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SUMMARY

This paper describes a new industrial case on automation, for large scale systems with high
environmental impact: the mining ventilation control systems. Ventilation control is essential for the
operation of a mine in terms of safety (CO and NOx regulation) and energy optimization. We first
discuss a novel regulation architecture, highlighting the interest for a model-based control approach
and the use of distributed sensing capabilities thanks to a wireless sensor network (WSN). We propose
a new model for underground ventilation. The main components of the system dynamics are described
with time-delays, transmission errors, energy losses and concentration profiles. Two different model-
based control approaches, which can embody the complex dynamics of the system, are proposed.
The first one resorts to a nonlinear model predictive control strategy (receding horizon) and aims to
energy minimization thanks to a continuous operation of the fans. The second one, based on a hybrid
description of the model and fans operation, provides automatic verification of the wireless control
thanks to abstraction techniques. These control strategies are compared with simulations, in terms of
regulation efficiency, energy consumption and need for computational capabilities. The industrial case
description and control strategies open new vistas for the development of global system approaches
that allow for the optimization of energy consumption of complex large-scale systems. Copyright c©
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mining ventilation is an interesting example of a large scale system with high environmental
impact where advanced control strategies can bring major improvements. Indeed, one of the
first objectives of modern mining industry is to fulfill environmental specifications [1] during
the ore extraction and crushing, by optimizing the energy consumption or the production of
polluting agents. The mine electric consumption was 4 % of total industrial electric demand
in the US in 1994 (6 % in 2007 in South Africa) and 90 % of it was related to motor system
energy [2]. Another interesting figure is given in [3] where it is estimated that the savings
associated with global control strategies for fluid systems (pumps, fans and compressors)
represent approximately 20 % of the total manufacturing motor system energy savings. This
motivates the development of new control strategies for large scale aerodynamic processes
based on appropriate automation and a global consideration of the system. More specifically,
the challenge in this paper is focused on the mining ventilation since as much as 50 % or more
of the energy consumed by the mining process may go into the ventilation (including heating
the air). It is clear that investigating automatic control solutions and minimizing the amount
of pumped air to save energy consumption (proportional to the cube of airflow quantity [4])
is of great environmental and industrial interest.

In the advanced ventilation control context depicted so far, reconfigurability and wireless
interconnection are key automation components. The first issue is related to the variable
topology of the mine (mobile process industry): after all accessible ore has been retrieved
from a mine level, the extraction rooms are filled and a new level further down along the
decline (which is a spiraling tunnel used by the trucks to reach the surface) is bored. All
equipments, including the ventilation, have to be moved and re-configured in the new level.
While making easier re-configurability, the second issue comes also from the blasting and
drilling operations in the extraction rooms, rendering the wiring infeasible in these areas. Our
approach strongly relies on distributed sensing and actuation capabilities, and consequently
communication capabilities. Wireless networks can also be used for improving the efficiency
of other processes that are of importance in operating a mine, e.g., equipment (trucks and
ventilation system) maintenance, people and equipment localization, voice communication
and security. We will consequently quickly discuss the wireless automation in the mining
environment and determine the impact of such network on the controlled dynamics. Note
that the specific study of wireless communications in underground areas is a specific field of
research [5] out of the scope of this paper, where we focus on the ventilation control aspects.
Nevertheless, further details on wireless network architecture and performance can be found
in [6] and [7].

We focus our attention on a specific control problem: the regulation of the underground
fans. A new model is proposed to describe this part of the system, highlighting the main
dynamics that should be considered for model-based control strategies. These dynamics involve
communication constraints (delays and packet losses) associated with the WSN, energy losses
and physical delays due to flow transport, and the dynamics of the stratified flow in the
extraction room. While experimental results are not available yet to validate the proposed
model, we tried to capture the fundamental dynamics that affect the closed-loop performances
and represent them in a detailed simulation scenario.

Based on the previous model, two different control strategies are proposed to regulate
the gas concentrations in the extraction rooms, essentially distinguished by continuous and

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 0:0–0
Prepared using rncauth.cls



2

hybrid automation. The first one is a nonlinear model-predictive control (receding horizon)
scheme, which is particularly well suited to handle the model nonlinearities and to optimize a
performance criterion (energy minimization) under some constraints. The second strategy is
based on a conservative mathematical model of the system, and proposes a simple threshold
control strategy. The advantage of this approach is that the control can be easily implemented
and is suited for embedded fan controllers and pervasive sensors deployment in the rooms.

This work integrates the main results presented in [8, 7, 9, 10] in a unified way, highlighting
the use of a WSN in the regulation process and the non-linear (continuous and hybrid)
control aspects. The main novelty is the comparison between the continuous (nonlinear model
predictive control) and the discrete approaches.

The paper is organized as follows. In Section 2, we illustrate and discuss in detail the
mining ventilation control problem from an industrial point of view. In Section 3, we propose
a mathematical model of the system. Section 4 is focused on a nonlinear model predictive
control algorithm, while in Section 5 we introduce a conservative mathematical model of the
system and formally prove safety of a threshold control strategy. These two control approaches
are compared in Section 6.

2. MINING VENTILATION CONTROL

Traditionally, the control of large-scale systems is performed locally with decentralized
pre-set control actions. The terms control and optimization consequently refer to the
preliminary design of the global system and automation devices, without feedback or real-time
control considerations. Mining ventilation provides an interesting example for the automation
evolution of large-scale systems. To this end we have explored the literature background and
found that we can track mathematical modeling efforts back to 1968 [11], when a steady-state
compartmental model was proposed for flow networks with complex topology. In 1973, new
results on the experimental determination of turbulent diffusion coefficients were presented [12],
indicating a motivation for more advanced models. We have to wait until the 90’s to find the
first use of Navier-Stokes equations, with simplified chamber-like [13] and general mine aerology
[14] models. The associated problems of nonlinearity and non stationary behavior, high
dimensionality and numerical issues are quickly reported in [15]. This short literature overview
also illustrates the parallel evolution of computing capability and automation complexity.

