[END_REF] holds generically in H 2 (0, 1). Indeed, integrations by part give

1 0 µ(x) cos(kπx)dx = 1 (kπ) 2 (-1) k+1 µ ′ (1) + µ ′ (0) + 1 0 µ ′′ (x) cos(kπx)dx , ∀k ∈ N * .
Other versions of this result, with higher regularities may be proved: the system is exactly controllable, locally around the reference trajectory

• in H 4 (0, 1) with controls in H 1 0 (0, T ),
• in H 6 (0, 1) with controls in H 2 0 (0, T ), etc.

Focusing nonlinearities may also be considered.

Nonlinear wave equations

The third situation concerns nonlinear wave equations. More precisely we study the following wave equation with Neumann boundary conditions

w tt = w xx + f (w, w t ) + u(t)µ(x)(w + w t ), x ∈ (0, 1), t ∈ (0, T ), w x (t, 0) = w x (t, 1) = 0, ( 15 
)
where f is an appropriate nonlinearity, that satisfies, in particular, f (1, 0) = 0. It is a nonlinear control system where

• the state is (w, w t ),
• the control is the real valued function u : [0, T ] → R.

We study its exact controllability, locally around the reference trajectory

(w ref (t, x) = 1, u ref (t) = 0).
More precisely, we prove the following result.

Theorem 5 Let T > 2, µ ∈ H 2 ((0, 1), R) be such that [START_REF] Baudouin | Constructive solutions of a bilinear control problem for a Schrödinger equation[END_REF] holds and f ∈ C 3 (R 2 , R) be such that f (1, 0) = 0 and ∇f (1, 0) = 0. There exists η > 0 and a C 1 -map

Γ : V T → L 2 ((0, T ), R)
where

V T := {(w f , ẇf ) ∈ H 3 × H 2 ((0, 1), R); w ′ f (0) = w ′ f (1) = ẇ′ f (0) = ẇ′ f (1) = 0 and w f -1 H 3 + ẇf H 2 < η}
such that Γ(1, 0) = 0 and for every (w f , ẇf ) ∈ V T , the solution of [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF] with initial condition (w, w t )(0, x) = (1, 0), ∀x ∈ (0, 1) [START_REF] Beauchard | Local Controllability of a 1-D beam equation[END_REF] and control u := Γ(w f , ẇf ) is defined on [0, T ] and satisfies (w, w t )(T ) = (w f , ẇf ).

Other versions of this result, with higher regularities may be proved: the system is exactly controllable, locally around the reference trajectory

• in H 4 × H 3 (0, 1) with controls in H 1 0 (0, T ), • in H 5 × H 4 (0, 1) with controls in H 2 0 (0, T ), etc.
1.4 A brief bibliography

A previous negative result

First, let us recall an important negative controllability result, for the equation ( 1), proved by Turinici [START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF]. It is a corollary of a more general result due to Ball, Marsden and Slemrod [START_REF] Ball | Controllability for distributed bilinear systems[END_REF].

Proposition 1 Let ψ 0 ∈ S ∩ H 2 (0) ((0, 1), C) and U [T ; u, ψ 0 ] be the value at time T of the solution of [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF] with initial condition ψ(0) = ψ 0 . The set of attainable states from ψ 0 ,

{U [T ; u, ψ 0 ]; T > 0, u ∈ L 2 ((0, T ), R)} has an empty interior in S ∩H 2 (0) ((0, 1), C). Thus (1) is not controllable in S ∩H 2 (0) ((0, 1), C) with controls in L 2 loc ([0, +∞), R).
Proposition 1 is a rather weak negative controllability result, because it does not prevent from positive controllability results, in different spaces. This had already been emphasized for the particular cases studied in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], in which the reachable set is proved to contain H 7 (0) or H 5+ (0) . In this article, we prove that the reachable set (at least locally, with small controls in L 2 ((0, T ), R)), coincides with S ∩ H 3 (0) , (which has, indeed, an empty interior in S ∩ H 2 (0) ). Therefore, sometimes, Ball Marsden and Slemrod's negative result is only due to an 'unfortunate' choice of functional spaces, that does not allow the controllability. It may not be due to a deep non controllability (such as, for example, when a subsystem evolves independently of the control).

Iterated Lie brackets

Now, let us quote some articles about the controllability of quantum systems.

First, the controllability of finite dimensional quantum systems (i.e. modelled by an ordinary differential equation) is well understood. Let us consider the quantum system

i dX dt = H 0 X + u(t)H 1 X, (17) 
where X ∈ C n is the state, H 0 , H 1 are n * n hermitian matrices, and t → u(t) ∈ R is the control. The controllability of ( 17) is linked to the rank of the Lie algebra spanned by H 0 and H 1 (see for instance [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] by Albertini and D'Alessandro, [START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF] by Altafini, [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF] by Brockett, see also [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF] by Agrachev and Sachkov, [START_REF] Coron | Control and nonlinearity[END_REF] by Coron for a more general discussion).

In infinite dimension, there are cases where the iterated Lie brackets provide the right intuition. For instance, it holds for the non controllability of the harmonic oscillator (see [START_REF] Mirrahimi | Controllability of quantum harmonic oscillators[END_REF] by Mirrahimi and Rouchon). However, the Lie brackets are often less powerful in infinite dimension than in finite dimension. It is precisely the case of our system. Indeed, let us define the operators

D(f 0 ) := H 2 ∩ H 1 0 (0, 1), f 0 (ψ) := -ψ ′′ , D(f 1 ) := L 2 (0, 1), f 1 (ψ) := x 2 ψ,
which correspond to µ(x) = x 2 . Let us compute the iterated Lie brackets at the point

ϕ 1 (x) = √ 2 sin(πx). Since ϕ 1 ∈ D(f 0 ), we can compute [f 0 , f 1 ](ϕ 1 ) = -4xϕ ′ 1 -2ϕ 1 , [f 1 , [f 0 , f 1 ]](ψ) = 8x 2 ϕ 1 = 8f 1 (ϕ 1 ). Notice that [f 0 , f 1 ](ϕ 1 ) does not belong to D(f 0 ) because [f 0 , f 1 ](ϕ 1 )(1) = 4
√ 2π = 0. Thus, in order to give a sense to the Lie bracket [f 0 , [f 0 , f 1 ]], one needs to extend the definition of f 0 to functions that do not vanish at x = 0, 1. A natural choice is

f 0 (ψ) := -ψ ′′ + ψ(0)δ ′ 0 -ψ(1)δ ′ 1 ( 18 
)
because, with this choice, we have

f 0 (ψ), ψ = ψ, f 0 ( ψ) , ∀ψ ∈ D(f 0 ), ∀ ψ ∈ H 2 (0, 1), in the sense - 1 0 ψ ′′ (x) ψ(x)dx = - 1 0 ψ(x) ψ ′′ (x)dx -ψ ′ (1) ψ(1) + ψ ′ (0) ψ(0).
With the definition (18), we get

[f 0 , [f 0 , f 1 ]](ψ) = -8f 0 (ψ) + 4ψ ′ (1)δ ′ 1 But then, again, [f 0 , [f 0 , [f 0 , f 1 ]]]
is not well defined. Moreover, even if we could give a sense to any iterated Lie bracket, because of the presence of Dirac masses, it would not be clear which space the Lie algebra should generate in case of local controllability. Therefore, the way the Lie algebra rank condition could be used directly in infinite dimension is not clear (see also [START_REF] Coron | Control and nonlinearity[END_REF] for the same discussion on other examples). This is why we develop completely analytic methods in this article.

Finally, let us quote important articles about the controllability of PDEs, in which positive results are proved by applying geometric control methods to the (finite dimensional) Galerkin approximations of the equation. In [START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF] by Sarychev and Agrachev and [START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF] by Shirikyan, the authors prove exact controllability results for dissipative equations. In [START_REF] Chambrion | Controllability of the discretespectrum Schrödinger equation driven by an external field[END_REF], by Boscain, Chambrion, Mason and Sigalotti, the authors prove the approximate controllability in L 2 , for bilinear Schrödinger equations such as [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF].

We also refer to the following works about the controllability of finite dimensional quantum systems [START_REF] Agrachev | An estimation of the controllability time for singleinput systems on compact lie groups[END_REF][START_REF] Boscain | Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy[END_REF][START_REF] Boscain | Resonance of minimizers for n-level quantum systems with an arbitrary cost[END_REF][START_REF] Boscain | Optimal control of the Schrödinger equation with two or three levels, Nonlinear and adaptive control[END_REF][START_REF] Boscain | Optimal control in laser-induced population transfer for two-and three-level quantum systems[END_REF][START_REF] Boscain | Optimal control in laser-induced population transfer for two-and three-level quantum systems[END_REF][START_REF] Boscain | Time minimal trajectories for a spin 1/2 particle in a magnetic field[END_REF], by Agrachev, Boscain, Chambrion, Charlot, Gauthier, Guérin, Jauslin and Mason, [START_REF] Khaneja | Sub-riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer[END_REF] by Khaneja, Glaser and Brockett, [START_REF] Ramakrishna | Controllability of molecular systems[END_REF] by Ramakrishna, Salapaka, Dahleh, Rabitz, [START_REF] Sussmann | Controllability of nonlinear systems[END_REF] by Sussmann and Jurdjevic, [START_REF] Turinici | Quantum wave function controllability[END_REF] by Turinici and Rabitz. Let us also mention [START_REF] Mirrahimi | Lyapounov control of bilinear Schrödinger equations[END_REF] by Mirrahimi,Rouchon,Turinici and [19] for explicit feedback controls, inspired by Lyapunov technics.

Controllability results for Schrödinger and wave equations

The controllability of Schrödinger equations with distributed and boundary controls, that act linearly on the state, is studied since a long time.

For linear equations, the controllability is equivalent to an observability inequality that may be proved with different technics: multiplier methods (see [START_REF] Fabre | Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger et leurs limites asymptotiques: application à certaines équations de plaques vibrantes[END_REF] by Fabre, [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF] by Machtyngier), microlocal analysis (see [START_REF] Lebeau | Contrôle de l'équation de Schrödinger[END_REF] by Lebeau,[START_REF] Burq | Contrôle de l'équation des plaques en présence d'obstacles strictement convexes[END_REF] by Burq), Carleman estimates (see [START_REF] Lasiecka | Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls[END_REF][START_REF] Lasiecka | Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carlemann estimates[END_REF] by Lasiecka, Triggiani, Zhang), or number theory (see [START_REF] Ramdani | A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator[END_REF] by Ramdani, Takahashi, Tenenbaum and Tucsnak).

For nonlinear equations, we refer to [START_REF] Dehman | Stabilization and control for the nonlinear Schrödinger equation on a compact surface[END_REF] by Dehman, Gérard, Lebeau, [START_REF] Lange | Controllability of the nonlinear Schrödinger equation in the vicinity of the ground state[END_REF] by Lange Teismann, [START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on an interval[END_REF][START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolf of dimension 3[END_REF] by Laurent, [START_REF] Rosier | Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval[END_REF] by Rosier, Zhang.

