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Abstract

In our paper ”Uniformity and the Taylor expansion of ordinary lambda-terms” (with Laurent Regnier), we studied
a translation of lambda-terms as infinite linear combinations of resource lambda-terms, from a calculus similar to
Boudol’s lambda-calculus with resources and based on ideascoming from differential linear logic and differential
lambda-calculus. The good properties of this translation wrt. beta-reduction were guaranteed by a coherence relation
on resource terms: normalization is ”linear and stable” (inthe sense of the coherence space semantics of linear
logic) wrt. this coherence relation. Such coherence properties are lost when one considers non-deterministic or
algebraic extensions of the lambda-calculus (the algebraic lambda-calculus is an extension of the lambda-calculus
where terms can be linearly combined). We introduce a ”finiteness structure” on resource terms which induces
a linearly topologized vector space structure on terms and prevents the appearance of infinite coefficients during
reduction, in typed settings.

Introduction

Denotational semantics and linear logic. Denotational semantics consists in interpreting syntactical objects (pro-
grams, proofs) as points in abstract structures (typically, ordered sets with various completeness properties). In this
process, the dynamical features of programs are lost, and abstract properties of programs, such as continuity, stability
or sequentiality are expressed.

A program, or a proof, is normally a finite object, and its denotation is usually infinite, because it describes all the
possible behaviors of the program when applied to all possible arguments. Semantics turns the potential infinity of
program dynamics into the actually infinite static description of all its potential behaviors.

Linear logic (LL), which arose from investigations in denotational semantics, sheds a new light on this picture.
Whilst being as expressive as intuitionistic logic, LL contains a purely linear fragment which is completely finite in
the sense that, during reduction, the size of proofs strictly decreases. For allowing to define and manipulate potentially
infinite pieces of proofs/programs, LL introduces new connectives: the exponentials.

Unlike its finite multiplicative-additive fragment, the exponential fragment of LL is strongly asymmetric:

• on one side, there is apromotionrule which allows to introduce the “!” connective and makes a proof duplicable
and erasable;

• and on the other side, there are the rules ofcontraction, weakeningandderelictionwhich allow to duplicate,
erase and access to promoted proofs. These rules introduce and allow to perform deductions on the “?” connec-
tive, which is the linear dual of “!”. Let use call these rulesstructural1.

∗This work has been partly funded by the ANR project BLAN07-1 189926Curry-Howard for Concurrency(CHOCO).
1It is not really standard to consider dereliction as structural.
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The only infinite rule of LL is promotion. The potentially infinite duplicating power of contraction is not “located”
in the contraction rule itself, but in the fact that, for being duplicable by contractions, a proof must be promoted first.
This fact can be observed in denotational models but is not clear in the syntax because the structural rules have no
other opponents but promotion2.

Differential linear logic The situation is quite different in differential LL (and, implicitly, in differential lambda-
calculus and its variants), a system that we introduced recently (see [ER03, ER06b, EL09]). In this system, the “?”
rules have exact dual rules: there is acocontraction, acoweakeningand acoderelictionrules. These rules are logical
versions of standard mathematical operations used in elementary differential calculus, whence the name of the system.

So in differential LL we have structural and costructural rules and these rules interact in a completely symmetric
andfinite way, just as in the multiplicative and additive fragment. Promotion remains apart, as the only truly infinite
rule of logic. This fact, which in LL could be observed only indenotational models, can be expressed syntactically in
differential LL by means of the Taylor expansion of promotion rules.

Resource lambda-calculus. This operation is more easily understood in the lambda-calculus (see [Tra08] for the
connection between lambda-terms and nets in differential LL). Roughly speaking, the ordinary lambda-calculus cor-
respond to the fragment of LL which contains the multiplicative, structural and promotion rules. But we can also
consider a lambda-calculus corresponding to the multiplicative, structural and costructural rules: the resource calculus
that we introduced in [ER08]. Similar calculi already existed in the literature, such as Boudol’s calculi with multiplic-
ities [Bou93] or with resources [BCL99], and also Kfoury’s calculi [Kfo00], introduced with different motivations and
with different semantic backgrounds. The intuition behindour calculus with resources is as follows.

The first thing to say is that types should be thought of as (topological) vector spaces and not as domains. Consider
then a termt : A⇒ B which should be seen as a function fromA toB. Then imagine that it makes sense to compute
then-the derivative oft at the point0 of the vector spaceA: it is a functiont(n)(0) : An → A, separately linear in each
of its argument, and symmetric in the sense thatt(n)(0)(s1, . . . , sn) = t(n)(0)(sf(1), . . . , sf(n)) for any permutation
f ∈ Sn and any tuple(s1, . . . , sn) ∈ An. In our resource calculus, we have an application construction which
represents this operation. Given a termt (of typeA⇒ B if we are in a typed setting) and a finite numbers1, . . . , sn of
terms (of typeA), we can “apply”t to the multisetS = s1 · · · sn (the multiset whose elements ares1, . . . , sn, taking
multiplicities into account) and we denote with〈s〉S this operation. We take benefit of the intrinsic commutativity of
multisets for implementing the symmetry of then-th derivative. The other constructions of this calculus are standard:
we have variablesx, y, . . . and abstractionsλx s. Redexes are terms of the shape〈λx s〉S andx can have several free
occurrences ins, whichare all linear. When reducing this redex, one does not duplicateS. Instead, one splits it into
as many pieces as there are occurrences ofx in s, and since all these occurrences are linear, all these pieces should
contain exactly one term. We do that in all possible ways and take the sum of all possible results. When the number
of free occurrences ofx in s and the size ofS do not coincide, the result of this operation is0.

For this to make sense, one must have the possibility of adding terms, and this is compatible with the idea that
types are vector spaces.

Taylor expansion. Taylor expansion consists in replacing the ordinary application of lambda-calculus with this
differential application of the resource calculus. IfM : A⇒ B andN : A are terms, then the standard Taylor formula
should be

(M)N =

∞∑

n=0

1

n!
M (n)(0)(

n
︷ ︸︸ ︷

N, . . . , N)

This leads to the idea of writing any termM as an infinite linear combination of resource terms (with rational coeffi-
cients): ifM∗ andN∗ are such sums, we should have

((M)N)
∗
=

∞∑

n=0

1

n!
〈M∗〉(N∗)n (1)

2This picture is not completely faithful because promotion has also to be considered as a “?” rule.
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where the power(N∗)n has to be understood in the sense of multiset concatenation,extented to linear combinations
of multisets by linearity. Using the fact that all the constructions of the resource calculus should be linear (that is,
should distribute over arbitrary linear combinations), formula (1) leads to a definition ofM∗ as a linear combination
of resource terms:M∗ =

∑

s∈∆M
∗
s s where eachM∗

s is a positive rational number (∆ is the set of resource terms):
this is the Taylor expansion ofM .

Taylor expansion looks like denotational semantics: we have transformed a finite programM with a rich, poten-
tially infinite, dynamics into an infinite set (linear combination to be more precise) of more elementary things, the
resource terms. The difference wrt. denotational semantics is that these terms have still a dynamics, but this dynamics
is completely finite because they belong to the promotion-free fragment of differential linear logic: all terms of our
resource calculus, even the non typeable ones, are trivially strongly normalizing. But of course there is no uniform
bound on the length of the reductions of the resource terms appearing in the Taylor expansion of a term.