Mining engineers have been primarily concerned with proper design of ventilation tunnels,
fans and turbines, and more generally with the short and long term planning of ventilation
requirements [16]. However, recent technological developments in the fields of embedded control
and wireless sensing [17, 18] systems motivate some new research efforts, seeking global
automation strategies that would allow for an optimized real-time control of the ventilation
system. The novel socio-political concern for energy consumption and increase of electricity
prices in a context of worldwide competition also motivate theoretical research leading to
improved control architectures, such as the one presented in this section.

2.1. The mining system and main control objectives

The global mine configuration is illustrated in Fig. 1. The ventilation is first achieved by a
turbine and a heater connected on the surface to a vertical shaft. The heater is required (in
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Figure 1. Mine ventilation process and current automation.

winter time at least) to avoid freezing in the upper part of the shaft and air cooling devices
are used at high depths (more than 1000 meters) to compensate the geothermal effect (the
temperature increases by 1◦C every 30 m as we go down). We will refer to this part of the
system as the primary system. From the ventilation shaft, fans located at each extraction level
pump fresh air to the extraction rooms via tarpaulin tubes: this is the secondary system. Bad
quality air naturally flows because of the pressure gradient from the extraction rooms back
into the decline and to the exhaust ventilation shaft (similar but separate from the primary
ventilation shaft).

The distinction between primary system and secondary system will be used in the following
sections to split the control problems. In fact, the primary system typically has a simpler and
more stable geometry while the secondary system is strongly varying in geometry (rooms are
blasted every day), characteristics (tarpaulin tube length and shape) and disturbances (trucks)
even within the same mine. Computational Fluid Dynamics (CFD) models, such as the one
presented in [19] can then be envisioned for the primary system while grey-box identification
or global models focused on the main dynamics should be preferred for the secondary one.

2.1.1. Today’s automation architecture. In the current ventilation regulation architecture,
the turbine is operated based on the flow pressure gradient and the heating depends on the
external temperature. The system of fans is controlled according to the demand of airflow in
different parts of the mine thanks to frequency converters, as presented in Fig. 1. This airflow
demand is simply activated on messages sent by human operators to the control room using
walkie-talkies, indicating their position and which fan needs to be set to its maximum speed
(no automatic control, but maximum ventilation power during ore extraction). Both turbine
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and fans are at least operated at low speed for safety reasons. There may also be an additional
safety system that triggers the fan high-speed operation based on a motion detector placed at
the entrance of the extraction rooms. The current control architecture is then characterized by
the absence of any true sensing of air quality and of real-time feedback loops in the secondary
system.

2.1.2. Definition of control objectives. The main objective of the mining control system is
to provide the extraction rooms with good air quality, thus referring to a ventilation control.
We specify the objective as the control of air quality (O2, NOx and/or COx) in the extraction
rooms at different levels. Considering the distinction between the primary and secondary
systems as defined above, it is then suitable to fulfill a cascade control configuration with
the following two objectives:

1. regulate the turbine and heater based on physical measurements within the vertical shaft
to provide a suitable airflow pressure at the location of the fans;

2. regulate the ventilation fans based on chemical sensors to ensure air quality in extraction
rooms.

An additional system objective is to obtain safety through wireless networking (e.g.
support of personal communication and localization). It should be noted that todays control
architecture does not enable the fulfillment of these objectives, due to the lack of automatic
control and sensing capabilities. Instead the wireless control architecture that is proposed in the
following strives for fulfilling all the objectives listed above. Moreover, due to the advanced
features of this architecture, additional control objectives can be defined, e.g. in terms of
personal safety for mining personnel (localization, real-time process monitoring, etc.).

2.2. Proposed wireless control architecture

The proposed automation architecture is depicted in Fig. 2, where we introduced networked
sensors in the vertical ventilation shaft, in access tunnels and in the extraction rooms. The
sensors placed in the vertical shaft and in the access tunnels can make use of the existing wired
connections, while those in the extraction rooms must be wireless, due to the blasting activities.
The exchange of sensor measurements and control signals can then be carried through a mix
of wired and wireless links.

2.2.1. Hybrid wired-wireless communication. Since the whole system setup foresees the
presence of some cabling, for power delivery to fans along the primary system and for
connecting entrance detectors in rooms in the secondary system, it seems interesting to
investigate the exploitation of power line communication (PLC) devices. The main idea is to
provide a wired backbone along the power line already present in the system, while resorting to
a proper WSN deployment for air sensing within the extraction rooms. In this setup a proper
PLC/WSN gateway node should be deployed at the interface between the area and the wired
backbone.

This basic setup can be further enhanced by exploiting the fact that the working environment
is typically populated by several mobile entities like trucks and humans. Such entities (let
them be equipped with one or more sensor nodes) could be useful to improve the quality of
monitoring by increasing the spatial density of measurements. While the mobile entities are
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Figure 2. Proposed automation architecture.

a potential benefit from an energy point of view (as the wireless nodes can resort to classical
battery recharge mechanisms), their deployment poses additional challenges as it induces an
increased topology variability in space and time. Along that line, an interesting evolution is
concerned with hand-held and/or on truck mobile nodes acting as cluster–heads and in turn
interconnected (e.g. through an IEEE 802.11 wireless interface) to build a dynamic wireless
backbone. This would help to make energy constraints on some lower tier wireless sensor nodes
less stringent, while providing a larger bandwidth support for introducing advanced services,
like, for example, an IP-based (peer-to-peer) voice service [7].

In the next sections, we suppose that such a network is deployed and ensures the necessary
communication capabilities for distributed sensing and actuation.

