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Optimal stopping of expected profit and cost yields in an

investment under uncertainty

Boualem Djehiche,∗ Said Hamadène† and Marie-amélie Morlais‡

January 19, 2010

Abstract

We consider a finite horizon optimal stopping problem related to trade-off strategies between

expected profit and cost cash-flows of an investment under uncertainty. The optimal problem is

first formulated in terms of a system of Snell envelopes for the profit and cost yields which act

as obstacles to each other. We then construct both a minimal and a maximal solutions using an

approximation scheme of the associated system of reflected backward SDEs. We also address the

question of uniqueness of solutions of this system of SDEs. When the dependence of the cash-flows

on the sources of uncertainty, such as fluctuation market prices, assumed to evolve according to a

diffusion process, is made explicit, we also obtain a connection between these solutions and viscosity

solutions of a system of variational inequalities (VI) with interconnected obstacles.

AMS Classification subjects: 60G40 ; 93E20 ; 62P20 ; 91B99.

1 Introduction

The trade-off between the expected profit and cost yields is a central theme in the cash-flow analysis

of any investment project or any industry which produces a commodity or provides services that are

subject to uncertainties such as fluctuating market prices or demand and supply flows (see [3] and [9]

and the references therein). The project is profitable when the expected profit yield is larger than the

expected cost yield, a relationship that cannot always be sustained, due to many sources of uncertainty.

Timing exit from the project based an optimal trade-off between expected profit and cost yields is thus

a crucial decision.
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An approach to this problem, which is widely used in portfolio choice with transaction costs (see

[6] and the references therein) is to impose a predetermined form of the cost yield and formulate an

optimal stopping or impulse control problem for the expected profit yield, to determine exit and re-

entry strategies. But, in many investment projects subject to uncertain demand and supply flows, the

expected cost yield cannot be fully captured with a given predetermined model.

In this work we do not assume any predetermined model for the cost yield. We rather approach

the problem by formulating a finite horizon optimal stopping problem that involves both the expected

profit and cost yields which will act as obstacles to each other. More precisely, given the profit (resp.

cost) ψ1(t)dt (resp. ψ2(t)dt) per unit time dt, and the cost a(t) (resp. profit b(t)) incurred when

exiting/abandonning the project, if we let Y 1 and Y 2 denote the expected profit and the cost yields

respectively, the decision to exit the project at time t depends on whether Y 1
t ≥ Y 2

t − a(t) or Y 2
t ≤

Y 1
t + b(t). If Ft denotes the history of the project up to time t, the expected profit yield at time t, is

expressed in terms of a Snell envelope as follows:

Y 1
t = ess supτ≥tE

[∫ τ

t

ψ1(s)ds+ (Y 2
τ − a(τ))11[τ<T ] + ξ111[τ=T ]|Ft

]
, (1.1)

where the supremum is taken over all exit times τ from the project. Moreover for any t ≤ T , the

random time

τ∗t = inf{s ≥ t, Y 1
s = Y 2

s − a(s)} ∧ T, (1.2)

related to the cost Y 2 − a incurred when exiting the project should be an optimal time to abandon the

project after t, in which case, we should also get:

Y 1
t = E

[∫ τ∗

t

t

ψ1(s)ds + (Y 2
τ∗

t
− a(τ∗t ))11[τ∗

t <T ] + ξ111[τ∗

t =T ]|Ft

]
. (1.3)

In a similar fashion, the expected cost yield at time t reads

Y 2
t = ess infσ≥tE

[∫ σ

t

ψ2(s)ds + (Y 1
σ + b(σ))11[σ<T ] + ξ211[σ=T ]|Ft

]
, (1.4)

where, the infimum is taken over all exit times σ from the project. The random time

σ∗
t = inf{s ≥ t, Y 2

s = Y 1
s + b(s)} ∧ T (1.5)

related to the profit Y 1 + b incurred when exiting the project should be optimal after t as well. In this

case, we should get:

Y 2
t = E

[∫ σ∗

t

t

ψ2(s)ds+ (Y 1
σ∗

t
+ b(σ∗

t ))11[σ∗

t <T ] + ξ211[σ∗

t =T ]|Ft

]
. (1.6)

In other words, the cost Y 2 − a and the profit Y 1 + b act as obstacles that define the exit strategy.

The main result of the paper is to show existence of the pair (Y 1, Y 2) that solves the system of

equations (1.1) and (1.4) and also to prove that τ∗ and σ∗ given respectively by (1.2) and (1.5) are
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optimal strategies for our problem. Using the relation between Snell envelopes, reflected backward SDEs

(RBSDEs) and variational inequalities (see [3] for more details), it then follows that solving the system

of equations (1.1) and (1.4) is equivalent to finding a solution to the following reflected backward SDEs

with interconnected obstacles: for all t ≤ T ,

(S)





Y 1
t = ξ1 +

∫ T

t

ψ1(s)ds+ (K1
T −K1

t )−

∫ T

t

Z1
sdBs;

Y 2
t = ξ2 +

∫ T

t

ψ2(s)ds− (K2
T −K2

t )−

∫ T

t

Z2
sdBs;

Y 1
t ≥ Y 2

t − a(t) and Y 2
t ≤ Y 1

t + b(t);
∫ T

0

(
Y 1
s − (Y 2

s − a(s))
)
dK1

s = 0 and
∫ T

0
(Y 1

s + b(s)− Y 2
s )dK

2
s = 0.

Using an approximation scheme for systems of reflected BSDEs we establish existence of both a ma-

ximal and minimal solution of (S). When the dependence of the cash-flows (Y 1, Y 2) on the sources

of uncertainty, such as fluctuation market prices, that are assumed to evolve according to a diffusion

process X , is made explicit, we also obtain a connection between the solutions of the system (S) and

viscosity solutions of the following system of variational inequalities with interconnected obstacles:

(V I)





min{u1(t, x) − u2(t, x) + a(t, x),−∂tu
1(t, x)− Lu1(t, x) − ψ1(t, x)} = 0,

min{u1(t, x) + b(t, x)− u2(t, x),−∂tu
2(t, x)− Lu2(t, x) − ψ2(t, x)}0,

u1(T, x) = g1(x), u
2(T, x) = g2(x).

The paper is organized as follows: Section 2 is devoted to the formulation of the optimal stopping

problem under consideration. In Section 3, we construct a minimal and a maximal solution of (S), using

an approximation scheme, where the minimal solution is obtained as a limit of an increasing sequence

of solutions of a system of reflected BSDEs, while the maximal one is obtained as a limit of a decreasing

sequence of solutions of another system of reflected BSDEs. Next we address the question of uniqueness

of the solution of (S). In general, uniqueness does not hold as it is shown through two counter-examples.

However, we give some sufficient conditions on ψ1, ψ2, a and b, for which a uniqueness result is derived.