Content. The present article is a contribution to a programme which consists in considering infinite linear combi-
nations of resource terms as generalized lambda-terms. Thefirst point to understand is how beta-reduction can be
applied to such infinite linear combinations without introducing infinite coefficients. We initiated this programme
in [ER08], defining a binary symmetric, but not reflexive, coherence relation on resource terms (such a coherence
relation has also been defined for differential interactionnets in [PT09a]) and showing that, if two termss andt are
coherent and distinct, then their normal forms are disjoint(and hence can be summed). So a first idea is to consider
cliques as generalized lambda-terms, and this is sound because the resource terms appearing in the Taylor expansion
of a lambda-term are pairwise coherent.

But if we allow linear combinations in the lambda-calculus (as in the differential lambda-calculus for instance,
and we speak then of algebraic lambda-calculus3), then we cannot expect Taylor expansions to be cliques for that
coherence relation. Instead, we equip the set of resource terms with a finiteness structure (in the sense of [Ehr05])
which is defined in such a way that for any “finitary” linear combination

∑

s αss of resource lambda-terms, the
sum

∑

s αsas always makes sense, whatever be the choices ofas such thats beta-reduces toas in the resource
lambda-calculus. We prove a soundness theorem, showing that the Taylor expansion of an algebraic lambda-terms
is always finitary. This cannot hold however for the untyped algebraic lambda-calculus because we know that this
calculus leads to unbounded coefficients during beta-reduction (think of (Θ)λx (z + x) wherez 6= x andΘ is the
Turing fixpoint combinator). So we prove our soundness result for second-order typeable algebraic lambda-terms, by
a method similar to Girard’s proof of strong normalization of system F in Krivine’s very elegant presentation [Kri93].
The method consists in associating with any type a finitenessspace (and hence a linearly topologized vector space)
whose underlying set (web) is a set of resource terms.

1 The resource lambda-calculus

1.1 The calculus

The syntax of our resource calculus is defined as follows. Onedefines first the set∆ of simple terms and the set∆! of
simple poly-terms.

• If x is a variable thenx ∈ ∆;

• if s ∈ ∆ andx is a variable thenλx s ∈ ∆;

• if s ∈ ∆ andS ∈ ∆! then〈s〉S ∈ ∆;

• if s1, . . . , sn ∈ ∆ then the multiset which consists of thesis, denoted in a multiplicative way ass1 · · · sn, is an
element of∆!. The empty simple poly-term is accordingly denoted as1.

We define the sizeS(s) of a simple terms and the sizeS(S) of a simple poly-term by induction as follows:

3There are other algebraizations of the lambda-calculus, wethink in particular of the calculus considered by Arrighi and Dowek [AD08] which
is quite different from ours because application is right-linear in their setting
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• S(x) = 1

• S(λx s) = 1 + S(s)

• S(〈s〉S) = 1 + S(s) + S(S)

• S(s1 · · · s2) = S(s1) + · · ·+ S(sn).

1.1.1 Extended syntax.

Given a rig (semi-ring)R and a setE, we denote byR〈E〉 the set of all formal finite linear combinations of elements
of E with coefficients inR: it is the freeR-module generated byE. If a ∈ R〈E〉 ands ∈ E, as ∈ R denotes the
coefficient ofs in a. We also defineR〈E〉∞ as the set of all (not necessarily finite) linear combinations of elements of
E with coefficients inR; we use the same notations as for the elements ofR〈E〉 and we useR〈E〉(∞) to denote both
modules, to deal with constructions which are applicable inboth settings.

The semi-rings that we consider are

• S = {0, 1} with 1 + 1 = 1, so thatS〈E〉 = Pfin(E) andS〈E〉∞ = P(E);

• N, and thenN〈E〉 is the set of all finite multisets of elements ofE. Givena ∈ N〈E〉 ands ∈ E we writes ∈ a
whenas 6= 0;

• a fieldk, and thenk〈E〉 is thek-vector space generated byE andk〈E〉∞ is also a vector space.

Let a ∈ R〈∆〉(∞), we setλxa =
∑

s∈∆ asλx s ∈ R〈∆〉(∞). Given moreoverA ∈ R〈∆!〉(∞), we set
〈a〉A =

∑

s∈∆,S∈∆! asAS〈s〉S ∈ R〈∆〉(∞). Last, givena(1), . . . , a(n) ∈ R〈∆〉(∞), we definea(1) · · ·a(n) as
∑

s(1),...,s(n)∈∆ a(1)s(1) · · · a(n)s(n)(s(1) · · · s(n)) ∈ R〈∆!〉(∞). In that formula, remember thats(1) · · · s(n) is the
multiset made ofs(1), . . . , s(n). This formula expresses that we consider multiset concatenation as a product, and so,
when extended to linear combinations, a distributivity lawmust hold.

In particular, givena ∈ R〈∆〉(∞) andn ∈ N, we setan =

n
︷ ︸︸ ︷
a · · ·a ∈ R〈∆!〉(∞). WhenR = k, we seta! =

∑

n∈N

1
n!a

n ∈ k〈∆!〉∞ (this sum always makes sense, and we requireR = k to give a meaning to1/n!). Fore ⊆ ∆

(that ise ∈ S〈∆〉∞), we sete! = Mfin(e) ⊆ ∆!.
So all the constructions of the syntax can be applied to arbitrary linear combinations of simple terms, giving rise

to combinations of simple terms.

1.1.2 Differential substitution

Givens ∈ ∆ andS ∈ ∆!, and given a variablex, we define the differential substitution∂x(s, S) as0 if the number
of free occurrences ofx in s is different fromn, and as

∑

f∈Sn
s[sf(1)/x1, . . . , sf(n)/xn] otherwise, whereS =

s1 · · · sn, x1, . . . , xn are then occurrences ofx in s andSn is the group of permutations on{1, . . . , n}.
Givens ∈ ∆ andS1, . . . , Sn ∈ ∆! and pairwise distinct variablesx1, . . . , xn which do not occur free in theSi’s,

we define more generally the parallel differential substitution ∂x1,...,xn
(s, S1, . . . , Sn): the definition is similar (the

sum is indexed by tuples(f1, . . . , fn) wherefi is a permutation on the free occurrences ofxi in s).
This operation must be extended by linearity. Givena ∈ R〈∆〉(∞) andA ∈ R〈∆!〉(∞), we set

∂x(a,A) =
∑

s∈∆,S∈∆!

asAS∂x(s, S) ∈ R〈∆〉(∞)

and we define similarly∂x1,...,xn
(a,A1, . . . , An) ∈ R〈∆〉(∞). It is not obvious at first sight that this sum is well

defined in the infinite case. This results from Lemma 6 (see below).
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1.1.3 The reduction relations

Given two setsE andF and a relationρ ⊆ E ×N〈F 〉, we define a relationN〈ρ〉 ⊆ N〈E〉 ×N〈F 〉 as follows: we say
that(a, b) ∈ N〈ρ〉 if there are(s1, a1), . . . , (sn, an) ∈ ρ such thats1 + · · ·+ sn = a andb1 + · · ·+ bn = b.