2.2.2. Decentralized control and fans regulation. Two control architectures can be considered:

1. a centralized strategy, where all the sensor signals are transmitted to the control room,
where the control algorithms are run. This strategy aims to global optimization of the
energy consumption, at the price of a higher communication load due to the transmission
of control signals between the surface and the fans;

2. a decentralized approach, where some intelligence is embedded at the locations of the fans
and can adjust their regulation directly based on the chemical sensors measurements.
This regulation is structurally sub-optimal but should be preferred as a first approach
for its simplicity and the limited communication constraints.

Note that a control algorithm embedded at a fans location has to be relatively simple, because
of the limited computation capabilities, while we can develop more complex control strategies
for the algorithms run in the control room.
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Figure 3. Description of the control setup, including communications (—) and airflows (− · −).

The ventilation system can be described in two parts: one fixed installation, which is
the primary air supply from the ground via a vertical shaft, and the secondary system, a
mobile network of fans. This architecture can be abstracted in the block diagram description
proposed in Fig. 3, where both the physical (airflow) and communication (wired and wireless)
interconnections are modeled. This description includes the existing systems as well as key
elements of the advanced technological solutions presented in this paper.

Considering the fact that a feedback controller (using the pressure gradient) is already
available on the primary system, we will focus on proposing feedback control strategies that
can be implemented on the secondary system. We suppose that the primary system is regulated
so that a fixed pressure is available for the fans and will detail in the next sections the main
dynamics of the secondary system, the importance of the WSN in the controlled dynamics and
two possible model-based control strategies.

3. EXTRACTION ROOMS AIR QUALITY MODEL

Clearly, model-based control strategies have a significant advantage to ensure optimized
performances and handle classical control problems, such as actuation and communication
constraints, disturbances rejection and energy consumption minimization. In order to provide
a global control strategy for a large-scale interconnected system, we first present a simplified
fluid model that makes use of the available distributed measurements. The aerodynamics in
the room environment is mainly set by the gas buoyancy and resulting stratification. In the
extraction rooms, the pollutant sources from trucks can be considered as forced plumes, the
incoming fresh air as a jet and the gas in the room as a stratified flow. Specific simplified fluid
models have been proposed to represent such flows in [20, 21], which gave rise to an active
research field in fluid mechanics. The development of Intelligent Buildings automation, and
particularly Underfloor Air Distribution systems [22], renewed the interest in these models,
due to the associated potential costs and energy savings (buildings air conditioning currently
represents 10 % of all energy use in the US).

We consider the secondary system, detailed in Fig. 4. Distributed wireless sensors provide
chemical measurements at different locations in the extraction room. We consider that the
sensors signals are carried to the fans embedded control units over a wireless multi-hop network,
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to account for the fact that a wired network would be difficult to install and maintain in such
environment. We suppose that there is no pollutant in the tarpaulin tube and that the flow in
the room is incompressible.

Figure 4. Stratification and sigmoid description in extraction rooms.

Most of the proposed dynamics rely on a non-dimensional modeling of the distributed
phenomena. The two main advantages of this approach, classically used in industrial
preliminary design, are the integration of as many physical properties as possible (avoid data
mapping) and a reduced computation time (close to real-time, approximately 10 times slower
in the worst cases). It then allows for predictive models on non-identified operating points with
satisfying computation times.

3.1. Time-delays

Two different delays are involved in this model. The first one is a physical delay, associated with
the airflow in the tarpaulin tube, between the fan and the extraction room (the time needed
for a change of the flow speed due to a modification in the fan actuation to reach the extraction
room). This airflow is considered inviscid and incompressible, and modeled as a time-varying
delay τtarp(t). Indeed, for a 1-dimensional Poiseuille laminar flow and the previous hypotheses,
the flow speed u(x, t) and temperature Ttarp(x, t) are obtained from Navier-Stokes equations
(see, for example, [23] or similar textbooks for details) as:

∂

∂t

[
u

Ttarp

]
+

[
u r

γTtarp u

]
∂

∂x

[
u

Ttarp

]
= 0 ,

where r = 287.045 J/kg.K is the air gas constant and γ = 1.4 is the ratio of specific heat
coefficients. The characteristic velocities v(x, t) of the traveling waves are then the solutions
of:

det
∣∣∣∣
−v + u r
γTtarp −v + u

∣∣∣∣ = 0 ⇔ v1,2(x, t) = u(x, t)±√
rγTtarp(x, t) .
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We are interested in the down-flow time-delay, which is approximated by the previous equation
as:

τtarp(t) ≈ Lt

ū(t) +
√

rγT̄tarp(t)
, (1)

where Lt is the length of the tarpaulin tube, ū(t) and T̄tarp(t) are the space-averaged flow
speed and temperature, respectively.

The second source of delay is due to the distributed measurements and wireless transmission
between the extraction room and the fan. This delay is time-varying and denoted as τwsn(t),
to indicate that it is related to Wireless Sensor Network (WSN) automation. We consider that
a wireless multi-hop protocol is set, as detailed in [24], to minimize the energy consumption
of the wireless nodes according to specific communication quality constraints. The associated
end-to-end delay writes as:

τwsn(t) = h(t)F +
h(t)∑

i=1

(αi + βi) ,

where h(t) is the time-varying number of hops, F denotes the propagation and transmission
delays, i = 1 . . . h(t) indicates the transmission node considered, αi is the time to wait before
sending a data packet (typically a random variable) and βi is the time induced by an Automatic
Repeat reQuest (ARQ) mechanism. For simulation purposes, we consider the experimental
data presented in [25], scaled to represent a tunnel of length Lt (initial measurements performed
in a 10 m corridor, approximately). Note that packet losses (not detailed here) are associated
with this model, as the number of packets losses is directly proportional to the number of hops.