Other results about bilinear quantum systems

The study of the controllability of Schrödinger PDEs with bilinear controls started later.

The first result is negative and it is due to Turinici (see [START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF] and Proposition 1). It is a corollary of a more general result by Ball, Marsden and Slemrod [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]. Because of this noncontrollability result, such equations have been considered as non controllable for a long time. However, important progress have been made in the last years and this question is now better understood (see section 1.4.1). Let us also mention that this negative result has been adapted to non linear Schrödinger equations in [START_REF] Ilner | Limitations on the control of Schrödinger equations[END_REF] by Ilner, Lange and Teismann.

Concerning exact controllability issues, local results for 1D models have been proved in [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF] by Beauchard; almost global results have been proved in [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], by Coron and Beauchard. In [START_REF] Coron | On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well[END_REF], Coron proved that a positive minimal time was required for the local controllability of the 1D model (1) with µ(x) = x -1/2. Now, let us quote some approximate controllability results. In [START_REF] Beauchard | Practical stabilization of a quantum particle in a onedimensional infinite square potential well[END_REF] Mirrahimi and Beauchard proved the global approximate controllability, in infinite time, for a 1D model and in [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF] Mirrahimi proved a similar result for equations involving a continuous spectrum. Approximate controllability, in finite time, has been proved for particular models by Boscain and Adami in [START_REF] Adami | Controllability of the Schroedinger Equation via Intersection of Eigenvalues[END_REF], by using adiabatic theory and intersection of the eigenvalues in the space of controls. Approximate controllability, in finite time, for more general models, have been studied by 3 teams, with different tools: by Boscain, Chambrion, Mason, Sigalotti [START_REF] Chambrion | Controllability of the discretespectrum Schrödinger equation driven by an external field[END_REF], with geometric control methods; by Nersesyan [START_REF] Nersesyan | Growth of Sobolev norms and controllability of Schrödinger equation[END_REF][START_REF] Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF] with feedback controls and variational methods; and by Ervedoza and Puel [START_REF] Ervedoza | Approximate controllability for a system of schrödinger equations modeling a single trapped ion[END_REF] thanks to a simplified model.

Let us emphasize that the local exact controllability result of [START_REF] Beauchard | Local Controllability of a 1-D bilinear Schrödinger equation: a simpler proof[END_REF] and the global approximate controllability of [START_REF] Nersesyan | Growth of Sobolev norms and controllability of Schrödinger equation[END_REF][START_REF] Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF] can be put together in order to get the global exact controllability of 1D models (see [START_REF] Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF]).

Optimal control techniques have also been investigated for Schrödinger equations with a non linearity of Hartee type in [START_REF] Baudouin | A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics[END_REF][START_REF] Baudouin | Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control[END_REF] by Baudouin, Kavian, Puel and in [START_REF] Cancès | Contrôle optimal bilinéaire d'une équation de Schrödinger[END_REF] by Cances, Le Bris, Pilot. An algorithm for the computation of such optimal controls is studied in [START_REF] Baudouin | Constructive solutions of a bilinear control problem for a Schrödinger equation[END_REF] by Baudouin and Salomon.

Structure of this article

This article is organized as follows.

Section 2 aims at proving the controllability for the linear Schrödinger equations. The Subsections 2.1, 2.2, 2.3 and 2.4 are dedicated to the different steps of the proof of Theorem 1, where the equation is posed on a bounded interval. The Subsection 2.5 is dedicated to the proof of the same result with higher regularities, i.e. Theorem 2. The Subsection 2.6 is dedicated to the Schrödinger equation for radial data on the three dimensional ball, i.e. the proof of Theorem 3.

In Section 3, we prove Theorem 4 concerning the nonlinear Schrödinger equation [START_REF] Baudouin | Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control[END_REF].

In Section 4, we prove Theorem 5 concerning the nonlinear wave equation [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF]. Finally, in Section 5, we state some conclusions, open problems and perspectives.

Notations

Let us introduce some conventions and notations that are valid in all this section. Unless otherwise specified, the functions considered are complex valued and, for example, we write H 1 0 (0, 1) for H 1 0 ((0, 1), C). When the functions considered are real valued, we specify it and we write, for example, L 2 ((0, T ), R). We use the spaces

h s (N * , C) := a = (a k ) k∈N * ∈ C N * ; ∞ k=1 |k s a k | 2 < +∞ equipped with the norm a h s := ∞ k=1 |k s a k | 2 1/2 .
The same letter C denotes a positive constant, that can change from one line to another one. If (X, . ) is a normed vector space and R > 0, B R [X] denotes the open ball {x ∈ X; x < R} and B R [X] denotes the closed ball {x ∈ X; x R}.

Linear Schrödinger equations

The goal of this section is the proof of controllability results for linear Schrödinger equations, with bilinear controls. The Subsections 2.1, 2.2, 2.3 and 2.4 are dedicated to the different steps of the proof of Theorem 1, where the equation is posed on a bounded interval. In Subsection 2.1, we prove existence, uniqueness, regularity results and bounds on the solution of the Cauchy problem (1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF]. In Subsection 2.2, we prove the C 1 -regularity of the end-point map associated to our control problem. In Subsection 2.3, we prove the controllability of the linearized system around the ground state. Finally, in Subsection 2.4, we deduce Theorem 1 by applying the inverse mapping theorem. The Subsection 2.5 is dedicated to the proof of the same result with higher regularities, i.e. Theorem 2.

The Subsection 2.6 is dedicated to the Schrödinger equation for radial data on the three dimensional ball, i.e. the proof of Theorem 3.

In all this section (except in Subsection 2.6), the operator A is defined by (2), the spaces H s (0) (0, 1) are defined by ( 4) and e -iAt denotes the group of isometries of H s (0) (0, 1), ∀s 0 generated by -iA,

e -iAt ϕ = ∞ k=1 ϕ, ϕ k e -iλ k t ϕ k , ∀ϕ ∈ L 2 (0, 1). ( 19 
)
We use few classical results concerning trigonometric moment problems that are recalled in Appendix B.

Well posedness of the Cauchy problem

This subsection is dedicated to the statement of existence, uniqueness, regularity results, and bounds for the weak solutions of the Cauchy problem

   i ∂ψ ∂t = -∂ 2 ψ ∂x 2 -u(t)µ(x)ψ -f (t, x), x ∈ (0, 1), t ∈ R + , ψ(t, 0) = ψ(t, 1) = 0, ψ(0, x) = ψ 0 (x). ( 20 
)
Proposition 2 Let µ ∈ H 3 ((0, 1), R), T > 0, ψ 0 ∈ H 3 (0) (0, 1), f ∈ L 2 ((0, T ), H 3 ∩ H 1 0 ) and u ∈ L 2 ((0, T ), R).
There exists a unique weak solution of [START_REF] Beauchard | Practical stabilization of a quantum particle in a onedimensional infinite square potential well[END_REF]

, i.e. a function ψ ∈ C 0 ([0, T ], H 3 (0)
) such that the following equality holds in H 3 (0) (0, 1) for every t ∈ [0, T ],

ψ(t) = e -iAt ψ 0 + i t 0 e -iA(t-τ ) [u(τ )µψ(τ ) + f (τ )]dτ. ( 21 
)
Moreover, for every R > 0, there exists C = C(T, µ, R) > 0 such that, if u L 2 (0,T ) < R, then this weak solution satisfies

ψ C 0 ([0,T ],H 3 (0) ) C ψ 0 H 3 (0) + f L 2 ((0,T ),H 3 ∩H 1 0 ) . ( 22 
)
If f ≡ 0 then ψ(t) L 2 (0,1) = ψ 0 L 2 (0,1) , ∀t ∈ [0, T ]. (23) 
The main difficulty of the proof of this result is that f (s) is not assumed to belong to H 3 (0) (0, 1) (i.e. f ′′ (s, .) may not vanish at x = 0 and x = 1), and µ is not assumed to satisfy µ ′ (0) = µ ′ (1) = 0 (and thus the operator ϕ → µϕ does not preserve H 3 (0) (0, 1) because for ϕ ∈ H 3 (0) (0, 1), we have (µϕ) ′′ = 2µ ′ ϕ ′ at x = 0 and x = 1). The argument for proving Proposition 2 comes from the following Lemma.

Lemma 1 Let T > 0 and f ∈ L 2 ((0, T ), H 3 ∩ H 1 0 ). The function G : t → t 0 e iAs f (s)ds belongs to C 0 ([0, T ], H 3 (0) ), moreover G L ∞ ((0,T ),H 3 (0) ) c 1 (T ) f L 2 ((0,T ),H 3 ∩H 1 0 ) ( 24 
)
where the constants c 1 (T ) are uniformly bounded for T lying in bounded intervals.

Proof of Lemma 1: By definition, we have

G(t) = ∞ k=1 t 0 f (s), ϕ k e iλ k s ds ϕ k .
For almost every s ∈ (0, T ), f (s) ∈ H 3 ∩ H 1 0 , and we have

f (s), ϕ k = 1 λ k Af (s), ϕ k = - √ 2 λ k 1 0 f ′′ (s, x) sin(kπx)dx = √ 2 (kπ) 3 (-1) k f ′′ (s, 1) -f ′′ (s, 0) - √ 2 (kπ) 3 1 0 f ′′′ (s, x) cos(kπx)dx.
Thus, we have

G(t) H 3 (0) = t 0 f (s), ϕ k e iλ k s ds h 3 √ 2 π 3 t 0 f ′′ (s, 1)e iλ k s ds l 2 + t 0 f ′′ (s, 0)e iλ k s ds l 2 + 1 π 3 t 0 f ′′′ (s), √ 2 cos(kπx) e iλ k s ds l 2 .
The family (

√ 2 cos(kπx)) k∈N * is orthonormal in L 2 (0, 1), thus t 0 f ′′′ (s), √ 2 cos(kπx) e iλ k s ds l 2 = ∞ k=1 t 0 f ′′′ (s), √ 2 cos(kπx) e iλ k s ds 2 1/2 ∞ k=1 t t 0 | f ′′′ (s), √ 2 cos(kπx) | 2 ds 1/2 √ t t 0 f ′′′ (s) 2 L 2 ds 1/2 √ t f L 2 ((0,t),H 3 ) .
Thanks to Corollary 4 (in Appendix B), we get

G(t) H 3 (0) √ 2C(t) π 3 f ′′ (., 0) L 2 (0,t) + f ′′ (., 1) L 2 (0,t) + √ t π 3 f L 2 ((0,t),H 3 ) c 1 (t) f L 2 ((0,t),H 3 ∩H 1 0 )
where c 1 (t) is uniformly bounded for t lying in bounded intervals. This bound shows that G(t) belongs to H 3 (0) (0, 1) for every t ∈ [0, T ] and that the map t ∈ [0, T ] → G(t) ∈ H 3 (0) is continuous at t = 0 (because c 1 (t) is uniformly bounded when t → 0 and f L 2 ((0,t),H 3 ∩H 1 0 ) → 0 when t → 0, thanks to the dominated convergence theorem). The continuity of G at any t ∈ (0, T ) can be proved similarly.