The one step reduction relationsβ1
∆ ⊆ ∆× N〈∆〉 andβ1

∆! ⊆ ∆! × N〈∆!〉 are defined as follows.

• x β1
∆ b never holds;

• λx s β1
∆ b if b = λxa with s β1

∆ a;

• s1 · · · sn β1
∆! B if, for somei, si β1

∆ bi andB = s1 · · · bi · · · sn;

• 〈s〉S β1
∆ b in one of the following situations

– s β1
∆ a andb = 〈a〉S;

– S β1
∆! A andb = 〈s〉A;

– s = λx t andb = ∂x(t, S).

Lemma 1 Lets ∈ ∆ andb ∈ N〈∆〉. If s β1
∆ b, then, for anyt1, t2 ∈ b, one hasS(t1) = S(t2) < S(s).

The proof is straightforward (simple case inspection).
Let β0,1

∆ = N〈{(s, s) | s ∈ ∆} ∪ β1
∆〉 andβ0,1

∆! = N〈{(S, S) | s ∈ ∆!} ∪ β1
∆!〉. These are reflexive reduction

relations onN〈∆〉 andN〈∆!〉 respectively. More explicitly, we havea β0,1
∆ b if one can writea = s1 + · · ·+ sn + a′

andb = b1 + · · ·+ bn + a′ with si β1
∆ bi for i = 1, . . . , n, and similarly forβ0,1

∆! .
Finally we denote withβ∆ andβ∆! respectively the transitive closures of these relations.

Lemma 2 Lets, t ∈ ∆ andx is a variable which occurs free exactly once ins. If s β1
∆ a thens [t/x] β1

∆ a [t/x] and
if t β1

∆ b thens [t/x] β1
∆ s [b/x].

Lemma 3 If s β1
∆ a then∂x(s, S) N〈β1

∆〉 ∂x(a, S). If S β1
∆ A then∂x(s, S) N〈β1

∆〉 ∂x(s, A).

These two lemmas are proved by straightforward inductions.
The reduction relationβ∆ onN〈∆〉 has good properties: it is strongly normalizing, confluent (see [ER03, Vau05,

PT09b]). Givens ∈ ∆, we denote byNF(s) the unique normal form ofs, which is an element ofN〈∆〉.

1.1.4 Examples of reduction

Of course〈λxx〉y β∆ y, but if the identity is applied to a multiset of size6= 1, the result is0: 〈λxx〉1 β∆ 0 and
〈λxx〉y2 β∆ 0 (wherey2 is the multiset which contains twice the variabley; this notation is compatible with the
distributivity laws of 1.1.1).

Similarly, the term〈x〉x2 contains3 occurrences ofx (it is sensible to say that it is of degree3 in x). So
〈λx 〈x〉x2〉S β∆ 0 if the size ofS is 6= 3. And we have〈λx 〈x〉x2〉(y2z) β∆ ∂x(〈x〉x2, y2z) = 4〈y〉yz + 2〈z〉y2. As
a last example we have〈λx 〈〈x〉x〉x〉(y2z) β∆ ∂x(〈x〉x2, y2z) = 2〈〈y〉z〉y + 2〈〈y〉y〉z + 2〈〈z〉y〉y.

1.1.5 An order relation on simple terms and poly-terms.

Let us define an order relation on simple terms. Givens, t ∈ ∆, we writet ≤ s if there existsa ∈ N〈∆〉 such that
s β∆ a andt ∈ a. Givens ∈ ∆, we use↓s = {t ∈ ∆ | t ≤ s} and↑s = {t ∈ ∆ | t ≥ s}. We define similarly an
order relation on poly-terms and introduce similar notations:T ≤ S, ↑S and↓S.

Lemma 4 For anys ∈ ∆, the set↓s is finite.

Proof. By Lemma 1 and Knig’s lemma. 2
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1.2 Two technical lemmas

Lemma 5 Lety be a variable andS1, . . . , Sn ∈ ∆! which do not contain free the variabley and letv = 〈· · · 〈〈y〉S1〉S2 · · ·〉Sn.
Let s ∈ ∆, S ∈ ∆!, x be a variable. Lett ∈ ∆ be such thatt ≤ v [〈λx s〉S/y]. Then one of the the two following
cases arises:

• eithert = v′ [〈λx s′〉S′/y] with v′ ≤ v, s′ ≤ s andS′ ≤ S

• or t ≤ v [u/y] for someu ∈ ∂x(s, S).

Proof. By induction onS(v) + S(s) + S(S). Let b ∈ N〈∆〉 be such thatv [〈λx s〉S/y] β∆ b andt ∈ b. Consider the
first reduction step of this reduction. Four cases are possible, because of the particular shape ofv.

First case: the reduction occurs ins. That iss β1
∆ a for somea ∈ N〈∆〉 and the reductionv [〈λx s〉S/y] β∆ b

splits in v [〈λx s〉S/y] β1
∆ v [〈λxa〉S/y] β∆ b. Sincet ∈ b, one can find someu ∈ ∆ with u ∈ a such that

t ≤ v [〈λxu〉S/y]. SinceS(u) < S(s), the inductive hypothesis applies and so there are two cases.

• Either we havet = v′ [〈λxu′〉S′/y] with v′ ≤ v, u′ ≤ u andS′ ≤ S and we conclude becauseu < s.

• Or t ≤ v [w/y] with w ∈ ∆ such thatw ∈ ∂x(u, S). Sinceu ∈ a andw ∈ ∂x(u, S), we havew ∈ ∂x(a, S).
But ∂x(s, S) N〈β1

∆〉 ∂x(a, S) by Lemma 3 and hence there existsw0 ∈ ∂x(s, S) such thatw < w0. Hence we
havev [w/y] < v [w0/y] by Lemma 2 and we conclude by transitivity.

The second case, where the reduction occurs inS is similar.
Third case: the reduction occurs inv. That isv β1

∆ c ∈ N〈∆〉 and the reductionv [〈λx s〉S/y] β∆ b splits in
v [〈λx s〉S/y] β1

∆ c [〈λx s〉S/y] β∆ b. Sincet ∈ b, one can find somew ∈ c such thatt ≤ w [〈λx s〉S/y]. Since
S(w) < S(v), the inductive hypothesis applies and so there are two cases.

• Eithert = w′ [〈λx s′〉S′/y] with w′ ≤ w, s′ ≤ s andS′ ≤ S and we conclude becausew ≤ v.

• Or t ≤ w [u/y] for someu ∈ ∂S(s, x). We conclude by Lemma 2 becausew < v.

Last case: the reductionv [〈λx s〉S/y] β∆ b splits in v [〈λx s〉S/y] β1
∆ v [∂x(s, S)/y] β∆ b and we conclude

immediately that there existsu ∈ ∂x(s, S) such thatt ≤ v [u/x]. 2

Lemma 6 Lets ∈ ∆. There are only finitely many pairs(t, T ) ∈ ∆×∆! such thats ∈ ∂x(t, T ).