3.2. Energy losses in the tarpaulin tube

The loss of airflow energy due to curves and length of the tube can be modeled using standard
loss parameters as follows. The fan produces a pressure gradient that results in a flow speed
ufan at the entrance of the tarpaulin tube. This speed is then increased by the negative
variation of pressure ∆H = Pfan − Proom between the input and the output of the tube,
and decreased by the energy losses (friction). The flow energy is partly dissipated along the
tarpaulin tube (distributed losses ξd) and in the curves (concentrated losses ξc). Conservation
of energy (Bernoulli’s equation) implies that:

∆H = ξd + ξc + ρ
u2

room

2
− ρ

u2
fan

2
, (2)

where ρ is air density and uroom is the flow speed at the room side of the tube. We can
express the distributed losses by ξd = Ltρu2

avgf/(2Dt) (Darcy-Weisbach equation), where
Dt is the tube diameter, f models friction losses, and uavg is the average velocity of the
fluid in the tube. We take into account the concentrated losses introduced by the curves
considering an effective length Le = σLt, σ > 1. The value of σ depends on the curvature and
diameter of the tube. Replacing uavg with ufan (over-approximation of the losses), we have that
ξd + ξc = Leρu2

fanf/(2Dt). For the considered operating conditions, the flow is turbulent (i.e.
the Reynolds number Re is very high) and the energy losses are further simplified considering
that f can be expressed as [26]:

f = (1.82 log10 Re− 1.64)−2 ⇒ ξ = ξd + ξc =
1
2

Le

Dt
ρ

(
ufan

1.82 log10 Re− 1.64

)2

. (3)
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By substituting (3) in (2) and solving for uroom we obtain:

uroom(t) ≈ η × ufan(t− τtarp), η
.=

√
1− σLt

Dt

(
1

1.82 ln Re− 1.64

)2

,

where η < 1 represents the energy losses associated with the tarpaulin tube and Re ≈
67280Dt × ufan [4]. We supposed that 2∆H/(ρu2

fan) << 1, which is a reasonable assumption
associated with the incompressibility hypothesis in the tarpaulin tube.

3.3. Concentration profiles

The novel modeling approach presented in this section is primarily motivated by the shapes
similarity of the experimental buoyancy profiles presented in [22] and related works. Indeed,
fluid stratification (relative gravity) monitored for different inflow buoyancy, momentum and
number of sources, always exhibits sigmoid-like profile. WSN measurements motivate further
use of this property, as they can be easily associated with an appropriate estimation strategy
to provide “on-line” shape monitoring. This extra simplification is particularly suitable to
the proposed global approach. Establishing the control strategy on the shape properties also
has the significant advantage that, compared with classical space discretization methods, the
closed-loop performance is structurally robust with respect to the time-varying localization of
the WSN measurements.

Note that, as the clean airflow and pollutants enter directly into the extraction rooms, we do
not consider the physical transport phenomenon (or associated time-delay) in the rooms but
only first order dynamics on mass conservation. This is consequently equivalent to a 0-D model
of the extraction room. The associated model uncertainties can be considered as acceptable
since the distributed measurements provided by the WSN allow for an online model adjustment
using classical estimation methods.

The pollutants (COx, CH4, SO2 and NxOx are classically associated with the trucks engines)
volume concentration profiles cj(z, t), where z ∈ [0, hroom] is the height in the extraction room,
hroom is the room height and j indicates the pollutant considered, is approximated by the
sigmoid distribution:

cj(z, t) =
αj(t)

1 + e−βj(t)(z−γj(t)hroom)
,

where αj(t) is the amplitude, βj(t) is the dilatation and γj(t) is the inflection point of the
distribution. Note that any function can be approximated with the desired precision level by
a sum of such sigmoid functions: we suppose here that one curve is sufficiently accurate for
feedback control purposes and that the induced error is negligible in comparison with the
system uncertainties. This simplified modeling approach was proposed for distributed systems
involving smooth energy transport phenomena in [27] for the modeling of temperature profiles
in Tokamak plasmas and validated with experimental results.

In our case, the real-time measurements provided by the WSN can be used to estimate the
shape parameters {αj , βj , γj} thanks to classical recursive identification or Kalman filtering
techniques [28]. To ensure the system identifiability, we have to suppose that measurements
are available at three different heights for each regulated pollutant. We can consider that a
node contains all the necessary chemical sensors, which simplifies the previous hypothesis to
the need of three wireless sensor nodes located at different heights. Note that the height-
dependency of the concentration distribution allows for a direct use of all the available
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information at a given sampling time if we have more than three nodes (e.g. we can easily
substitute the information provided by a sensor by the one provided by another if we keep
z as a free variable in the estimation algorithm). The model accuracy then directly depends
on the measurements frequency, the number of nodes and the precise knowledge of the nodes
localization (e.g. achieved thanks to ultra-wide band techniques for very accurate positioning
in harsh environments such as underground mines, as proposed in [29, 30]).

As the aim of this paper is to investigate the impact of the main dynamics on the feedback
regulation and since no experimental data is available for the moment, we only describe the
impact of the mass conservation (flow continuity property). This ensures that the proposed
model is consistent with the global physics of the system and can be used in a predictive
mode. The shape parameters {αj , βj , γj} can also be related to the global parameters (room
temperature and pressure, number of trucks and engines power, etc.) with an appropriate
identification method. The pollutant mass mj(t) in the room is obtained from the concentration
distribution thanks to the relationship:

mj(t) = Sroom

∫ hroom

0
cj(z, t)dz ≈ Sroom

[∫ hdoor

0
cj(z, t)dz + αj(t)∆h

]
,

where Sroom is the room surface, hdoor is the door height and ∆h = hroom − hdoor. The last
equality is established by supposing that the air above hdoor is saturated with pollutants, as
there is no exhaust in this region. Furthermore, we are interested in a detailed model below the
room entrance level, as it corresponds to the breathing and engine levels, and can consider the
term αj(t)∆h as an averaging of what happens above. This hypothesis is reasonable in mining
ventilation applications as, typically, the ceiling is blasted and the engines/humans enter the
room only to work on the ore at the ground level. The pollutant dynamics is set thanks to the
mass conservation law:

ṁj(t) = ṁj,in(t)− ṁj,out(t)− ṁj,chem(t) , (4)

where ṁj,in is the incoming pollutant mass rate due to the engines and humans, given by
appropriate specifications, and ṁj,chem is the mass variation due to chemical reactions between
components j and k at a rate νjk = −νkj . The mass conservation equation (4) sets the shape
parameters dynamics with:

ṁj(t) ≈ Sroom

[∫ hdoor

0

ċj(z, t)dz + α̇j(t)∆h

]
,

ṁj,out(t) ≈ Qout

hdoor

∫ hdoor

0

cj(z, t)dz ,

ṁj,chem(t) = Sroom

[∫ hdoor

0

νjkcj(z, t)ck(z, t)dz + νjkαj(t)αk(t)∆h

]
,

where Qout = St ηufan(t − τtarp) is the volume rate of flow leaving the room (equal to the
one entering the room, from the incompressibility hypothesis), while St is the cross-section of
the tarpaulin tube. The dynamics of the mass transformed by chemical reactions ṁj,chem(t)
is set using the classical equation ṁj,chem(t) = νjkmjmk, applied to our room division (above
and below hdoor) and expressed in terms of the concentration. This model ensures that the
transformed mass is conserved (ṁj,chem + ṁk,chem = 0).
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The variable-step integration method described in [27] (discretization of the integral term,
that is expressed as a constant matrix) is now introduced to obtain a differential equation
representation of the distributed model:

Ej




α̇j(t)
β̇j(t)
γ̇j(t)


 = ṁj,in(t)−Bj ufan(t− τtarp)−Djk ,

with:

Ej
.
= Sroom




Vint




..

.
..
.

..

.
∂Cj,i

∂αj

∂Cj,i

∂βj

∂Cj,i

∂γj

..

.
..
.

..

.




+




∆h
0
0




T




,

Bj
.
=

1

hdoor
Vint




..

.
Cj,i

..

.


× St η, Djk = Sroomνjk,i


Vint




..

.
Cj,i Ck,i

..

.


 + αjαk∆h


 ,

where i = 1 . . . N , Vint = Mint(N, 1 : N), N is the number of discretization points, Mint is the
integration matrix and Cj,i = cj(zi, t). The system dynamics is finally represented as a set of
delay differential equations of the form:




α̇j(t)
β̇j(t)
γ̇j(t)


 = E† [ṁj,in(t)−Bj ufan(t− τtarp)−Djk] , (5)

yj(t) =
αj(t)

1 + e−βj(t)(zr−γj(t)hroom)
, (6)

where † denotes the Moore-Penrose inverse and yj(t) is the concentration of gas j at the
reference height zr.

3.4. Locally regulated fan

We used a three-phase asynchronous motor model with the fan as load to determine the fan
power consumption. The working principle can be found in [31] or in similar text books. We
report here the main principles. Let n2 be the speed of the motor, then:

n2 =
60f1

p
(1− s)

where f1 is the supply frequency and p the number of the poles. The slip factor of the motor
is defined as s

.= (n1 − n2)/n1, where n1 is the speed of the rotating magnetic field. A local
feedback control loop is set by varying the supply frequency while maintaining a constant
voltage-frequency ratio. This kind of control is called scalar V/Hz control [31]. The parameters
of the motor and the fan, along with their numerical values are shown in Tab. I.

3.5. Illustrative test case.

To illustrate the previous results, we consider an extraction room with dimensions hroom =
9 m, Sroom = 200 m2 and hdoor = 5 m, and wish to regulate the air quality at zr = 3 m.
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Motor and Fan Characteristics
Nominal Power 75KW Nominal RMS Voltage 400 V
Nominal Current 155A Nominal Frequency 50 Hz
Nominal Frequency 50 Hz Nominal Speed 1484 RPM
Nominal Speed ∼ 155, 32 rad/sec Nominal Torque ∼ 483 Nm
Maximum Voltage ∼ 565 V Motor Friction 0.03914
Rotor Resistance 20.92 mΩ Rotor leakage Inductance 0.335 mH
Stator Resistance 35.52 mΩ Stator leakage Inductance 0.335 mH
Magnetizing Inductance 0.0151 mH Base Frequency 50 Hz
Number of poles 4 Motor Inertia 1.21 Kg/m2

Motor Friction 0.03914 Base Speed 314 rad/sec
Stator Impedance 105mΩ Rotor Impedance 105 mΩ
Magnetizing Impedance 4.74Ω Fan Friction 0.13
Load Inertia 4 Kg/m2

Table I. Motor and Fan Characteristics
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Figure 5. CO (- -) and NO (–) concentrations in the extraction room.

The system (room and tarpaulin tube) temperature is 298 K and its pressure is 1 atm. The
tube parameters are Dt = 1.2 m, Lt = 300 m and σ = 1.66. We consider the regulation of
two toxic gases emitted by the trucks, CO and NO, with an atmospheric concentration chosen
arbitrarily as 10−6 Kg/m3 (trace gases). The engines emit approximately 23.5 g/s of NO and
4.6 g/s of CO (inferred from [32]), and we consider the safety thresholds NO = 5.9 g/m3

and CO = 0.234 g/m3 (calculated from [4] for sea level conditions). The network delays and
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packet losses are obtained by scaling the measurements presented in [25] to the system scale:
this results in communication delays between 1 and 5 s and packet losses ranging from 10
to 40 %. The time evolution of the concentrations at zr is presented in Fig. 5, for a fan flow
speed ufan = 10 m/s and 1 to 3 trucks working in the room. In this scenario, CO is clearly
the limiting factor, but the relative importance of the components strongly depends on the
chemical reactions rate, which is chosen arbitrarily.