Finally, in Section 4, we establish a connection between the solutions of the system (S) and viscosity

solutions of the system of variational inequalities with interconnected obstacles (V I). We actually show

that (V I) admits a solution. Uniqueness and finer regularity properties of the solutions of (V I) require

heavy PDE techniques which we prefere not include in this paper and will appear elsewhere.

2 Preliminaries and the main result

In this section we introduce some basic notions and results concerning reflected BDSEs, which will be

needed in the subsequent sections.

Throughout this paper, T > 0 denotes an arbitrarily fixed time horizon, and (Ω,F ,P) is a given

probability space on which is defined a d-dimensional Brownian motion B = (Bt)0≤t≤T . We also denote
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by F = (Ft)0≤t≤T the filtration generated by B and completed by the P-null sets of F . Throughout the

sequel, we always denote by B the process restricted to [0, T ] and assume that all processes are defined

on [0, T ].

We shall also introduce the following spaces of processes which will be frequently used in the sequel:

• S2 is the set of all continuous F-adapted processes Y = (Yt) such that E[supt∈[0,T ]|Yt|
2] <∞

• A2 is the subset of S2 of increasing processes (Kt)t≤T with K0 = 0 ;

• Md,2 denotes the set of F-adapted and d-dimensional processes Z such that E
(∫ T

0 |Zs|
2ds
)
<∞.

The following results on reflected BSDEs are by now well known. For a proof, the reader is referred to [5].

A solution for the reflected BSDE associated with a triple (f, ξ, S), where f : (t, ω, y, z) 7→ f(t, ω, y, z)

(R-valued) is the generator, ξ is the terminal condition ξ and S := (St)t≤T is the lower barrier, is a

triple (Yt, Zt,Kt)0≤t≤T of F-adapted stochastic processes that satisfies:




Y ∈ S2, K ∈ A2 and Z ∈ Md,2,

Yt = ξ +
∫ T

t
f(s, ω, Ys, Zs)ds+ (KT −Kt)−

∫ T

t
ZsdBs,

Yt ≥ St, 0 ≤ t ≤ T,
∫ T

0 (St − Yt)dKt = 0.

(2.7)

The RBSDE(f, ξ, S) is said standard if the following conditions are satisfied:

(A1) The generator f is Lipschitz with respect to (y, z) uniformly in (t, ω) ;

(A2) The process (f(t, ω, 0, 0, 0))0≤t≤T is F-progressively measurable and dt⊗ dP -square integrable ;

(A3) The random variable ξ is in L2 (Ω,FT ,P);

(A4) The barrier S is continuous F-adapted and satisfies: E[ sup
0≤s≤T

|S+
s |2] <∞ and ST ≤ ξ, P-a.s.

Theorem 2.1. (see [5]) Let the coefficients (f, ξ, S) satisfy assumptions (A1)-(A4). Then the RBSDE

(2.7) associated with (f, ξ, S) has a unique F-progressively measurable solution (Y, Z,K) which belongs

to S2 × Md,2 × A2. Moreover the process Y enjoys the following representation property as a Snell

envelope: for all t ≤ T ,

Y 1
t = ess supτ≥tE[

∫ τ

t

f(s, Y 1
s , Z

1
s )ds+ Sτ1[τ<T ] + ξ11[τ=T ]|Ft]. (2.8)

The proof of Theorem 2.1 is related to the following, by now standard, estimates and comparison

results for RBSDEs. For the proof see Proposition 3.5 and Theorem 4.1 in [5].

Lemma 2.1. Let (Y, Z,K) be a solution of the RBSDE (f, ξ, S). Then there exists a constant C

depending only on the time horizon T and on the Lipschitz constant of f such that:

E

(
sup

0≤t≤T

|Yt|
2 +

∫ T

0

|Zs|
2ds+ |KT |

2

)
≤ CE

(∫ T

0

|f(s, 0, 0)|2ds+ |ξ|2 + sup0≤t≤T |S
+
t |2

)
. (2.9)
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Lemma 2.2. (Comparison of solutions) Assume that (Y, Z,K) and (Y
′

, Z
′

,K
′

) are solutions of the re-

flected BSDEs associated with (f, ξ, S) and (f
′

, ξ
′

, S
′

) respectively, where only one of the two generators

f or f ′ is assumed to be Lipschitz continuous. If

• ξ ≤ ξ
′

, P-a.s.,

• f(t, y, z) ≤ f
′

(t, y, z), dP⊗ dt-a.s. and for all (y, z),

• P-a.s., for all t ≤ T , St ≤ S
′

t,

then

P-a.s. for all t ≤ T, Yt ≤ Y
′

t . (2.10)

The previous results are also valid for RBSDE with upper barriers. Indeed, if (Y, Z,K) solves the

RBSDE associated with (f, ξ, U) with upper barrier equal to U , then (−Y,−Z,K) solves the RBSDE

associated with (f̃ ,−ξ, S) with parameters given by: S − U and f̃(s, y, z) = −f(s,−y,−z).

The first objective in this paper is to study existence of solutions of the coupled system of RBSDEs

(S). Let us introduce the following assumptions:

(B1) For each i = 1, 2, the mappings (t, ω, y, z) 7→ ψi(t, ω, y, z) are Lipschitz in (y, z) uniformly in (t, ω)

meaning that there exists C > 0 such that:

|ψi(t, ω, y, z)− ψi(t, ω, y
′, z′)| ≤ C(|y − y′|+ |z − z′|), for all t, y, z, y′, z′.

Moreover the processes (ψi(t, 0, 0, 0))0≤t≤T are F-progressively measurable and dt ⊗ dP -square

integrable ;

(B2) The obstacles (a(t, ω))0≤t≤T and (b(t, ω))0≤t≤T belong to S2 ;

(B3) The random variables ξ1 and ξ2 are FT -measurable and square integrable. Moreover we assume

that P-a.s., ξ1 − ξ2 ≥ max{−a(T ),−b(T )}.

Throughout the sequel, we will also make use of either one of the two following assumptions:

(B4) The process (b(t))0≤t≤T is of Itô type, i.e., for any t ≤ T ,

b(t) = b(0) +

∫ t

0

U2
s ds+

∫ t

0

V 2
s dBs, (2.11)

for some F-progressively measurable processes U2 and V 2 which are respectively dt⊗dP , integrable

and square integrable.

(B4
′

) The process (a(t))0≤t≤T is of Itô type, i.e., for any t ≤ T ,

a(t) = a(0) +

∫ t

0

U1
s ds+

∫ t

0

V 1
s dBs, (2.12)

for some F-progressively measurable processes U1 and V 1 which are respectively dt⊗dP , integrable

and square integrable.
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Remark 2.1. Assumption (B4) is required to prove the continuity of the minimal solution, which is

obtained by using an increasing approximation scheme, whereas Assumption (B4
′

) is required to get the

continuity of the maximal solution.

Let us now make precise, on the one hand, the notion of a solution and, on the other hand, the notions

of minimal and maximal solutions of the system (S).