Proof. (Sketch) The intuition is clear and can easily be formalized. For building(t, T ), one must choose somen ∈ N,
and thenn pairwise disjoint4 sub-termst1, . . . , tn of s. Thent is obtained by replacing these sub-terms byx in s, and
T = t1 · · · tn. There are only finitely many ways of choosing such a tuple(n, t1, . . . , tn). 2

2 Finiteness spaces

We recall some basic material on finiteness spaces. Given a set I and a collectionF of subsets ofI, we define

F⊥ = {e′ ⊆ I | ∀e ∈ F e ∩ e′ is finite} .

A finiteness space is a pairX = (|X |,F(X)) where|X | is a set (the web ofX) andF(X) ⊆ P(|X |) satisfies
F(X)

⊥⊥ ⊆ F(X) (the other inclusion being always true). The following properties follow immediately from this
definition: if e ⊆ |X | is finite thene ∈ F(X); if e ∈ F(X) andf ⊆ e thenf ∈ F(X); if e1, e2 ∈ F(X) then
e1 ∪ e2 ∈ F(X).

4None of these terms can be a sub-term of another one.
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Vector space. Let k be a field. Givena ∈ k
|X|, let Supp(a) = {s ∈ |X | | as 6= 0} (the support ofa). We set

k〈X〉 = {a ∈ k
|X| | Supp(a) ∈ F(X)}. This set is ak-vector space, addition and scalar multiplication being defined

pointwise.

Topology. Givene′ ∈ F(X)
⊥, let V0(e

′) = {a ∈ k〈X〉 | Supp(a) ∩ e′ = ∅}: this is a linear subspace ofk〈X〉.
A subsetV of k〈X〉 is open if, for alla ∈ V there existse′ ∈ F(X)

⊥ such thata + V0(e
′) ⊆ V . This defines a

topology for which one checks easily that addition and scalar multiplication are continuous (k being equipped with
the discrete topology). Actuallyk〈X〉 is a linearly topologized vector space in the sense of [Lef42]: the topology
is generated by neighborhoods of0 which are linear subspaces (for instance, theV0(e

′) we introduced above). This
topology is Hausdorff: for anya ∈ k〈X〉, if a 6= 0 one cant find a (linear) neighborhood of0 which does not contain
a. In particular, the specialization ordering is discrete (this is not a topology “à la Scott”).

Convergence and completeness.A net of k〈X〉 if a family (a(γ))γ∈Γ of elementsk〈X〉 indexed by a directed
setΓ. Such a net converges toa ∈ k〈X〉 if, for any open linear subspaceV of k〈X〉 there isγ ∈ Γ such that
∀δ ∈ Γ δ ≥ γ ⇒ a(δ) − a ∈ V . If this holds,a is unique (k〈X〉 is Hausdorff). A net(a(γ))γ∈Γ is Cauchy if for any
open linear subspaceV of k〈X〉, there existsγ ∈ Γ such that∀δ ∈ Γ δ ≥ γ ⇒ a(δ)− a(γ) ∈ V . Using crucially the
fact thatF(X) = F(X)

⊥⊥, one can prove that any Cauchy net converges (k〈X〉 is complete).

3 The basic finiteness structure

We set

N1 = {↑s | s ∈ ∆}⊥

= {e ⊆ ∆ | ∀s ∈ ∆ e ∩ ↑s is finite} .

One defines similarlyN1
! ⊆ P(∆!) asN1

! = {E ⊆ ∆! | ∀S ∈ ∆! E ∩ ↑S is finite}. This defines finiteness
structures on∆ and∆!. We consider therefore(∆,N1) as a finiteness space that we simply denote asN1. To get a
better grasp of the topology of the vector spacek〈N1〉, we must make a first observation. We express everything for
∆ for notational convenience, but obviously what we do can be transposed to∆! without any difficulty.

Lemma 7 A subsete′ of ∆ belongs toN1
⊥ iff there are finitely many elementss1, . . . , sn ∈ ∆ such that

e′ ⊆ ↑s1 ∪ · · · ∪ ↑sn = ↑{s1, . . . , sn} .

Proof. The “if” part is trivial, let us check the “only if” part. The only property of the order relation on simple terms
that we need is the fact that each set↓s is finite (Lemma 4).

Assume that there existse′ ∈ N1
⊥ such thate′ ⊆ ↑{s1, . . . , sn} never holds. The sete′ cannot be empty, so let

u1 ∈ e′. Since↓u1 is finite, we cannot havee′ ⊆ ↑↓u1. So letu2 ∈ e′ \ ↑↓u1. Again,↓u2 being finite, we cannot
havee′ ⊆ ↑↓u1 ∪ ↑↓u2. In that way, we construct an infinite sequenceu1, u2 . . . of elements ofe′ such that for each
i, ui+1 ∈ e′ \ (↑↓u1 ∪ · · · ∪ ↑↓ui); in particular, theui’s are pairwise distinct, but we can say better: leti < j and
assume that↓ui ∩ ↓uj 6= ∅. Thenuj ∈ ↑↓ui and this is impossible. Let us sete = {u1, u2, . . . }. For anys ∈ ∆, it
follows from the disjointness of the sets↓ui thate∩ ↑s has at most one element and is therefore finite, so thate ∈ N1.
But e has an infinite intersection withe′ (namelye), and this contradicts our hypothesis thate′ ∈ N1

⊥. 2

Therefore the topology ofk〈N1〉 is generated by the basic neighborhoodsV(s1, . . . , sn) = {u ∈ k〈N1〉 |
Supp(u) ∩ ↑s1 = · · · = Supp(u) ∩ ↑sn = ∅}, wheres1, . . . , sn is an arbitrary finite family of elements of∆.
Observe that thesesi’s can be assumed to be minimal in∆. An elements of ∆ is minimal for the order relation we
have defined iffs is normal, or reduces only to0. A typical non-normal minimal term is〈λx y〉z, wherey andz are
distinct variables.

The main purpose of these definitions is to give meaning to a normalization function on vectors. Consider indeed
an arbitrary linear combinations of resource lambda-terms, a =

∑

a∈∆ ass ∈ k〈∆〉∞. We would like to setNF(a) =
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∑

s∈∆ as NF(s). But there could perfectly exist normal elementss0 ∈ ∆ such that, for infinitely manys ∈ ∆,
s0 ∈ NF(s) andas 6= 0. If this is the case, we cannot normalizea because infinite sums are not allowed ink which is
an arbitrary field5. As a typical example of this situation, considera = x + 〈λxx〉x + +〈λxx〉(〈λxx〉x) + · · · All
the terms of this sum reduce to the same termx and henceNF(a) is not defined.

Proposition 8 The mapNF given byNF(a) =
∑

s∈∆ as NF(s) is well defined, linear and continuous from the topo-
logical vector spacek〈N1〉 to itself.

Proof. Givens ∈ ∆, we haveSupp(NF(s)) ⊆ ↓s. So, sinceSupp(a) ∈ N1, for anys0 ∈ ∆0, there are only finitely
manys ∈ Supp(a) such thats0 ∈ Supp(NF(s)). So the sum above makes sense, it can be written

NF(a) =
∑

s0∈∆0

( ∑

s∈Supp(a)
s0∈↓s

as NF(s)s0

)

s0 .

