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The Discrete Duality Finite Volume method for the Stokes

equations on 3-D polyhedral meshes

Stella Krell ∗ Gianmarco Manzini †‡

Abstract

We develop a Discrete Duality Finite Volume (DDFV) method for the three-dimensional steady
Stokes problem with a variable viscosity coefficient on polyhedral meshes. Under very general as-
sumptions on the mesh, which may admit non-convex and non-conforming polyhedrons, we prove
the stability and well-posedness of the scheme. We also prove the convergence of the numeri-
cal approximation to the velocity, velocity gradient and pressure, and derive a priori estimates
for the corresponding approximation error. Final numerical experiments confirm the theoretical
predictions.

Keywords: 3-D Stokes equations, discrete duality finite volume method, mimetic discretization,
polyhedral mesh, variable viscosity.

1 Introduction

The numerical approximation of the steady Stokes problem with variable viscosity requires the dis-
cretization of the symmetric gradient of a divergence-free velocity field. To address this issue in the
framework of the Finite Volume method, the full gradient of the vector variable must be discretized at
each control volume interface. A number of techniques have been proposed in the Finite Volume litera-
ture of the last decade to approximate the gradient of a scalar field [4, 23, 26, 27, 30, 33]. A comparison
of the performance of these schemes for two-dimensional (2-D) diffusion problems with anisotropic
permeabilities is found in the benchmark of the FVCA-5 Conference [32] held in Aussois, France, in
2008. Among these techniques, the Discrete Duality Finite Volume (DDFV) method was one of the
most accurate as far as the gradient approximation is concerned.

The DDFV method was originally developed to approximate the solution of the Poisson equation
on a large class of 2-D polygonal meshes, which may include non-conformal and distorted control
volumes [26, 33]. The DDFV formulation in two spatial dimensions is based on two Finite Volume
schemes, and consists of a system of flux balance equations for the cells of the primal mesh and for
the cells that are built around the vertices of the primal cells, i.e., the dual mesh. These flux balance
equations make use of a numerical flux that is based on an approximate gradient formula defined for
the diamond cells, the control volumes of a third mesh superimposed to the primal and the dual mesh.

The DDFV method has been successfully employed in the numerical approximation of the linear
diffusion equation with anisotropic permeabilities [14, 26, 33, 34], the steady convection-diffusion equa-
tion [21], the div-curl problem [25] of electrostatics and magnetostatics, the non-linear elliptic equation
involving Leray-Lions operators [3, 13], the bidomain equation modeling the electromagnetic activity
of the heart [22]. Regarding the numerical approximation to the 2-D Stokes problem, two different
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DDFV formulations have been proposed in the literature: the first one is discussed in the doctoral dis-
sertation of Reference [24], the second one is found in [35]. In the first approach, the pressure degrees of
freedom are defined at mesh vertices and cell centers, while the velocity is approximated by a piecewise
constant vector in the diamond cells. The resulting scheme is well-posed, but only constant viscosity
fields are easily treatable. This fact motivated the development of the second approach, in which the
velocity degrees of freedom are attached to cell centers and mesh vertices while the pressure field is
approximated by a piecewise constant scalar function inside the diamond cells. In this formulation,
the well-posedness of the method is achieved through a stabilization term à la Brezzi-Pitkaranta [16]
in the mass conservation equation. Convergence analysis and a priori estimates are available in [35].

In this work, we develop and analyse a DDFV method for the 3-D steady Stokes equation by
generalizing the 2-D setting of [35] to 3-D polyhedral meshes. It is worth mentioning that three
different DDFV formulations have been proposed for the 3-D diffusion equation, while, to the best of
our knowledge, this is the first work devoted to the 3-D Stokes problem in such a framework. All these
approaches consider an additional mesh of dual cells that are built around the vertices of the primal
mesh. However, the construction of the diamond mesh, where the numerical gradient is defined,
is different. Moreover, severe constraints on the elemental shapes are imposed in some cases, thus
limiting the type of the meshes to which these schemes can be applied. In the first approach [22], the
elemental interfaces of the primal mesh must be either triangles or quadrilaterals, and this requirement
excludes the possibility of treating locally refined meshes. To overcome this limitation, the scheme
was modified in [2] by taking a tetrahedralization of the computational domain as the primal mesh.
Nonetheless, an orthogonality constraint must be satisfied since the control volumes of the dual cells
are the Voronöı diagrams of the vertices of the primal mesh. In the second approach [34], two auxiliary
unknowns are formally introduced at mesh faces and edges to reconstruct the gradient, and, then,
eliminated in the derivation of the Finite Volume scheme. Several strategies are suggested in [34] to
perform such a variable elimination, but all the resulting schemes, when applied to general polyhedral
meshes, lead to non-symmetric linear operators. This fact makes the theoretical analysis more difficult
and may affect the computational efficiency. In the third approach [20], similar degrees of freedom
are introduced, but no variable elimination is performed. Thus, a system of flux balance equations is
considered for the cells of a second dual mesh, which are built around the centers of the faces and the
edges of the primal mesh through a special dualization procedure. The resulting DDFV method can
be applied to very general polyhedral meshes, it always leads to a symmetric linear operator, and the
convergence analysis can be carried out as shown in [20].

Our new DDFV method extends the discrete setting proposed in [35] to the 3-D framework of [20].
More precisely, the degrees of freedom of the components of the velocity are defined for the control
volumes of the primal mesh, the dual mesh of the vertices, and the dual mesh of faces and edges. On its
turn, the pressure variable is approximated by a piecewise constant function defined on the mesh of the
diamond cells. We emphasize the fact that the present DDFV scheme is not a simple extension to three
spatial dimensions of the 2-D scheme originally developed in [35], because it is based on a construction
for the dual meshes and the diamond mesh that is very specific to the 3-D case. For the present scheme,
we prove uniform stability, well-posedness and convergence. Moreover, we derive a priori estimates for
the degrees of freedom of velocity and pressure using suitably defined mesh dependent norms, and a
priori estimates for the approximation errors in the continuous setting using standard Sobolev norms.

A remarkable fact of this DDFV method is that the flux balance equations can be reformulated
through discrete divergence operators for discrete vector and tensor fields. These divergence operators
satisfy several discrete duality relations, i.e. summation-by-parts formulas, that involve the discrete
gradients and properly defined inner products for all the degrees of freedom. This fact was origi-
nally noted for the diffusion equation [26], the advection-diffusion equation [21], and the 2-D Stokes
equation [35], and allows us to reinterpret the current DDFV method as a mimetic discretizations [5–
11, 17, 18].

The paper is organized as follows. In Section 2 we introduce the mathematical model. In Section 3,
we recall the general DDFV framework and formulate the stabilized scheme for the Stokes problem.
In Section 4, we carry out the theoretical analysis by proving well-posedness and convergence of the
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method, and deriving a priori error estimates for the approximation of the vector and the scalar
variable. For simplicity of exposition, we focus the presentation of the method in Section 3 and the
theoretical analysis of Section 4 to the case of homogeneous boundary conditions. In Section 5, we
comment the performance of the scheme for a set of numerical experiments. In Section 6, we offer final
remarks and conclusions.

2 Steady Stokes equation

We are concerned with the Finite Volume approximation on the computational domain Ω with bound-
ary Γ of the 3-D stead Stokes problem with variable viscosity η and loading term f that reads as

find (u, p) ∈
(
H1(Ω)

)3 × L2(Ω) such that:

div
(
− 2ηD(u) + pI) = f in Ω, (1)

div(u) = 0 in Ω, (2)

u = 0 on Γ, (3)

where D(u) =
(
∇u + (∇u)T

)
/2. We refer to the vector variable u as the velocity and to the scalar

variable p as the pressure. Moreover, we assume that:

(H1): Ω is a bounded, open, polyhedral subset of R3 with Lipschitz boundary Γ;

(H2): η : Ω → R is a uniformly bounded, non-negative, Lipschitz continuous function;

(H3): f ∈ (L2(Ω))3.

Assumptions (H2) implies that there exists a non-negative constant number Cη such that

|η(x ) − η(x ′)| ≤ Cη|x − x ′| for almost every x , x ′ ∈ Ω, (4)

and two non-negative constant numbers Cη and Cη such that

Cη ≤ η ≤ Cη, almost everywhere in Ω. (5)

Existence and uniqueness of solution fields (u , p) are guaranteed by taking the additional condition for
the pressure that: ∫

Ω

p(x) dV = 0. (6)

The well-posedness of this mathematical model is discussed in several books, see, for example [12].

3 Discrete Duality Finite Volume method

3.1 Mesh constructions

The formulation of the DDFV method requires the triplet of meshes MT
h := (MP

h , MV
h , MEF

h ) and the
mesh of diamond cells MD

h . The construction of MT
h and MD

h and the presentation of their properties
are the topics of this subsection.

The mesh construction starts from MP
h , the primary partition of the computational domain Ω, that

is formed by NP polyhedrons, NF planar faces, NE straight edges, and NV vertices. We denote

- the set of mesh polyhedrons by P , a polyhedron by p, its three-dimensional measure, i.e., the
volume, by mp, the coordinate vector of its barycenter by x p;
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- the set of mesh faces by F , a face by f, its two-dimensional measure, i.e., the area, by |f|, the
coordinate vector of its barycenter by x f;

- the set of mesh edges by E , an edge by e, its one-dimensional measure, i.e., the length, by |e|,
the coordinate vector of its midpoint by x e;

- the set of mesh vertices by V , a vertex by v and its coordinate vector by x v.

The cells of mesh MV
h are associated to the vertices of V , while the cells of mesh MEF

h are associated
to the edges of E and to the faces of F . For this reason, they are referred to as cells of type vertex,
and cells of type edge and face, respectively. Since there is a bijective correspondance between mesh
vertices and cells of type vertex, we will use the same vertex symbol v to denote them. We denote
the three-dimensional measure (volume) of the vertex cell v by mv. We also denote both cells of type
edge and face, which concur in the definition of mesh M

EF
h , by the generic symbol s; consistently, ms

denotes the volume of the generic cell s ∈ MEF
h . The symbols p, v, s may be conveniently sub-indexed

to denote different instances, e.g., p1, p2, vA, vB, etc. The sub-index h that labels MT
h and MD

h is the
mesh size, i.e., a characteristic length of the mesh, and is defined as usual by h = maxe∈E |e|.

Mesh Regularity
We are interested in the formulation of an approximation method based on a family of meshes
{(MT

h ,M
D
h )} for h → 0. These meshes may contain very general shaped elements and non-convex

cells may be present due to the algorithm of mesh construction that will be discussed in this section.
However, we will take the few minimal assumptions listed below for the shape of the elements of mesh
MP

h in order to avoid some pathological situations that may occur in the refinement process. The main
consequences of these assumptions are discussed at the end of this section after the presentation of the
mesh construction algorithm.

(A1): All the primary partitions MP
h for h→ 0 are such that:

(A11) Ω = ∪p∈Pp;

(A12) each polyhedron face is either an interface between two distinct polyhedrons or a boundary
face; therefore, if f is a face of F either there exist two polyhedrons p1 and p2 in P such
that f = p1 ∩ p2, or there exists a polyhedron p1 in P such that f = ∂p1 ∩ ∂Ω;

(A13) every edge of a face of F is an edge of E ;

(A14) every vertex of a face of F is a vertex of V .

(A2): There exist two positive real numbers τ∗ and γ∗, which are independent of the specific mesh
instance MP

h , such that for every mesh MP
h there hold:

(A21): inside every cell p ∈ P there exists a three-dimensional ball, centered at the internal

point Mp of cell p and having radius τ∗m
1/3
p , such that p is star-shaped with respect to all

the points of this ball;

(A22): inside every face f ∈ F there exists a two-dimensional disk, centered at the internal point

Mf of face f and having radius γ∗ |f|1/2
, such that f is star-shaped with respect to all the

points of this disk;

(A3): There exist two positive integer numbers NEF and NV such that:

(A31): the number of faces of each polyhedral cell p ∈ P and the number of edges of each
polyhedral face f ∈ F are uniformly bounded by NEF for h→ 0;

(A32): the number of edges incident to any vertex is uniformly bounded by NV for h→ 0.
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Construction of MD
h

The diamond mesh is obtained by a decomposition of the mesh polyhedrons of MP
h following the next

two steps. In the first step, we split each mesh face f into a set of triangles by connecting each vertex
of face f to the point Mf of Assumption (A22); in the second step, we connect each triangle of face f

to the point Mp of Assumption (A21) of the polyhedrons p to which that face belongs. If the face is
internal, i.e., it is shared by two distinct cells of MP

h , this construction provides two tetrahedral cells
for each edge of the face. These two tetrahedrons are located on the opposite side of the face as shown
in Figure 1-(a) and their union is an internal diamond cell. If the face is on the boundary of Ω, this
construction provides a single tetrahedron, a boundary diamond cell, for each edge of the face. The
collection of internal and boundary diamond cells forms the mesh MD

h . We denote the generic cell
of MD

h by D, its three-dimensional measure by mD, and its center by xD. Normally, xD is not the
center of gravity of D, but another point of D that is chosen in accordance with a different criterion as
discussed below. To each diamond cell D ∈ M

D
h we associate a characteristic length hD, which scales

consistently with the mesh size h, for example hD = diam(D).
By construction, there is a bijective correspondance between the diamond cells in MD

h and the
ordered pairs “(edge, face)” denoted by (e, f) and such that e ∈ ∂f. We refer to such a combination
by the wording admissible pair and denote the corresponding diamond cell by D(e,f). For any diamond
cell D(e,f) ∈ MD

h associated to the admissible pair (e, f) we consider the seven geometric points:

- F, the point Mf of face f provided by (A22);

- E, the midpoint of edge e;

- A, the first vertex of edge e;

- B, the second vertex of edge e;

- K, the point Mp provided by (A21) in the first cell to which face f belongs;

- L, the point Mp provided by (A21) in the second cell to which face f belongs when f is an internal
face. If f is a boundary face, we take L = F;

- D, the barycenter of the triangle whose vertices are the points F, A and B.