Definition 2.1. A 6-uplet of processes (Y 1, Z1, K1, Y 2, Z2, K2) is called solution of the system (S)

if the two triples (Y 1, Z1, K1) and (Y 2, Z2, K2) belong to S2 ×Md,2 ×A2 and if it satisfies (S).

The process (Y 1, Z1, K1, Y 2, Z2, K2) is a minimal solution of the system (S) if it is a solution

of (S) and if whenever another 6-uplet of processes (Ỹ 1, Z̃1, K̃1, Ỹ 2, Z̃2, K̃2) is solution of (S) then

P − a.s. for all t ≤ T, Ỹ 1
t ≥ Y 1

t and Ỹ 2
t ≥ Y 2

t ,

whereas, it is a maximal solution (S) if

P − a.s. for all t ≤ T, Ỹ 1
t ≤ Y 1

t and Ỹ 2
t ≤ Y 2

t .

The following theorems, related to existence of minimal repectively maximal solutions of S, are the

main results of the paper.

Theorem 2.2. Assume that the data (ψ1, ψ2, ξ
1, ξ2, a, b) satisfy Assumptions (B1)-(B4). Then the sys-

tem (S) of RBSDEs associated with (ψ1, ψ2, ξ
1, ξ2, a, b) admits a minimal solution (Y 1, Y 2, Z1, Z2,K1,K2).

Theorem 2.3. Suppose that the data (ψ1, ψ2, ξ
1, ξ2, a, b) satisfy Assumptions (B1)-(B3) and suppose,

in addition, Assumption (B4
′

) on the process (a(t))t≤T . Then, the system (S) of RBSDEs associated

with (ψ1, ψ2, ξ
1, ξ2, a, b) admits a maximal solution (Y 1, Y 2, Z1, Z2,K1,K2).

The proof of Theorem 2.3 can be obtained from Theorem 2.2 by considering the minimal solution of

the system associated with (−ψ1(t, ω,−y,−z),−ψ
2(t, ω,−y,−z),−ξ1,−ξ2,−a,−b).

The next section is devoted to the proof of Theorem 2.2.

3 Proof of Theorem 2.2

Step 1 : Construction of the sequences and properties.

We first introduce two increasing approximation schemes (Y 1,n, Z1,n,K1,n) and (Y 2,n, Z2,n,K2,n) that

converge to the minimal solution of (S).

Consider the following BSDEs defined recursively, for any n ≥ 1, by:




(Y 1,0, Z1,0) ∈ S2 ×Md,2

Y
1,0
t = ξ1 +

∫ T

t
ψ1(s, Y

1,0
s , Z1,0

s )ds−
∫ T

t
Z1,0
s dBs, t ≤ T ;

(3.13)
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and for n ≥ 0 and any t ≤ T ,

(Sn)





Y
2,n+1
t = ξ2 +

∫ T

t
ψ2(s, Y

2,n+1
s , Z2,n+1

s )ds− (K2,n+1
T −K

2,n+1
t )−

∫ T

t
Z2,n+1
s dBs,

Y
2,n+1
t ≤ Y

1,n
t + b(t),

Y
1,n+1
t = ξ1 +

∫ T

t
ψ1(s, Y

1,n+1
s , Z1,n+1

s )ds+ (K1,n+1
T −K

1,n+1
t )−

∫ T

t
Z1,n+1
s dBs,

Y
1,n+1
t ≥ Y

2,n+1
t − a(t),

∫ T

0 (Y 1,n+1
s − (Y 2,n+1

s − a(s))dK1,n+1
s = 0 and

∫ T

0 (Y 1,n
s + b(s)− Y 2,n+1

s )dK2,n+1
s = 0.

In view of Assumptions (B1)-(B4), it is easily shown by induction that for any n ≥ 1, the triples

(Y 1,n, Z1,n,K1,n) and (Y 2,n, Z2,n,K2,n) are well defined and belong to the space S2×Md,2×A2, since

the pair of processes (Y 1,0, Z1,0) solution of (3.13) exists. Additionally, by the comparison Lemma 2.2,

we have P-a.s., for all t ≤ T , Y 1,0
t ≤ Y

1,1
t , and, using once more an induction argument, we have for all

n ≥ 0,

P− a.s., for all t ≤ T, Y
1,n
t ≤ Y

1,n+1
t and Y

2,n+1
t ≤ Y

2,n+2
t .

Next, let us consider the following standard BSDE:





Ȳ 2 ∈ S2 and Z̄ ∈ Md,2

Ȳ 2
t = ξ2 +

∫ T

t
ψ2(s, Ȳ

2
s , Z̄

2
s )ds−

∫ T

t
Z̄2
sdBs, t ≤ T.

The solution of this equation exists (see e.g. [7]). Furthermore, since the process K2,n is non-decreasing

then using standard comparison theorem for BSDE’s (see e.g. [7]) we obtain:

P− a.s., for all t ≤ T, Y
2,n
t ≤ Ȳt. (3.14)

Finally, let (Ỹ , Z̃, K̃) be the solution of the following reflected BSDE associated with (ψ1, ξ1, Ȳ ), i.e.,

for any t ≤ T , 



(Ỹ , Z̃, K̃) ∈ S2 ×Md,2 × S2

Ỹ 1
t = ξ1 +

∫ T

t
ψ1(s, Ỹs, Z̃s)ds+ (K̃T − K̃t)−

∫ T

t
Z̃sdBs,

Ỹt ≥ Ȳt − a(t),
∫ T

0
(Ỹs − (Ȳs − a(s))dK̃s = 0.

Again thanks to the comparison Lemma 2.2 we have

P − a.s., for all t ≤ T, Y
1,n
t ≤ Ỹt. (3.15)

Therefore, from (3.14) and (3.15) it follows that

E

[
sup
n≥0

sup
0≤t≤T

(|Y 1,n
t |+ |Y 2,n

t |)2
]
<∞. (3.16)

Moreover, using the estimates given in Lemma 2.1 for standard RBSDEs, there existens a real constant

C ≥ 0 such that for all n ≥ 0,

E[

∫ T

0

{|Z1,n
s |+ |Z2,n

s |}2ds] + E[(K1,n
T )2 + (K2,n

T )2] ≤ C. (3.17)
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Let Y 1 and Y 2 be two optional processes defined, for all t ≤ T , by

Y 1
t = lim

n→∞
Y

1,n
t and Y 2

t = lim
n→∞

Y
2,n
t .

Step 2 : Existence of a solution for (S).

Since the processes b and Y 1,n are of Itô type, then thanks to a result by El-Karoui et al. ([5], Proposition

4.2., pp. 713), the process K2,n is absolutely continuous w.r.t. t. Moreover, we have, for all t ≤ T ,

dK
2,n
t ≤ 1[Y 2,n+1

t =Y
1,n

t +bt]
{ψ2(t, Y

1,n
t + bt, Z

1,n
t + V 2

t ) + U2
t + ψ1(t, Y

1,n
t , Z

1,n
t )}+dt.