Proof of Proposition 2:

Let µ ∈ H 3 ((0, 1), R), T > 0, ψ 0 ∈ H 3 (0) (0, 1), f ∈ L 2 ((0, T ), H 3 ∩ H 1 0
) and u ∈ L 2 ((0, T ), R). We consider the map

F : C 0 ([0, T ], H 3 (0) ) → C 0 ([0, T ], H 3 (0) ) ψ → ξ
where ξ := F (ψ) is defined by

ξ(t) := e -iAt ψ 0 + i t 0 e -iA(t-s) u(s)µψ(s) + f (s) ds, ∀t ∈ [0, T ]. ( 25 
)
We have assumed that f ∈ L 2 ((0, T ),

H 3 ∩ H 1 0 ) and u ∈ L 2 (0, T ), thus, for every ψ ∈ C 0 ([0, T ], H 3 (0) ), the map uµψ + f belongs to L 2 ((0, T ), H 3 ∩ H 1 0 ) and Lemma 1 ensures that F takes values in C 0 ([0, T ], H 3 (0)
). We have also used that in dimension 1, H 3 is an algebra. Thanks to [START_REF] Boscain | Optimal control in laser-induced population transfer for two-and three-level quantum systems[END_REF], we get, for every t ∈ [0, T ],

F (ψ 1 )(t) -F (ψ 2 )(t) H 3 (0) = t 0 e iAs u(s)µ(ψ 1 -ψ 2 )(s)ds H 3 (0) c 1 (t) uµ(ψ 1 -ψ 2 ) L 2 ((0,t),H 3 ∩H 1 0 ) c 1 (t) u L 2 (0,t) µ(ψ 1 -ψ 2 ) L ∞ ((0,t),H 3 ∩H 1 0 ) c 1 (t) u L 2 (0,t) C(µ) ψ 1 -ψ 2 L ∞ ((0,t),H 3 (0) ) thus F (ψ 1 ) -F (ψ 2 ) L ∞ ((0,T ),H 3 (0) ) c 2 (T, µ) u L 2 (0,T ) ψ 1 -ψ 2 L ∞ ((0,T ),H 3 (0) ) . (26) 
If u L 2 (0,T ) is small enough, then F is a contraction. Thanks to the Banach fixed point theorem, there exists ψ ∈ C 0 ([0, T ], H 3 (0) ) such that F (ψ) = ψ. The previous arguments show that, for this fixed point, we have

ψ L ∞ ((0,T ),H 3 (0) ) ψ 0 H 3 (0) +c 2 (T, µ) u L 2 (0,T ) ψ L ∞ ((0,T ),H 3 (0) ) +c 1 (T ) f L 2 ((0,T ),H 3 ∩H 1 0 ) .
Thus, if c 2 (T, µ) u L 2 (0,T ) 1/2, then, we get [START_REF] Boscain | Resonance of minimizers for n-level quantum systems with an arbitrary cost[END_REF]. We have proved Proposition 2 when u L 2 (0,T ) is small enough. If it is not the case, one may consider 0 = T 0 < T 1 < ... < T N = T such that u L 2 (Tj ,Tj+1) is small and apply the previous result on [T 0 , T 1 ], ..., [T N -1 , T N ] in order to get the conclusion. Since our constant c 1 (t) is uniform on bounded sets, we easily get that N only depends on R, so that the constant in the Proposition does only depend on T , µ and R as claimed. Now, let us prove that ( 23) holds when f = 0. Classical arguments allow to prove that,

when u ∈ C 0 ([0, T ], R), then ψ ∈ C 1 ([0, T ], L 2
) and the first equality of (1) holds in L 2 for every t ∈ [0, T ]. Thus, when u ∈ C 0 ([0, T ], R), we can take the L 2 -scalar product of this equation with ψ; and the imaginary part of the resulting equality gives

d dt ψ(t) 2 L 2 = 0.
Thus, we have ( 23) when u ∈ C 0 ([0, T ], R). A density argument allows to prove [START_REF] Boscain | Optimal control of the Schrödinger equation with two or three levels, Nonlinear and adaptive control[END_REF] when u only belongs to L 2 ((0, T ), R).

C 1 -regularity of the end-point map

For T > 0 we introduce the tangent space of S at ψ 1 (T )

V T := {ξ ∈ L 2 (0, 1); ℜ ξ, ψ 1 (T ) = 0}
and the orthogonal projection

P T : L 2 (0, 1) → V T .
Proposition 2 allows to consider the map

Θ T : L 2 ((0, T ), R) → V T ∩ H 3 (0) (0, 1) u → P T [ψ(T )] ( 27 
)
where ψ is the solution of (1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF]. The goal of this section is the proof of the following result.

Proposition 3 Let T > 0 and µ ∈ H 3 ((0, 1), R). The map Θ T defined by ( 27) is C 1 . Moreover, for every u, v ∈ L 2 ((0, T ), R), we have

dΘ T (u).v = P T [Ψ(T )] ( 28 
)
where Ψ is the weak solution of the linearized system

   i ∂Ψ ∂t = -Ψ ′′ -u(t)µ(x)Ψ -v(t)µ(x)ψ, x ∈ (0, 1), t ∈ (0, T ), Ψ(t, 0) = Ψ(t, 1) = 0, Ψ(0, x) = 0, ( 29 
)
and ψ is the solution of ( 1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF].

Proof of Proposition 3: Let T > 0, µ ∈ H 3 ((0, 1), R) and u ∈ L 2 ((0, T ), R). First, let us emphasize that the linear map v → Ψ(T ) is continuous from L 2 ((0, T ), R) to H 3 (0) (0, 1) thanks to Proposition 2.

First step: We prove that Θ T is differentiable and that [START_REF] Burq | Contrôle de l'équation des plaques en présence d'obstacles strictement convexes[END_REF] holds. Let ψ be the weak solution of (1),( 6), Ψ solution of ( 29) and ψ solution of

     i ∂ ψ ∂t = -ψ ′′ -(u + v)(t)µ(x) ψ, x ∈ (0, 1), t ∈ (0, T ), ψ(t, 0) = ψ(t, 1) = 0, ψ(0, x) = ϕ 1 . (30) Then ∆ := ψ -ψ -Ψ is the weak solution of    i ∂∆ ∂t = -∆ ′′ -(u + v)(t)µ(x)∆ -v(t)µΨ, x ∈ (0, 1), t ∈ (0, T ), ∆(t, 0) = ∆(t, 1) = 0, ∆(0, x) = 0. (31) Let us prove that ∆ C 0 ([0,T ],H 3 (0) ) = o( v L 2 ) when v L 2 → 0, (32) 
which gives the conclusion. Let R > 0 be such that u L 2 (0,T ) < R and u + v L 2 (0,T ) < R. Thanks to Proposition 2, there exists

C j = C j (T, µ, R) > 0 for j = 0, 1 such that ∆ C 0 ([0,T ],H 3 (0) ) C 0 vµΨ L 2 ((0,T ),H 3 ∩H 1 0 ) C 1 v L 2 Ψ C 0 ([0,T ],H 3 (0) ) , Ψ C 0 ([0,T ],H 3 (0) ) C 0 vµψ L 2 ((0,T ),H 3 ∩H 1 0 ) C 1 v L 2 ψ C 0 ([0,T ],H 3 (0) ) C 0 C 1 v L 2 ϕ 1 H 3 (0)
, which proves [START_REF] Coron | On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well[END_REF].

Second step: We prove that dΘ T is continuous. Actually, we prove that this map is locally Lipschitz. Let u, u ∈ L 2 ((0, T ), R) and v ∈ L 2 ((0, T ), R). Let ψ be the solution of (1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF], Ψ solution of (29) and ψ, Ψ solution of

     i ∂ ψ ∂t = -ψ ′′ -u(t)µ(x) ψ, ψ(t, 0) = ψ(t, 1) = 0, ψ(0, x) = ϕ 1 ,      i ∂ Ψ ∂t = -Ψ ′′ -u(t)µ(x) Ψ -v(t)µ(x) ψ, Ψ(t, 0) = Ψ(t, 1) = 0, Ψ(0, x) = 0, We have [dΘ T (u) -dΘ T ( u)].v = P T [Ψ(T ) -Ψ(T )] = P T [Ξ(T )]
where Ξ is the weak solution of

   i ∂Ξ ∂t = -∂ 2 Ξ ∂x 2 -u(t)µΞ -(u -u)µ Ψ -vµ(ψ -ψ), Ξ(t, 0) = Ξ(t, 1) = 0, Ξ(0) = 0. Let R > 0 be such that u L 2 (0,T ) < R, u L 2 (0,T ) < R. Let us prove that Ξ C 0 ([0,T ],H 3 (0) ) C v L 2 u -u L 2
where C = C(T, µ, R) > 0, which gives the conclusion. Thanks to Proposition 2, we have

Ξ C 0 ([0,T ],H 3 (0) ) C 2 (u -u)µ Ψ + vµ(ψ -ψ) L 2 ((0,T ),H 3 ∩H 1 0 ) C 3 u -u L 2 Ψ C 0 ([0,T ],H 3 (0) ) + v L 2 ψ -ψ C 0 ([0,T ],H 3 (0) ) C 4 u -u L 2 vµ ψ L 2 ((0,T ),H 3 ∩H 1 0 ) + v L 2 ( u -u)µ ψ L 2 ((0,T ),H 3 ∩H 1 0 ) C 5 u -u L 2 v L 2 ψ C 0 ([0,T ],H 3 (0) ) + v L 2 u -u L 2 ψ C 0 ([0,T ],H 3 (0) ) C 6 u -u L 2 v L 2 ,
where C j = C j (T, µ, R) > 0 for j = 2, ..., 6.

Controllability of the linearized system

The goal of this section is the proof of the following result.

Proposition 4 Let T > 0 and µ ∈ H 3 ((0, 1), R) be such that ( 5) holds. The linear map dΘ T (0) :

L 2 ((0, T ), R) → V T ∩ H 3 (0) (0, 1) has a continuous right inverse dΘ T (0) -1 : V T ∩ H 3 (0) (0, 1) → L 2 ((0, T ), R).
The proof of Proposition 4 relies on an Ingham inequality, due to Haraux (see [START_REF] Haraux | Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire[END_REF] and Appendix B).

Proof of Proposition 4:

We have dΘ T (0).v = Ψ(T ) where

   i ∂Ψ ∂t = -Ψ ′′ -v(t)µψ 1 , Ψ(t, 0) = Ψ(t, 1) = 0, Ψ(0) = 0, ( 33 
) thus Ψ(T ) = ∞ k=1 i µϕ 1 , ϕ k T 0 v(t)e i(λ k -λ1)t dt e -iλ k T ϕ k . Let Ψ f ∈ V T ∩ H 3 (0) (0, 1
). If Ψ is the solution of (33) for some v ∈ L 2 ((0, T ), R), then, the equality Ψ(T ) = Ψ f is equivalent to the trigonometric moment problem

T 0 v(t)e i(λ k -λ1)t dt = d k-1 (Ψ f ) := Ψ f , ϕ k e iλ k T i µϕ 1 , ϕ k , ∀k ∈ N * . (34) 
Now, we apply Corollary 1 with ω k := λ k+1 -λ 1 , ∀k ∈ N, and we get the conclusion with

dΘ T (0) -1 (Ψ f ) := L[d(Ψ f )],
where d(Ψ f ) := (d k (Ψ f )) k∈N . Indeed, for Ψ f ∈ V T ∩ H 3 (0) (0, 1), the sequence d(Ψ f ) belongs to l 2 r (N, C) thanks to the assumption (5).