Face and edge orientations are chosen in accordance with the following criteria. When f is a boundary
face, the unit vector nf orthogonal to f always points out of domain Ω, while, when f is an internal
face, nf is positively oriented from point K toward point L. Likewise, we assume that the unit vector
parallel to the direction of edge e is oriented from vertex A toward vertex B. Once face and edge
orientations have been set in the primal mesh M

P
h , the seven points A, B, D, E, F, K, and L are

uniquely determined for each admissible pair (e, f).
Despite the redundancy of notation, it is useful to denote the coordinate vectors of these seven

points by x sub-indexed by the point’s label; for example, xF ≡ x f is the coordinate vector of the
geometric point F, etc. In the rest of the section, the symbol Tv1v2v3 will denote the triangle whose
vertices are v1, v2, and v3, these latters being any triple combination without repetition of the seven
geometric points defined above. We will also use the notation hull{⋆} to indicate the convex hull of
the set of points denoted by ⋆.

Remark 1 From the previous definitions, it is obvious that

xE =
xA + xB

2
and xD =

xF + xA + xB

3
. (7)

The geometric construction of the cells in MP
h , MV

h , and MEF
h is based on three different decom-

positions and re-assembly of the diamond cells of MD
h . Any diamond cell can, indeed, be split into

two subcells in three different ways, each one of which leads to one of the meshes of the triplet MT
h .

We also use the symbol MD
h |ν where ν is the control volume associated to one of the point of the set

5



{
A,B,E,F,K,L

}
or one of the control volumes p, v, s to denote the subset of MD

h of all the diamond
cells D(e,f) such that mν∩D(e,f)

> 0. Likewise, MD
h |D denotes the set of diamonds D′ that are adjacent

to D and such that the surface σ = D∩D′. We also use notation (D|D′) and σ = (D|D′) to denote such
pairs (D,D′) in ∈ MD

h × MD
h .

Remark 2 The mesh construction described in the next paragraphs always takes place, even for bound-
ary items. Nonetheless, in such a case, point L may coincide with point F, and several triangular sub-
surfaces that are introduced below may degenerate into a surface with zero two-dimensional measure.

Scheme implementation
Despite the apparent complexity of the mesh construction that follows in the next paragraphs, the
practical implementation of this method in a software program can be easily managed. In fact, only
information from the connectivity structure of mesh MP

h is really required. More precisely, we can
exploit the correspondance between any admissible pair of type (edge,face) and a diamond cell of mesh
MD

h , to construct local data structures for all the diamonds that are sequentially referenced in the
loop on all the edges of a face, for all the faces of MP

h . It will be clear from the scheme formulation
discussed in the next section, that all global operators such as discrete gradient and divergence can be
built by assemblying these local contributions.

Characterization of MP
h

MP
h is the primary mesh from which all mesh construction starts and its control volumes are the

polyhedrons considered at the beginning of the section. Here, we discuss the connection between MP
h

and M
D
h , i.e., between the primary cells and the diamond cells, and we introduce some additional

notation.
If f is an internal face, we consider the situation shown in Figure 1-(a), where f is shared by the

primary cells pK and pL. If f is a boundary face, we assume that it belongs to the primary cell pK,
and all considerations concerning cell pL are to be dropped out. As shown in Figure 1-(b), for any
admissible pair (e, f) we consider the surface given by the union of the four triangles indicated below:

SD,KL = TDFA ∪ TDAE ∪ TDEB ∪ TDBF, (8)

which is in the interior of the diamond cell D(e,f). A different perspective is offered by plot (a) of
Figure 2, where it is shown how SD,KL contributes to the common interface between pK and pL in
the case of a primary mesh MP

h formed by cubic cells. Using surface SD,KL, we construct the two
tetrahedral regions

HK

(e,f) := hull
{
K,SD,KL

}
and HL

(e,f) := hull
{
L,SD,KL

}
,

that form the contributions from D(e,f) to pK and pL, the primary cells labeled by K and L. Thus,

pK = ∪D∈MD
h |K

HK

(e,f) and pL = ∪D∈MD
h |L

HL

(e,f).

Clearly, tetrahedrons HK

(e,f) and HL

(e,f) coincide, respectively, with the two subregions pK ∩ D(e,f) and

pL∩D(e,f). Therefore, the union of all the sub-regions that are obtained by varying (e, f) must reproduce
the polyhedrons pK and pL, and this mesh construction must provide the primary mesh M

P
h back.

Finally, we introduce the surface vector NK,L that is given by summing the vector products related to
the four triangles in (8) through the formula:

2NK,L =
−−→
DA ×−→

DF +
−→
DF ×−−→

DB +
−−→
DB×−−→

DE +
−−→
DE ×−−→

DA. (9)

Its orientation is such that NK,L · −→KL = 3
∣∣D(e,f)

∣∣ > 0. Note also that the four triangles forming SD,KL

in (8) lie on the same plane of face f, and the union of all the possible triangular subsurfaces that can
be built by varying edge e ∈ ∂f must reproduce face f. Thus, the surface vectors given by every possible
choice of e ∈ ∂f are parallel to the unit vector nf orthogonal to f, and the size of each vector is equal
to the measure of the corresponding sub-surface SD,KL.

6



Construction of MV
h

In this paragraph we explain in detail the construction of the node mesh MV
h whose cells are associated

to V , the vertices of mesh MP
h . As shown in Figure 1-(c), for any admissible pair (e, f) we consider the

surface given by the union of the four triangles indicated below:

SD,AB = TDKF ∪ TDFL ∪ TDLE ∪ TDEK, (10)

which is in the interior of the diamond cell D(e,f). A different perspective is offered by plot (b) of
Figure 2, where it is shown how SD,AB contributes to the common interface between vA and vB in the
case of a primary mesh MP

h formed by cubic cells. Using this surface, we construct the two polyhedral
regions

HA

(e,f) := hull
{
A,SD,AB

}
and HB

(e,f) := hull
{
B,SD,AB

}
,

that form the contributions from D(e,f) to vA and vB, the dual cells associated to the edge vertices
labeled by A and B. Thus,

vA = ∪D∈MD
h |A

HA

(e,f) and vB = ∪D∈MD
h |B

HB

(e,f).

The union of the subregions of the diamonds D(e,f) for all the admissible pairs (e, f) and associated to
vertex A provide the dual cell of vertex A (of course, the same holds for vertex B), as displayed in
Figure 2, plot (b), for a primal mesh MP

h formed by cubic cells. We denote the dual mesh provided by
this construction by MV

h and an example of a dual cell of MV
h for a primary mesh formed by cubic cells

is given in Figure 3, plot (a). Finally, we introduce the surface vector NA,B that is given by summing
the vector products related to the four triangles in (10) through the formula:

2NA,B =
−→
DF ×−−→

DK +
−−→
DK ×−−→

DE +
−−→
DE ×−→

DL +
−→
DL ×−→

DF. (11)

Its orientation is such that NA,B · −−→AB = 3
∣∣D(e,f)

∣∣ > 0.

Construction of MEF
h

In this paragraph we explain in detail the construction of the edge-face mesh MEF
h whose cells are

associated to E and F , the edges and faces of mesh MP
h , respectively. As shown in Figure 1-(d), for

any admissible pair (e, f) we consider the surface given by the union of the four triangles indicated
below:

SD,EF = TDKA ∪ TDAL ∪ TDLB ∪ TDBK. (12)

A different perspective is offered by plot (c) of Figure 2, where it is shown how SD,EF contributes to
the common interface between sE and sF in the case of a primary mesh MP

h formed by cubic cells.
Using this surface, we construct the two polyhedral regions

HE

(e,f) := hull
{
E,SD,EF

}
and HF

(e,f) := hull
{
F,SD,EF

}
, (13)

that form the contribution from D(e,f) to sE and sF, the dual cells associated to the points E and F, as
displayed in Figure 2, plot (c), for a primal mesh MP

h formed by cubic cells. Thus,

sE = ∪D(e,f)∈MD
h
HE

(e,f) and sF = ∪D(e,f)∈MD
h
HF

(e,f).

An example of two dual cells of MEF
h of type face and edge for a primary mesh formed by cubic cells

is given in Figure 3, e.g., plots (b) and (c), respectively. As for the cells of meshes MP
h and MV

h , we
introduce the surface vector NE,F that is given by summing the vector products related to the four
triangles in (12) through the formula:

2NE,F =
−−→
DA ×−−→

DK +
−−→
DK×−−→

DB +
−−→
DB ×−→

DL +
−→
DL ×−−→

DA. (14)
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Its orientation is such that NE,F · −→EF = 3
∣∣D(e,f)

∣∣ > 0.

Finally, we introduce the auxiliary notation for the surface vectors:

ND,p =

{
+NK,L if p ≡ pK

−NK,L if p ≡ pL

(15)

ND,v =

{
+NA,B if v ≡ vA

−NA,B if v ≡ vB

(16)

ND,s =

{
+NE,F if s ≡ sE

−NE,F if s ≡ sF
(17)

where D ≡ D(e,f) is the diamond cell associated to the pair (e, f) and A, B, K, L, E, F are the
corresponding auxiliary points. This notation will be used in the definition of the discrete divergence
operator of the following subsection.

Consequences of the mesh regularity assumptions
Assumption (A1) implies that any mesh MP

h is conformal in the sense that the intersection of the
closure of any two distinct polyhedrons is either empty, or a few mesh points of V , or a few mesh
edges of E , or a few mesh faces of F . Thus, two distinct polyhedrons cannot intersect, for example,
in a portion of a mesh face. Nonetheless, non-conformal situations can be considered as two adjacent
elements may share more than one edge and more than one face.

For each mesh MP
h , the decomposition of the polyhedral cells given by the mesh construction

algorithm of subsection 3.1 produces a tetrahedral mesh partition of Ω denoted by Sh, such that and
each vertex of MP

h is a vertex of Sh. The mesh partition Sh is formed by a uniformly bounded number
of tetrahedrons and is conformal and shape regular [19]. More precisely, from Assumptions (A1)-(A3)
there follow that:

(M1): there exists a positive integer number N∗, which is independent of h, such that Sh|p, the decom-

position of every polyhedron p ∈ MP
h into tetrahedrons, is formed by at most N∗ tetrahedrons;

(M2): there exists a positive real number ρ∗, which is independent of h and may depend on constants τ∗
and γ∗ of Assumption (A2), such that every tetrahedron T of Sh is shape-regular with constant ρ∗,
i.e., the ratio between rT, the radius of its inscribed sphere, and hT, its diameter, is bounded
from below by ρ∗; formally, we have that

∀T ∈ Sh : 0 < ρ∗ ≤ rT
hT

.

(M3): all relevant geometric quantities of the three meshes forming MT
h and mesh MD

h scale consis-
tently. In particular, there exists a constant Creg independent of h such that

∀e ∈ E : Cregh ≤ |e| , ∀f ∈ F : C2
regh

2 ≤ |f| , ∀p ∈ P : C3
regh

3 ≤ mp; (18)

∀σ ⊂ ∂D ∪ SD,KL ∪ SD,AB ∪ SD,EF, ∀D ∈ M
D
h : C2

regh
2 ≤ |σ| ≤ h2; (19)

∀D ∈ M
D
h : Cregh ≤ hD ≤ h and C3

regh
3 ≤ mD; (20)

∀ν ∈ M
P
h ,M

V
h ,M

EF
h : diam(ν) ≤ Cregh. (21)

(M4): there exists a real positive constant CAg, which only depends on N∗ and ρ∗ and is independent
of the diamond cell D ∈ MD

h and mesh size h, such that for any function v ∈ H1(D) there holds
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that

∀σ ⊂ ∂D ∪ SD,KL ∪ SD,AB ∪ SD,EF, ∀D ∈ M
D
h :

||v||2L2(σ) ≤ CAg

(
h−1

D ||v||2L2(D) + hD |v|2H1(D)

)
. (22)

We will refer to (22) as the Agmon inequality.

Property (M4) follows from the shape-regularity property (M2), cf., [1, Theorem 3.10]. Note, indeed,
that (M1)-(M2) implies that the three sub-meshes SP

h , SV
h , SEF

h formed by the union of the tetrahedrons
given by

for SP
h ≡ Sh, hull

{
K, T

}
and hull

{
L, T

}
with T ∈

{
TDFA, TDAE, TDEB, TDBF

}
,

for SV
h , hull

{
A, T

}
and hull

{
B, T

}
with T ∈

{
TDKF, TDFL, TDLE, TDEK

}
,

for SEF
h , hull

{
E, T

}
and hull

{
F, T

}
with T ∈

{
TDKA, TDAL, TDLB, TDBK

}
,

are also shape-regular (with different regularity constants).

Remark 3 The star-shape assumption considered in the mesh construction described in this section is
trivially satisfied when all mesh elements and all mesh faces in MP

h are convex. In such a case, we can
use the cell barycenters for the points K and L and the face barycenters for the points F. Alternatively,
we can use the arithmetic average of the coordinate vectors of the vertices forming the cells associated
to K and L and the faces associated to F.

3.2 Degrees of freedom, interpolations and discrete operators

Degrees of freedom
Using MT

h and MD
h , we define several different types of degrees of freedom to represent scalar, vector,

and tensor fields of the continuum setting in the discrete setting. More precisely, we consider:

• one number per cell of the meshes MP
h , MV

h , MEF
h to define the linear space of the discrete scalar

fields on MT
h , which is denoted by Th;

• one number per cell of the mesh M
D
h to define the linear space of the discrete scalar fields on

MD
h , which is denoted by Dh;

• one three-dimensional vector per cell of the meshes MP
h , MV

h , MEF
h to define the linear space of

the discrete three-dimensional vector fields on MT
h , which is denoted by T3

h;

• one three-dimensional vector per cell of the mesh MD
h to define the linear space of the discrete

three-dimensional vector fields on MD
h , which is denoted by D3

h;

• one 3 × 3-sized matrix per cell of the mesh MD
h to define the linear space of the discrete 3 × 3

tensor fields on MD
h , which is denoted by D

3×3
h .