All the elements ofSupp(NF(a)) being minimal, this set obviously belongs toN1.
The mapNF defined in that way is obviously linear, we must just check that it is continuous at0 but this is easy;

indeed, ifV = V(s1, . . . , sn) is a basic neighborhood of0 then, by definition ofV(s1, . . . , sn), if t ∈ ∆ satisfies
t ∈ V , this means thatt /∈ ↑si for eachi, and hence for noi we can havesi ∈ NF(t). ThereforeNF(t) ∈ V . 2

We can also extend theβ0,1
∆ reduction relation tok〈N1〉 in a completely “free6” way. Indeed leta ∈ k〈N1〉. If

one writesa =
∑

i∈N
αisi with si ∈ ∆ and with the sole restriction (for this sum to make sense at all) that for each

s ∈ ∆ there are only finitelyi’s such thatsi = s and if, for eachi ∈ N, one chooses arbitrarilya(i) ∈ N〈∆〉 such that
si β

0,1
∆ a(i), then the sumb =

∑

i∈N
αia(i) always makes sense, and belongs tok〈N1〉 (these facts result from the

very definition ofN1). In that case we writea β0,1
∆ b, and we denote byβ∆ the transitive closure ofβ0,1

∆ .

Proposition 9 The relationβ∆ is confluent onk〈N1〉.

Proof. (Sketch) Use the confluence ofβ1
∆ onN〈∆〉 and the following observation: given two finite families(αi)i∈I

and(βj)j∈J of elements ofk such that
∑
αi =

∑
βj , one can find a family(γi,j)i∈I,j∈J of elements ofk such that

∀i αi =
∑

j γi,j and∀j βj =
∑

i γi,j . 2

One has to be aware that this “reduction” relation has strange properties and can hardly be expected to normalize in
a standard sense. For instance ifs β1

∆ a1 ands β1
∆ a2 wherea1, a2 ∈ N〈∆〉 are distinct, then0 = s−s β∆ a1−a2 6= 0

and the reduction can go on after that. See [Vau07, Vau08] formore explanations. It makes sense nevertheless to define
the associated equivalence relation (the symmetric closure ofβ∆) that we denote as=∆.

Proposition 10 Leta, b ∈ k〈∆〉 be such thata =∆ b. ThenNF(a) = NF(b).

Proof. It suffices to show thata β0,1
∆ b⇒ NF(a) = NF(b) and this is easy becauses β1

∆ c⇒ NF(s) = NF(c). 2

The converse implication does not hold because reducing an elementa ∈ k〈∆〉 to NF(a) can require an infinite
number ofβ0,1

∆ steps. But one can always exhibit sequencesa = a(1) β0,1
∆ a(2) β0,1

∆ a(3) · · · with limn→∞ a(n) =
NF(a) (in the sense of the topology ofk〈N1〉).

Remark: It is not difficult to see that, given a finiteness spaceX , the topological spacek〈X〉 is metrizable (ie. its
topology can be defined by a distance) iff there exists an increasing sequence(e′(n))n∈N of elements ofF(X)⊥ such
that∀e′ ∈ F(X)

⊥ ∃n ∈ N e′ ⊆ e′(n). It is also interesting to observe that, when interpreting linear logic in finiteness
spaces (see [Ehr05]), one builds quite easily spaces which have not this property: for instance the interpretation of!?1
(the formula1 being interpreted by the finiteness space({∗}, {∅, {∗}})) is not metrizable.

5Of course, one could also consider infinite sums if the coefficients were real or complex numbers but this will be the objectof further studies.
6In the sense that each summand can be reduced independently from the others.
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So the spacek〈N1〉 is metrizable: choose an enumerations1, s2, . . . of ∆ and, givena, a′ ∈ k〈N1〉, define
d(a, a′) = 0 if a = a′, andd(a, a′) = 2−n wheren is the least integer such that↑sn ∩ Supp(a− a′) 6= ∅. This
distance generates the topology we have defined, but presenting this space as a metric space would be unnatural,
because there is (apparently) no canonical choice of such a distance (it depends on a completely arbitrary enumeration
of ∆).

A last interesting observation is that the subspace ofk〈N1〉 spanned by the normal resource term is linearly
compact7, so thatNF can be seen as a projection onto a linearly compact subspace.

3.1 Dealing with free variables

The finiteness spaceN1 allows to give meaning to normalization as shown by Proposition 8, but we would also like to
deal with elements ofN1 (or of k〈N1〉) as if they were lambda-terms. However, nothing prevents anelemente of N1

of containing infinitely many free variables. The setFV(e) can even be the set of all variables: take fore the set of all
variables itself! It would be hard to defineβ-reduction if we have to deal with such objects.

Fortunately the solution to this problem is quite easy. LetS ⊆ ∆ be the set of all subsetse′ of ∆ such that, for
each finite setξ of variables, there are only finitely many elementss of e′ such thatFV(s) ⊆ ξ.

Lemma 11 S⊥ = {e ⊆ ∆ | FV(e) is finite}.

Proof. The inclusion “⊇” is straightforward. So lete ∈ S⊥. Towards a contradiction, assume thatFV(e) is infinite
and letx1, x2 . . . be a repetition-free enumeration of this set of variables. Let n1 = 1. Chooses1 ∈ e such that
x1 ∈ FV(s1). SinceFV(s1) is finite, we can findn2 such thatFV(s1) ∩ {xi | i ≥ n2} = ∅. Chooses2 ∈ e
such thatxn2

∈ FV(s2), choosen3 such thatFV(s2) ∩ {xi | i ≥ n3} = ∅. . . In that way we define a sequence
s1, s2, . . . of element ofe and a sequencey1, y2, . . . of variables such thatyi ∈ FV(sj) iff i = j (takeyi = xni

).
Thene′ = {si | i = 1, 2, . . . } is an element ofS. Indeed, ifξ is a finite set of variables,ξ contains only a finite
number ofyi’s and hence there can be only finitely manyi’s such thatFV(si) ⊆ ξ. But e ∩ e′ is infinite sincee′ ⊆ e,
whence the contradiction. 2

This is another instance of a general proof scheme used several times in [Ehr05] and generalized by Tasson and
Vaux (see [Tas09]).

We arrive to the final definition of our basic finiteness space:we setN = N1 ∩S
⊥ = ({↑s | s ∈ ∆} ∪ S)⊥ and

therefore we haveN⊥⊥ = N so thatN is actually a finiteness space.

4 Interpreting types

With any type (of system F, see Section 5.1), we want to associate a finiteness space whose web will be a subset of∆.
The construction is based on the definition ofsaturated setsin [Kri93], so we shall call our finiteness spaces saturated
as well.

Let N 0 be the collection of all subsets of∆ which are of the shape〈〈〈x〉e1!〉· · ·〉en! wherex is a variable and
e1, . . . , en ∈ N .

4.1 Saturated finiteness space

A ∆-finiteness spaceis a finiteness spaceX such that|X | ⊆ ∆. One says that such a spaceX is saturatedif
N 0 ⊆ F(X) ⊆ N and, wheneverg, e, e1, . . . , en ∈ N , one has (using the notations introduced in 1.1.1 and 1.1.2)the
implication

〈〈〈∂x(g, e
!)〉e1

!〉· · ·〉en
! ∈ F(X)

⇒ 〈〈〈〈λx g〉e!〉e1
!〉· · ·〉en

! ∈ F(X) . (2)

7This notion is defined in [Lef42]; it is a notion of compactness adapted to this setting.
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Then one simply says thatX is asaturated finiteness space.
Given two∆-finiteness spacesX andY , we construct a new one, denoted asX ⇒ Y .
The web|X ⇒ Y | is the collection of allt ∈ ∆ such that

∀e ∈ F(X) 〈t〉e! ∈ F(Y ) .