Proof of Theorem 1

Let T > 0 and µ ∈ H 3 ((0, 1), R) be such that (5) holds. Let R 1 > 0 and δ > 0 be such that,

∀u ∈ B R1 [L 2 ((0, T ), R)]
, the solution of (1), ( 6) satifies ℜ ψ(T ), ψ 1 (T ) > 0, (see Proposition 2) and

∀ψ f ∈ S ∩ H 3 (0) (0, 1) with ψ f -ψ 1 (T ) H 3 (0) < δ, we have ℜ ψ f , ψ 1 (T ) > 0.
The spaces B R1 [L 2 ((0, T ), R)] and V T ∩ H 3 (0) (0, 1) are Banach spaces. The map Θ T : Proposition 4). Thanks to the inverse mapping theorem, there exists δ 1 ∈ (0, δ) and a C 1 map

B R1 [L 2 ((0, T ), R)] → V T ∩ H 3 (0) (0, 1) is C 1 (see Proposition 3), its differential at 0 has a continuous right inverse dΘ T (0) -1 : V T ∩ H 3 (0) (0, 1) → L 2 ((0, T ), R) (see
Θ -1 T : B δ1 [V T ∩ H 3 (0) (0, 1)] → B R1 [L 2 ((0, T ), R)] such that Θ T (Θ -1 T ( ψ f )) = ψ f for every ψ f ∈ B δ1 [V T ∩ H 3 (0) (0, 1)].
For

ψ f ∈ S ∩ H 3 (0) (0, 1) with ψ f -ψ 1 (T ) H 3 (0) < δ 1 , we have P T ψ f H 3 (0) < δ 1 , thus we can define Γ(ψ f ) =: Θ -1 T [P T ψ f ].
Thanks to the choice of R 1 and δ we know that the solution of ( 1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF] 

with u = Γ(ψ f ) satisfies ψ(T ) = P T (ψ(T )) + 1 -P T ψ(T ) 2 L 2 ψ 1 (T ) = P T (ψ f ) + 1 -P T ψ f 2 L 2 ψ 1 (T ) = ψ f .

Generalization to higher regularities

The goal of this section is the proof of Theorem 2. The first step of the proof consists in adapting Proposition 2.

Proposition 5 Let µ ∈ H 5 ((0, 1), R), T > 0, ψ 0 ∈ H 5 (0) (0, 1), f ∈ H 1 0 ((0, T ), H 3 ∩ H 1 0 ) and u ∈ H 1 0 ((0, T ), R). There exists a unique function ψ ∈ C 1 ([0, T ], H 3 (0)
) such that the equality [START_REF] Boscain | Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy[END_REF] 

holds in C 1 ([0, T ], H 3 (0)
). Moreover, for every R > 0 there exists C = C(T, µ, R) > 0 such that, if u H 1 0 (0,T ) < R, then, this weak solution satisfies

ψ C 1 ([0,T ],H 3 (0) ) C ψ 0 H 5 (0) + f H 1 ((0,T ),H 3 ∩H 1 0 ) . ( 35 
)
The proof of Proposition 5 is the same as the one of Proposition 2, except that we use the following Lemma, instead of Lemma 1.

Lemma 2 Let T > 0, u 0 ∈ H 5 ∩ H 3 (0) and f ∈ H 1 ((0, T ), H 3 ∩ H 1 0 ) be such that -iAu 0 + f (0) ∈ H 3 (0) . The function G : t → e -iAt u 0 + t 0 e -iA(t-s) f (s)ds belongs to C 1 ([0, T ], H 3 (0) ), moreover G C 1 ([0,T ],H 3 (0) ) c 1 (T ) u 0 H 3 (0) + f H 1 ((0,T ),H 3 ∩H 1 0 ) + -iAu 0 + f (0) H 3 (0)
where the constants c 1 (T ) are uniformly bounded for T lying in bounded intervals. We also have

-iAG(T ) + f (T ) H 3 (0) c 1 (T ) u 0 H 3 (0) + f H 1 ((0,T ),H 3 ∩H 1 0 ) + -iAu 0 + f (0) H 3 (0) 
.

Proof of Lemma 2:

We already know that G ∈ C 0 ([0, T ], H 3 (0) ). First let us write

G(t) = e -iAt u 0 + t 0 e -iAτ f (t -τ )dτ. Since u 0 ∈ H 4 (0) and f ∈ H 1 ((0, T ), H 2 (0) ), we know that G ∈ C 1 ([0, T ], H 2 (0)
) and the following equality holds in H 2 (0) for every t ∈ [0, T ],

∂G ∂t (t) = -iAe -iAt u 0 + e -iAt f (0) + t 0 e -iAτ ∂f ∂t (t -τ )dτ = e -iAt [-iAu 0 + f (0)] + t 0 e -iA(t-s) ∂f ∂t (s)ds
(the proof of this result involves classical technics). Thanks to this expression and Lemma 1, we get

∂G ∂t ∈ C 0 ([0, T ], H 3 (0) ).
Let us prove that G ∈ C 1 ([0, T ], H 3 (0) ), i.e. for every t ∈ [0, T ],

G(t + h) -G(t) h - ∂G ∂t (t) H 3 (0)
→ 0 when h → 0.

We have

G(t+h)-G(t) h -∂G ∂t (t) = e -iAt e -iAh -Id h u 0 + iAu 0 -f (0) + 1 h t+h t e -iAτ f (t + h -τ )dτ + t 0 e -iAτ f (t+h-τ )-f (t-τ ) h -∂f ∂t (t -τ ) dτ. (36 
) By applying Lemma 1, we see that the H 3 (0) (0, 1)-norm of the second term of the right hand side of (36) tends to zero when h → 0 because f ∈ H 1 ((0, T ), H 3 ∩ H 1 0 ). Thanks to several changes of variables, the first term of the right hand side of (36) may be decomposed in the following way

e -iAt e -iAh -Id h u 0 + iA -1 f (0) + iA u 0 + iA -1 f (0) +e -iAt 1 h h 0 e -iAs f (h -s) -f (0) ds. ( 37 
)
The H 3 (0) (0, 1)-norm of the first term of (37) tends to zero when h → 0 because u 0 + iA -1 f (0) ∈ H 5 (0) (0, 1). The H 3 (0) (0, 1)-norm of the second term of (37) also tends to zero when h → 0 because, thanks to Lemma 1 and Cauchy-Schwarz inequality, it is bounded by

h 0 e iAs f (s)-f (0) h ds H 3 (0) c 0 (h) f (.)-f (0) h L 2 ((0,h),H 3 ∩H 1 0 ) c0(h) h . 0 ∂f ∂t (τ )dτ L 2 ((0,h),H 3 ∩H 1 0 ) c0(h) √ h h . 0 ∂f ∂t (τ )dτ L ∞ ((0,h),H 3 ∩H 1 0 ) c 0 (h) ∂f ∂t L 2 ((0,h),H 3 ∩H 1 0 )
.

The estimate [START_REF] Boscain | Optimal control in laser-induced population transfer for two-and three-level quantum systems[END_REF] of Lemma 1 gives the first inequality of Lemma 2. Moreover, by integration by part in time, we get

-iAG(t) = -iAe -iAt u 0 - t 0 iAe -iAτ f (t -τ )dτ = iAe -iAt u 0 + e -iAt f (0) -f (t) + t 0 e -iAτ ∂f ∂t (t -τ )dτ.
and we get the second estimate thanks to the identity

-iAG(t) + f (t) = e -iAt [iAu 0 + f (0)] + t 0 e -iA(t-τ ) ∂f ∂t (τ )dτ.
The following statement is the appropriate adaptation of Propositon 3.

Proposition 6 Let T > 0 and µ ∈ H 5 ((0, 1), R). The map Θ T defined by ( 27) is

C 1 from H 1 0 ((0, T ), R) to V T ∩ H 5 (0) (0,

1). Proof of Proposition 6:

First step: we prove that Θ T maps H 1 0 ((0, T ), R) into V T ∩ H 5 (0) (0, 1). Let u ∈ H 1 0 ((0, T ), R) and ψ be the weak solution of (1), [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels[END_REF].

Then ψ ∈ C 1 ([0, T ], H 2 (0) ) ∩ C 0 ([0, T ], H 4 (0)
) and the first equality of (1) holds in H 2 (0) for every t ∈ [0, T ] (the proof of this result involves classical technics). In particular, we have

ψ(T ) H 5 (0) = ψ ′′ (T ) H 3 (0) = ∂ψ ∂t (T ) H 3 (0)
because u(T ) = 0 which is finite, thanks to Proposition 5. Thus, Θ T maps H 1 0 ((0, T ), R) into V T ∩ H 5 (0) (0, 1).

Second step: We prove that Θ

T : H 1 0 ((0, T ), R) → V T ∩ H 5 (0) is differentiable. Let u, v ∈ H 1
0 ((0, T ), R), ψ, Ψ, ψ be the weak solutions of ( 1),( 6), ( 29), [START_REF] Chambrion | Controllability of the discretespectrum Schrödinger equation driven by an external field[END_REF]. Then, ∆ := ψ -ψ -Ψ is the weak solution of [START_REF] Coron | Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations[END_REF]. Let us prove that

∆(T ) H 5 (0) = o( v H 1 0 ) when v H 1 0 → 0,
which gives the conclusion. Let R > 0 be such that u H 1 0 < R and u + v H 1 0 < R. Thanks to Proposition 5, there exists

C = C(T, µ, R) > 0, C 1 = C 1 (µ) > 0 such that ∆(T ) H 5 (0) = ∆ ′′ (T ) H 3 (0) = ∂∆ ∂t (T ) H 3 (0) because u(T ) = v(T ) = 0 C vµΨ H 1 0 ((0,T ),H 3 ∩H 1 0 ) CC 1 v H 1 0 Ψ C 1 ([0,T ],H 3 (0) ) C 2 C 1 v H 1 0 vµψ H 1 0 ((0,T ),H 3 ∩H 1 0 ) C 2 C 2 1 v 2 H 1 0 ψ C 1 ([0,T ],H 3 (0) ) .
The proof of the continuity of the map dΘ T :

H 1 0 ((0, T ), R) → L(H 1 0 , V T ∩ H 5 (0)
) involves similar arguments.

Remark 4 With the same kind of arguments, we could get that

Aψ + u(t)µψ ∈ C 0 ([0, T ], H 3 (0)
). Therefore, ψ(t) does not, in general, belong to H 5 (0) (0, 1) for t ∈ (0, T ). The following statement is the appropriate generalization of Proposition 4.