We also introduce Th,0 and T3
h,0, which are, respectively, the linear subspace of the discrete scalar fields

in Th and vector fields in T3
h whose boundary degrees of freedom are zero.

We denote the degrees of freedom for scalar fields by Latin letters in normal font like “q” and
“v”, the degrees of freedom of vector fields by Latin letters in bold font like “v”, and the degrees
of freedom of tensor fields by Greek letters like “ψ” and “φ”. The geometric cells to which each
degree of freedom is attached is denoted by a cell’s sub-index; for example, q ∈ Th means that q =
{(qp)p∈MP

h
, (qv)v∈MV

h
, (qs)s∈MEF

h
}, where qp is the number attached to cell p, etc. We make also use of

the simplified notation uK, uA, etc to denote the degree of freedom associated to the cells pK, vA, etc.
Now, we define the discrete operators that act on the linear spaces of the degrees of freedom introduced
above.
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Interpolations
On MT

h we consider:

• vI =
(PP

m (v), PV
m(v), PEF

m (v)
)
, the mean-valued interpolation of the integrable field v, given byPP

m (v) =
{(Pp

m(v)
)
p∈MP

h

}
where ∀p ∈ M

P
h : Pp

m(v) :=
1

mp

∫

p

v(x ) dV, (23)PV
m(v) =

{(Pv
m(v)

)
v∈MV

h

}
where ∀v ∈ M

V
h : Pv

m(v) :=
1

mv

∫

v

v(x ) dV, (24)PEF
m (v) =

{(Ps
m(v)

)
s∈MEF

h

}
where ∀s ∈ M

EF
h : Ps

m(v) :=
1

ms

∫

s

v(x ) dV, (25)

• vJ =
{PP

c (v), PV
c (v), PEF

c (v)
}
, the center-valued interpolation of the continuous field v, given

by PP
c (v) =

{(Pp
c(v)

)
p∈MP

h

}
where ∀p ∈ M

P
h : Pp

c(v) := v(x p), (26)PV
c (v) =

{(Pv
c(v)

)
v∈MV

h

}
where ∀v ∈ M

V
h : Pv

c(v) := v(x v), (27)PEF
c (v) =

{(Ps
c(v)

)
s∈MEF

h

}
where ∀s ∈ M

EF
h : Ps

c(v) := v(x s). (28)

Mean-valued and center-valued interpolations of a scalar field v are naturally extended to a vector field
v by applying formulas (23)-(25) and (26)-(28) to each vector component, thus leading to expressions

like v I =
(PP

m (v ), PV
m(v), PEF

m (v )
)

and vJ =
(PP

c (v ), PV
c (v), PEF

c (v )
)
.

On M
D
h we consider:

• qI , the mean-valued interpolation of the integrable field q, given by

qI =
{(PD

m(q)
)
D∈MD

h

}
where ∀D ∈ M

D
h : PD

m(q) :=
1

mD

∫

D

q(x ) dV. (29)

In the theoretical analysis, we will consider the mean-valued interpolation on MD
h of tensor fields. The

extension of definition (29) to tensor fields is carried out component-wisely, and, is hence straightfor-
ward. For instance, ψI =

{
ψI

D

}
D∈MD

h

is the mean-valued interpolation of the tensor field ψ ∈ R3×3,

where for any cell D of any diamond mesh MD
h , we let

ψI
D|ij =

1

mD

∫

D

ψij(x ) dV (30)

denote the cell average of the ij-th component ψij over D.

Remark 4 We use the same notation with the superscript I, i.e., vI , to denote the mean-valued
interpolations of an integrable function v on all the meshes of the mesh family {(MT

h ,M
D
h )h}. There

is no ambiguity in this choice as it is always possible to deduce which definition is actually applied
contextually.

Remark 5 The mean-valued interpolations are well defined for functions in H1(Ω) and the center-
valued interpolations for functions in H2(Ω).
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Discrete gradient operators
We use the same symbol ∇h to denote the gradient of discrete scalar and vector fields defined on mesh
MT

h . More precisely, the discrete gradient is formally given by the operator ∇h : Th → D3
h, when

applied to the discrete scalars of Th, and by the operator ∇h : T3
h → D

3×3
h , when applied to the discrete

vectors of T
3
h. The discrete gradient of the scalar field v ∈ Th is given by ∇hv :=

{
(∇D

hv)D∈MD
h

}
with

∀D ∈ M
D
h : ∇D

hv :=
1

3mD

(
(vL − vK)NK,L + (vB − vA)NA,B + (vF − vE)NE,F

)
, (31)

where {K,L,A,B,E,F} and NK,L,NA,B,NE,F are the six points and the three surface vectors defined
for D by the geometric construction of subsection 3.1. Note that ∇D

hv is the unique three-dimensional
constant vector defined on D that reproduces exactly the finite differences of v along the displacements−→
KL,

−−→
AB, and

−→
EF. Therefore,

∇D
hv · (xL − xK) = vL − vK, (32)

∇D
hv · (xB − xA) = vB − vA, (33)

∇D
hv · (xF − xE) = vF − vE. (34)

The discrete gradient of a vector field v = (v1, v2, v3)
T in T3

h is defined component-wisely by applying

the definition for the scalar fields to each component vi for i = 1, 2, 3. Thus, ∇hv =
(
∇hv1,∇hv2,∇hv3

)T

where ∇hvi =
{
(∇D

hvi)D∈MD
h

}
for i = 1, 2, 3 is defined by formula (31).

Discrete divergence operators
We use the same symbol divh to denote the divergence of the discrete vector and tensor fields defined
on mesh MD

h . More precisely, the divergence is given by the operator divh : D3
h → Th when applied

to the vector fields of D3
h, and by the operator divh : D

3×3
h → T3

h when applied to the tensor fields
of D

3×3
h . To this purpose, let us first recall that ND,p, ND,v, and ND,s denote the vectors defined

in (15)-(17), and that MD
h |p, MD

h |v, and MD
h |s denote the subsets of MD

h formed by the diamond

cells whose intersection with the cells p ∈ MP
h , v ∈ MV

h , and s ∈ MEF
h , respectively, has a non-zero

three-dimensional measure. The divergence of the vector field u ∈ D
3
h is given by the triplet

divh(u) =
(

divP
h (u), divV

h (u), divEF
h (u)

)
(35)

with the following definitions

divP
h (u) =

{(
divp

h(u)
)
p∈MP

h

}
where ∀p ∈ M

P
h : divp

h(u) =
1

mp

∑

D∈MD
h |p

uD ·ND,p, (36)

divV
h (u) =

{(
divv

h(u)
)
v∈MV

h

}
where ∀v ∈ M

V
h : divv

h(u) =
1

mv

∑

D∈MD
h |v

uD ·ND,v, (37)

divEF
h (u) =

{(
divs

h(u)
)
s∈MEF

h

}
where ∀s ∈ M

EF
h : divs

h(u) =
1

ms

∑

D∈MD
h |s

uD ·ND,s. (38)

Moreover, in the formulation of the DDFV method we use the internal divergence operator

divint

h (u) =
(

divP
h (u), divV,int

h (u), divEF ,int

h (u)
)

(39)

where both divV,int

h (u) and divEF ,int

h (u) are defined as in (37)-(38), but only for the internal control
volumes of MV

h and MEF
h , i.e., those control volumes associated to the points of type A,B or E,F

11



located at the domain boundary. Regarding this definition, it is worth mentioning that we do not
need such a restriction for the points of type K,L as K is always an internal point and L coincides
with F when f is on the boundary. The divergence of the tensor field ψ ∈ D

3×3
h is given by the triplet(

divh(ψ1), divh(ψ2), divh(ψ3)
)T

where ψi for i = 1, 2, 3 are the row vectors of the 3× 3 matrix ψ, and
each divh(ψi) is given by applying definition (35) and (36)-(38).

We will also find it useful to introduce the discrete divergence of the vector fields of T3
h, which is

formally denoted by the operator divD
h : T3

h → Dh and given by

∀v ∈ T
3
h : divD

h (v ) =
{(

divD
h(v )

)
D∈MD

h

}
where divD

h (v) = Tr(∇D
hv). (40)

Using the compact notation Tr(φ) to denote the vector of D3
h such that Tr(φ)|D = Tr(φ|D) for any

φ ∈ D
3×3
h allows us to rewrite definition (40) as

∀v ∈ T
3
h : divD

h (v) = Tr(∇hv). (41)

Discrete strain rate tensor
The discrete strain rate tensor operator is formally given by Dh : T3

h → D
3×3
h and is defined as

∀v ∈ T
3
h : Dh(v ) =

∇hv + (∇hv)T

2
. (42)

Non-consistent discrete Laplacian operator
A stabilization term is considered in the formulation of the DDFV scheme of the next section. This
term is based on the discretization of the Laplacian operator over M

D
h given by

∀q ∈ Dh : ∆hq|D :=
1

mD

∑

D′∈MD
h |D

hD + hD′

2

(
qD′ − qD

)
, (43)

where the summation is on the diamond cells of MD
h |D, which, we recall, contains those diamonds D′

that are adjacent to D and such that the surface D ∩ D′ has a non-zero three-dimensional measure.
It is worth noting that (43) is a non-consistent approximation of the Laplacian operator. In fact,
a consistent approximation based on a two-point flux formula would require the mesh to verify an
orthogonality constraint as, for example, in the case of admissible meshes [29].

Approximation of viscosity field
Let ηh =

{
(ηD)D∈MD

h

}
∈ Dh be any first-order approximation of the scalar field η that is piecewise-

constant on MD
h , so that there holds the estimate

∀D ∈ M
D
h : sup

x∈D

|ηD − η(x )| ≤ C̃ηhD, (44)

where C̃η is a real positive constant independent of hD (and D). In view of the regularity of η, cf.
Assumption (H2), we can take ηD = (1/mD)

∫
D
η dV . If η is enough regular, we can also consider the

pointwise value ηD = η(x̃D) where x̃D is a suitably chosen point inside the corresponding diamond cell
D. However, we emphasize that the derivation of the theoretical results in Section 4 only depend on
estimate (44). From initial Assumption (H2) and using the same constants Cη andCη of inequalities (5),
we easily obtain that

∀D ∈ M
D
h : Cη ≤ ηD ≤ Cη. (45)
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3.3 Scheme formulation

The DDFV scheme for the numerical approximation of the steady Stokes equations (1)-(3) reads as:

find uh ∈ T
3
h,0 and ph ∈ Dh such that

divint

h

(
− ηhDh(uh) + phI) = f

I,int, (46)

divD
h (uh) − λh2∆h(ph) = 0, (47)

∑

D∈MD
h

mDpD = 0. (48)

where f I,int =
{PP

m (f ), PV,int

m (f ), PEF ,int

m (f h)
}

in equation (46) is the mean-valued interpolation of
the loading vector f defined by (23) on the control volumes of MP

h and by (24)-(25) restricted to the
internal control volumes of MV

h and MEF
h ; ηh is a first-order accurate approximation of viscosity η

satisfying (44); λ is the non-negative stabilization coefficient.
We integrate the momentum conservation law (2) on the primary mesh MP

h , on the interior node
mesh M

V
h , and on the interior edge-face mesh M

EF
h . Equation (46) can be split into three interconnected

sets of equations for the meshes forming MT
h , i.e., MP

h , MV
h , and MEF

h , thus giving:

divP
h

(
− ηhDh(uh) + phI) = PP

m (f ), (49)

divV,int

h

(
− ηhDh(uh) + phI) = PV,int

m (f ), (50)

divEF ,int

h

(
− ηhDh(uh) + phI) = PEF ,int

m (f ). (51)

The mass conservation equation is directly approached on the diamond mesh using a stabilized term à la
Brezzi-Pitkaranta [16] by using the discrete Laplacian given by (43). Equation (47) takes into account
the free-divergence constraint (2) and introduces into the scheme the stabilization term. Equation (48)
is the discrete version of the additional compatibility condition (6), and is required to ensure the
uniqueness of the numerical solution. In fact, as it occurs in the continuous setting, also in the discrete
setting the pressure field solving scheme’s equations (46) and (47) is defined up to constant scalar
fields. To see this, we note that the definition of the discrete divergence in (35) and (36)-(38) extended
to tensor fields implies that divh(phI) = divh

(
(ph + ch)I) for any constant scalar field ch = {c} ∈ Dh,

with c being any real number. Likewise, the definition of the discrete Laplacian in (43) implies that
∆h(ph) = ∆h(ph + ch).

4 Convergence Analysis

In this section, we perform the theoretical analysis of the DDFV method introduced in the previ-
ous section. In subsection 4.1, we introduce several concepts, e.g., inner products, mesh dependent
norms, discrete duality relations and similar “mimetic” relations, that are useful in the analysis. In
subsection 4.2, we present other theoretical tools, as the Poincaré and Korn inequalities, and the error
estimates for the interpolation operators of subsection 3.2. The main results of this section are in
subsection 4.3 where we prove the uniform stability and well-posedness of the scheme, cf. Theorem 1
and Corollary 1, and in subsection 4.4, where we derive a priori estimates for the approximation errors
in the discrete and continuous setting, cf. Theorems 2 and 3.
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4.1 Preliminaries

Inner products and mesh-dependent norms
Let us introduce the following bilinear forms for the elements of the linear spaces Dh, D3

h and D
3×3
h :

∀p, q ∈ Dh :
[
p, q
]
Dh

=
∑

D∈MD
h

mD pD qD, (52)

∀u , v ∈ D
3
h :

[
u , v

]
Dh

=
∑

D∈MD
h

mD uD · vD, (53)

∀φ, ψ ∈ D
3×3
h :

[
φ, ψ

]
Dh

=
∑

D∈MD
h

mD φD : ψD =
∑

D∈MD
h

mDTr
(
φT

DψD

)
, (54)

(recall that φ : ψ = Tr(φTψ)).