Then we defineF(X ⇒ Y ) as the collection of allg ⊆ |X ⇒ Y | such that

∀e ∈ F(X) 〈g〉e! ∈ F(Y ) ,

that is
∀e ∈ F(X), ∀f ′ ∈ F(Y )⊥ 〈g〉e! ∩ f ′ is finite.

Givene ∈ F(X) andf ′ ∈ F(Y )⊥, let e • f ′ = {t ∈ ∆ | 〈t〉e! ∩ f ′ 6= ∅}.

Proposition 12 If X andY are∆-finiteness spaces, then

F(X ⇒ Y ) = {e • f ′ | e ∈ F(X), f ′ ∈ F(Y )
⊥}

⊥
(3)

so thatX ⇒ Y is a∆-finiteness space. If moreoverY is saturated, thenX ⇒ Y is saturated as well.

Proof. Let us check equation (3), so letg ⊆ |X ⇒ Y |.
Assume first thatg ∈ F(X ⇒ Y ). Let e ∈ F(X) andf ′ ∈ F(Y )

⊥. We know that〈g〉e! ∩ f ′ is finite. Let
t ∈ g ∩ (e • f ′). This means that there existsSt ∈ e! such that〈t〉St ∈ f ′, that is,〈t〉St ∈ 〈g〉e! ∩ f ′. But this latter
set is finite, and the mapt 7→ 〈t〉St is injective, so the setg ∩ (e • f ′) is finite as well.

Assume thatg ∈ {e • f ′ | e ∈ F(X) andf ′ ∈ F(Y )
⊥}

⊥
and let us show thatg ∈ F(X ⇒ Y ). So lete ∈ F(X)

andf ′ ∈ F(Y )⊥, we must show that〈g〉e! ∩ f ′ is finite. By definition ofe • f ′, we have

〈g〉e! ∩ f ′ =
⋃

t∈g∩(e•f ′)

(〈t〉e! ∩ f ′)

and we conclude sinceg ∩ (e • f ′) is finite, and, fort ∈ g, the set〈t〉e! ∩ f ′ is finite sinceg ⊆ |X ⇒ Y | (remember
the definition above of that set).

SoX ⇒ Y = (|X ⇒ Y |,F(X ⇒ Y )) is a finiteness space. Assume thatY is saturated and let us show that
X ⇒ Y is.

We haveN 0 ⊆ F(X ⇒ Y ): this results immediately fromN 0 ⊆ F(Y ) andF(X) ⊆ N .
We haveF(X ⇒ Y ) ⊆ N : let g ∈ F(X ⇒ Y ) and lett ∈ ∆. We must show thatg ∩ ↑t is finite, so assume

towards a contradiction that there aret1, t2, · · · ∈ g, pairwise distinct, and such thatti ∈ ↑t for eachi. This means
that there are termsa1, a2, · · · ∈ N〈∆〉 such thatti β∆ ai andt ∈ ai for eachi. Let x be an arbitrary variable, then
〈ti〉x β∆ 〈ai〉x and〈t〉x ∈ Supp(〈ai〉x) for eachi, therefore〈g〉x ∩ ↑〈t〉x is infinite, which is impossible because
{x} ∈ F(X) (sinceN 0 ⊆ |X |) andF(Y ) ⊆ N .

It remains to check thatF(X ⇒ Y ) satisfies condition (2), and this is straightforward. 2

4.2 The ground space

Lemma 13 The finiteness space(∆,N ) is saturated.
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Proof. The only condition which is not obviously satisfied is (2). Solet g, e, e1, . . . , en ∈ N and assume that
〈〈〈∂x(g, e!)〉e1!〉· · ·〉en! ∈ N . Let s ∈ ∆, we must show that the intersection↑s ∩ 〈〈〈〈λx g〉e!〉e1!〉· · ·〉en! is finite.
Let (si, Si, S1,i, . . . , Sn,i)i∈I be a repetition free enumeration of all the elements ofg× e! × e1

! × · · · × en
! such that

ti = 〈〈〈〈λx si〉Si〉S1,i〉· · ·〉Sn,i

∈ ↑s ∩ 〈〈〈〈λx g〉e!〉e1
!〉· · ·〉en

!

Observe that all the free variables of the termsti appear free ins and hence there are only finitely many such variables.
So we can choose a variabley which is free in none of these terms. For eachi ∈ I, we setvi = 〈〈〈y〉S1,i〉· · ·〉Sn,i ∈ ∆,
so thatti = vi [〈λx si〉Si/y]. We can also assume thatx occurs free or bound in none of the termsSi, S1,i, . . . , Sn,i

(for all i ∈ I). We apply Lemma 5, considering two cases.

• Eitherx appears bound ins, and in that case we haves = v′ [〈λx s′〉S′/y] for somev′, s′ ∈ ∆ andS′ ∈ ∆!

such thatv′ ≤ vi, s′ ≤ si andS′ ≤ Si for eachi ∈ I. We havev′ = 〈〈〈y〉S′
1〉· · ·〉S

′
n for S′

1, . . . , S
′
n ∈ ∆! such

thatS′
j ≤ Sj,i for eachj ∈ {1, . . . , n} andi ∈ I. By the assumption thatg, e, e1, . . . , en ∈ N we see that the

sets{si | i ∈ I}, {Si | i ∈ I}, {S1,i | i ∈ I},. . . ,{Sn,i | i ∈ I} are finite and so↑s ∩ 〈〈〈〈λx g〉e!〉e1!〉· · ·〉en! is
finite.

• Or x does not appear bound ins. Then for eachi ∈ I there existsui ∈ ∆ such thatui ∈ ∂x(si, Si) and
s ≤ vi [ui/y]. In other words

∀i ∈ I vi [ui/y] ∈ ↑s ∩ 〈〈〈∂x(g, e
!)〉e1

!〉· · ·〉en
!

and hence by our assumption that〈〈〈∂x(g, e!)〉e1!〉· · ·〉en! ∈ N , the set{vi [ui/y] | i ∈ I} is finite. Coming
back to the definition ofvi, this means that the sets{ui | i ∈ I}, {S1,i | i ∈ I},. . . ,{Sn,i | i ∈ I} are finite. But
for eachi ∈ I, we know that there are only finitely many pairs(w,W ) ∈ ∆ ×∆! such thatui ∈ ∂x(w,W ) by
Lemma 6 and hence, sinceui ∈ ∂x(si, Si), the sets{si | i ∈ I} and{Si | i ∈ I} must be finite as well since
{si | i ∈ I} is finite. 2

4.3 Inclusions and intersections of saturated finiteness spaces

LetX andY be saturated finiteness spaces. We writeX ⊆ Y when|X | ⊆ |Y | andF(X) ⊆ F(Y ). This defines an
order relation on saturated finiteness spaces.