Hence, by (B1) and (B4), there exists a constant C ≥ 0 such that, for all n ≥ 1,

E[

∫ T

0

(
dK

2,n
t

dt
)2dt] ≤ C.

In view of this estimate together with (3.17), there exists a subsequence along which both ((
dK

2,n

t

dt
)0≤t≤T )n≥1,

((ψ2(t, Y
2,n+1
t , Z

2,n+1
t ))0≤t≤T )n≥1 and ((Z2,n+1

t )0≤t≤T )n≥1 converge weakly in their respective spaces to

the processes (k2t )t≤T , (ϕ2(t))t≤T and (Z2
t )t≤T which also belong to M1,2, M1,2 and Md,2, repectively.

Next, for any n ≥ 0 and any stopping time τ we have

Y 2,n+1
τ = Y

2,n+1
0 −

∫ τ

0

ψ2(s, Y
2,n+1
s , Z2,n+1

s )ds+K2,n+1
τ +

∫ τ

0

Z2,n+1
s dBs.

Taking the weak limits in each side and along this subsequence yields

Y 2
τ = Y 2

0 −

∫ τ

0

ϕ2(s)ds −

∫ τ

0

k2sds+

∫ τ

0

Z2
sdBs, P− a.s.

Since the processes appearing in each side are optional, using the Optional Section Theorem (see e.g.

[2], Chapter IV pp.220), it follows that

P− a.s., ∀t ≤ T, Y 2
t = Y 2

0 −

∫ t

0

ϕ2(s)ds −

∫ t

0

k2sds+

∫ t

0

Z2
sdBs. (3.18)

Therefore, the process Y 2 is continuous. Relying both on Dini’s Theorem and on Lebesgue’s dominated

convergence one, we also get that

lim
n→∞

E[sup
t≤T

|Y 2,n
t − Y 2

t |
2] = 0.

We will now focus on the convergence of (Y 1,n)n≥0. Using estimates (3.16) and (3.17) and applying

then Peng’s Monotone Limit Theorem (see [8]) to the sequence (Y 1,n, Z1,n,K1,n) we get that Y 1 is

càdlàg . Moreover, there exist an F-adapted càdlàg non-decreasing process K1 and a process Z1 of

Md,2 such that (Z1,n)n≥0 converges to Z1 in Lp(dt⊗dP ) for any p ∈ [1, 2): Moreover, for any stopping

time τ , the sequence (K1,n
τ )n≥1 converges weakly to K1

τ in L2(Ω,Fτ , dP ). Relying now on the Snell

envelope representation (see [5], Proposition 2.3, pp 705), we have, for any n ≥ 1 and t ≤ T ,

Y
1,n+1
t = ess supτ≥tE[

∫ τ

t

ψ1(s, Y
1,n+1
s , Z1,n+1

s )ds+ (Y 2,n+1
τ − a(τ))1[τ<T ] + ξ11[τ=T ]|Ft].
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As (Y 2,n)n≥1 converges in S2 to Y 2 then, by taking the limit in each side of the previous equality, we

get

P− a.s., for all t ≤ T, Y 1
t = ess supτ≥tE[

∫ τ

t

ψ1(s, Y
1
s , Z

1
s )ds+ (Y 2

τ − a(τ))1[τ<T ] + ξ11[τ=T ]|Ft],

since Y 1 is càdlàg . This further implies that Y 1 is continuous and, using Dini’s theorem, that the

convergence of (Y 1,n)n≥1 to Y 1 holds in S2. Relying next on the Doob-Meyer decomposition of the

’almost’ supermartingale Y 1 (see also Theorem 2.1), there exist Z1 and K1 such that, for all t ≤ T ,




Y 1
t = ξ1 +

∫ T

t

ψ1(s, Y
1
s , Z

1
s )ds+ (K1

T −K1
t )−

∫ T

t

Z1
sdBs;

Y 1
t ≥ Y 2

t − a(t) and
∫ T

0

(
Y 1
s − (Y 2

s − a(s))
)
dK1

s = 0.

Since the convergence of (Y 1,n)n≥1 to Y 1 holds in S2, we can now rely on standard arguments

and, in particular, on Itô’s formula applied to (Y 2,n − Y 2,m)2 (m,n ≥ 0) to claim that (Z2,n)n≥1 is a

Cauchy sequence and therefore that it converges to Z2 in Md,2. Using this and taking into account the

decomposition obtained in (3.18) we finally get, for any t ≤ T ,




Y 2
t = ξ2 +

∫ T

t

ψ2(s, Y
2
s , Z

2
s )ds−

∫ T

t

k2sds−

∫ T

t

Z2
sdBs;

Y 2
t ≤ Y 1

t + b(t).

Due to the weak convergence of ((
dK

2,n

t

dt
)t≤T )n≥1 to the process k2 and the strong convergence of (Y 1,n)

and (Y 2,n) in S2, it follows that

0 =

∫ T

0

(Y 1,n
s + b(s)− Y 2,n+1

s )dK2,n+1
s →

∫ T

0

(Y 1
s + b(s)− Y 2

s )k
2
sds = 0

which implies that (Y 2, Z2,K2 :=
∫ .

0
k2sds) is solution for the second part of (S) and henceforth, the

6-uplet (Y 1, Z1,K1, Y 2, Z2,K2) is a solution of (S).

This solution is actually a minimal one. Indeed, if there is another one (Y1,Z1,K1,Y2,Z2,K2) then,

by comparison, we obviously get Y1 ≥ Y 1,0 and then Y2 ≥ Y 2,1. Finally by induction we have, for any

n ≥ 1, Y1 ≥ Y 1,n and then Y2 ≥ Y 2,n, which implies the desired result after taking the limit as n goes

to ∞.

3.1 On the uniqueness of the solution of the system (S)

As we will show below in Secton 3.2, in general, we do not have uniqueness of the solution of (S).

However, in some specific cases, such as in the following result, uniqueness holds.

Theorem 3.1. Assume that

(i) the mappings ψ1 and ψ2 do not depend on (y, z), i.e., ψi := (ψi(t, ω)), i = 1, 2

(ii) the barriers a and b satisfy:

P− a.s.

∫ T

0

1[a(s)=b(s)]ds = 0. (3.19)

Then, the solution of (S) is unique.
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Proof . The proof relies on the uniqueness of the solution of a reflected BSDE with one lower barrier.

Indeed, let (Y 1, Y 2, Z1, Z2,K1,K2) be a solution of (S) and, for t ≤ T , let us set Yt = Y 1
t − Y 2

t ,

Zt = Y 1
t −Y 2

t and Kt = K1
t +K

2
t . Therefore, the triple (Y, Z,K) belongs to S2×Md,2×A2. Moreover,

for any t ≤ T , it satisfies





Yt = ξ1 − ξ2 +

∫ T

t

{ψ1(u, ω)− ψ2(u, ω)}du+ (KT −Kt)−

∫ T

t

ZudBu,

Yt ≥ max{−a(t),−b(t)} and
∫ T

0
(Ys +min{a(s), b(s)}) dKs = 0.