Remark 1. The proposed non-dimensional dynamics has been constructed based on the
fundamental conservation laws (flow equation for the physical delay, mass conservation in
the room), engineering relationships (Darcy-Weisbach equation and associated energy losses
computation, fan model) and experimental measurements (scaled WSN delays and packet
losses). This part of the model is then fairly accurate to investigate the main dynamics, compare
the time constants and test different control strategies. The concentration profiles estimation
with sigmoid curves constrained by first order dynamics (mass conservation) is sufficient for
control design analysis at this point, as the main time constant and some nonlinearities are
roughly depicted. Specific care has to be taken in its real-time implementation as it strongly
relies on the distributed measurements provided by the WSN and on their localization.

The communication constraints, as time-delays and packet losses, are of secondary
importance here due to the slow behavior of the concentration profiles evolution. These
constraints will only be considered as light constraints in the control schemes. This reduces
the inclusion of WSN into the solution to a conceptual level, as an automation solution that
provides the necessary distributed measurements. Future works focused on the communication
aspects may consider more specifically the impact of communication outages or the design of
“sleep and wake” sensors policy according to the pollutants dynamics (i.e. maximizing the
sleeping time to minimize the sensors energy consumption without degrading the closed-loop
performances).

4. CONTINUOUS APPROACH: NONLINEAR MODEL PREDICTIVE CONTROL

The control objective is to minimize the fan energy consumption while ensuring an acceptable
air quality in the extraction room. Due to the height-dependent model proposed in the previous
section, the air quality objective can be rephrased as guaranteeing a maximum pollutant
concentration at a given height zr:

max
∀j

yj(t) ≤ ȳj ,

where ȳj is the threshold value on pollutant j (COx or NOx for example). The reference zr

corresponds to the highest height where the air quality has to be guaranteed and around which
the sensors should be placed. Communication constraints, such as delays, timeout, packet losses
and bandwidth limitations are also taken into account in the optimization algorithm.

4.1. Receding Horizon Control

Predictive control is a model-based design technique [33, 34], which basic principles are
illustrated in Fig. 6. It is based on the on-line solution of successive optimization problems.
The idea is to solve a scheduling optimization problem at time kT , (T : sampling time) from a
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prediction model, based on future desired outputs yj,des and prediction of future disturbances
ˆ̇mj,in (pollutant sources from trucks in this case), to apply the first control values to the
system, update the prediction model according to the available measurements, and repeat the
whole procedure at time (k + 1)T . The desired outputs are chosen as close as possible to
the maximum admissible pollutants concentrations, possibly with a safety margin, in order to
minimize the fan energy consumption. The receding horizon controller then has to achieve the
desired trajectory while respecting the concentration thresholds, which act as output boundary
constraints.

The scheduling algorithm can be stated as:

min
ui,i∈{1,...,Nu}

∫ kT+N

kT


∑

j

(ŷj(τ)− yj,des(τ))2 + λu2
fan(τ)


 dτ ,

where ufan(τ) = ui if τ ∈ [kT + (i − 1)N/Nu, kT + iN/Nu], and ŷj is the prediction of
future outputs, computed from the simulation of a prediction model. For the prediction model,
predicted values of disturbances ˆ̇mj,in are considered. The tuning parameters of the control law

Figure 6. Receding horizon control synopsis.

are N , Nu and λ. Here, N represents the prediction horizon length. It should be chosen large
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enough to provide information about the transient behavior. Next, Nu represents the number
of degrees of freedom in the control action during the prediction horizon. A trade-off has to be
found between the increased precision (large number of degrees of freedom) and the consequent
augmented complexity of the optimal control problem to be solved at each sampling period.
Finally, λ is the weighting factor between the control effort and the disturbance rejection
performances.

4.2. Implementation issues

In this paper the “real system” will be the reference model which has been defined in section
3. However, for a first approach, the following assumption is used for this section. The update
of the states of the prediction model supposes that an estimation of the real system states is
available from the signals of the wireless network. This part is beyond the scope of this paper,
and in the following it is considered that the state of the system is available for control design
purpose.

Being a real-time optimization procedure, the main implementation problems are related to
the speed of convergence of the scheduling algorithm. This implies that the prediction model
has to be simpler than the reference model. A trade off has to be made between its complexity
and its representativeness. For the prediction model, the time varying delay τtarp(t) is chosen
as a constant equal to the maximal time delay which may occur in the real system. This choice
is the most robust one as it can only lead to a more reactive control law. The pollutant sources
act as disturbances and are taken as the mean value of the sources due to the trucks in the
prediction model. Any available information about the disturbances can be included in the
prediction model.

The second important issue is the feasibility of the successive optimization procedure, as
the scheduling algorithm has to be solved with the constraints defined in section 4.1. If the
problem appears to be unfeasible, than one has to define alternative strategies. This point will
be discussed in section 6.4.

4.3. Numerical result

We focus on the constrained case and consider two pollutants, namely COx and NOx. The
thresholds are defined as:

yCOx(t) ≤ ȳCOx = 0.000234 kg.m3

yNOx(t) ≤ ȳNOx = 0.0059 kg.m3

The desired concentrations are set at 90 % of the thresholds:

yCOx,des = 0.9 ∗ ȳCOx

yNOx,des = 0.9 ∗ ȳNOx

The pollutant sources are set according to the scenario depicted in Fig. 5. For the prediction
model, we consider a number of trucks equal to 2, which is a mean value.

4.3.1. Reference case. The tuning parameters of the control law are:

• N : prediction horizon of the model;
• Nu: number of degrees of freedom for the control policy;
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Figure 7. Regulation results for the reference case (N = 100 s, Nu = 1, λ = 10−7).

• λ: weighting factor between the controlled input consumption objective and the
regulation objective.