Lemma 1 Let
[
·, ·
]
Dh

be given by (52) and (54) for, respectively, the discrete scalar and tensor fields

defined on MD
h . Then, there holds that:

∀q ∈ Dh, ∀ψ ∈ D
3×3
h :

[
q,Tr(ψ)

]
Dh

=
[
qI, ψ]

Dh
. (55)

Proof. Let us consider q = {(qD)D∈MD
h
} and ψ = {(ψD)D∈MD

h
}, where qD ∈ R and ψD ∈ R3×3. Since

qDTr(ψD) = Tr((qDI)TψD), starting from (52) and applying definition (54) in the last step, we readily
obtain that:

[
q,Tr(ψ)

]
Dh

=
∑

D∈MD
h

mDqDTr(ψD) =
∑

D∈MD
h

mDTr
(
(qDI)T ψD

)
=
[
qI, ψ]

Dh
. (56)

The bilinear forms (52), (53) and (54) are inner products in Dh, D
3
h, and D

3×3
h , respectively. These

inner products induce the following three mesh-dependent norms:

∀q ∈ Dh : |||q|||2Dh
=
[
q, q
]
Dh

[
using definition (52)

]
, (57)

∀v ∈ D
3
h : |||v |||2Dh

=
[
v , v

]
Dh

[
using definition (53)

]
, (58)

∀ψ ∈ D
3×3
h : |||ψ|||2Dh

=
[
ψ, ψ

]
Dh

[
using definition (54)

]
, (59)

which are defined, as indicated above, in accordance with the nature of the fields q, v and ψ.
Let us introduce the following inner products for the elements of the linear spaces Th and T3

h

∀u, v ∈ Th :
[
u, v
]
Th

=
1

3

( ∑

p∈MP
h

mpupvp +
∑

v∈MV
h

mvuvvv +
∑

s∈MEF
h

msusvs

)
, (60)

∀u , v ∈ T
3
h :

[
u , v

]
Th

=
1

3

( ∑

p∈MP
h

mpup · v p +
∑

v∈MV
h

mvuv · v v +
∑

s∈MEF
h

msu s · v s

)
. (61)

These inner products induce the two mesh-dependent norms:

∀q ∈ Th : |||q|||2Th
=
[
q, q
]
Th

[
using definition (60)

]
, (62)

∀v ∈ T
3
h : |||v |||2Th

=
[
v , v

]
Th

[
using definition (61)

]
, (63)

which are defined, as indicated above, in accordance with the nature of the fields q and v .

Moreover, from (45) and in view of inner product definitions (54) and (59), it is straightforward to
obtain the inequalities

∀ψ, φ ∈ D
3×3
h : Cη

∣∣∣
[
ψ, φ

]
Dh

∣∣∣ ≤
∣∣∣
[
ηhψ, φ

]
Dh

∣∣∣ ≤ Cη

∣∣∣
[
ψ, φ

]
Dh

∣∣∣ . (64)

14



Discrete duality relations
The three discrete duality relations established in the following lemma, i.e., (65), (66), and (67), are
discrete versions of integration by parts formulas that hold for the discrete divergence and gradient
operators introduced in subsection 3.2, assuming that these latters act on grid functions defined on
M

T
h that are zero on the boundary.

Lemma 2 (Discrete duality relations)

(i) The first discrete duality relation is given by

∀v ∈ D
3
h, ∀q ∈ Th,0 :

[
divh(v), q

]
Th

+
[
v,∇hq

]
Dh

= 0 (65)

through the inner products defined in (60) and (53);

(ii) the second discrete duality relation is given by

∀φ ∈ D
3×3
h , ∀v ∈ T

3
h,0 :

[
divh(φ), v

]
Th

+
[
φ,∇hv

]
Dh

= 0 (66)

through the inner products defined in (61) and (54);

(iii) the third discrete duality relation is given by

∀q ∈ Dh, ∀v ∈ T
3
h,0 :

[
divh(qI), v]

Th
+
[
q,Tr(∇hv)

]
Dh

= 0 (67)

through the inner products defined in (52) and (61).

Proof.
(i) According to the proof in [20], this item follows by applying the arguments discussed in [3, 25, 26]
to the three-dimensional case;
(ii) this item follows by applying the arguments discussed in [35] to the three-dimensional case;
(iii) using identity (55) with ψ = ∇hv and the second duality relation from (ii), i.e. (66), with φ = qI
yields:

[
q,Tr(∇hv )

]
Dh

=
[
qI,∇hv

]
Dh

= −
[
divh(qI), v]

Th
. (68)

A mesh-dependent seminorm
For the elements of the linear space Dh, we make use of the seminorm | · |h given by

|q|2h =
∑

(D|D′)

hD + hD′

2
|qD − qD′ |2 , (69)

(recall that (D|D′) denote the pairs (D,D′) ∈ MD
h × MD

h such that the surface D ∩ D′ has a non-zero
two-dimensional measure). Using this seminorm definition, the discrete Laplacian given in (70) and
the inner product introduced in (52) for the scalar fields of Dh make it possible to obtain a discrete
analog of the exact relation:

∀q ∈ H2(Ω) ∩H1
0 (Ω) :

∫

Ω

|∇q|2 dV +

∫

Ω

q∆(q) dV = 0.

This result, which will be used in the analysis of the next subsections, is stated in the lemma below.

Lemma 3 Let | · |h be given by (69), ∆h(·) be given by (43), and
[
·, ·
]
Dh

be given by (52). Then, there

holds that

∀q ∈ Dh : |q|2h +
[
q,∆hq

]
Dh

= 0. (70)
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Proof. Starting from the seminorm definition given in (69) there holds:

|q|2h =
∑

(D|D′)

hD + hD′

2
|qD − qD′ |2

[
reorder the summation terms

]

=
∑

D∈MD
h

qD
∑

D′∈MD
h |D

hD + hD′

2

(
qD − qD′

) [
use (43) and (52)

]

=
[
q,−∆hq

]
Dh

(71)

We conclude this subsection with a lemma that will be useful in the proof of the Korn inequality,
cf. Lemma (6). From calculus, we know that the identity below holds for any smooth vector field v :

div
(
(∇v )T

)
= div(div(v )I). (72)

A discrete analog is stated as follows.

Lemma 4 There holds that

∀v ∈ T
3
h,0 : divh(∇hv)T = divh

(
divD

h (v)I), (73)

where divh, divD
h , and ∇h are the discrete divergence and gradient operators previously defined for

vector and tensor fields.

Proof .To ease notation, let

ψ = (∇hv)T − divD
h (v )I ∈ D

3×3
h . (74)

We will show that divhψ = 0. Let us denote the three spatial components of vector v ∈ T3
h by vi

for i = 1, 2, 3, its value at points A,B etc by the vector symbols vA, vB etc, and the i-th canonical
basis vector of R3 by ei. A direct calculation gives the explicit form of ψ|D the restriction of ψ to the
diamond cell D:

ψ|D =




−∑3
i=2 ∇D

hvi · ei ∇D
hv2 · e1 ∇D

hv3 · e1

∇D
hv1 · e3 −∑3

i=1,i6=2 ∇D
hvi · ei ∇D

hv3 · e2

∇D
hv1 · e3 ∇D

hv2 · e3 −∑2
i=1 ∇D

hvi · ei


 .

Using this expression, we easily obtain for the vector NK,L = (NK,L · e1,NK,L · e2,NK,L · e3)
T that

ψ|DNK,L =




−∑3
i=2 ∇D

hvi · ei NK,L · e1 + ∇D
hv2 · e1 NK,L · e2 + ∇D

hv3 · e1 NK,L · e3

∇D
hv1 · e3 NK,L · e1 −

∑3
i=1,i6=2 ∇D

hvi · ei NK,L · e2 + ∇D
hv3 · e2 NK,L · e3

∇D
hv1 · e3 NK,L · e1 + ∇D

hv2 · e3 NK,L · e2 −
∑2

i=1 ∇D
hvi · ei NK,L · e3


 .

After some algebraic manipulations, we can rewrite the previous expression in the compact form that
involves two vector products:

ψ|DNK,L =
vA − vB

2
× (xF − xE) +

vF − vE

2
× (xB − xA). (75)

Likewise, we deduce that

ψ|DNA,B =
vL − vK

2
× (xF − xE) +

vE − vF

2
× (xL − xK), (76)

ψ|DNE,F =
vK − vL

2
× (xB − xA) +

vB − vA

2
× (xL − xK). (77)
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In accordance with the definition of the divergence operator given in (35) and (36)-(38) and its extension
to discrete tensor field in D

3×3
h , we have that

divhψ =

(
(
divp

h(ψ)
)
p∈MP

h

,
(
divv

h(ψ)
)
v∈MV

h

,
(
divs

h(ψ)
)
s∈MEF

h

)
. (78)

For simplicity of notation, in the next formulas we will implicitly refer the six points A, B, E, F,
K, L to each diamond cell determined by the summation index D, and we will properly adjust the
orientation of the normal vectors ND,p, ND,v, and ND,s that appears in (15)-(17) to have a positive
sign. Accordingly, the three components of divhψ in (78) are given by

mpdivp
h(ψ) =

∑

D∈MD
h |p

(
vA − vB

2
× (xF − xE) +

vF − vE

2
× (xB − xA)

)
,

mvdivv
h(ψ) =

∑

D∈MD
h |v

(
vL − vK

2
× (xF − xE) +

vE − vF

2
× (xL − xK)

)
,

msdivs
h(ψ) =

∑

D∈MD
h |s

(
vK − vL

2
× (xB − xA) +

vB − vA

2
× (xL − xK)

)
.

Eventually, identity (73) is a consequence of Proposition A.1, which is reported in the final appendix.

4.2 Technical lemmas

Lemma 5 (Poincaré inequality) Let MT
h be a mesh triplet for the domain Ω. Then, there exists

a positive constant C1, which is independent of h and only depends on the diameter of Ω and the
regularity constant Creg, such that

∀v ∈ T
3
h,0 : |||v|||Th

≤ C1|||∇hv|||Dh
. (79)

Proof. The lemma follows by extending to the vector case [35] the similar result for scalar fields proved
in [20].

Lemma 6 (Discrete Korn inequality) For every v ∈ T3
h,0 there holds

|||Dh(v)|||Dh
≤ |||∇hv|||Dh

≤
√

2|||Dh(v)|||Dh
. (80)

We will refer to the right-most inequality as the discrete Korn inequality.

Proof. The left inequality in (80) is obviously true because the norm of the symmetric part of a matrix,
cf. (42), is always controlled by the norm of the full matrix.

To prove the right inequality in (80), we first note that a straightforward calculation using defini-
tion (42) for the discrete strain rate tensor yields:

∣∣∣∣∣∣Dh(v)
∣∣∣∣∣∣2

Dh
=

1

2

(∣∣∣∣∣∣∇hv
∣∣∣∣∣∣2

Dh
+
[
∇hv , (∇hv )T

]
Dh

)
. (81)

We will prove the discrete Korn inequality by showing that the second term in the right-hand side
of identity (81) is positive. To this purpose, we begin from the second discrete duality relation given
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by (66) to obtain:

[
∇hv , (∇hv)T

]
Dh

= −
[
v , divh(∇hv )T

]
Th

[use Lemma 4, inequality (73)]

= −
[
v , divh

(
divD

h (v)I)]
Th

[use third discrete duality relation (67)]

=
[
Tr(∇hv), divD

h (v )
]
Dh

[use definition (41) and norm (58)]

=
∣∣∣∣∣∣divD

h (v )
∣∣∣∣∣∣2

Dh
. (82)

The proof of uniform stability and the derivation of the a priori error estimates in the next section
require several approximation results that are preliminarily stated in the following lemmas. In the
convergence analysis, we identify any discrete field defined on the three meshes of MT

h and mesh MD
h

with the piecewise constant field defined on Ω whose restriction to each control volume of such meshes
is the value of the corresponding degree of freedom of the discrete field. According to this viewpoint,
we may also interpret each discrete field in Th and T

3
h as a triplet of, respectively, scalar and vector

piecewise constant functions. To ease notation, we use the same symbol to denote a discrete scalar,
vector, or tensor field and the corresponding piecewise constant scalar, vector, or tensor function. For
the triplets of scalar piecewise constant functions corresponding to the elements of Th we define the
L2-norm on Ω as follows. Let v = {(vp)p∈P , (vv)v∈V , (vs)s∈E∪F} ∈ Th be the degrees of freedom on
MT

h of the discrete scalar field v, and χσ(x ) for σ ∈ {p, v, s} denote the characteristic function of subset
σ ∈ R3, i.e., χ(x ) = 1 when x ∈ σ, χ(x ) = 0 otherwise. The relation

v(x ) =
(
vP (x ), vV(x ), vEF (x )

)

=




∑

p∈P

vpχp(x ),
∑

v∈V

vvχv(x ),
∑

s∈E∪F

vsχs(x )



 for every x ∈ Ω (83)

gives the triplet of piecewise constant functions built on the meshes MP
h , MV

h , and MEF
h , respectively.

Then, we have that

||v||2L2(Ω) =
1

3

(
||vP ||2L2(Ω) + ||vV ||2L2(Ω) + ||vEF ||2L2(Ω)

)
, (84)

so that ||v||2L2(Ω) = |||v|||2
Th

=
[
v, v
]
Th

. The L2-norm for piecewise constant vector and tensor fields

is defined by extending component-wisely this definition.
Sobolev spaces and corresponding norms for vector and tensor fields are to be intended component-

wisely. For example, let ψ =
{
ψij

}
be a tensor field in

(
L2(Ω)

)3×3
; hence, all its components ψij are

square integrable functions defined on Ω, and its L2-norm is given by

∣∣∣∣ψ
∣∣∣∣2

L2(Ω)
=

3∑

i,j=1

∫

Ω

|ψij |2 dV.

Lemma 7 There exists a constant C2 independent of h such that for every q ∈ H1(Ω) and for any
cell D of any diamond mesh MD

h there holds:

∣∣∣∣qI − q
∣∣∣∣

L2(D)
≤ C2hD||q||H1(D), (85)

where qI ∈ Dh is the mean-valued interpolation of q over mesh MD
h given by (29).