Proposition 7 Let T > 0, µ ∈ H 5 ((0, 1), R) be such that [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] holds and Θ T be defined by [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF]. The linear map dΘ T (0) :

H 1 0 ((0, T ), R) → V T ∩ H 5 (0) (0, 1) has a continuous right inverse dΘ T (0) -1 : V T ∩ H 5 (0) (0, 1) → H 1 0 ((0, T ), R).
Proof of Proposition 7: Let Ψ f ∈ V T ∩ H 5 (0) (0, 1). If Ψ is the solution of (33) for some v ∈ H 1 0 ((0, T ), R, then, the equality Ψ(T ) = Ψ f is equivalent to the trigonometric moment problem [START_REF] Dehman | Stabilization and control for the nonlinear Schrödinger equation on a compact surface[END_REF], or equivalently

T 0 v(t)dt = 0, T 0 (T -t) v(t)dt = 1 i µϕ1,ϕ1 Ψ f , ϕ 1 e iλ1T , T 0 v(t)e i(λ k -λ1)t dt = λ1-λ k µϕ1,ϕ k Ψ f , ϕ k e iλ k T , ∀k 2. ( 38 
)
The conclusion comes from Corollary 2 (in Appendix B). Now, Theorem 2 may be proved exactly as Theorem 1.

Case of the three dimensional ball with radial data

The goal of this section is the proof of Theorem 3. This proof is very similar to the case of the interval and we only give the necessary modifications. The equivalent of Lemma 1 is proved with a similar computation for f ∈ L 2 ((0, T ), H 3 rad ∩ H 1 (0) ). More precisely, for almost every s ∈ (0, T ), we have

f (s), ϕ k = B 3 f (s)ϕ k = 1 λ 2 k B 3 f (s)∆ 2 ϕ k = 1 λ 2 k B 3 ∆f (s)∆ϕ k = - 1 λ 2 k B 3 ∇∆f (s) • ∇ϕ k + 1 λ 2 k S 2 ∆f (s) ∂ϕ k ∂n dσ.
To bound the first term, we use ∇∆f ∈ L 2 ((0, T ), L 2 (B 3 ) 3 ) and the fact that the functions (∇ϕ k / √ λ k ) k∈N * form an orthonormal family of L 2 (B 3 ) 3 because

B 3 ∇ϕ i • ∇ϕ j = - B 3 ϕ i ∆ϕ j = λ j δ i,j .
For the second term, since f and ϕ k are radial, we have

1 λ 2 k S 2 ∆f (s) ∂ϕ k ∂n dσ = 2 3/2 √ π(-1) k λ 3/2 k ∆f (s, r = 1).
We conclude as in Lemma 1 for this term since the eigenvalues are the same and Corollary 4 still applies. The genericity of assumption [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] is detailed in the Appendix A, Proposition 17.

Remark 5 It is very likely that the same analysis would work in any dimension n 5, provided that H 3 remains an algebra. However, this would require the analysis of the zeros of the Bessel functions and we have chosen to present the simplest result.

Nonlinear Schrödinger equations

In this section, we study the nonlinear Schrödinger equation with Neumann boundary conditions [START_REF] Baudouin | Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control[END_REF]. The goal is the proof of Theorem 4

First, let us introduce the following notations, that will be valid in all the section 3. The operator A is defined by

D(A) = H 2 (0) (0, 1) := {ϕ ∈ H 2 (0, 1); ϕ ′ (0) = ϕ ′ (1) = 0}, Aϕ = -ϕ ′′ . (39) 
Its eigenvectors (ϕ k ) k∈N and eigenvalues (λ k ) k∈N are

ϕ 0 := 1, λ 0 := 0 ϕ k (x) := √ 2 cos(kπx) λ k := (kπ) 2 , ∀k ∈ N * . ( 40 
)
We introduce the spaces H s (0) (0, 1) := D(A s/2 ), ∀s > 0 [START_REF] Khaneja | Sub-riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer[END_REF] and the notation k * := max{k, 1}, ∀k ∈ N.

Well posedness of the Cauchy problem

The goal of this subsection is the proof of the following result.

Proposition 8 Let µ ∈ H 2 ((0, 1), R) and T > 0. There exists δ > 0 such that, for every u ∈ B δ [L 2 (0, T )], there exists a unique weak solution ψ ∈ C 0 ([0, T ], H 2 (0) ) of ( 12), [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]. Moreover, we have

ψ(t) L 2 (0,1) = ψ 0 L 2 (0,1) , ∀t ∈ [0, T ]. We search ψ in the form ψ(t, x) = e -it (1 + ζ(t, x)), where ζ is a weak solution of    i ∂ζ ∂t = -ζ ′′ + (|1 + ζ| 2 -1)(1 + ζ) -uµ(1 + ζ), ζ ′ (t, 0) = ζ ′ (t, 1) = 0, ζ(0, x) = 0. ( 43 
)
Proposition 8 will be the consequence of the existence and uniqueness of a weak solution ζ for (43) (the conservation of the L 2 -norm may be proved as in the linear case). In order to precise the definition of such a weak solution, let us introduce the operator A defined by

D(A) := H 2 (0) (0, 1), Aζ := -ζ ′′ + 2ℜ(ζ).
Then for every ζ ∈ H 2 (0) (0, 1) and every t ∈ R, we have

e -iAt ζ = ∞ k=0 (a k (t) + ib k (t)) ϕ k where a 0 (t) := ℜ( ζ 0 , ϕ 0 ); b 0 (t) := ℑ( ζ 0 , ϕ 0 ) -2tℜ( ζ 0 , ϕ 0 ), a k (t) := ℜ( ζ 0 , ϕ k ) cos[ λ k (λ k + 2)t] + λ k λ k + 2 ℑ( ζ 0 , ϕ k ) sin[ λ k (λ k + 2)t], ∀k ∈ N * , b k (t) := - λ k + 2 λ k ℜ( ζ 0 , ϕ k ) sin[ λ k (λ k + 2)t] + ℑ( ζ 0 , ϕ k ) cos[ λ k (λ k + 2)t], ∀k ∈ N * .
Remark that these formulae are only the result of the diagonalization of the matrix

iA = 0 ∆ -∆ + 2 0
obtained by the decomposition in real and imaginary part. Then Proposition 8 is equivalent to the following statement.

Proposition 9 Let µ ∈ H 2 ((0, 1), R) and T > 0. There exists δ > 0 such that, for every

u ∈ B δ [L 2 ((0, T ), R)],
there exists a unique weak solution of ( 43), i.e. a function

ζ ∈ C 0 ([0, T ], H 2 (0)
) such that the following equality holds in H 2 (0) for every t ∈ [0, T ]

ζ(t) = t 0 e -iA(t-s) [|1 + ζ(s)| 2 -1][1 + ζ(s)] -2ℜ[ζ(s)] -u(s)µ[1 + ζ(s)] ds. (44) 
The proof of Proposition 9 relies on the following Lemma.

Lemma 3 Let T > 0 and f ∈ L 2 ((0, T ), H 2 ). The function G : t → t 0 e -iA(t-s) f (s)ds belongs to C 0 ([0, T ], H 2 (0) ), moreover

G L ∞ ((0,T ),H 2 (0) ) c 0 (T ) f L 2 ((0,T ),H 2 )
where the constants c 0 (T ) are uniformly bounded for T lying in bounded intervals.

Proof of Lemma 3: The proof of this Lemma is similar to the one of Lemma 1. By definition, we have

G(t) = ∞ k=0 4 a=1 t 0 y a k (t, s)ds ϕ k where y 1 k (t, s) := ℜ( f (s), ϕ k ) cos[ λ k (λ k + 2)(t -s)], ∀k ∈ N, y 2 k (t, s) := λ k λ k + 2 ℑ( f (s), ϕ k ) sin[ λ k (λ k + 2)(t -s)], ∀k ∈ N * , y 3 k (t, s) := -i λ k + 2 λ k ℜ( f (s), ϕ k ) sin[ λ k (λ k + 2)(t -s)], ∀k ∈ N * , y 4 k (t, s) := iℑ( f (s), ϕ k ) cos[ λ k (λ k + 2)(t -s)], ∀k ∈ N, y 2 0 (t, s) := 0, y 3 0 (t, s) := -2tℜ( f (s), ϕ k ).
We have

G(t) H 2 (0) 4 a=1 ∞ k=1 k 2 * t 0 y a k (t, s)ds 2 1/2 .
Let us prove that there exists a constant c = c(t) > 0 (uniformly bounded on bounded intervals of t) such that

∞ k=1 k 2 * t 0 y 1 k (t, s)ds 2 1/2 c(t) f L 2 ((0,t),H 2 ) . (45) 
(the other terms may be treated in the same way). Integrations by part give, for almost every s ∈ (0, T ),

f (s), ϕ k = √ 2 (kπ) 2 (-1) k f ′ (s, 1) -f ′ (s, 0) - 1 0 f ′′ (s, x) cos(kπx)dx , ∀k ∈ N * .
Thus, we have, for every k ∈ N * ,

k 2 t 0 y 1 k (t, s)ds = √ 2(-1) k (π) 2 t 0 f ′ (s, 1) cos[ λ k (λ k + 2)(t -s)]ds + √ 2 (π) 2 t 0 f ′ (s, 0) cos[ λ k (λ k + 2)(t -s)]ds - √ 2 (π) 2 t 0 f ′′ (s), ϕ k cos[ λ k (λ k + 2)(t -s)]ds.
We get [START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolf of dimension 3[END_REF] thanks to Corollary 4, as in the proof of Lemma 1.