(3.20)

Indeed, the two first relations being obvious, it only remains to show the third one. But,

∫ T

0 (Ys +min{a(s), b(s)}) dKs =
∫ T

0

(
Y 1
s − Y 2

s + a(s)
)
1[a(s)≤b(s)]d(K

1
s +K2

s )

+
∫ T

0

(
Y 1
s − Y 2

s + b(s)
)
1[a(s)>b(s)]d(K

1
s +K2

s ).
(3.21)

However, ∫ T

0

(
Y 1
s − Y 2

s + a(s)
)
1[a(s)≤b(s)]dK

1
s = 0,

since, for any t ≤ T , dK1
t = 1[Y 1

t −Y 2
t +a(t)=0]dK

1
t . On the other hand,

0 ≤
∫ T

0

(
Y 1
s − Y 2

s + a(s)
)
1[a(s)≤b(s)]dK

2
s ≤

∫ T

0

(
Y 1
s − Y 2

s + b(s)
)
1[a(s)≤b(s)]dK

2
s = 0,

since, for any t ≤ T , it holds that dK2
t = 1[Y 2

t −Y 1
t +b(t)=0]dK

2
t . In the same way, one can show that

the second term in (3.21) is null and therefore, the third relation in (3.20) holds true. It follows

that (Y, Z,K) is a solution for the one lower barrier reflected BSDE associated with (ψ1 − ψ2, ξ1 −

ξ2,max{−a(t),−b(t)}). As the solution of this latter equation is unique by Theorem 2.1, then for any

solution (Y 1, Y 2, Z1, Z2,K1,K2) of (S), the differences Y 1−Y 2 and Z1−Z2 and the increasing process

K1 +K2 are unique.

Next, let us express K1 and K2 in terms of K. For any t ≤ T , we claim that

K1
t =

∫ t

0
1[Y 1

s −Y 2
s +a(s)=0]dK

1
s

=
∫ t

0 1[Y 1
s −Y 2

s +a(s)=0]1[a(s)<b(s)]dK
1
s +

∫ t

0 1[Y 1
s −Y 2

s +a(s)=0]1[a(s)>b(s)]dK
1
s ,

(3.22)

where, to get this second equality, we make use of both the absolute continuity of dK1, the increasing

property of K1 and the condition (ii) on the barriers to argue that

∫ T

0

1[Y 1
s −Y 2

s +a(s)]1[a(s)=b(s)]dK
1
s =

∫ T

0

ds1[Y 1
s −Y 2

s +a(s)]1[a(s)=b(s)](
dK1

s

ds
) = 0.

On the other hand,

∫ T

0

1[Y 1
s −Y 2

s +a(s)=0]1[a(s)<b(s)]dK
2
s =

∫ T

0

1[Y 1
s −Y 2

s +a(s)=0]1[a(s)<b(s)]1[Y 1
s −Y 2

s +b(s)=0]dK
2
s = 0.

In a similar fashion, we have

∫ T

0

1[Y 1
s −Y 2

s +a(s)=0]1[a(s)>b(s)]dK
2
s = 0.

10



Therefore, going back to (3.22) we obtain, for all t ≤ T ,

K1
t =

∫ t

0

1[Y 1
s −Y 2

s +a(s)=0]dKs,

which implies that K1 is unique and then so is K2. Writing next the equations satisfied by Y 1 and

Y 2 and taking the conditional expectation (w.r.t. Ft), we obtain their uniqueness. From standard

arguments, uniqueness of Z1 and Z2 follows immediately.

Remark 3.1. This uniqueness result can be slightly generalized to generators of the following forms:

ψ1(t, ω, y, z) = ψ̃1(t, ω) + αty + βtz and ψ2(t, ω, y, z) = ψ̃2(t, ω) + αty + βtz

where α and β are P-progressively measurable bounded processes with values in R and R
d respectively.

The proof is the same as the previous one, noting that the process Y = Y 1−Y 2 solves a linear RBSDE,

which is explicitely solvable.

For the sake of completeness, we now consider the more general case i.e. when condition (3.19) on the

barriers is no more satisfied.

Lemma 3.1. Under (B1)-(B3) together with (B4) or (B4
′

), if the condition (3.19) on the barriers

is no more satisfied then, on any interval [α, β] of [0, T ], where a ≡ b, uniqueness of a solution for the

system (S) holds only in the trivial cases where neither the first component Y 1 nor the second one Y 2

are reflected processes.

Proof : To prove this, let us consider a non trivial interval [α, β] with 0 < α < β < T and where a(t) =

b(t), ∀t ∈ [α, β] and assume that uniqueness of the solution of (S) holds. So let (Y 1, Z1,K1, Y 2, Z2,K2)

be the minimal solution of (S) which is then equal to the maximal one by uniqueness. Next let us

consider the following system of RBSDEs on the time interval [α, β]: for any s ∈ [α, β],

(Smin)





dY 1
s = −ψ1(s, Y 1

s , Z
1
s )ds+ Z1

sdBs; Y
1
β = Y 1

β

dY 2
s = −ψ2(s, Y 2

s , Z
2
s )ds+ Z2

sdBs + dK2
s ; Y

2
β = Y 2

β

Y 2
s ≤ Y 1

s + b(s),
∫ β

α

(
Y 1
s + b(s)− Y 2

s

)
dK2

s = 0.

Note also that existence and uniqueness for (Smin) on [α, β] results from standard results for BSDEs

(or RBSDEs with one barrier).

On the other hand, let us consider the following system of reflected BSDEs which is similar to (S) but

on the time interval [0, α] and which actually has a solution. For any t ∈ [0, α],





γ1t = Y 1
α +

∫ α

t
ψ1(s, γ1s , θ

1
s)ds+ (ζ1α − ζ1t )−

∫ α

t
θ1sdBs;

γ2t = Y 2
α +

∫ α

t
ψ2(s, γ2s , θ

2
s)ds+ (ζ2α − ζ2t )−

∫ α

t
θ2sdBs;

γ1t ≥ γ2t − a(t) and γ2t ≤ γ1t + b(t);
∫ α

0

(
γ1s − (γ2s − a(s))

)
dζ1s = 0 and

∫ α

0 (γ1s + b(s)− γ2s )dζ
2
s = 0,
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where both Y 1
α (resp. Y 2

α ) stands for the value at time t = α of the first component Y 1 (resp. the

second component Y 2) of the unique solution to the system (Smin) defined on [α, β]. Therefore the

following process

{(γ1t , θ
1
t , ζ

1
t , γ

2
t , θ

2
t , ζ

2
t )11[t≤α] + (Y 1

t , Z
1
t , ζ

1
α, Y

2
t , Z

2
t ,K

2
t −K2

α + ζ2α)11[α<t≤β]+

(Y 1
t , Z

1
t ,K

1
t −K1

β + ζ1α, Y
2
t , Z

2
t ,K

2
t −K2

β +K2
β −K2

α + ζ2α)11[β<t≤T ]}t≤T ,

obtained by concatenation, is also a solution for (S). Using once more uniqueness for (S) yields for any

t ∈ [α, β],

Y 1
t = Y 1

t and Z1
t = Z1

t .