Lemma 14 Let (Xi)i∈I be a family of saturated finiteness spaces. Then
⋂

i∈I Xi = (
⋂

i∈I |Xi|,
⋂

i∈I(F(Xi) ∩
P(|X |i))) is a saturated finiteness space, and it is le glb of the family(Xi)i∈I .

Proof. LetX =
⋂

i∈I Xi. Let e ⊆ |X | =
⋂

i∈I |Xi|. We assume thate ∈ F(X)⊥⊥ and we prove thate ∈ F(X).

Let i ∈ I, we must show thate ∈ F(Xi) = F(Xi)
⊥⊥. So lete′ ⊆ |Xi| and let us show thate ∩ e′ is finite. Since

e ∈ F(X)⊥⊥, it will be sufficient to show thate′ ∈ F(X)⊥. So letf ⊆ |X | be such thatf ∈ F(X). In particular we
havef ∈ F(Xi) and hencee′ ∩ f is finite as required. SoX is a∆-finiteness space.

SinceN 0 ⊆ F(Xi) ⊆ N holds for alli ∈ I, and sinceI is non empty, it is clear thatN 0 ⊆ F(X) ⊆ N .
Letg, e, e1, . . . , en ∈ N be such that〈〈〈∂x(g, e!)〉e1!〉· · ·〉en! ∈ F(X). Then for eachiwe have〈〈〈∂x(g, e!)〉e1!〉· · ·〉en! ∈

F(Xi) and hence〈〈〈〈λx g〉e!〉e1!〉· · ·〉en! ∈ F(Xi) and therefore〈〈〈〈λx g〉e!〉e1!〉· · ·〉en! ∈ F(X). 2

5 Taylor expansion in an algebraic system F

5.1 Syntax of the algebraic system F

The types are defined as usual: one has type variablesϕ, ψ . . . , and ifA andB are types, so areA ⇒ B and∀ϕA.
We adopt the Curry style for presenting system F, so that our terms are ordinary lambda-terms, with the additional
possibility of linearly combining terms, with coefficientsin k. More precisely, we define the setΛk of lambda-terms
with coefficients ink as follows:

11



• if x is a variable thenx ∈ Λk;

• if M ∈ Λk andx is a variable, thenλxM ∈ Λk;

• if M ∈ Λk andQ ∈ k〈Λk〉 then(M)Q ∈ Λk.

ForQ,R ∈ k〈Λk〉, we setλxQ =
∑

M∈Λk
QMλxM and(Q)R =

∑

M∈Λk
QM (M)R. Observe that these two

sums are finite becauseQ is a finite linear combination of terms. In other word, abstraction is linear and application
is left-linear (but not right-linear). We give now the typing rules for terms belonging toΛk. A typing contextΓ is as
usual a finite partial function from variables to types.

Γ, x : A ⊢ x : A
Γ, x : A ⊢M : B

Γ ⊢ λxM : A⇒ B

Γ ⊢M : A⇒ B Γ ⊢ N1 : A . . . Γ ⊢ Nn : A

Γ ⊢ (M) (α1N1 + · · ·+ αnNn) : B

Γ ⊢M : ∀ϕA

Γ ⊢M : A [B/ϕ]

Γ ⊢M : A
Γ ⊢M : ∀ϕA

with, for the last rule, the usual side condition thatϕ should not occur free in the typing contextΓ.

5.2 Taylor expansion

Given a termM ∈ Λk (resp.Q ∈ k〈Λk〉), we define a generally infinite linear combinationsM∗ (resp.Q∗) of
elements of∆, with coefficients ink, as follows:

x∗ = x

(λxM)
∗

= λx (M∗)

((M)Q)
∗

=
∑

n∈N

1

n!
〈M∗〉(Q∗)n

Q∗ =
∑

M∈Λk

QMQ
∗

where we use the conventions of 1.1.1 for infinite linear combinations of terms. Let us be more explicit. With any
termM ∈ Λk, we associate a linear combinationM∗ of elements of∆ which can be written

M∗ =
∑

s∈∆

M∗
s s

whereM∗
s ∈ k for eachs, and similarly we defineQ∗

s ∈ k for eachQ ∈ k〈Λk〉. Then these numbers are given
inductively by:

x∗s =

{

1 if s = x

0 otherwise

(λxM)s
∗

=

{

M∗
t if s = λx t

0 otherwise

Q∗
s =

∑

M∈Λk

QMM
∗
s
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Last,((M)Q)
∗
s = 0 if s is not an application, and otherwise

((M)Q)
∗
〈t〉T =

(
∑

n∈N

1

n!
〈M∗〉(Q∗)n

)

〈t〉T

=
∑

n∈N

M∗
t

n!
(Q∗)nT

=
∑

n∈N

M∗
t

n!

(
∑

u∈∆

Q∗
uu

)n

T

=
M∗

t (Q
∗)T

T !

whereT ! =
∏

u∈∆ T (u)! and (Q∗)T =
∏

u∈∆(Q
∗
u)

T (u) (see [ER08] for more details on this kind of algebraic
computations); remember thatT is a finite multiset of elements of∆ and thatT (u) ∈ N is the multiplicity ofu in T .

GivenM ∈ Λk, we define a setT (M) ⊆ ∆ as follows:

T (x) = {x}, T (λxM) = {λx s | s ∈ T (M)}

T ((M) (α1N1 + · · ·+ αnNn))

= {〈s〉(t1 · · · tp) | s ∈ T (M)

andt1, . . . , tp ∈ T (N1) ∪ · · · ∪ T (Nn)} .

The following property follows readily from these definitions.

Lemma 15 LetM ∈ Λk ands ∈ ∆. If M∗
s 6= 0 thens ∈ T (M).

5.3 The standard case: coherence

When the algebraic lambda-termM is a standard lambda-term, that is an element ofΛk where all the linear combina-
tionsα1N1 + · · · + αpNp are trivial in the sense that allαi’s are equal to0 but one which is equal to1, we showed
in [ER08] that the Taylor expansion can be writtenM∗ =

∑

s∈T (M)
1

m(s)s wherem(s) ∈ N \ {0} is an integer which
depends only ons (in other wordsM∗

s depends onM in a very simple way:M∗
s = 0 if s /∈ T (M), and otherwise

M∗
s = 1/m(s)). Moreover the various elements ofT (M) cannot overlap during their reduction, in the sense that if

s, t ∈ T (M) are distinct thenNF(s) ∩ NF(t) = ∅. This is proven by introducing a binary symmetric but not reflexive
coherence relation, observing that each setT (M) is a clique for this coherence relation and proving thatNF can be
seen as a stable and linear function on this coherence space (in the sense of [Gir86]).

These properties are lost in the present setting and superpositions can occur and even lead to infinite sums, as in
the Taylor expansion (that we do not compute here) of the termM = (Θ)λx (x + z) wherez is a variable6= x andΘ
is the Turing fixpoint combinator (reducingM leads to terms of the shapenz +M for all n ∈ N). This superposition
of elementary normal forms is controlled by the finiteness structures, but this is possible only in a typed setting (here,
second order types).