Proof. The lemma follows by repeating the same argument that is used to prove [35, Proposition 5.4].
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Lemma 8 There exists a real positive constant C3 independent of h such that for every v ∈
(
W 2,q(Ω)

)3

there holds that: ∣∣∣∣v− vJ
∣∣∣∣

L2(Ω)
+
∣∣∣∣∇v−∇hv

J
∣∣∣∣

L2(Ω)
≤ C3h||v||W 2,q(Ω), (86)

where vJ ∈ T3
h is the center-valued interpolation of v defined on mesh triplet MT

h by (23)-(25).

Proof. The lemma follows by extending to the vector case [35] the similar result for scalar fields proved
in [20].

Lemma 9 There exists a real positive constant C4 independent of h such that for every q ∈ H1(Ω)
there holds that:

|qI |h ≤ C4 |q|H1(Ω) , (87)

where qI ∈ Dh is the mean-valued interpolation of q over mesh MD
h given by (29).

Proof. Let qI = {(qI
D)D} ∈ Dh be the mean-valued Dh-interpolation of a generic function q ∈ H1(Ω),

where qI
D = qI |D. For every face σ ∈ ∂D of every diamond cell D ∈ M

D
h , applying Jensen inequality

yields:
∣∣∣∣q

I
D − 1

|σ|

∫

σ

q dS

∣∣∣∣
2

≤ 1

|σ|

∫

σ

∣∣qI
D − q

∣∣2 dS =
1

|σ|
∣∣∣∣qI

D − q
∣∣∣∣2

L2(σ)
. (88)

Using Agmon inequality, noting that the H1(D)-seminorm of qI
D is zero because qI

D is constant on D,
applying the estimate for the interpolation error on the diamond cell D provided by Lemma 7, and
using the scaling property C2

regh
2
D ≤ |σ| that holds for every σ ∈ ∂D allows us to obtain the following

chain of inequalities

1

|σ|
∣∣∣∣qI

D − q
∣∣∣∣2

L2(σ)
≤ CAg

|σ|
(
h−1

D

∣∣∣∣qI
D − q

∣∣∣∣2
L2(D)

+ hD |q|2H1(D)

)

≤ CAg

|σ|
(
h−1

D

(
C2hD |q|H1(D)

)2
+ hD |q|2H1(D)

)

≤ CAg(1 + C2
2 )
hD

|σ| |q|
2
H1(D) ≤

CAg(1 + C2
2 )

C2
reg

h−1
D |q|2H1(D) . (89)

Substituting (89) into (88) readily gives:

∀σ ∈ ∂D, ∀D ∈ M
D
h :

∣∣∣∣q
I
D − 1

|σ|

∫

σ

q dS

∣∣∣∣
2

≤ CAg(1 + C2
2 )

C2
reg

h−1
D |q|2H1(D) . (90)

Now, let us observe that adding and subtracting the face average qσ = 1
|σ|

∫
σ
q dS, noting that

∣∣qI
D − qI

D′

∣∣2 ≤ 2
∣∣qI

D′ − qσ
∣∣2 + 2

∣∣qI
D − qσ

∣∣2, using inequality (90), and the scaling property max
(
hD/

hD′ , hD′/hD

)
≤ 1/Creg which follows from (M3) yield:

|qI |2h =
∑

(D|D′)

hD + hD′

2

∣∣qI
D − qI

D′

∣∣2

≤
∑

(D|D′)

(
hD + hD′

)( ∣∣qI
D − qσ

∣∣2 +
∣∣qI

D′ − qσ
∣∣2
)

≤ CAg(1 + C2
2 )

C2
reg

∑

(D|D′)

(
hD + hD′

)(
h−1

D |q|2H1(D) + h−1
D′ |q|2H1(D′)

)

≤ C2
4

∑

D∈MD
h

|q|2H1(D) = C2
4 |q|2H1(Ω) , (91)

where C2
4 = 4CAg(1 + 1/Creg)(1 + C2

2 )/C2
reg.
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Lemma 10 There exists a real positive constant C5 independent of h such that:

∀v ∈
(
H1(Ω)

)3
: |||∇hv

I |||Dh
≤ C5||v||H1(Ω), (92)

∀v ∈
(
W 2,q(Ω)

)3
, q > 2 : |||∇hv

J |||Dh
≤ C5||v||W 2,q(Ω), (93)

where vI ∈ T3
h and vJ ∈ T3

h are the mean-valued and center-valued interpolations of v defined on mesh
triplet MT

h by (23)-(25) and (26)-(28), respectively.

Proof. To ease notation, let vI be one of the three spatial components vI
i for i = 1, 2, 3 of the

interpolation vector v I = (vI
1 , v

I
2 , v

I
3)T , and note that

∣∣∇D
hv

I
∣∣2 ≤ 3

(
1

3mD

)2 (∣∣vI
L − vI

K

∣∣2 |NK,L|2 +
∣∣vI

B − vI
A

∣∣2 |NA,B|2 +
∣∣vI

F − vI
E

∣∣2 |NE,F|2
)
, (94)

where vI
A
, vI

B
, vI

E
, vI

F
, vI

K
, vI

L
are the degrees of freedom of vI for the six points A,B,E,F,K,L that

we defined for the diamond cell D in the mesh construction algorithm. Now, let us consider the face
σ = ∂pK∩∂pL that is shared by the cells pK and pL related to points K and L, respectively, and denote

the average of v on face σ by vσ = 1
|σ|

∫

σ

v dS. The approximation result of Lemma A.1 in the final

appendix implies that

∣∣vσ − vI
K

∣∣2 ≤ C18
diam(pK)

|σ|

∫

pK

|∇v|2 dV. (95)

Adding and subtracting vσ in the finite difference
∣∣vI

L
− vI

K

∣∣, using the triangular inequality, apply-
ing (95), and noting that the scaling properties listed in (M3) implies that

|NK,L|2
mD

diam(pK)

|σ| ≤ 1

C4
reg

(96)

provides us this upper bound:

3mD

1

(3mD)2

∣∣vI
L − vI

K

∣∣2 |NK,L|2 ≤ 2

3

C18

C4
reg

∫

p
K
∪p

L

|∇v|2 dV. (97)

Two similar inequalities can also be derived for the terms involving the finite differences
∣∣vI

B
− vI

A

∣∣ and∣∣vI
F
− vI

E

∣∣. Therefore, we deduce that

|||∇hv
I |||2

MD
h

=
∑

D∈MD
h

mD

∣∣∇D
hv
∣∣2

≤ 2

3

C18

C4
reg

∑

D∈MD
h

(∫

p
K
∪p

L

|∇v|2 dV +

∫

vA∪vB

|∇v|2 dV +

∫

sE∪sF

|∇v|2 dV
)

≤ Ñ 2

3

C18

C4
reg

||∇v||L2(Ω), (98)

where again vA, vB, sE, sF are the control volumes related to the points A,B,E,F, and Ñ = 2(N∗ +
NV +NEF). We recall that N∗ is the integer constant provided by consequence (M1), while NV and NEF

are the integer constants introduced in Assumption (A3). The first statement of this lemma follows by
applying the previous inequality to each component of vector v I .

The second lemma statement follows by extending to the vector case [35] the similar result for
scalar fields proved in [20].
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Lemma 11 There exists a real positive constant C6 independent of h such that for every v ∈
(
W 2,q(Ω)

)3
,

q > 2, with div(v) = 0 there holds that:

|||divD
h (vJ)|||Dh

≤ C6h||v||W 2,q(Ω), (99)

where vJ ∈ Th is the center-valued interpolation of v defined on mesh triplet MT
h by (26)-(28).

Proof. Subtracting div(v ) = 0 in the left-hand side of (99), using definition (40) and div(v) = Tr(∇v ),
the fact the norm of a matrix trace is bounded by the norm of the matrix, and the result of Lemma 8,
cf. inequality (86), yields:

|||divD
h (vJ)|||Dh

= ||div(v ) − divD
h (vJ)||L2(Ω) = ||Tr(∇v −∇D

hvJ)||L2(Ω)

≤ ||∇v −∇D
hvJ ||L2(Ω) ≤ C3h||v ||W 2,q(Ω). (100)

The lemma follows by taking C6 = C3.

Lemma 12 There exists a real positive constant C7 independent of h such that for every v ∈
(
W 2,q(Ω)

)3
,

q > 2, and for every cell D of any diamond mesh MD
h there holds:

∣∣∣∣Dh(vJ ) − D(v)I
|D

∣∣∣∣
L2(D)

≤ C7hD||v||W 2,q(D), (101)

where vJ ∈ Th is the center-valued interpolation of v on mesh triplet MT
h given by (26)-(28), and

D(v)I ∈ D
3×3
h is the mean-valued interpolation of D(v) on mesh MD

h given by (29)-(30).

Proof. Using Jensen inequality, noting that the norm of a symmetric part of a matrix is bounded
from above by the norm of the full matrix, and finally applying the result of Lemma 8, cf. inequal-
ity (86), yield:

∣∣∣∣Dh(vJ) − D(v )I
|D

∣∣∣∣
L2(D)

≤
∣∣∣∣Dh(vJ) − D(v )

∣∣∣∣
L2(D)

≤
∣∣∣∣∇hv

J −∇v
∣∣∣∣

L2(D)
≤ C3h

∣∣∣∣v
∣∣∣∣

W 2,q(D)
. (102)

The lemma follows by taking C7 = C3.

Lemma 13 There exists a constant C8 independent of h such that for every v ∈
(
H1(Ω)

)3
and every

q ∈ Dh there holds:

∑

D∈MD
h

∫

D

qD

(
divD

h (vI) − div(v)
)
dV ≤ C8h|q|h||v||H1(Ω), (103)

where divD
h (·) is given by (40), and vI is the mean-valued interpolation on the mesh set MT

h given
by (23)-(25).

Proof. Let Ti1i2i3 be a triangular face of the boundary ∂D of the diamond cell D. These faces are
given by the eight possible combinations of indices (i1, i2, i3) where i1 ∈ {A,B}, i2 ∈ {K,L}, and
i3 ∈ {E,F}. Moreover, assume that the orientation of Ti1i2i3 is such that the normal vector to the face
points out of the diamond cell D. Note that

divD
h (v I) =

1

mD

∑

σ∈∂D

|σ| v I
σ · nD,σ where v I

σ =
1

3

3∑

i=1

v I
i , (104)
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and v I
i for i ∈ {i1, i2, i3} are the degrees of freedom of face σ = Ti1i2i3 ⊂ ∂D. For example, cf. Figure 1-

(a), if σ = TAKE, then v I
σ = (1/3)(v I

A
+v I

E
+v I

K
), and, by comparison, v I

i1 = v I
A
, etc. To ease notation,

let vσ denote the average of v on face σ

vσ =
1

|σ|

∫

σ

v dS, (105)

and Rσ(v) the face-based quantity given by:

Rσ(v) =
1

|σ|

∫

σ

(
v I

σ − v
)
dS. (106)

Using definitions (105) and (106), formula (104) and the divergence theorem make it possible to obtain
the development:

∫

D

(
divD

h (v I) − div(v )
)
dV = mDdivD

h (v I) −
∫

D

div(v ) dV

=
∑

σ∈∂D

∫

σ

(
v I

σ − v
)
· nD,σ dS =

∑

σ∈∂D

|σ|nD,σ ·Rσ(v ). (107)

We multiply both sides of identity (107) by qD and sum on all the diamond cells D ∈ MD
h . Then, we

reorder the summation terms on the faces that are shared by adjacent diamond cells, multiply and

divide the summation argument by
(
(hD + hD′)/2

)1/2
and use the Cauchy-Schwarz inequality. This

leads to the following development:

∑

D∈MD
h

qD

∫

D

(
divD

h (v I) − div(v )
)
dV =

∑

D∈MD
h

qD
∑

σ∈∂D

|σ|nD,σ ·Rσ(v )

=
∑

σ=(D|D′)

(
qD − qD′

)
|σ|nD,σ ·Rσ(v )

≤
(
∑

(D|D′)

hD + hD′

2
|qD − qD′ |2

) 1
2
(

∑

σ=(D|D′)

2 |σ|2
hD + hD′

|Rσ(v )|2
) 1

2

≤ |q|h
(

∑

σ=(D|D′)

2 |σ|2
hD + hD′

|Rσ(v )|2
) 1

2

. (108)

Substituting (105) and (104) into (106) yields:

Rσ(v ) = v I
σ − vσ =

1

3

3∑

j=1

(
v I

ij
− vσ

)
,

and after applying Jensen inequality we have that

|Rσ(v)|2 ≤ 1

3

3∑

j=1

∣∣∣v I
ij
− vσ

∣∣∣
2

. (109)

Finally, we apply Lemma A.1, cf. final appendix, to every difference
∣∣v I

ij
− vσ

∣∣. Note, indeed, that

index ij for j = 1, 2, 3 corresponds to a control volume of one of the meshes in MT
h , and that σ = Ti1i2i3
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is inside this control volume. For instance, if ij = K, we consider the cell pK and we have that:

∣∣v I
K − vσ

∣∣2 =

∣∣∣∣∣
1

mK |σ|

∫

x∈pK

∫

z∈σ

(
v(x ) − v (z )

)
dV (x ) dS(z )

∣∣∣∣∣

2

≤ C18
diam(pK)

|σ|

∫

p
K

|∇xv (x )|2 dV (x ). (110)

We substitute (110) into (109) and the resulting inequality into (108). Then, we use the scalings with
respect to h reported in consequence (M3), i.e., inequality (21) for diam(pK), (19) for |σ|, and (20) for
hD + hD′ , to obtain

(
∑

σ=(D|D′)

2 |σ|2
hD + hD′

|Rσ(v )|2
) 1

2

≤ C8h||v ||H1(Ω), (111)

where C8 =
(
8ÑC18/3

)1/2
, and Ñ is the same integer constant introduced at the end of the proof of

Lemma 10. The lemma statement follows by using inequality (111) in (108).