It implies that the process Y 1 is not reflected on the time interval [α, β]. Now going back to the system

(Smin) and making the reflection on Y 2 and not on Y 1, we define a new system denoted by (Smax) and

therefore, proceeding as above, we obtain that the solution (Ȳ 1, Ȳ 2) on [α, β] is such that the second

component is not reflected. By uniqueness, we can claim that: (Y 1, Y 2) ≡ (Ȳ 1, Ȳ 2) on [α, β] and hence,

Y 2 is not reflected on [α, β].

Remark 3.2. On any time interval where the solution of (Smin) provides a solution of the system (S),

it is straightforward to check, by using standard comparison result for BSDEs or RBSDEs (see Theorem

2.2), that the solution (Y 1, Y 2) is the minimal solution of (S).

Similarly, whenever the solution (Ȳ 1, Ȳ 2) associated to the system (Smax) is a solution of (S), it can

be proved that it is the maximal one.

3.2 Non-uniqueness: two counter-examples

In this section, we provide two explicit counter-examples of system (S) where uniqueness does not hold.

First example. In this first example, we study the case when the two penalties a and b are equal

to zero, and the terminal conditions ξ1 and ξ2 are equal. In addition, the two generators (s, ω) →

ψi(s, ω, y, z), for i = 1, 2, are assumed to be independent of (y, z) and satisfy:

P− a.s., for all t ≤ T, ψ1(t, ω)− ψ2(t, ω) < 0. (3.23)

Therefore, this leads to the following system of RBSDEs

(S1)





Y 1
t = ξ1 +

∫ T

t
ψ1(s)ds−

∫ T

t
Z1
sdBs +

(
K1

T −K1
t

)
,

Y 2
t = ξ1 +

∫ T

t
ψ2(s)ds−

∫ T

t
Z2
sdBs −

(
K2

T −K2
t

)
,

Y 1
t ≥ Y 2

t , t ≤ T,
∫ T

0

(
Y 1
s − Y 2

s

)
d(K1

s +K2
s ) = 0.

Introduce (Y 1,min, Y 2,min) (resp. (Y 1,max, Y 2,max)) as being the minimal (resp. the maximal) solu-

tion of the system (S1) as constructed in Section 2.
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Our objective is to establish that, even in this simple example, uniqueness for the system (S1) fails

to hold. To do this, we prove that the minimal and maximal solutions for that system do not coincide.

So let us consider an arbitrary solution (Y 1, Y 2) of the system (S1). If we set Ȳ = Y 1 − Y 2 then we

have, for all t ≤ T ,





Ȳt =

∫ T

t

(ψ1(s)− ψ2(s))ds+ (K̄T − K̄t) +

∫ T

t

Z̄sdBs,

Ȳt ≥ 0, t ≤ T,
∫ T

0
ȲtdK̄t = 0.

(3.24)

Hence, standard results imply that the solution of that reflected BSDE is unique. Taking then condi-

tional expectation w.r.t. Ft in (3.24), it yields

Y 1
t − Y 2

t = E

(∫ T

t

(ψ1(s)− ψ2(s))ds+ (K̄T − K̄t)|Ft

)
.

Therefore, thanks to both (3.23) and the constraint condition on Y 1−Y 2, we obtain the strict increasing

property of K̄. Next for i = 1, 2 denoting by Ki,min and by Ki,max the pair of increasing processes

associated with each component of both the minimal and maximal solution, we are going to show that

dK
1,min
t ≡ 0 and dK

2,max
t ≡ 0, for any t ≤ T.

To this end, let us consider the following system: for any s ≤ T ,





dY
¯
1
s = −ψ1(s)ds+ Z

¯
1
sdBs; Y

¯
1
T = ξ1,

dY
¯
2
s = −ψ2(s)ds+ Z

¯
2
sdBs + dK

¯
2
s; Y

¯
2
T = ξ1,

Y
¯
2
s ≤ Y

¯
1
s,

∫ T

0

(
Y
¯
1
s −Y

¯
2
s

)
dK
¯
2
s = 0.

(3.25)

Then, for any t ≤ T , we have

Y
¯
1
t − Y

1,min
t = −

∫ T

t

(Z
¯
1
s − Z1,min

s )dBs −
(
K

1,min
T −K

1,min
t

)
.

As Y 1
t − Y

1,min
t ≥ 0, it follows from standard arguments that K

1,min
t = K

1,min
T for any t ≤ T and then

K1,min ≡ 0. Using now uniqueness of BSDEs, reflected or not, we obtain that Y
¯
1 ≡ Y 1,min and then

Y
¯
2 ≡ Y 2,min. In the same way, by considering the reflection on the other equation in (3.25) we obtain

that K2,max ≡ 0.

Next, using again the uniqueness of the triple (Ȳ = Y 1 − Y 2, Z̄ = Z1 − Z2, K̄ = K1 +K2) solving the

one lower barrier RBSDE (3.24), it follows that

K̄ = K1,min +K2,min = K2,min

= K1,max +K2,max = K1,max.

The process K̄ uniquely defined by (3.24) being strictly increasing then, in view of the second line of

the previous equalities, K1,max and K2,min are also strictly increasing. Consequently, both Y 1,min and
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Y 1,max solve BSDEs with same generator ψ1 and same terminal condition ξ1. However, Y 1,min solves

a standard BSDE without any reflection, whereas Y 1,max solves a reflected BSDE with the associated

process K1,max which is strictly increasing, which yields that Y 1,min 6= Y 1,max and achieves the proof.

Second example. Let us assume the following structure of the generators

ψ1(t, ω, y) = y and ψ2(t, ω, y) = 2y.

We also assume that for any t ≤ T , at = bt = 0. Then, we are led to consider the following system, for

all t ∈ [0, T ],

(S2)





Y 1
t = 1 +

∫ T

t
Y 1
s ds−

∫ T

t
Z1
sdBs +

(
K1

T −K1
t

)
,

Y 1
t ≥ Y 2

t and
∫ T

t
(Y 1

s − Y 2
s )dK

1
s = 0,

Y 2
t = 1 +

∫ T

t
2Y 2

s ds−
∫ T

t
Z2
sdBs −

(
K2

T −K2
t

)
,

Y 1
t ≥ Y 2

t and
∫ T

t1
(Y 2

s − Y 1
s )dK

2
s = 0,

In this second example, we will show that the minimal (resp. the maximal) solution constructed via

an increasing (resp. a decreasing) scheme are not equal and therefore uniqueness does not hold. We

note that, considering an arbitrary solution of the system (S2), the difference Y 1 − Y 2 does not solve

any more a RBSDE, which was the crucial fact we rely on in the previous example.