5.4 Finiteness of the Taylor expansions in system F

5.4.1 Interpreting types

A type valuation is a mapI which associates a saturated finiteness spaceI(ϕ) with any type variableϕ. By induction
on typeA we define, for all valuationI, a saturated finiteness space[A]I in a fairly standard way:[ϕ]I = I(ϕ),
[(A ⇒ B)]I = [A]I ⇒ [B]I and[(∀ϕA)]I =

⋂

X∈SFS[A]
I[ϕ 7→X] whereSFS is the class of all saturated finiteness

spaces (remember that the intersection of saturated finiteness spaces is defined in Section 4.3).
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5.4.2 The fundamental property

Our goal is to prove that, ifΓ ⊢ M : A, thenT (M) ∈ F([A]I) for any valuationI. Of course this property cannot be
proven in that form and a more general statement is needed.

Proposition 16 LetΓ = (x1 : A1, . . . , xn : An) be a typing context. Assume thatΓ ⊢ M : B, whereM ∈ Λk and
B and theAi’s are second order types. LetI be a valuation. Lete1 ∈ F([A1]

I),. . . ,en ∈ F([An]
I) be sets of simple

terms and letf = T (M). Then∂x1,...,xn
(f, e1

!, . . . , en
!) ∈ F([B]I).

Proof. Adaptation from the proof of strong normalization of systemF in [Kri93], see the Appendix. 2

By Lemma 15, this shows in particular that, ifM ∈ Λk is typeable in system F, thenM∗ ∈ k〈N 〉 so that we can
reduce the infinitely many resource terms appearing in this expansion without creating any infinite superimposition of
terms, whatever be the choices we make in this process. Of course, one can also prove thatNF(M∗) = M0

∗ where
M0 is the normal form ofM , but this is not straightforward.

Conclusion

Following the line of ideas initiated in [ER03, ER08, ER06a], we considered the resource lambda-calculus as an
algebraic setting where various (algebraic, differential. . . ) extensions of the lambda-calculus can be interpreted.In
this setting, the elementary points of the interpretation (the simple resource terms) are considered as base vectors and,
in sharp contrast with denotational semantics, have their own completely finite dynamics. We introduced topologies
for controlling their global behavior during reduction andavoiding the appearance of infinite coefficients: linear
combinations of resource terms are organized as Hausdorff and complete topological vector spaces associated with
types. By a rather standard reducibility argument, we proved that the Taylor expansion of any term of an algebraic
extension of system F belongs to the vector space interpretation of its type, but of course these vector spaces contain
many elements which are not Taylor expansions of such terms.

For instance, givena ∈ k〈X ⇒ Y 〉, it is not difficult to definea′ ∈ k〈X ⇒ (X ⇒ Y )〉, the derivative ofa (which
is linear in its first parameter of typeX). Saying thata′ is linear means that〈a′〉xn =∆ 0 for n 6= 1, wherex is an
arbitrary variable. One can show that this operation can be reversed (under a necessary and sufficient condition), so
that it makes sense to compute “primitives” of resource terms and it is certainly a fascinating challenge to understand
the operational meaning of this operation.
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[Lef42] Solomon Lefschetz.Algebraic topology. Number 27 in American mathematical society colloquium publi-
cations. American Mathematical Society, 1942.

[PT09a] Michele Pagani and Christine Tasson. The Taylor Expansion Inverse problem in Linear Logic. InProceed-
ings of the 24th Annual IEEE Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society, 2009.

[PT09b] Michele Pagani and Paolo Tranquilli. Parallel Reduction in Resource Lambda-Calculus. In Zhenjiang Hu,
editor,APLAS, volume 5904 ofLecture Notes in Computer Science, pages 226–242. Springer, 2009.
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Appendix: proof of proposition 16

We adopt the following notational convention: ifg ∈ F([C]I) for some typeC then we useg′ to denote the set
∂x1,...,xn

(g, e1
!, . . . , en

!).
The proof is by induction on the typing derivation ofx1 : A1, . . . , xn : An ⊢ M : B (the statement that we prove

by induction is universally quantified inI and in theei’s).
Assume first thatM = xi and that the derivation consists of the axiom

Γ ⊢ xi : Ai
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We havef = {xi} and hence

∂x1,...,xn
(f, e1

!, . . . , en
!)

= ∪{∂x1,...,xn
(xi, S1, . . . , Sn) | ∀j Sj ∈ ej

!}

= ei ∈ F([Ai]
I) .

Assume thatM = (N) (α1L1 + · · ·+ αpLp) whereN,L1, . . . , Lp ∈ Λk and that the derivation ends with

Γ ⊢ N : A⇒ B Γ ⊢ L1 : A . . . Γ ⊢ Lp : A

Γ ⊢ (N) (α1L1 + · · ·+ αpLp) : B

We setQ = α1L1 + · · ·+ αpLp ∈ k〈Λk〉 andh = T (Q).
Let g = T (N) and lethi = T (Li) for i = 1, . . . , p. By inductive hypothesis, we haveg′ ∈ F([A⇒ B]I) and

h′j ∈ F([A]I) for j = 1, . . . , p. Sinceh ⊆ h1 ∪ · · · ∪ hp and henceh′ ⊆ h′1 ∪ · · · ∪ h′p ∈ F([A]I) (remember from
Section 2 that[A]I is closed under finite unions).

By definition of [A ⇒ B]I , we have therefore〈g′〉(h′)! ∈ F([B]I). Sincef = T ((N)Q) = 〈g〉h!, we have
f ′ = 〈g′〉(h′)! and we conclude for that case.

Assume thatM = λxN whereN ∈ Λk and that the derivation ends with

Γ, x : B ⊢ N : C

Γ ⊢ λxN : B ⇒ C

so thatA = (B ⇒ C). Let g = T (N), we havef = λx g and hencef ′ = λx g′ (as usual we assume thatx is
different from all thexi’s and does not occur free in theei’s; this is possible becauseei ∈ N and henceFV(ei)
is finite for eachi, see Section 3.1) and we must prove thatλx g′ ∈ F([B ⇒ C]I). Let e ∈ F([B]I), we must
prove that〈λx g′〉e! ∈ F([C]I). Since[C]I is a saturated finiteness space, it suffices to prove that∂x(g

′, e!) =
∂x1,...,xn,x(g, e1

!, . . . , en
!, e!) ∈ F([C]I) and this results from the inductive hypothesis.

Assume that the derivation ends with

Γ ⊢M : ∀ϕA

Γ ⊢M : A [B/ϕ]

By inductive hypothesis we have

f ′ ∈ F([∀ϕA]I) =
⋂

X∈SFS

[A]I[ϕ 7→X] ⊆ F([A]I[ϕ 7→[B]I ])

and we conclude because this finiteness space is[A [B/ϕ]]I (straightforward proof by induction on types).
Last assume that the proof ends with

Γ ⊢M : A
Γ ⊢M : ∀ϕA

and remember thatϕ cannot occur free inΓ. Given a saturated finiteness spaceX we setIX = I[ϕ 7→ X ]. Our
assumption on theei’s is thatei ∈ F([Bi]

I) for eachi. LetX be a saturated finiteness space. Sinceϕ does not occur
free inΓ, we haveei ∈ F([Bi]

IX ) and hence by the inductive hypothesis we havef ′ ∈ F([A]IX ). Since this holds for
eachX , we havef ′ ∈ F([∀ϕA]I).
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