4.3 Stability and well-posedness

In this subsection we prove the uniform stability of the numerical method by proving the inf-sup
condition [15] that is used in the convergence analysis of the next sub-section. Let us first introduce
the bilinear form for the ordered pairs of the linear space T3

h × Dh:

∀(v , q), (ṽ , q̃) ∈ T
3
h × Dh : B

(
(v , q); (ṽ , q̃)

)
=
[
divh(−ηhDh(v) + qI), ṽ]

Th

+
[
divD

h (v) − λh2∆h(q), q̃
]
Dh
, (112)

where ηh ∈ Dh satisfies (44) and (45) and the stabilization parameter λ is a non-negative real number.
Note that scheme (46)-(48) can be reformulated as:

find (uh, ph) ∈ T3
h,0 × Dh with

∑
D∈MD

h
mDpD = 0 such that

B
(
(uh, ph); (v , q)

)
=
[
f I , v

]
Th

∀(v , q) ∈ T
3
h,0 × Dh. (113)

We can use f I instead of f I,int in (113) because v belongs to T3
h,0, i.e., the boundary degrees of freedom

are zero.

Theorem 1 (Inf-sup condition) For every pair (uh, ph) ∈ T3
h,0 × Dh with ph satisfying condi-

tion (48), i.e.,
∑

D∈MD
h
mDpD = 0, there exists a pair (û, p̂) ∈ T3

h,0 × Dh with

|||∇hû|||Dh
+ |||p̂|||Dh

= 1, (114)

such that there holds the uniform stability condition

|||∇huh|||Dh
+ |||ph|||Dh

≤ C9B
(
(uh, ph); (û, p̂)

)
, (115)

where the real positive constant C9 is independent of h.

Proof. Let ph ∈ Dh be a discrete scalar field satisfying (48). We identify ph and the MD
h -piecewise

constant scalar function from L2(Ω) to R such that ph(x ) = pD for every x ∈ D and D ∈ MD
h .
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Condition (48) implies that the integral of the scalar field ph on Ω is zero. Thus, there exist a vector

field v ∈
(
H1

0 (Ω)
)3

and a constant number C10 > 0 such that [31]:

div(v) = −ph in Ω and ||v ||H1(Ω) ≤ C10||ph||L2(Ω). (116)

Using the approximation property of the mean-valued interpolation operator stated in Lemma 10, cf.
inequality (92), and noting that ||ph||L2(Ω) = |||ph|||Dh

yield the useful inequality:

|||∇hv
I |||Dh

≤ C5C10|||ph|||Dh
. (117)

Let us take ũ = uh + ξv I for some real positive number ξ whose value will be specified below and
p̃ = ph. In view of (117), we have that

|||∇hũ |||Dh
+ |||p̃|||Dh

≤ |||∇huh|||Dh
+ ξ|||∇hv

I |||Dh
+ |||ph|||Dh

≤ |||∇huh|||Dh
+ (1 + C5C10ξ)|||ph|||Dh

≤ C11

(
|||∇huh|||Dh

+ |||ph|||Dh

)
, (118)

where we introduced the positive constant factor C11 = 1 + C5C10ξ. We will prove that, for an
appropriate choice of ξ, condition (114) and stability inequality (115) are satisfied up to a suitable
rescaling of fields ũ and p̃. Since (ũ , p̃) = (uh, ph) + ξ(v I , 0) we split the right-hand side of (115) into
the sum of two terms, T1 and ξT2,

B
(
(uh, ph); (ũ , p̃)

)
= B

(
(uh, ph); (uh, ph)

)
+ ξB

(
(uh, ph); (v I , 0)

)
= T1 + ξT2, (119)

which will be estimated separately. We reformulate T1 by first using the second discrete duality
relation, cf. (66), and then applying the result of Lemma 3, cf. (70) with q = ph, to obtain:

T1 =
[
divh

(
− ηhDh(uh) + phI),uh

]
Th

+
[
divD

h (uh) − λh2∆h(ph), ph

]
Dh

=
[
ηhDh(uh) − phI,∇huh

]
Dh

+
[
divD

h (uh), ph

]
Dh

+ λh2|ph|2h. (120)

Lemma 1 and compact definition (41) imply that

−
[
phI,∇huh

]
Dh

+
[
divD

h (uh), ph

]
Dh

= −
[
ph,Tr(∇huh)

]
Dh

+
[
Tr(∇huh), ph

]
Dh

= 0, (121)

and the symmetry of the discrete operator Dh(·) that
[
ηhDh(uh),∇huh

]
Dh

=
[
ηhDh(uh),Dhuh

]
Dh
. (122)

Using (121) and (122) into (120), and, then, applying the left inequality of (64) provide us the lower
bound for T1:

T1 =
[
ηhDh(uh),Dh(uh)

]
Dh

+ λh2|ph|2h ≥ Cη|||Dh(uh)|||2Dh
+ λh2|ph|2h. (123)

Using the second discrete duality relation (66) allows us to split T2 as the sum of two subterms, T21

and T22, as follows:

T2 =
[
divh

(
− ηhDh(uh) + phI), v I

]
Th

=
[
ηhDh(uh),∇hv

I
]
Dh

−
[
phI,∇hv

I
]
Dh

= T21 + T22. (124)

Starting from (64) and the Cauchy-Schwarz inequality allows us to derive the chain of inequalities
reported below:

|T21| ≤ Cη|||Dh(uh)|||Dh
|||∇hv

I |||Dh

[
use inequality (117)

]

≤ C5C10Cη|||Dh(uh)|||Dh
|||ph|||Dh

[
use Young’s inequality

]

≤ C̃|||Dh(uh)|||2Dh
+

1

4
|||ph|||2Dh

= T̃21, (125)
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where C̃ = (C5C10Cη)2. We develop T22 by applying the result of Lemma 1, cf. (55), and the left-most
identity of (56) with q = ph and ψ = ∇hv

I to T2 to obtain:

−T22 =
[
ph,Tr

(
∇hv

I
)]

Dh

[
use inner product definition (52)

]

=
∑

D∈MD
h

mDpDTr(∇D
hv I)

[
use definition (41)

]

=
∑

D∈MD
h

mDpDdivD
h(v I).

We reformulate the summation argument as an integral on D, we add and subtract

∫

D

div(v) dV and

we substitute div(v) = −ph, cf. (116):

−T22 =
∑

D∈MD
h

(∫

D

pD

(
divD

h (v I) − div(v)
)
dV +

∫

D

pDdiv(v ) dV

)

=
∑

D∈MD
h

∫

D

pD

(
divD

h(v I) − div(v )
)
dV − |||ph|||2Dh

.

Using the result of Lemma 13, cf. inequality (103), yields

−T22 ≤ C8h|ph|h||v ||H1(Ω) − |||ph|||2Dh

[
use the inequality relation of (116)

]

≤ C8C10h|ph|h|||ph|||Dh
− |||ph|||2Dh

[
use Young’s inequality

]

≤ (C8C10)
2h2|ph|2h − 3

4
|||ph|||2Dh

= T̃22. (126)

Since |T21| ≤ T̃21 implies that T21 ≥ −T̃21 and −T22 ≤ T̃22 implies that T22 ≥ −T̃22, from (124) we

have that T2 = T21 + T22 ≥ −T̃21 − T̃22. Now, we use estimates (125) and (126) to obtain the lower
bound for T2:

T2 ≥ −T̃21 − T̃22 ≥ −C̃|||Dh(uh)|||2Dh
+

1

2
|||ph|||2Dh

− (C8C10)
2h2|ph|2h.

Collecting together the bounds for T1 and T2 gives:

T1 + ξT2 ≥
(
Cη − C̃ξ

)
|||Dh(uh)|||2Dh

+
ξ

2
|||ph|||2Dh

+
(
λ− ξ(C8C10)

2
)
h2|ph|2h. (127)

Let α = min(Cη, λ)/2. Chosing ξ = min
(
(Cη − α)/C̃, (λ − α)/(C8C10)

2
)
, so that all the constant

coefficients in front of the norms are positive, eliminating the positive term containing |ph|h, and
applying the discrete Korn inequality from Lemma 6 allows us to obtain the estimate:

B
(
(uh, ph); (ũ , p̃)

)
= T1 + ξT2 ≥ C12

(
|||Dh(uh)|||2Dh

+ |||ph|||2Dh

)

≥ C12

2

(
|||∇h(uh)|||2Dh

+ |||ph|||2Dh

)

≥ C12

4

(
|||∇h(uh)|||Dh

+ |||ph|||Dh

)2

, (128)

where the constant C12 = min
(
Cη − C̃ξ, ξ/2

)
is independent of h. Let us introduce the positive factor
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γ = |||∇hũ |||Dh
+ |||p̃|||Dh

and use inequality (118) to obtain:

B
(
(uh, ph); (ũ , p̃)

)
≥ C12

4C11

(
|||∇huh|||Dh

+ |||ph|||Dh

)(
|||∇hũ |||Dh

+ |||p̃|||Dh

)

=
C12

4C11

(
|||∇huh|||Dh

+ |||ph|||Dh

)
γ (129)

Dividing both sides of (129) by γ and using the fact that B(·; ·) is a linear map with respect to its
argument yields

B
(
(uh, ph); (ũ/γ, p̃/γ)

)
≥ C12

4C11

(
|||∇huh|||Dh

+ |||ph|||Dh

)
, (130)

which is the second theorem’s inequality for û = ũ/γ and p̃ = p̃/γ if, by comparison, we set

C9 =
4C11

C12
.

Note that C9 is independent of h and the first theorem’s inequality is readily satisfied since

|||∇hû |||Dh
+ |||p̂|||Dh

= |||∇h(ũ/γ)|||Dh
+ |||p̃/γ|||Dh

=
1

γ

(
|||∇hũ |||Dh

+ |||p̃|||Dh

)
= 1. (131)

Corollary 1 (Well-posedness) The Discrete Duality Finite Volume method provided by equations (46)–
(48) admits a unique solution (uh, ph) ∈ T

3
h,0 × Dh for any mesh set (MT

h ,M
D
h ) satisfying Assump-

tions (A1)-(A3), any discrete viscosity field ηh ∈ Dh satisfying (45) and any stabilization parameter
λ > 0.

Proof. Let us consider the homogeneous discrete problem given by setting f , the right-hand side
of (46), to zero so that f I = 0 in (113). From (113) and the result of Theorem 1, cf. inequality (115),
it follows that ∇huh = 0 and ph = 0. The former identity implies that the degrees of freedom of the
velocity uh are constant, and it is immediate to see that the homogeneous boundary condition implies
that uh = 0.

4.4 A priori error estimates

In this section, we derive an a priori estimate of the approximation errors for the degrees of freedom
of the velocity and pressure fields solving the DDFV scheme (46)-(48). These errors are given by
comparison with uJ ∈ T

3
h, the center-valued interpolation of u on M

T
h defined in accordance with (26)-

(28), and pI ∈ Dh, the mean-valued interpolation of p on MD
h defined in accordance with (29). The

result is stated and proved in Theorem 2. The DDFV approximation to the Stokes velocity, its
gradient and the scalar pressure field in the continuous setting are defined through the identification of
the discrete fields in Dh with the piecewise constant fields taking the same values on the cells of mesh
MD

h . In Theorem 3, we prove an a priori estimate for these approximations.

Theorem 2 Let (u, p) ∈
(
W 2,q(Ω)

)3×H1(Ω) with q > 2 be the velocity and pressure solution fields of
the steady Stokes problem (1)-(3) under hypothesis (H1)-(H3), and such that p satisfies the compatibility
condition (6). Let (uh, ph) ∈ T3

h,0 × Dh be the DDFV approximations to velocity and pressure that

solve the scheme’s equations (46)-(48) under Assumptions (A1)-(A3). Let uJ ∈ T3
h,0 be the center-

valued interpolation of u on MT
h defined in accordance with (26)-(28), and pI ∈ Dh be the mean-valued

interpolation of p on MD
h defined in accordance with (29).

Then, there exists a real positive constant C13 independent of h such that

|||∇h(uJ − uh)|||Dh
+ |||pI − ph|||Dh

≤ C13h
(
||u||W 2,q(Ω) + ||p||H1(Ω)

)
. (132)
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Proof. The proof starts from the stability condition of Theorem 1. Let eh = uJ − uh ∈ T3
h,0 denote

the approximation error for the velocity solution field and εh = pI − ph ∈ Dh the approximation error
for the pressure solution field. Theorem 1 implies the existence of two discrete fields (v , q) ∈ T

3
h,0×Dh

such that

|||∇hv |||Dh
+ |||q|||Dh

= 1 (133)

and

|||∇heh|||Dh
+ |||εh|||Dh

≤ C9B
(
(eh, εh); (v , q)

)
. (134)

Using the definition of B(·, ·), cf. equation (112), the definition of the approximation errors eh and εh,
scheme’s equations (46) and (47), and substituting f I , the mean-valued interpolation of the loading
term f , with the mean-valued interpolation of the left-hand side of equation (1), yield:

B
(
(eh, εh); (v , q)

)
=
[
divh(−ηhDh(eh) + εhI), v]Th

+
[
divD

h (eh) − λh2∆h(εh), q
]
Dh

=
[
divh(−ηhDh(uJ ) + pII) − f

I , v
]
Th

+
[
divD

h (uJ ) − λh2∆h(pI), q
]
Dh

=
[
divh(−ηhDh(uJ ) + pII) − (div(−ηD(u) + pI))I , v]

Th

+
[
divD

h (uJ) − λh2∆h(pI), q
]
Dh
. (135)

To ease notation, we introduce the symbols:

ψh = −ηhDh(uJ ) + pII and ψ = −ηD(u) + pI. (136)

We also consider the discrete tensor field ψ̃ = {(ψ̃D)} ∈ D
3×3
h , which is uniquely defined on each dia-

mond cell D ∈ MD
h by the three constant vectors

(
ψ̃DNK,L, ψ̃DNA,B, ψ̃DNE,F

)
through the formulas

ψ̃DNK,L =

∫

SD,KL

ψn dS,
[
using SD,KL defined in (8)

]

ψ̃DNA,B =

∫

SD,AB

ψn dS,
[
using SD,AB defined in (10)

]

ψ̃DNE,F =

∫

SD,EF

ψn dS,
[
using SD,EF defined in (12)

]

n being the unit vector orthogonal to the surfaces SD,KL, SD,AB, and SD,EF, over which these integrals
are defined. By construction, it follows that

(
div(ψ)

)I
= divh(ψ̃). (137)

In fact, after recalling (15) and (23), for every p ∈ MP
h we have that

divp
h(ψ̃) =

1

mp

∑

D∈MD
h |p

ψ̃DND,p =
1

mp

∑

D∈MD
h |p

∫

SD,KL

ψn dS =
1

mp

∫

∂p

ψn dS

=
1

mp

∫

p

div(ψ) dV = Pp
m(div(ψ)), (138)

and a similar argument holds for divv
h(ψ̃) and divs

h(ψ̃), i.e., for the elements of the triplet (35) that

provides the discrete divergence of ψ̃ on the mesh set MT
h := (MP

h , MV
h , MEF

h ) in accordance with
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equations (35) and (36)-(38). Now, we substitute (137) into (135), and, then, we apply the second
duality relation (66) to split the bilinear form through the sum of three terms, namely T1, T2, and T3:

B
(
(eh, εh); (v , q)

)
=
[
divh(ψh − ψ̃), v

]
Th

+
[
divD

h (uJ) − λh2∆h(pI), q
]
Dh

= −
[
ψh − ψ̃,∇hv

]
Dh

+
[
divD

h (uJ), q
]
Dh

−
[
λh2∆h(pI), q

]
Dh

= T1 + T2 + T3. (139)

The theorem’s statement, i.e., inequality (132), follows from deriving an appropriate upper bound for
these three terms.