To prove that uniqueness does not hold for (S2), let us consider the minimal (resp. maximal) solution

(Y 1,min, Y 2,min) (resp. (Y 1,max, Y 2,max)) of (S2) which is given, for all t ∈ [0, T ], by




dY
1,min
t = −Y 1,min

t dt− Z
1,min
t dBt and Y

1,min
T = 1,

dY
2,min
t = −2Y 2,min

t dt− Z
2,min
t dBt + dK

2,min
t and Y

2,min
T = 1,

Y
1,min
t ≥ Y

2,min
t and

∫ T

0
(Y 1,min

t − Y
2,min
t )dK2,min

t = 0,

and 



dY
1,max
t = −Y 1,max

t dt− Z
1,max
t dBt − dK

1,max
t and Y

1,max
T = 1,

dY
2,max
t = −2Y 2,max

t dt− Z
2,max
t dBt and Y

2,max
T = 1,

Y
1,max
t ≥ Y

2,max
t and

∫ T

0
(Y 1,max

t − Y
2,max
t )dK1,max

t = 0,

meaning that K1,min ≡ 0 and K2,max ≡ 0. But, the solution of the first system is given, for all t ≤ T ,

by

Y
1,min
t = Y

2,min
t = eT−t, Z

1,min
t = Z

2,min
t = 0 and K2,min

t = eT (1− e−t).

On the other hand, the one of the second system is given, for all t ≤ T , by

Y
1,max
t = Y

2,max
t = e2(T−t), Z

1,max
t = Z

2,max
t = 0 and K1,max

t =
1

2
e2T (1− e−2t).

Therefore, as we can see, uniqueness of (S2) does not hold in this case. Finally, let us point out that in

order to exhibit the solutions of the previous systems we have kept in mind two facts: (i) the solutions

of those systems are deterministic ; (ii) we have used properties of the Snell envelope of processes.
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Remark 3.3. As a slight generalization of the previous counter-example, let us consider here the

more general case when the generators take the following form:

ψ1(s, y) = α1
sy and ψ2(s, y) = α2

sy,

where α1 and α2 are deterministic functions, integrable on [0, T ] and satisfy, P− a.s. α1
t < α2

t , ∀ t ≤ T .

We are led to study the following system given, for all t ∈ [0, T ], by

(S
′

2)





dY 1
t = −α1

tY
1
t dt+ Z1

t dBt − dK1
t , Y

1
T = 1,

dY 2
t = −α2

tY
2
t dt+ Z2

t dBt + dK2
t , Y

2
T = 1,

Y 1
t ≥ Y 2

t and
∫ T

0 (Y 2
t − Y 1

t )dK
1
t =

∫ T

0 (Y 2
t − Y 1

t )dK
2
t = 0.

Similarly as in the previous proof, we consider here the minimal solution (resp. the maximal solution)

of the previous system which is denoted by (Y 1,min, Y 2,min) (resp. by (Y 1,max, Y 2,max)). In addition

and as already mentioned in Remark 3.2, the increasing processes associated with these solutions are

such that:

K1,min ≡ 0 and K2,max ≡ 0.

Thus, Y 1,min and Y 2,max solve a standard BSDEs which, by uniqueness, implies that, for all t ∈ [0, T ],

Y
1,min
t = exp(

∫ T

t

α1
sds), Y

2,max
t = exp(

∫ T

t

α2
sds) and Z

1,min
t = Z

2,max
t = 0.

Next, since the data of the system are deterministic and using the characterization of the Snell envelope

of a process as the smallest supermartingale which dominates it (see e.g. [4]) we get that

Y
2,min
t = Y

1,min
t , Z

2,min
t = 0 and K

2,min
t =

∫ t

0

(
α2
s − α1

s

)
Y 1,min
s ds, t ∈ [0, T ]. (3.26)

Thus, we have obtained the minimal solution of (S
′

2).

Concerning the maximal solution, we proceed in the same way and then we can check that both

Y 1,max, Z1,max and K1,max are given by:

Y
1,max
t = Y

2,max
t , Z

1,max
t = 0 and K

1,max
t =

∫ t

0

(
α2
s − α1

s

)
Y 2,max
s ds, t ∈ [0, T ].

Therefore since α1 < α2, we obtain, for i = 1, 2, Y i,min < Y i,max, which entails that, in this case,

uniqueness does not hold for (S
′

2) as well.

4 Study of the related system of variational inequalities

4.1 The system of variational inequalities

In this section, we briefly describe the connection between solutions of (S) and existence results of

viscosity solutions of the following system of variational inequalities with interconnected obstacles:

(V I)





min{u1(t, x)− u2(t, x) + a(t, x),−∂tu
1(t, x)− Lu1(t, x)− ψ1(t, x)} = 0,

max{u2(t, x) + b(t, x)− u1(t, x),−∂tu
2(t, x) − Lu2(t, x)− ψ2(t, x)} = 0,

u1(T, x) = g1(x) and u2(T, x) = g2(x),
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when the dependence of dynamics of the cash-flows Y 1, Y 2 of e.g. the fluctuations of the market prices,

X , assumed to be a diffusion process, is made explicit. Note that the obstacles may depend on the

diffusion process X . In (V I), L denotes the infinitesimal generator of the diffusion X .

For (t, x) ∈ [0, T ]× R
k, let Xt,x := (Xt,x

s )s≤T be the solution of the following standard differential

equation:

dXt,x
s = µ(s,Xt,x

s )ds+ σ(s,Xt,x
s )dBs, T ≥ s ≥ t, Xt,x

s = x, s ≤ t, (4.27)

where, the two functions µ := (µ(t, x)) and σ := (σ(t, x)) defined on [0, T ] × R
k and taking their

respective values in R
k and R

k×d, are uniformly Lipschitz w.r.t. x and have a linear growth. This

means that, for all t, x, y

(C1)





|µ(t, x)− µ(t, y)|+ |σ(t, x) − σ(t, y)| ≤ C|x− y|,

|µ(t, x)|+ |σ(t, x)| ≤ C
(
1 + |x|

)
.

These properties ensure both existence and uniqueness of a solution for (4.27). Additionally for any

θ ≥ 2, there exists a constant C such that for any x ∈ R
k

E

[
sup

0≤s≤T

∣∣Xt,x
s

∣∣θ
]
≤ C(1 + |x|θ). (4.28)

Next, in this setting, the infinitesimal generator L of the diffusion X : =̂Xt,x, is defined, for any

function Φ in C1,2 ([0, T ]× R), as follows:

L (Φ) (t, x) = 〈µ(t, x),Φ(t, x)〉 +
1

2
Trace

(
σσTD2Φ(t, x)

)
,

where T stands for the transpose operation. Let us now make the following assumption on the functions

ψi, i = 1, 2.