Proof of Proposition 9:

We introduce the function g : C → C defined by g(z

) := [|1 + z| 2 -1][1 + z]. We have dg(0).ζ = 2ℜ(ζ). Let c 0 = c 0 (T ) be as in Lemma 3. Let c 1 , c 2 , c 3 > 0 be such that g(ζ) -dg(0).ζ H 2 c 1 ζ 2 H 2 (0) + ζ 3 H 2 (0) , ∀ζ ∈ H 2 (0) , (46) 
g( ζ)-g(ζ)-dg(0).( ζ -ζ) H 2 c 2 ζ -ζ H 2 (0) max{ ξ H 2 (0) , ξ 2 H 2 (0) ; ξ ∈ {ζ, ζ}}, ∀ζ, ζ ∈ H 2 (0) , ( 47 
) µζ H 2 c 3 ζ H 2 (0) , ∀ζ ∈ H 2 (0) . ( 48 
)
Let R > 0 be small enough so that

c 0 c 1 √ T (R 2 + R 3 ) < R 2 and c 0 c 2 √ T max{R, R 2 } < 1 4 . ( 49 
)
Let δ > 0 be small enough so that

c 0 δc 3 (1 + R) < R 2 and c 0 δc 3 < 1 4 . ( 50 
)
Let u ∈ L 2 ((0, T ), R) be such that u L 2 (0,T ) < δ. We consider the map

F : B R [C 0 ([0, T ], H 2 (0) )] → B R [C 0 ([0, T ], H 2 (0) )] ζ → ξ
where ξ := F (ζ) is defined by

ξ(t) = -i t 0 e -iA(t-s) [g(ζ(s)) -dg(0).ζ(s) -u(s)µ[1 + ζ(s)] ds.
Third step: Let us prove that ΘT is differentiable and that ( 52) holds. Let ∆ := ζ -ζ -ξ. We want to prove that

∆(T ) H 2 (0) = o( v L 2 ) when v L 2 → 0.
Let ǫ > 0. There exists η > 0 such that, for every f ∈ L ∞ ((0, T ),

H 2 (0) ) with f -ζ L ∞ ((0,T ),H 2 (0) ) < η, we have g(f ) -g(ζ) -dg(ζ).(f -ζ) L ∞ ((0,T ),H 2 (0) ) < ǫ f -ζ L ∞ ((0,T ),H 2 (0) ) .
Let us assume that v is small enough so that

2c 0 c 3 1 + ζ L ∞ ((0,T ),H 2 (0) ) v L 2 < η.
Then, thanks to Lemma 3 and ( 57), ( 54) and ( 48), we have

∆ L ∞ ((0,T ),H 2 (0) ) c 0 g( ζ) -g(ζ) -dg(ζ).( ζ -ζ) + [dg(ζ) -dg(0)].∆ -(u + v)µ∆ -vµξ L 2 ((0,T ),H 2 ) c 0 √ T ǫ ζ -ζ L ∞ ((0,T ),H 2 (0) ) + √ T c 4 (R + R 2 ) ∆ L ∞ ((0,T ),H 2 (0) ) +δc 3 ∆ L ∞ ((0,T ),H 2 (0) ) + v L 2 c 3 ξ L ∞ ((0,T ),H 2 (0) ) .
Thanks to ( 56) and ( 48), we get

∆ L ∞ ((0,T ),H 2 (0) ) 2c 0 √ T ǫ ζ -ζ L ∞ ((0,T ),H 2 (0) ) + v L 2 c 3 ξ L ∞ ((0,T ),H 2 (0) ) ,
which gives the conclusion, thanks to ( 57) and ( 58).

The continuity of the map d ΘT may be proved with similar arguments.

Controllability of the linearized system

The goal of this section is the proof of the following result.

Proposition 11 Let T > 0 and µ ∈ H 2 ((0, 1), R) be such that [START_REF] Baudouin | Constructive solutions of a bilinear control problem for a Schrödinger equation[END_REF] holds. Let δ > 0 be as in Proposition 8 and Θ T be defined by [START_REF] Mirrahimi | Lyapounov control of bilinear Schrödinger equations[END_REF]. The linear map dΘ T (0) :

L 2 ((0, T ), R) → V T ∩ H 2 (0) (0, 1) has a continuous right inverse dΘ T (0) -1 : V T ∩ H 2 (0) (0, 1) → L 2 ((0, T ), R).
Proof of Proposition 11: It is equivalent to prove that the continuous linear map d ΘT (0) :

L 2 ((0, T ), R) → Ṽ ∩ H 2 ( 
0) (0, 1) has a continuous right inverse, where

Ṽ := ϕ ∈ L 2 (0, 1); ℜ 1 0 ϕ(x)dx = 0 . We have d ΘT (0).v = ξ(T ) where ξ is the weak solution of    i ∂ξ ∂t = -ξ ′′ + 2ℜ(ξ) -v(t)µ(x), x ∈ (0, 1), t ∈ (0, T ), ξ ′ (t, 0) = ξ ′ (t, 1) = 0, ξ(0, x) = 0.
In particular, we have

ξ(T ) = i T 0 e -iA(T -s) v(s)µds = i ∞ k=0 [a k (T ) + ib k (T )]ϕ k where a 0 (T ) = µ, ϕ 0 T 0 v(s)ds, b 0 (T ) = -2 µ, ϕ 0 T 0 (T -t)v(s)ds, a k (T ) = µ, ϕ k T 0 v(s) cos[ λ k (λ k + 2)(T -s)]ds, ∀k ∈ N * , b k (T ) = - λ k + 2 λ k µ, ϕ k T 0 v(s) sin[ λ k (λ k + 2)(T -s)]ds, ∀k ∈ N * . For ξ f ∈ Ṽ ∩ H 2 (0) (0, 1), the equality ξ(T ) = ξ f is equivalent to the following trigonometric moment problem        T 0 v(s)ds = d 0 (ξ f ) := ℑ ξ f ,ϕ0 µ,ϕ0 , T 0 v(s)e -i √ λ k (λ k +2)s ds = d k (ξ f ) := e -i √ λ k (λ k +2)T µ,ϕ k ℑ ξ f , ϕ k + i λ k λ k +2 ℜ ξ f , ϕ k , ∀k ∈ N * , T 0 sv(s)ds = d(ξ f ) := T d 0 (ξ f ).
We conclude thanks to Corollary 2 (in Appendix B).

The proof of Theorem 4 is completed using the same arguments as in Section 2.4 using the inverse mapping theorem and the conservation of the L 2 norm.

Remark 6 With the same method, one may prove the local exact controllability of the focusing nonlinear Schrödinger equation

i ∂ψ ∂t (t, x) = -∂ 2 ψ ∂x 2 (t, x) -|ψ| 2 ψ(t, x) -u(t)µ(x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ), ∂ψ ∂x (t, 0) = ∂ψ ∂x (t, 1) = 0,
around the reference trajectory (ψ ref (t, x) = e it , u ref (t) = 0). The only difference in the proof is that we get the frequencies λ k (λ k -2) (instead of λ k (λ k + 2)) in the moment problem. When the space domain is the interval (0, 1), then all the quantities λ k (λ k -2), for k ∈ N * , are positive (because λ k = (kπ) 2 ), thus there is no additional difficulty. When the space domain is different, for instance (0, a) with a large, then λ k = (kπ/a) 2 , thus a finite number of the quantities λ k (λ k -2) are negative: we get a new moment problem with a finite number of moments with real valued exponentials, and a infinite number of trigonometric moments, that can be easily solved by adapting the tools used in this article.

Nonlinear wave equations

In this section, we study the nonlinear wave equation with Neumann boundary conditions [START_REF] Beauchard | Controllability of a quantum particule in a 1D variable domain[END_REF]. The goal is the proof of Theorem 5. In all this section, we use the notations defined in ( 39), ( 40), ( 41), ( 42) and all the functions are real valued.

First, let us check that the Cauchy problem is well posed in H 3 (0) × H 2 (0) (0, 1), when u ∈ L 2 (0, T ). In order to write the system (15) in first order form, let us introduce

D(A) := H 2 (0) × H 1 (0, 1), A := 0 Id -A 0 , D(B) := L 2 × L 2 (0, 1), B := µ(x) 0 0 Id Id (59)
and F : R 2 → R 2 defined by F (y 1 , y 2 ) := (0, f (y 1 , y 2 )). The operator A generates a C 0group of bounded operators of H 2 (0) × H 1 (0, 1) defined by

e At w 0 ẇ0 = w(t) ẇ(t) ,
where

w(t) = ( w 0 , ϕ 0 + ẇ0 , ϕ 0 t) ϕ 0 + ∞ k=1 w 0 , ϕ k cos( λ k t) + 1 √ λ k ẇ0 , ϕ k sin( λ k t) ϕ k , ẇ(t) = ẇ0 , ϕ 0 ϕ 0 + ∞ k=1 -λ k w 0 , ϕ k sin( λ k t) + ẇ0 , ϕ k cos( λ k t) ϕ k .
With the notation

W := w ∂w ∂t , W 0 := 1 0 ,
the equation ( 15) may be written

∂W ∂t (t, x) = AW(t, x) + F (W) + u(t)BW(t, x), x ∈ (0, 1). ( 60 
)
Proposition 12 Let µ ∈ H 2 (0, 1), T > 0, f ∈ C 3 (R 2 , R) be such that f (1, 0) = 0 and ∇f (1, 0) = 0.
There exists δ > 0 such that, for every u ∈ B δ [L 2 (0, T )], there exists a unique weak solution of ( 60), ( 16), i.e. a function

W ∈ C 0 ([0, T ], H 3 (0) × H 2 (0) ) such that the following equality holds in H 3 (0) × H 2 (0) (0, 1), for every t ∈ [0, T ], W(t) = e At W 0 + t 0 e A(t-τ ) F (W(τ )) + u(τ )BW(τ ) + F (τ ) dτ. (61) 
The proof of this proposition relies on the following Lemma.

Proposition 13 Let T > 0 and g ∈ L 2 ((0, T ), H 2 ). The function G defined by

G(t) := t 0 e As 0 g(s) ds belongs to C 0 ([0, T ], H 3 (0) × H 2 (0)
). Moreover, there exists a constant c 0 (T ) > 0, uniformly bounded for T lying in bounded intervals, such that, for every g ∈ L 2 ((0, T ), H 2 ),

G L ∞ ((0,T ),H 3 (0) ×H 2 (0) ) c 0 (T ) g L 2 ((0,T ),H 2 ) . (62) 
Proof of Proposition 13: We have, for every t ∈ [0, T ],

G(t) = t 0     g(s), ϕ 0 sϕ 0 + ∞ k=1 g(s),ϕ k √ λ k sin( √ λ k s)ϕ k g(s), ϕ 0 ϕ 0 + ∞ k=1 g(s), ϕ k cos( √ λ k s)ϕ k     ds.
Thus, there exists C > 0 such that

G(t) H 3 (0) ×H 2 (0) C ∞ k=0 k 2 * t 0 g(s), ϕ k e ikπs ds 2 .
We get the conclusion as in the previous sections.