Estimate of term T1

Using Cauchy-Schwarz inequality and noting that relation (133) implies that |||∇hv |||Dh
≤ 1 yield:

|T1| ≤ |||ψh − ψ̃|||Dh
|||∇hv |||Dh

≤ |||ψh − ψ̃|||Dh
. (140)

In order to estimate the right-hand side of (140), we define nK,L = NK,L/
∣∣NK,L

∣∣, nA,B = NA,B/∣∣NA,B

∣∣ and nE,F = NE,F/
∣∣NE,F

∣∣. Using definition (59) gives:

|||ψh − ψ̃|||2Dh
≤ C14

∑

D∈MD
h

mD

(∣∣(ψh − ψ̃)nK,L

∣∣2 +
∣∣(ψh − ψ̃)nA,B

∣∣2 +
∣∣(ψh − ψ̃)nE,F

∣∣2
)
, (141)

where C14 does not depend on h.
Since ψh|D is constant on each diamond cell D, we rewrite the argument of the summation of the

right-hand side of (141) as a summation over the planar subfaces forming SD = SD,KL ∪SD,AB ∪SD,EF.
We denote the summation index by σ ⊂ SD. Then, by using Jensen inequality and the definition of
ψh and ψ we obtain:

∣∣(ψh − ψ̃)nK,L

∣∣2 +
∣∣(ψh − ψ̃)nA,B

∣∣2 +
∣∣(ψh − ψ̃)nE,F

∣∣2

≤
∑

σ⊂SD

∣∣∣∣
1

σ

∫

σ

(ψh − ψ)n dS

∣∣∣∣
2

≤
∑

σ⊂SD

1

|σ|

∫

σ

|ψh − ψ|2 dS

≤ 2
∑

σ⊂SD

1

|σ|
(∣∣∣∣ηhDh(uJ ) − ηD(u)

∣∣∣∣2
L2(σ)

+
∣∣∣∣pI − p

∣∣∣∣2
L2(σ)

)

= TD
11 + TD

12. (142)

To get the upper bound for TD
11, we add and subtract ηDh(uJ) and use the Cauchy-Schwarz

inequality:

∣∣∣∣ηhDh(uJ) − ηD(u)
∣∣∣∣2

L2(σ)
≤ 2
∣∣∣∣(ηh − η)Dh(uJ)

∣∣∣∣2
L2(σ)

+ 2
∣∣∣∣η
(
Dh(uJ) − D(u)

)∣∣∣∣2
L2(σ)

. (143)

The first term in the right-hand side of (143) is bounded by using the approximation property of ηh

given by (44), Agmon inequality and noting that the H1-seminorm of Dh(uJ) is zero because Dh(uJ )
is constant on D, and applying the left-most inequality in (80) and inequality (93). Thus, we have that

∣∣∣∣(ηh − η)Dh(uJ )
∣∣∣∣2

L2(σ)
≤
∣∣∣∣ηh − η

∣∣∣∣2
L∞(D)

∣∣∣∣Dh(uJ )
∣∣∣∣2

L2(σ)

≤ C̃2
ηCAg h

2
D

(
h−1

D

∣∣∣∣Dh(uJ)
∣∣∣∣2

L2(D)
+ hD

∣∣Dh(uJ )
∣∣2
H1(D)

)

≤ C̃2
ηCAghD

∣∣∣∣∇hu
J
∣∣∣∣2

L2(D)
≤ C̃2

ηCAgC
2
5hD||u ||2W 2,q(D). (144)
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To get a bound for the second term in the right-hand side of (143), let us consider D(u)I
|D, the

average of the derivative D(u) on the diamond cell D, which is defined in accordance with (30). Then,
by using (5), adding and subtracting D(u)I

|D, and applying Cauchy-Schwarz inequality we obtain:

∣∣∣∣η
(
Dh(uJ) − D(u)

)∣∣∣∣2
L2(σ)

≤ 2C
2

η

(∣∣∣∣Dh(uJ) − D(u)I
|D

∣∣∣∣2
L2(σ)

+
∣∣∣∣D(u)I

|D − D(u)
∣∣∣∣2

L2(σ)

)
. (145)

The first term in the right-hand side of (145) is controlled through Agmon inequality, noting that
the H1-seminorm of

(
Dh(uJ) − D(u)I

|D

)
is zero since this term is constant on D, and applying the

estimate of the interpolation error provided by Lemma 12, cf. inequality (101). We obtain the following
development:

∣∣∣∣Dh(uJ) − D(u)I
|D

∣∣∣∣2
L2(σ)

≤ CAg

(
h−1

D

∣∣∣∣Dh(uJ) − D(u)I
|D

∣∣∣∣2
L2(D)

+hD

∣∣∣Dh(uJ ) − D(u)I
|D

∣∣∣
2

H1(D)

)

≤ CAgh
−1
D

∣∣∣∣Dh(uJ ) − D(u)I
|D

∣∣∣∣2
L2(D)

≤ CAgC
2
7 hD||u ||2W 2,q(D). (146)

The second term in the right-hand side of (145) is controlled through Agmon inequality and applying
the estimate of the interpolation error provided by Lemma 7, cf. inequality (85):

∣∣∣∣D(u)I
|D − D(u)

∣∣∣∣2
L2(σ)

≤ CAg

(
h−1

D

∣∣∣∣D(u)I
|D − D(u)

∣∣∣∣2
L2(D)

+ hD

∣∣∣∣D(u)
∣∣∣∣2

H1(D)

)

≤ CAg(1 + C2
2 )hD||u ||2W 2,q(D). (147)

Substituting (147) and (146) into (145), and, then, the resulting inequality and (144) into (143) give
us the bound for TD

11:

TD
11 ≤ C15h

−1
D ||u ||2W 2,q(D), (148)

where the real positive constant C15 absorbs all the previous constants and the scaling coefficients that
depend on Creg according to consequence (M3).

Similarly, to get a bound for TD
12 we apply Agmon inequality, note that the H1-seminorm of pI is

zero because pI
|D is constant on D, and use the estimate of the interpolation error given by Lemma 7,

cf. inequality (85). Therefore, for every σ ⊂ SD and each D ∈ MD
h , there holds that:

∣∣∣∣pI − p
∣∣∣∣2

L2(σ)
≤ CAg

(
h−1

D ||pI − p||2L2(D) + hD|p|2H1(D)

)
≤ CAg(1 + C2

2 )hD||p||2H1(D). (149)

Using (149) and noting that condition (19) from (M3) implies that C2
regh

2
D ≤ |σ| allows us to derive

the following bound for TD
12:

TD
12 = 2

∑

σ⊂SD

1

|σ| ||p
I − p||2L2(σ) ≤ 2CAg(1 + C2

2 )
∑

σ⊂SD

1

|σ|hD||p||2H1(D)

≤ 6
(
CAg(1 + C2

2 )/C2
reg

)
h−1

D ||p||2H1(D). (150)
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Using the obvious fact that mD ≤ h3
D ≤ h3 and introducing a “cumulative”constant C16 to take into

consideration all constant factors, we obtain:

∣∣∣∣ψh − ψ̃
∣∣∣∣2

Dh
≤ C16

∑

D∈MD
h

mDh
−1
D

(
||u ||2W 2,q(D) + ||p||2H1(D)

)

≤ C16h
2
∑

D∈MD
h

(
||u ||2W 2,q(D) + ||p||2H1(D)

)

= C16h
2
(
||u ||2W 2,q(Ω) + ||p||2H1(Ω)

)
, (151)

which implies that

|T1| ≤ C16h
(
||u ||W 2,q(Ω) + ||p||H1(Ω)

)
. (152)

Estimate of term T2

The estimate of term T2 follows from the application of Cauchy-Schwarz inequality and Lemma 11,
cf. inequality (99),

|T2| =
∣∣∣∣∣∣divD

h (uJ )
∣∣∣∣∣∣

Dh
|||q|||Dh

≤ C6h||u ||W 2,q(Ω), (153)

because relation (133) implies that |||q|||Dh
≤ 1.

Estimate of term T3

We reorder the summation in term T3 and use the explicit form of the discrete Laplacian operator (43)
applied to the interpolation field pI to obtain:

T3 = −λh2
∑

D∈MD
h

qD
∑

D′∈MD
h |D

hD + hD′

2

(
pI

D′ − pI
D

) [
reorder summation

]

= λh2
∑

(D|D′)

hD + hD′

2

(
pI

D′ − pI
D

)(
qD′ − qD

) [
use Cauchy-Schwarz inequality

]

≤ λh2

(
∑

(D|D′)

hD + hD′

2

∣∣pI
D′ − pI

D

∣∣2
)1/2( ∑

(D|D′)

hD + hD′

2
|qD′ − qD|2

)1/2 [
use (69)

]

= λh2|pI |h |q|h. (154)

Using Young’s inequality, the scaling properties of consequence (M3) and noting again that |||q|||Dh
≤ 1

due to relation (133) yield:

|q|2h =
∑

(D|D′)

hD + hD′

2
|qD′ − qD|2 ≤ 2

∑

(D|D′)

hD + hD′

2

(
|qD′ |2 + |qD|2

)

≤ 8

C3
reg

h−2
∑

D∈MD
h

mD |qD|2 =
8

C3
reg

h−2|||q|||2Dh
≤ 8

C3
reg

h−2. (155)

Taking the square root of inequality (155), substituting the result into (154) and using the result of
Lemma 9, cf. inequality (87), provide us with the following bound:

|T3| ≤
2
√

2C4

C
3/2
reg

λh |p|H1(Ω) . (156)
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Error estimate (132) eventually follows by considering estimates (152), (153), and (156) into (139),
using the result in stability inequality(134), and properly defining the constant factor C13, which is
independent of h.

As previously discussed, we identify the discrete tensor field ∇huh ∈ D
3×3
h with the piecewise

constant tensor field ∇huh(x ) = ∇D
huh for x ∈ D for every D ∈ MD

h , and the discrete scalar field
ph ∈ Dh with the corresponding piecewise constant scalar field ph(x ) = pD for x ∈ D for every D ∈ MD

h .
These two piecewise constant fields on mesh partition M

D
h are the DDFV approximations to ∇u and

p, respectively. On its turn, the DDFV approximation to u , the velocity field solving problem (1)-(3),
is given by the triplet of piecewise constant functions still denoted by uh in accordance with (83).

For these approximations, there hold the following a priori estimates.

Theorem 3 Let (u, p) ∈
(
W 2,q(Ω)

)3×H1(Ω) with q > 2 be the velocity and pressure solution fields of
the steady Stokes problem (1)-(3) under hypothesis (H1)-(H3), and such that p satisfies the compatibility
condition (6). Let (uh, ph) ∈ T3

h,0 × Dh be the DDFV approximations to velocity and pressure that
solve the scheme’s equations (46)-(48) under Assumptions (A1)-(A3).

Then, there exists a positive constant C17, which is independent of h, such that

∣∣∣∣u− uh

∣∣∣∣
L2(Ω)

+
∣∣∣∣∇u−∇huh

∣∣∣∣
L2(Ω)

≤ C17h
(
||u||W 2,q(Ω) + ||p||H1(Ω)

)
, (157)

∣∣∣∣p− ph

∣∣∣∣
L2(Ω)

≤ C17h
(
||u||W 2,q(Ω) + ||p||H1(Ω)

)
. (158)

Proof. To prove the first theorem’s inequality, we add and subtract uJ and ∇hu
J to its left-hand side,

uJ being the center-valued interpolation of u provided by (26)-(28). Then, we apply inequality (86)
from Lemma 8, and note that ||uJ −uh||L2(Ω) = |||uJ −uh|||Th

and ||∇h(uJ −uh)||L2(Ω) = |||∇h(uJ −
uh)|||Dh

. Therefore, we have that

∣∣∣∣u − uh

∣∣∣∣
L2(Ω)

+
∣∣∣∣∇u −∇huh

∣∣∣∣
L2(Ω)

≤
∣∣∣∣u − uJ

∣∣∣∣
L2(Ω)

+
∣∣∣∣∇u −∇hu

J
∣∣∣∣

L2(Ω)
+
∣∣∣∣uJ − uh

∣∣∣∣
L2(Ω)

+
∣∣∣∣∇h(uJ − uh)

∣∣∣∣
L2(Ω)

≤ C3h||u ||W 2,q(Ω) +
∣∣∣∣∣∣uJ − uh

∣∣∣∣∣∣
Th

+
∣∣∣∣∣∣∇h(uJ − uh)

∣∣∣∣∣∣
Dh
.