(C2)





The functions ψ1 and ψ2 do not depend on (y, z), i.e., ψ1 = ψ1(t, x) and ψ2 = ψ2(t, x),

they are jointly continuous in (t, x) and have polynomial growth, i.e., there exist two positive

constants q and C such that, for all (t, x), |ψi(t, x)| ≤ C(1 + |x|q), i = 1, 2.

The assumption that each generator ψi does not depend on (y, z) but only on x is quite natural

especially for applications in economics. It means that the payoffs are not of recursive type, and the

utilities ψ1 and ψ2 depend only on the process Xt,x which stands e.g. for the price of a commodity

such as the electricity or oil price in the market.

Next, let gi := (gi(x)), i = 1, 2, and a := (a(t, x)), b := (b(t, x)) be given functions defined respectively

on R
k and [0, T ]× R

k, with values in R and satisfy

(C3)





(i) a and b are of polynomial growth and belong to C1,2([0, T ]× R
d), and satisfy

for all (t, x) ∈ [0, T ]× R
k,

∫ T

0

1[a(s,Xt,x
s )=b(s,Xt,x

s )]ds = 0 ;

(ii) g1 and g2 are continuous and of polynomial growth;

(iii) g1(x)− g2(x) ≥ max{−a(T, x),−b(T, x)}, x ∈ R
k.
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With the help of the solutions of the system of reflected BSDEs (S), we are going to show that (V I)

has a solution in viscosity sense whose definition is the following

Definition 1. Let (u1, u2) be a pair of continuous functions on [0, T ]× R
k. It is called:

(i) a viscosity supersolution (resp. subsolution) of the system (V I) if for any (t0, x0) ∈ [0, T ]× R
k

and any pair of functions (ϕ1, ϕ2) ∈ (C1,2([0, T ]×R
k))2 such that (ϕ1, ϕ2)(t0, x0) = (u1, u2)(t0, x0) and

for any i = 1, 2, (t0, x0) is a maximum (resp. minimum) of ϕi − ui then, we have

min{u1(t0, x0)− u2(t0, x0) + a(t0, x0),−∂tϕ1(t0, x0)− Lϕ1(t0, x0)− ψ1(t0, x0)} ≥ 0 (resp. ≤ 0),

and

max{u2(t0, x0)− u1(t0, x0)− b(t0, x0),−∂tϕ2(t0, x0)− Lϕ2(t0, x0)− ψ2(t0, x0)} ≥ 0 (resp. ≤ 0).

(ii) a viscosity solution of the system (V I) if it is both a viscosity supersolution and subsolution.

4.2 Construction and regularity of viscosity solution of the system (VI)

Our objective is to construct and identify a continuous viscosity solution for the system (VI) by relying

both on standard results for the representation of viscosity solutions by BSDEs (see e.g. [5], Theorem

8.5) and on the results derived in the previous sections.

For (t, x) ∈ [0, T ] × R
k, let (Y 1,(t,x), Y 2,(t,x), Z1,(t,x), Z2,(t,x),K1,(t,x),K2,(t,x)) be a solution of the

following system of reflected BSDEs: for any s ∈ [t, T ],

(S̃)





Y
1,(t,x)
s = g1(X

(t,x)
T ) +

∫ T

s

ψ1(u,Xt,x
u )du + (K

1,(t,x)
T −K1,(t,x)

s )−

∫ T

s

Z1,(t,x)
u dBu,

Y
2,(t,x)
s = g2(X

(t,x)
T ) +

∫ T

s

ψ2(u,Xt,x
u )du − (K

2,(t,x)
T −K2,(t,x)

s )−

∫ T

s

Z2,(t,x)
u dBu,

Y
1,(t,x)
s ≥ Y

2,(t,x)
s − a(s,Xt,x

s ) and Y
2,(t,x)
s ≤ Y

1,(t,x)
s + b(s,Xt,x

s ),
∫ T

t

(
Y

1,(t,x)
s − (Y

2,(t,x)
s − a(s,Xt,x

s ))
)
dK

1,(t,x)
s = 0,

∫ T

t
(Y

1,(t,x)
s + b(s,Xt,x

s )− Y
2,(t,x)
s )dK

2,(t,x)
s = 0.

Note that, thanks to Theorems 2.2, 3.1 and Assumptions (C1)-(C3), especially the facts that the

processes (a(s,Xt,x
s ))s∈[t,T ] and (b(s,Xt,x

s ))s∈[t,T ] verify (B4) and (B4
′

) respectively, both the minimal

and maximal solution exist and furthermore, these two solutions coincide. Indeed, uniqueness holds

since the functions ψi, i = 1, 2, do not depend on (y, z) and the barriers satisfy the condition (ii) of

Theorem 3.1. Moreover this unique solution is obtained as a limit of the increasing and decreasing

schemes since the functions a := (a(t, x)) and b := (b(t, x)) belong to C1,2([0, T ] × R
k) and are of

polynomial growth.

According to the construction of the minimal solution of (S̃) we have, for any s ∈ [t, T ],

(Y 1,(t,x)
s , Y 2,(t,x)

s ) = lim
n→∞

(Y 1,(t,x);n
s , Y 2,(t,x);n

s ),
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where, (Y 1,(t,x);n, Y 2,(t,x);n) are defined in the same way as in (Sn) but with the specific data above.

Thanks to Theorem 8.5 in [5], and by an induction argument there exist deterministic functions uin :=

(uin(t, x)), i = 1, 2, continuous on [0, T ]× R
k such that: for any s ∈ [t, T ],

(Y 1,(t,x);n
s , Y 2,(t,x);n

s ) = (u1n(s,X
t,x
s ), u2n(s,X

t,x
s )).

Moreover there exist two positive constants α1 and α2 such that, for any (t, x) ∈ [0, T ]× R
k,

|uin(t, x)|+ |uin(t, x)| ≤ α1(1 + |x|α2 ).

Finally, the sequences (uin)n≥0, i = 1, 2, are increasing since Y i,(t,x);n ≤ Y i,(t,x);n+1, i = 1, 2. Therefore,

there exist two deterministic lower semi-continuous functions ui, i = 1, 2, with polynomial growth such

that, for i = 1, 2 and any (t, x) ∈ [0, T ]× R
k,

(Y 1,(t,x)
s , Y 2,(t,x)

s ) = (u1(s,Xt,x
s ), u2(s,Xt,x

s )), ∀s ∈ [t, T ]. (4.29)

Now, and in the same fashion, when considering the decreasing approximating scheme, it follows

from the same result in [5] and from the uniqueness that u1 and u2 are also upper semi-continuous.

Therefore, u1 and u2 are continuous with polynomial growth. Finally, relying on Theorem 8.5 in [5] we

directly obtain the following result.

Theorem 4.1. The pair (u1, u2) defined in (4.29) is a continuous viscosity solution for the system

(V I).

Remark 4.1. The question of uniqueness of the system (V I) in the general case is more involved and

will appear elsewhere. Actually, in using the results of e.g. the second example of Section 3.2, we easily

see that uniqueness for (V I) does not hold in general.
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