Proof of Proposition 12:

Let us introduce the constants c 1 , c 2 , c 3 such that

f (w, w t ) H 2 c 1 (w -1, w t ) 2 H 3 (0) ×H 2 (0) , ∀(w, w t ) ∈ (1, 0) + B 1 [H 3 (0) × H 2 (0) ], (63) 
f (w, w t ) -f ( w, wt ) H 2 c 2 (w -w, w t -wt ) H 3 (0) ×H 2 (0) max{ (w -1, w t ) H 3 (0) ×H 2 (0) , ( w -1, wt ) H 3 (0) ×H 2 (0) }, ∀(w, w t ), ( w, wt ) ∈ (1, 0) + B 1 [H 3 (0) × H 2 (0) ], (64) 
and ( 48) holds. Let R ∈ (0, 1) be small enough so that

√ T c 0 c 1 R 2 R 2 , √ T c 0 c 2 R 1 4 (65) 
Let δ > 0 be small enough so that

δc 0 c 3 < 1 4 , δc 0 c 3 (1 + R) < R 2 . ( 66 
) Let u ∈ B δ [L 2 (0, T )].
We consider the map

F : (1, 0) + B R [C 0 ([0, T ], H 3 (0) × H 2 (0) )] → (1, 0) + B R [C 0 ([0, T ], H 3 (0) × H 2 (0) )] ζ → ξ where ξ(t) = e At W 0 + t 0 e A(t-τ ) F (ζ(τ )) + u(τ )Bζ(τ ) dτ, ∀t ∈ [0, T ]. For ζ = (w, w t ) ∈ (1, 0)+B R [C 0 ([0, T ], H 3 (0) ×H 2 (0) )], the second component of F (ζ)+uBζ belongs to L 2 ((0, T ), H 2 ), thus ξ belongs to C 0 ([0, T ], H 3 (0) × H 2 (0)
) thanks to Proposition 13. Moreover, thanks to ( 62), ( 63), ( 48), [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF], and (66), we have, for every t ∈ [0, T ],

ξ(t) -(1, 0) H 3 (0) ×H 2 (0) c 0 f (w, w t ) + uµ[w + w t ] L 2 ((0,T ),H 2 ) c 0 √ T f (w, w t ) L ∞ ((0,T ),H 2 ) + u L 2 (0,T ) µ[w + w t ] L ∞ ((0,T ),H 2 ) c 0 ( √ T c 1 R 2 + δc 3 (R + 1)) R. Thus, F takes values in (1, 0) + B R [C 0 ([0, T ], H 3 (0) × H 2 (0) )]. For ζ = (w, w t ), ζ = ( w, wt ) ∈ (1, 0) + B R [C 0 ([0, T ], H 3 (0) × H 2 (0)
)], thanks to (64), ( 48), ( 65) and (66), we have

F (ζ) -F ( ζ) L ∞ ((0,T ),H 3 (0) ×H 2 (0) ) c 0 f (w, w t ) -f ( w, wt ) + uµ[w -w + w t -wt ] L 2 ((0,T ),H 2 ) c 0 √ T f (w, w t ) -f ( w, wt ) L ∞ ((0,T ),H 2 ) + δc 3 ζ -ζ L ∞ ((0,T ),H 3 (0) ×H 2 (0) ) c 0 √ T c 2 R ζ -ζ L ∞ ((0,T ),H 3 (0) ×H 2 (0) ) + δc 3 ζ -ζ L ∞ ((0,T ),H 3 (0) ×H 2 (0) ) 1 2 ζ -ζ L ∞ ((0,T ),H 2 (0) ) Thus F is a contraction. Let T > 0, µ ∈ H 2 (0, 1), f ∈ C 3 (R 2 ,
R) be such that f (1, 0) = 0, ∇f (1, 0) = 0 and δ > 0 be as in Proposition 12. Then, the following map is well defined

Θ T : B δ [L 2 (0, T )] → H 3 (0) × H 2 (0) u → (w, w t )(T ) (67) 
where (w, w t ) is the weak solution of ( 15), [START_REF] Beauchard | Local Controllability of a 1-D beam equation[END_REF]. Working as in the previous section, one may prove the following statements.

Proposition 14 Let µ ∈ H 2 (0, 1), T > 0, f ∈ C 3 (R 2 , R) be such that f (1, 0) = 0, ∇f (1, 0) = 0 and δ > 0 be as in Proposition 12. The map Θ T defined by ( 67) is C 1 . Moreover, for every u ∈ B δ [L 2 (0, T )] and v ∈ L 2 (0, T ), we have dΘ T (u).v = (W, W t )(T ), where (W, W t ) is the weak solution of   

W tt = W xx + ∂f ∂y1 (w, w t ).W + ∂f ∂y2 (w, w t ).W t + u(t)µ[W + W t ] + v(t)µ(x)[w + w t ], W x (t, 0) = W x (t, 1) = 0, (W, W t )(0, x) = 0,
(68) and (w, w t ) is the weak solution of ( 15), [START_REF] Beauchard | Local Controllability of a 1-D beam equation[END_REF].

Proposition 15 Let T > 2, µ ∈ H 2 (0, 1) be such that [START_REF] Baudouin | Constructive solutions of a bilinear control problem for a Schrödinger equation[END_REF] holds and f ∈ C 3 (R 2 , R) be such that f (1, 0) = 0, ∇f (1, 0) = 0. The linear map dΘ T (0) :

L 2 (0, T ) → H 3 (0) × H 2 (0) has a continuous right inverse dΘ T (0) -1 : H 3 (0) × H 2 (0) → L 2 (0, T ).
The proof is the same except that the gap between the eigenvalues does not tend to infinity and we use Corollary 3.

Conclusion, open problems, perspectives

In this article, we have proposed a method for the proof of the local exact controllability for linear and nonlinear bilinear systems. We have applied it to Schrödinger and wave equations, showing it works for a wide range of problems. It also works on other equations (for instance it may prove an optimal version of the controllability result proved in [START_REF] Beauchard | Local Controllability of a 1-D beam equation[END_REF] for a 1D Beam equation).

In this article, we have presented various examples of application of the method. However, they all have in common that the linearized system fulfills a gap condition on the eigenvalues of the operator. This condition is not necessarily realized for the Schrödinger equation in higher space dimensions. Even in two dimension, we do not know any example of domain where it is true. So, one challenging question is the extension (or the impossibility to do it) of these results to other dimensions.

A Genericity of the assumption on µ

The goal of this section is the proof of the following result.

Proposition 16

The set {µ ∈ H 3 ((0, 1), R); (5) holds} is dense in H 3 ((0, 1), R).

Proof: First, let us notice that

V := {µ ∈ H 3 ((0, 1), R); µ ′ (1) ± µ ′ (0) = 0}
is a dense open subset of H 3 ((0, 1), R). Now, let us prove that the set

U := {µ ∈ V; µϕ 1 , ϕ k = 0, ∀k ∈ N * }
is dense in H 3 ((0, 1), R). It is sufficient to prove that this set is dense in V. For n ∈ N, we introduce the set U n := {µ ∈ V; µϕ 1 , ϕ k = 0, ∀k ∈ {1, ..., n}}, with the convention U 0 := V. Then the sequence (U n ) n∈N is decreasing and

U = ∞ n=0 U n .
Thanks to Baire Lemma, it is sufficient to check that, for every n ∈ N, U n+1 is dense in U n for the H 3 ((0, 1), R)-topology. Let n ∈ N and let µ ∈ U n -U n+1 . Then µ ∈ V, µϕ 1 , ϕ k = 0 for k = 1, ..., n and µϕ 1 , ϕ n+1 = 0. Thanks to [START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF], µ + ǫx 2 ∈ U n+1 for every ǫ ∈ R such that ǫ = -µϕ 1 , ϕ j x 2 ϕ 1 , ϕ j , ∀j ∈ {1, ..., n}.

Thus U n+1 is dense in U n .
Finally, thanks to (8), we have U ⊂ {µ ∈ H 3 ((0, 1), R); (5) holds}, which gives the conclusion.

Proposition 17

The set {µ ∈ H 3 rad (B 3 , R); [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] holds} is dense in H 3 (B 3 , R).

Proof: We make the same proof. We use the formula [START_REF] Anton | Cubic nonlinear Schrödinger equation on three dimensional balls with radial data[END_REF]. Moreover, we can find one µ(r) = r 2 that fulfills (10)

µϕ 1 , ϕ k = 4π(-1) k+1 λ 3/2 k ∂ r µ(s, r = 1) - 1 λ 2 k B 3 ∇∆(µϕ 1 ) • ∇ϕ k instead of
r 2 ϕ 1 , ϕ k = 2π 1 0
r 2 sin(πr)sin(kπr).

B Moment problems

In this section, we recall classical results about moment problems (see, for instance [START_REF] Avdonin | Families of exponentials : the method of moments in controllability problems for distributed parameter systems[END_REF]). The proofs are given for sake of completeness.

B.0.1 Families of vectors in Hilbert spaces

Let H be a separable Hilbert vector space over K = R or C and Θ := (ξ j ) j∈Z be a family of vectors of H with ξ j = 0, ∀j ∈ Z.

Definition 1

The family Θ is minimal in H if, for every j ∈ Z, ξ j / ∈ Span{ξ i ; i ∈ Z -{j}}.

Proposition 18

The family Θ is minimal in H if and only if there exists a biorthogonal family Θ ′ = (ξ ′ j ) j∈Z , i.e. Θ ′ is a family of vectors of H such that

ξ i , ξ ′ j = δ i,j , ∀i, j ∈ Z. (69) 
Proof of Proposition 18 : We assume Θ is minimal. For j ∈ Z, let v j be the orthogonal projection of ξ j over the closed vector space Span{ξ i , i = j} i.e.

v j ∈ Span{ξ i , i = j} and ξ j -v j , ξ i = 0, ∀i = j. Let ξ ′ j := ξ j -v j ξ j -v j 2 , ∀j ∈ Z.
Then, the families (ξ j ) and (ξ ′ j ) are biorthogonal. Now, we assume that there exists a biorthogonal family Θ ′ = (ξ ′ j ) j∈Z . Let us assume that there exists j ∈ Z such that ξ j ∈ Span{ξ i ; i ∈ Z -{j}}. Then (69) implies ξ j , ξ ′ j = 1 which is a contradiction.

Remark 7 If Θ is minimal, then there exists a unique biorthogonal family Θ ′ such that Θ ′ ⊂ Span{ξ i ; i ∈ Z}. In the end of this appendix, the expression "the"biorthogonal family of Θ, refers to this unique biorthogonal family in Span{ξ i ; i ∈ Z}. (2) Θ is a Riesz basis of SpanΘ if and only if there exists C 1 , C 2 ∈ (0, +∞) such that, for every scalar sequence (c j ) j∈Z with finite support,

C 1   ∞ j=-∞ |c j | 2   1/2 ∞ j=-∞ c j ξ j C 1   ∞ j=-∞ |c j | 2   1/2 . ( 70 
)
(3) If Θ is a Riesz basis of SpanΘ then there exists C > 0 such that, for every f ∈ H, we have

  j∈Z | f, ξ j | 2   1/2 C f .

Proof of Proposition 19 :

(1) We assume Θ is a Riesz basis of SpanΘ. Let H be an Hilbert space, (ζ j ) j∈Z be an orthonormal family of H, V : H → SpanΘ an isomorphism such that ξ j = V (ζ j ), ∀j ∈ Z. Then the adjoint operator V * : SpanΘ → H is also an isomorphism and we have ξ

′ j = (V * ) -1 (ζ j ), ∀j ∈ Z. Indeed, for every j, k ∈ Z, δ j,k = ξ j , ξ ′ k H = V (ζ j ), ξ ′ k H = ζ j , V * (ξ ′ k ) H .
Thus Θ ′ is a Riesz basis of SpanΘ.