Thanks to the Poincaré inequality (79), cf. Lemma 5, we get

|||uJ − uh|||Th
≤ C1|||∇h(uJ − uh)|||Dh

,

and, then, we use the result of Theorem 2.

To prove the second theorem’s inequality, we add and subtract pI , the mean-valued interpolation of p
built on mesh MD

h and provided by (29), to its left-hand side, we use inequality (85) from Lemma 7,
and note that

∣∣∣∣pI − ph

∣∣∣∣
L2(Ω)

=
∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣
Dh

. We have that:

∣∣∣∣p− ph

∣∣∣∣2
L2(Ω)

≤ 2
(∣∣∣∣p− pI

∣∣∣∣2
L2(Ω)

+
∣∣∣∣pI − ph

∣∣∣∣2
L2(Ω)

)

≤ C2
2

∑

D∈MD
h

h2
D||p||2H1(D) + ||pI − ph||2L2(Ω)

≤ C2
2h

2||p||2H1(Ω) + |||pI − ph|||2Dh
. (159)

Then, we apply the result of Theorem 2 to get a bound for the remaining term |||pI − ph|||Dh
, and take

the square root of the resulting inequality.
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Table 1: Parameters of mesh families used in the accuracy tests: n is the refinement level, NP is the
number of polyhedrons, NF is the number of faces, NE is the number of edges, NV is the number of
vertices, ND is the number of diamond cells h is the mesh size.

Mesh n NP NF NE NV ND h

MP
h

,1

0 120 444 546 223 945 2.500 10−1

1 960 3216 3588 1333 5811 1.250 10−1

2 7680 24384 25800 9097 40275 6.250 10−2

3 32768 101376 104544 35937 298581 3.125 10−2

MP
h

,2

0 176 600 698 275 2400 5.000 10−1

1 888 2865 3153 1177 11460 2.706 10−1

2 11444 35451 37495 13489 141804 1.277 10−1

3 61440 189696 195216 66961 1150428 6.487 10−2

5 Numerical experiments

We consider two sequences of 3-D refined mesh sets {(MT
h ,M

D
h )i

h} for i = 1, 2 that partition the
computational domain Ω =]0, 1[×]0, 1[×]0, 1[. In the first case, meshes MP

h
,1 are locally refined in one

of the corner of domain Ω. In the second case, each mesh MP
h

,2 is formed by a collection of hexahedral
cells obtained by a conformal decomposition of an underlying tetrahedral mesh generated by the
software program tetgen. It is worth noting that in the latter case neither a particular mesh structure
nor nested refinements characterizes the mesh partitionings. The two plots on the top of Figure 4 show
the polyhedral sets P1 and P2 of M

P
h

,i, i = 1, 2, while in Table 1 we report the information about the
size of the meshes used in our calculations. On these sequences of refined meshes, we solve the steady
Stokes problem given by (1)-(3) with viscosity function

η(x, y, z) = 1 + x2 + y2 + z2 ∀(x, y, z) ∈ Ω. (160)

The boundary conditions, which are explicitly introduced into the scheme by directly setting the
boundary degrees of freedom of uh, and the source term f are considered in accordance with the exact
solution fields:

u(x, y, z) =




α1 sin(2πx) cos(2πy) cos(2πz)
α2 cos(2πx) sin(2πy) cos(2πz)
α3 cos(2πx) cos(2πy) sin(2πz)



 with α1 + α2 + α3 = 0,

p(x, y, z) = sin(2πx) sin(2πy) sin(2πz). (161)

The relative approximation errors are then defined for the exact solution fields u , ∇u and p by:

Error
(
u
)

=
|||uJ − uh|||Th

|||uJ |||Th

, (162)

Error
(
∇u
)

=
|||∇h

(
uJ − uh

)
|||Dh

|||∇h

(
uJ
)
|||Dh

, (163)

Error
(
p
)

=
|||pI − ph|||Dh

|||pI |||Dh

, (164)

where in (162) we use norm (63), in (163) we use norm (59), and in (164) we use norm (57).
Figure 4 shows the relative approximation errors defined in (162)-(164) for the numerical approxi-

mations of u , ∇u , and p using the stabilization parameter λ = 10−3 and the mesh families (MT
h ,M

D
h )1
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(left plot) and (MT
h ,M

D
h )2 (right plot). The good convergence behavior of the scheme is reflected by

the slopes of the experimental error curves, which are to be compared with the theoretical O (h) and
O
(
h2
)

slopes reported in the bottom-left corner of each plot. In particular, a second-order convergence
rate seems to characterize the error curves in the left plot, i.e., when the calculation is run using the
locally refined meshes of (MT

h ,M
D
h )1. The convergence rate shown by the numerical results in the right

plot also seems better than one, the theoretical order predicted by Theorem 2. This fact allows us to
conjecture that the estimate provided by Theorem 2 might not be optimal, and that a superconver-
gence effect could influence the observed numerical rates. We point it out that this situation is rather
typical of many families of finite volume methods also including the DDFV method and that, for such
schemes, the theoretical proof of a second-order convergence rate under very general condition is still
an open issue. Regarding the velocity gradient, the plots in Figure 4 display a linear convergence rate,
which is perfectly in agreement with the theoretical prediction. Instead, in both plots the numerical
pressure begins to converge from the second mesh, and seems too converge at a faster rate from the
second to the third mesh and eventually to stabilize to the expected theoretical rate.

6 Conclusions

In this work, we developed and analysed a DDFV method for the numerical approximation of the 3-D
Stokes problem with variable viscosity coefficient. This method can be applied to general polyhedral
meshes, possibly with non-conforming and non-convex elements. Since the mesh definition is a key point
of all the DDFV formulations, before giving the scheme formulation we discussed the assumptions on
the mesh and its construction thoroughly. Theoretical analysis allowed us to prove the uniform stability
and well-posedness of such a discretization under quite general assumptions. We also proved the
convergence of the velocity variable, its gradient and the pressure field, and derived a priori estimates
for the approximation errors. Numerical experiments essentially confirm the theoretical predictions.
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Appendix

Lemma A.1 There exists a positive constant C18 such that for any bounded polyhedral set P ⊂ R3

with positive measure mP , any planar surface σ ∈ R
2 and any function v ∈ H1(R3), we have that

∣∣∣∣
1

|σ|

∫

σ

v dS − 1

mP

∫

P

v dV

∣∣∣∣
2

≤ C18
diam(P̂σ)

|σ|

∫

bPσ

|∇v|2 dV, (A.1)

where P̂σ is the convex hull of P ∪ σ.

Proof. See [28].

For simplicity of notation, in the next formulas we will implicitly refer the six points A,B,E,F,K,L
to each diamond cell determined by the summation index D.

Proposition A.1 Let M
T
h = (MP

h ,M
V
h ,M

EF
h ). For every v ∈ T

3
h,0 the following identities are satis-

fied:
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(i) for any s ∈ MEF
h there holds:

∑

D∈MD
h |s

vL − vK

2
× (xB − xA) = 0 and

∑

D∈MD
h |s

vB − vA

2
× (xL − xK) = 0;

(ii) for any p ∈ MP
h there holds:

∑

D∈MD
h |p

vA − vB

2
× (xF − xE) = 0 and

∑

D∈MD
h |p

vF − vE

2
× (xB − xA) = 0;

(iii) for any v ∈ MV
h there holds:

∑

D∈MD
h |v

vL − vK

2
× (xF − xE) = 0 and

∑

D∈MD
h |v

vE − vF

2
× (xL − xK) = 0.

Proof. Let D = D(e,f) be the diamond cell of MD
h uniquely determined by the admissible pair (e, f) ∈

E × F .
(i). First, we consider the case s = f, and denote the point of D associated to f by F. Note that

∑

D∈MD
h |F

(xB − xA) = 0 (A.2)

because the sequence of face edges e = vB−vA = xAxB form a closed loop, i.e., a telescopic sum whose
first and last terms are coincident. The first relation of item (i) follows immediately by using (A.2) in:

∑

D∈MD
h |F

vL − vK

2
× (xB − xA) =

vL − vK

2
×

∑

D∈MD
h |F

(xB − xA) = 0

The second relation follows by using the same arguments after exchanging the role of xA, xB and vA,
vB.

Then, we consider the case s = e, and denote the point associated to edge e by E. Note that

∑

D∈MD
h |E

vL − vK

2
= 0. (A.3)

In fact, if e is an internal edge, the polyline of segments xKxL, which corresponds to the sequence of
primal cells pK → pL around the edge e for D ∈ MD

h |E, forms a closed loop, as in the previous case.

On the other hand, if e is a boundary edge, it must belong to two distinct boundary faces. Therefore,
we can reorder the summation to begin from one of the boundary faces and end up to the other one,
and the telescopic sum (A.3) equals the difference of the terms vL of these two faces. Now, we recall
that L coincides with F if f is a boundary face, and identity (A.3) is true because the hypothesis that
v ∈ T3

h,0 implies that vL = vF = 0. The first relation of item (i) follows by using (A.3) in




∑

D∈MD
h |E

vL − vK

2


× (xB − xA) = 0.

If e is an internal edge the second relation follows by using the same argument after exchanging the
role of xA, xB and vA, vB. If e is a boundary edge, the second relation is true since both vA and vB,
i.e., A and B, are on the boundary of Ω, and v ∈ T3

h,0 implies again that vA = vB = 0.
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(ii). The left-hand side of the first relation of item (ii) can be split as

∑

D∈MD
h |p

vA − vB

2
× (xF − xE) =

∑

f∈∂p




∑

D∈MD
h |F

vA − vB

2


× xF

−
∑

e∈∂p




∑

D∈MD
h |E

∩MD
h |p

vA − vB

2


× xE. (A.4)

Thanks to (A.2), the first term of the right-hand side of (A.4) is zero.
Then, we also note that for any edge e that belongs to p there holds:

∑

D∈MD
h |E

∩MD
h |p

vA − vB

2
= 0. (A.5)

In fact, for any edge e there exists two and only two faces in p to which e belongs, and thus only two
distinct diamonds D(e,f). Consistently with the face and edge orientation, the segment corresponding to
edge e, which connects xA and xB, is differently oriented in these two diamonds. The second relation
follows by using the same argument after exchanging the role of vE, vF with xE,xF.

(iii). Let us note that the left-hand side of the first relation of item (iii) can be split as

∑

D∈MD
h |v

vL − vK

2
× (xF − xE) =

∑

f∈F
v∈∂f




∑

D∈MD
h |A

∩MD
h |F

vL − vK

2


× xF

−
∑

e∈E
v∈∂e




∑

D∈MD
h |E

vL − vK

2


× xE. (A.6)

The second term in the right-hand side of (A.6) is zero thanks to (A.3). Then we note that a vertex
v and a face f to which this node belongs only determine two diamonds, and that face f determines
uniquely the primal cells pK and pL. Here, we implicitly assume that pL may be a degenerate cell with
zero volume for L = F if f is a boundary face. Moreover, the face and the edge orientation implies that
the segment connecting xK to xL in the first diamond is oriented opposite to the segment connecting
the same cell centers in the second diamond. Thus, for such a pair (v, f) there holds that

∑

D∈MD
h |v

∩MD
h |F

vL − vK

2
= 0, (A.7)

from which the final relation follows. The second relation of item (iii) follows by using the same
argument after exchanging the role of vK, vL and xK,xL.
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(e,f) •
E

(a) Diamond cell D(e,f)

A

B
F

E

D

(b) The internal surface SD,KL

L

K

F

E
D

(c) The internal surface SD,AB

L

K

A

B
D

(d) The internal surface SD,EF

Figure 1: Construction of the diamond mesh: (a), the diamond cell D(e,f); (b), the internal surface
SD,KL used to characterize the control volumes pK and pL of mesh MP

h ; (c), the internal surface SD,AB

used to build the control volumes vA and vB of mesh MV
h ; (d), the internal surface SD,EF used to build

the control volumes sE and sF of mesh M
EF
h .
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Figure 2: Construction of the mesh triplet MT
h =

{
MP

h ,M
V
h ,M

EF
h

}
from the decomposition of the

diamond cells in MD
h . In plot (a) we show the contribution from the inner surface SD,KL to the

interface between cells pK and pL; in plot (b) we show the contribution from the inner surface SD,AB to
the interface between cells vA and vB; in plot (c) we show the contribution from the inner surface SD,EF

to the interface between cells sE and sF. In all plots, surfaces SD,KL, SD,AB, and SD,EF are internal to
the diamond of center D (not drawn) and filled by the grey colour.
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Figure 3: Construction of dual meshes MV
h and MEF

h from a cubic primal mesh MP
h . In (a), (b) and

(c) we show two adjacent cubic cells of MP
h (thin solid lines) and one dual cell (thick solid line). The

left and the rights plots show the same group of two primary cells and one dual cell from two different
viewpoints. The interface separating the two primary cells in all plots is drawn using dashed lines. In
plot (a) we show a dual cell of type vertex, i.e., a cell that belongs to MV

h ; in plot (b) we show a dual
cell of type face and in plot (c) we show a dual cell of type edge, i.e., cells that belong to MEF

h .
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(a) Polyhedral set P1 (b) Polyhedral set P2
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Figure 4: Accuracy test. Plots (a)-(b) display the polyhedral sets P1 and P2 of the first mesh sets

of the two mesh families
(
MT

h ,M
D
h

)1
h

and
(
MT

h ,M
D
h

)2
h

used in the accuracy tests. In plot (b), a part
of the cells around vertex (1, 1, 1) has been removed to show the interior. The parameters of all the
meshes used in the simulation are reported in Table 1. Plots (c) − (d) show the approximation errors
for the viscosity field η given by (160). In each plot, we report Error

(
u
)

(circles), see equation (162),

Error
(
∇(u)

)
(squares), see equation (163), Error

(
p
)

(diamonds), see equation (164), and two straight

lines showing the theoretical slopes O (h) and O
(
h2
)
.
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