(2) We assume Θ is a Riesz basis of SpanΘ. Let H be an Hilbert space, (ζ j ) j∈Z be an orthonormal family of H, V : H → SpanΘ an isomorphism such that ξ j = V (ζ j ), ∀j ∈ Z and (c j ) j∈Z a scalar sequence with finite support. We have

∞ j=-∞ c j ξ j = V ∞ j=-∞ c j ζ j V ∞ j=-∞ c j ζ j = V   ∞ j=-∞ |c j | 2   1/2 and   ∞ j=-∞ |c j | 2   1/2 = ∞ j=-∞ c j ζ j = V -1 ∞ j=-∞ c j ξ j V -1 ∞ j=-∞ c j ξ j ,
thus, we have (70) with C 1 = 1/ V -1 and C 2 = V . Now, we assume that (70) holds. Then the linear map V : l 2 (Z, K) → SpanΘ defined by V [(c j ) j∈Z ] = ∞ j=-∞ c j ξ j is well defined and injective. Let h ∈ SpanΘ. There exists (h N ) N ∈N such that h N → h in H when N → +∞ and for every N ∈ N, there exists a sequence c (N ) = (c )ξ j → 0 in H, i.e. h = ∞ j=-∞ c j ξ j . We have proved that V is an isomorphism, thus Θ is a Riesz basis of SpanΘ.

(N ) j ) j∈Z with finite support such that h N = ∞ j=-∞ c (N ) j ξ j . Then (h N ) N ∈N
(3) SpanΘ is a close vector subspace of H thus we have the orthogonal decomposition H = SpanΘ + SpanΘ ⊥ and the associated orthogonal projection P : H → SpanΘ. For

f ∈ H, we have j∈Z | f, ξ j | 2 1/2 = j∈Z | P f, ξ j | 2 1/2 1 C1 j∈Z P f, ξ j ξ ′ j = 1 C1 P f H 1 C1 f .

Remark 9

We have proved that, if Θ is a Riesz basis of SpanΘ, then, for every h ∈ SpanΘ there exists c = (c j ) j∈Z ∈ l 2 (Z, K) such that h = ∞ j=-∞ c j ξ j . Moreover, if Θ ′ and Θ are biorthogonal families, then necessarily c j = h, ξ ′ j , ∀j ∈ Z. Thus, every h ∈ SpanΘ can be decomposed in the following way

h = ∞ j=-∞ h, ξ ′ j ξ j = ∞ j=-∞ h, ξ j ξ ′ j ( 71 
)
where the series converge in H and the coefficients ( h, ξ ′ j ) j∈Z , ( h, ξ j ) j∈Z , belong to l 2 (Z, K).

B.0.2 Abstract moment problems

Now, we move to the investigation of abstract moment problems: given a scalar sequence (d j ) j∈Z is it possible to find f ∈ H such that f, ξ j = d j , ∀j ∈ Z.

Let us introduce the operator

J Θ : H → l 2 (Z, K) f → ( f, ξ j ) j∈Z with domain D Θ := {f ∈ H; J Θ (f ) ∈ l 2 (Z)}.
It is clear that, if the family Θ is not complete in H, then the operator J Θ has a non trivial null space SpanΘ ⊥ . This motivates the introduction of the operator J 0 Θ := J Θ SpanΘ .

Proposition 20 The operator J 0 Θ : SpanΘ → l 2 (Z, K) is an isomorphism if and only if Θ is a Riesz basis of SpanΘ.

Proof of Proposition 20 : We assume J 0 Θ : SpanΘ → l 2 (Z, K) is an isomorphism. Let (ζ j ) j∈Z be the canonical orthonormal basis of l 2 (Z). Then, the family

(J 0 Θ ) -1 (ζ j )
j∈Z is a Riesz basis of SpanΘ. Moreover, it is the biorthogonal family to Θ in SpanΘ. Thanks to Proposition 19 (1), Θ is also a Riesz basis of SpanΘ. We assume Θ is a Riesz basis of SpanΘ. Thanks to the Remark 9, it is clear that J 0 Θ : SpanΘ → l 2 (Z, K) is an isomorphism.

B.0.3 Trigonometric moment problems

In this section, we recall important results on trigonometric moment problems. The following Ingham inequality is due to Haraux [START_REF] Haraux | Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire[END_REF].

Theorem 6 Let N ∈ N, (ω k ) k∈Z be an increasing sequence of real numbers such that

ω k+1 -ω k γ > 0, ∀k ∈ Z, |k| N, ω k+1 -ω k ρ > 0, ∀k ∈ Z,
and T > 2π/γ. There exists C 1 = C 1 (γ, ρ, N, T ), C 2 = C 2 (γ, ρ, N, T ) ∈ (0, +∞) such that, for every sequence (c k ) k∈Z ∈ C Z with finite support, we have

C 1 k∈Z |c k | 2 T 0 +∞ k=-∞ c k e -iω k t 2 dt C 2 k∈Z |c k | 2 .
Let us introduce the space

l 2 r (N, C) := {(d k ) k∈N ∈ l 2 (N, C); d 0 ∈ R}.
Thanks to Proposition 19 and Theorem 6, we have the following statement, which is used in the proof of Proposition 4.

Corollary 1 Let T > 0 and (ω k ) k∈N be an increasing sequence of [0, +∞) such that ω 0 = 0 and ω k+1 -ω k → +∞ when k → +∞.

There exists a continuous linear map (

L : l 2 r (N, C) → L 2 ((0, T ), R) d → L ( 
) 73 
Proof of Corollary 2: Let ω k := -ω -k , for every k ∈ Z with k < 0. From Proposition 6, Θ := (e iω k t ) k∈Z is a Riesz basis of Adh L 2 (0,T ) (SpanΘ).

First step: We prove that the family Θ := {t, e iω k t ; k ∈ Z} is minimal in L 2 (0, T ).

Working by contradiction, we assume that Θ is not minimal in L 2 (0, T ). Then, necessarily t ∈ Adh L 2 (0,T ) SpanΘ.

(

) 74 
With successive integrations, we get t j ∈ Adh C 0 [0,T ] Span Θ , ∀j ∈ N with j 2.

The Stone Weierstrass theorem ensures that {1, t j ; j ∈ N, j 2} is dense in C 0 ([0, T ], C), thus, it is also dense in L 2 (0, T ). From (74), we deduce that SpanΘ is dense in L 2 (0, T ). This is a contradiction, because, thanks to Theorem 6, for every ω ∈ R -{ω k , k ∈ Z}, the family {e iωt , e iω k t ; k ∈ Z} is minimal, i.e. Then, u is real valued (because v and ξ are), u solves (73) and

u L 2 v L 2 + | d| + T 0 tv(t)dt ξ L 2 v L 2 1 + T 3 3 ξ L 2 + | d| ξ L 2 C 1 + T 3 3 ξ L 2 + ξ L 2 | d| 2 + k∈Z |d k | 2 1/2
.

For the wave equation, the gap between two successive frequencies does not tend to infinity, so we will need the following Corollary which is proved similarly.

Corollary 3 Let T > 2. We make the same assumptions as Corollary 2 except that we assume ω k+1 -ω k π instead of (72). Then, we have the same conclusion as Corollary 2.

Corollary 4 Let (ω k ) k∈N be an increasing sequence of [0, +∞) such that ω 0 = 0 and ω k+1 -ω k > γ > 0.

There exists an nondecreasing function

C : [0, +∞) → R * + T → C(T )
such that, for every T > 0 and for every g ∈ L 2 (0, T ), we have Proof of Corollary 4: The existence of C(T ), for large T 2π/γ + 1, is a consequence of Theorem 6 and Proposition 19 (3). Let us choose for C(T ) the smallest value possible for this constant. For T ≤ 2π/γ + 1, we choose C(T ) = C(2π/γ + 1). Let 0 < T 1 < T 2 < +∞, g ∈ L 2 (0, T 1 ) and g ∈ L 2 (0, T 2 ) be defined by g = g on (0, T 1 ) and 0 on (T 1 , T 2 ). By applying the inequality on g, we get C(T 1 ) C(T 2 ). 

  is a Cauchy sequence in H, thus, thanks to (70), (c (N ) ) N ∈N is a Cauchy sequence in l 2 (Z) and there exists c = (c j ) j∈Z ∈ l 2 (N) such that c N → c in l 2 (Z). Then, (70) proves that ∞ j=-∞ (c j -c (N ) j
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 2 e iωt / ∈ Adh L 2 (0,T ) SpanΘ .Second step: We conclude.For k < 0, we define d k := d -k . Let { ξ, ξ k ; k ∈ Z} be the biorthogonal family to {t, e iω k t ; k ∈ Z}. From Theorem 6, there exists C > 0 and a unique solutionv ∈ Adh L 2 (0,T ) (SpanΘ) of T 0 v(t)e iω k t dt = d k , ∀k ∈ Z and it satisfies v L 2 (0,T ) C k∈Z |d k | 2 1/The uniqueness guarantees that v is real valued. Let us define L( d, d) := u := v + d -T 0 tv(t)dt ξ.
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	Remark 8 Proposition 19 (1)
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For ζ ∈ B R [C 0 ([0, T ], H 2 (0) )], the function g(ζ) -dg(0).ζ -uµ [1 + ζ] belongs to L 2 ((0, T ), H 2 ), thus ξ belongs to C 0 ([0, T ], H 2 (0) ) thanks to Lemma 3. Moreover, using [START_REF] Laurent | Global controllability and stabilization for the nonlinear Schrödinger equation on an interval[END_REF], [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF], [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF], [START_REF] Mirrahimi | Controllability of quantum harmonic oscillators[END_REF], we get 47), ( 48), ( 49), ( 50), we get

Thus F is a contraction.

C 1 -regularity of the end-point map

Let T > 0 and δ > 0 be as in Proposition 8. Let

ϕ(x)dx = 0 , and P T : L 2 (0, 1) → V T be the associated orthogonal projection. Then, the following map is well defined

where ψ solves ( 12), [START_REF] Beauchard | Local Controllability of a 1-D Schrödinger equation[END_REF]. We want to prove that the map Θ T is C 1 on a neighborhood of zero. We have seen that ψ(t) = e -it (1 + ζ(t)), where ζ solves [START_REF] Lasiecka | Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls[END_REF]. Thus, it is sufficient to prove the following statement.

Proposition 10 Let µ ∈ H 2 ((0, 1), R), T > 0, δ be as in Proposition 9, and

where ζ solves [START_REF] Lasiecka | Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls[END_REF]. There exists δ ′ ∈ (0, δ) such that the map

where

and ζ solves [START_REF] Lasiecka | Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls[END_REF].

Proof of Proposition 10: We use the same notations c 0 , c 1 , c 2 , c 3 , R, δ as in the proof of Proposition 9, in particular, the relations ( 46), ( 47), ( 48), ( 49), (50) are satisfied. We introduce constants c 4 , c 5 > 0 such that

) Moreover, we assume that

(this additional assumption may change δ into a smaller value δ ′ ).

Let ζ, ξ and ζ be the solutions of ( 43), [START_REF] Nersesyan | Growth of Sobolev norms and controllability of Schrödinger equation[END_REF] and

The existence of ξ may be proved in a similar way as the existence of ζ.

First step: Let us prove that

Thanks to Lemma 3, ( 55),( 48), ( 56) and ( 50), we have

which gives [START_REF] Rosier | Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval[END_REF].

Second step: Let us prove that the linear map

is continuous. Thanks to Lemma 3, ( 54), ( 48), ( 56) and ( 50), we have