The reference case is N = 100, Nu = 1 and λ = 10−7. The corresponding results are
presented in Fig. 7, where the pollutants levels, control input and energy consumption of the
electric motor of the fan are given. This regulation is satisfactory, with a smooth control action
verifying the constraints over the whole time interval. As previously mentioned, the fact that
a single actuator controls both pollutant concentrations (NOx and COx) makes the control
law to take into account the hardest constraint (COx).

The computation time for the simulation of 1500 s (real-time) is 10 minutes with MatlabTM

2007a on a Pentium IVTM, 2.80GHz. The proposed regulation can then be performed in
real-time, provided that sufficient computation capabilities are available. The influence of the
tuning parameters will now be detailed.

4.3.2. Influence of λ. The reference case is modified by setting λ = 10−5 and the
corresponding results are presented in Fig. 8. The fan control signal ufan(t) illustrates the
fact that increasing λ decreases the control inputs, as forecasted by the optimization problem
formulation. Consequently, it also leads to a higher level of pollutant, but this level still satisfies
the constraints.

4.3.3. Influence of N . The reference case is now changed by setting N = 50. The
corresponding results are given in Fig. 9. The control law is now more reactive, as the decisions
of the controller related to the constraints activation are taken later than in the reference case.

4.3.4. Influence of Nu. Finally, the influence of Nu is studied by testing the reference case
with Nu = 2, as illustrated in Fig. 10. The corresponding control law appears to be smoother,
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Figure 8. Influence of λ on the reference case (N = 100 s, Nu = 1, λ = 10−5).
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Figure 9. Influence of N on the reference case (N = 50 s, Nu = 1, λ = 10−7).

with very satisfactory regulation results. However, the computation time is increased to 45
minutes (4.5 times longer than the Nu = 1 case). Remember that Nu is the number of
optimization variables, and thus is directly linked to the computation complexity.

Remark 2. The receding horizon control strategy has proved to be particularly efficient to
achieve optimal performances on the nonlinear system considered. Communication constraints
and model uncertainties are easily taken into account and the trade-off between regulation
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Figure 10. Influence of Nu on the reference case (N = 100 s, Nu = 2, λ = 10−7).

performance and energy consumption is transparent in the choice of the scalar parameter
λ. The drawback is that the high computational demand associated with the optimization
process may not be appropriate for embedded applications. This motivates a second control
strategy, presented in the next section, where the algorithm simplicity is preferred to closed-
loop performance.

5. HYBRID APPROACH: SAFETY CONTROL STRATEGY

The control strategy proposed in this section is focused on the safety of the closed loop
system. The secondary ventilation system is modeled conservatively, e.g. using worst case
approximations, and we use a simple threshold control algorithm. We model the closed loop
system using the hybrid systems mathematical framework: this allows to take into account
the effects of time-delays, transmission errors and safety constraints. Thus, we use abstraction
techniques and tools developed in previous works [35, 36] to verify safety (with respect to gas
concentrations) and temporal properties of the system, with a required precision. Since we use
a conservative approximation of the original system, if the safety verification algorithm states
that the abstract system is safe then the original system is also safe.

5.1. Hybrid model

In Section 3.3 we derived the dynamics of the time-dependant shape parameters α(t), β(t) and
γ(t) in (5) and used them to compute the concentration of gas j at the reference height zr (6).
Since such model can not be used for the hybrid control approach proposed in this section,
we derive approximated (conservative) dynamics for the gas concentration average. We are
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interested here in the dynamics of the height-averaged concentration:

Cj(h, t) .=
1
h

h∫

0

cj(z, t)dz . (7)

The pollutant dynamics is simplified by omitting the chemical reactions in the mass
conservation law:

ṁj(t) = ṁj,in(t)− ṁj,out(t) = ṁj,in(t) + uin(t)Stcatm − uout(t)SoutCj(hout, t) , (8)

where cj,atm is the gas concentration in the atmosphere, Sout is the section of the extraction
room output, St is the section of the tarpaulin tube, and uin(t), uout(t) are respectively the
input and output airflow velocities. Dividing (8) by the room volume VR, we obtain the
concentration dynamics:

Ċj(hroom,t) =
ṁj,in(t)

VR
+

uin(t)Stcj,atm

VR
− uout(t)Sout

VR
Cj(hout, t) . (9)

From the incompressibility hypothesis, (9) can be rewritten as:

Ċj(hroom, t) =
ṁj,in(t)

VR
+

uin(t)Stcj,atm

VR
− uin(t)St

VR
Cj(hout, t) . (10)

The next step is to simplify the profile description by a rough approximation of the shape
parameters. We can use a hybrid representation, supposing that βj and γj can only assume a
finite number of constant values βk

j and γk
j , where k is the number of trucks in the room. In

other words, we do not consider the transient dynamics of these parameters when the number
of trucks in the room changes. Note that βk

j and γk
j should also depend on the current airflow

velocity at the room entrance, but we suppose that the strongest contribution derives from
the number of trucks in the extraction room. The dynamics of the average concentration in
the room are calculated by expressing αj(t) as a function of Cj(hroom, t). To this aim, we
substitute the sigmoid function in the integral (7) and obtain:

Cj(h, t) =
1
h

h∫

0

αj(t)

1 + e−βk
j (z−γk

j hroom)
dz =

αj(t)
βk

j h
ln

(
eβk

j (h−γk
j hroom) + 1

e−βk
j γk

j hroom + 1

)
,

⇔ αj(t) =
βk

j hroom

ln
(

e
βk

j
(1−γk

j
)hroom+1

e
−βk

j
γk

j
hroom+1

)Cj(hroom, t) . (11)

Substituting (11) in the sigmoid function (cj(z, t)) definition and computing the space averaged
concentration between 0 and hout, we have that:

Cj(hout, t) =
βk

j hroom

ln
(

e
βk

j
(1−γk

j
)hroom+1

e
−βk

j
γk

j
hroom+1

)Cj(hroom, t)
1

hout

hout∫

0

1

1 + e−βk
j (θ−γk

j hroom)
dθ .
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Finally, substituting the expression of Cj(hout, t) in equation (10) we obtain:

Ċj(hroom, t) =
ṁj,in(t)

VR
+

uin(t)Sincj,atm

VR
− uin(t)Sin

VR

βk
j hroom

ln
(

e
βk

j
(1−γk

j
)hroom+1

e
−βk

j
γk

j
hroom+1

)Cj(hroom, t)×

× 1
hout

hout∫

0

1

1 + e−βk
j (θ−γk

j hroom)
dθ . (12)

The simplified model for the secondary system is then the continuous time non-linear delay
system:

Ċj(hroom, t) =
ṁj,in(t)

VR
+

Sincj,atmη

VR
ufan(t− δt(t))

−Sinη

VR
ufan(t− δt(t))

hroom ln
(

e
βk

j (hout−γk
j hroom)

+1

e
−βk

j
γk

j
hroom+1

)

hout ln
(

e
βk

j
(1−γk)hroom+1

e
−βk

j
γk

j
hroom+1

) Cj(hroom, t) , (13)

where δt is the worst-case delay introduced by the tarpaulin tube τtarp(t), as defined in equation
(1). The dynamics becomes affine if we consider the control input ufan piecewise constant (i.e.
constant during the simulation time step) as we will do in the next subsection. Note that η
depends on the airflow velocity in the tube, due to the Reynolds number dependency.

5.2. Control design

Given the model of the secondary system (13), we define the following control specifications.

1. Safety: the gas concentrations can not enter an unsafe set (a red alert zone), given by
standard acceptable air quality for humans.

2. Comfortable air quality: the gas concentrations might enter, only for a bounded
amount of time, a set (a yellow alert zone) that satisfies safety for humans, but might
be uncomfortable.

These two properties intuitively state the following: we guarantee that the oxygen
concentration is always over the minimum safety threshold for humans, and we require that if
a disturbance (e.g. the entrance of a truck in a room) moves it under a threshold of optimality
(comfortable air quality), then it only happens for a short amount of time.

Our aim is to automatically verify whether the controlled system satisfies the aforementioned
safety/comfort properties. Thus, we first need to model the two specifications as formulae. The
first strong specification (classical safety property) can be modeled using the temporal logic
CTL [37], while the second relaxed specification can be modeled using the temporal logic
TCTL [38]. Clearly, we have to verify that both of them are satisfied.

Because of the hybrid nature of the problem (e.g. number of trucks in an extraction room),
it is extremely hard to verify exhaustively on the model (13) whether the specifications above
are satisfied for any discrete and continuous disturbance. For this reason, we first obtain a
conservative hybrid model with affine dynamics of our closed-loop system, then construct
a timed automaton abstraction of the hybrid automaton, which preserves CTL and TCTL
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temporal properties. Timed automata can generally be abstracted into finite state systems
[39], which renders the model checking decidable.

We now define a hybrid model of our closed-loop system with affine dynamics thanks to the
following assumptions.

Assumption 1. As a first approach, we consider only two speed levels (which is the case
in some of the actual mines, where only basic automation is available), namely:

θ̇fan ∈ {θ̇L
fan, θ̇H

fan}.
Depending on the maximum gas emission/consumption of the trucks, we can chose a desired
airflow uH

in at the endpoint of the tarpaulin tube and derive the corresponding fan velocity
θ̇H

fan using appropriate engineering data sheet.
Assumption 2. A threshold control strategy is considered: we can switch fans to low and

high speed levels when the gas concentrations hit some given thresholds.
Assumption 3. The WSN design guarantees that the measured concentration is affected

by a bounded estimation error ε > 0 and that the estimation and communication delays are
bounded by a value δc > 0. As discussed in Section 1, the main wiring problem in the mine
is in the extraction room. Thus, we reasonably assume that the threshold is checked on a
gateway sensor positioned in the room and that the control signal is transmitted to the fan on
a cable (see Fig. 11). On the basis of these assumptions, the secondary control system can be

Wired

Connection

Gateway

Wireless

gas sensors

Figure 11. Proposed network architecture for control.

modeled as a non deterministic affine hybrid automaton. Non deterministic guard conditions
determined by ε > 0 model the estimation error, while a clock variable models estimation,
communication and actuation delays δ = δc + δt.

We consider a three dimensional continuous state space x(t) ∈ R3, where the first component
is the average concentration of oxygen x1(t) = cO2(t), the second is the concentration of carbon
monoxide x2(t) = cCO(t), and the third is the concentration of carbon dioxide x3(t) = cCO2(t)
in the extraction room. The dynamics of this three dimensional system is obtained by replying
the differential equation (12) for each gas:

ẋi(t) = aixi(t) + bi, i ∈ {1, 2, 3} ,

with the coefficients {ai, bi} obtained according to (13). The constants ai depend on the
buoyancy characteristics, on the input volumetric airflow and on the concentration of the ith
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gas in the room, while the constants bi depend on the ith gas emission/consumption of the
trucks and on the input volumetric airflow.

Since we have two speed levels, each one of the constants ai, bi can assume two values
(respectively aL

i , aH
i and bL

i , bH
i ). Let gl,1, gh,2, gh,3 be the thresholds on the gas concentrations

that trigger the increase of the fan speed, and gh,1, gl,2, gl,3 be the thresholds on the gas
concentrations that trigger the decrease of the fan speed. In our hybrid model of the controlled
secondary system we consider the worst case value for the disturbance introduced by the trucks,
namely when there are two working trucks in the extraction room. The hybrid model (depicted
in Fig. 12) is now described, using the notations introduced in [35].

q1

q2

q3

q4

(x1 ≤ gl,1 − ε) ∨

(x2 ≥ gh,2 + ε) ∨

(x3 ≥ gh,3 + ε) ∨

(x4 > 0)

x1 := x1

x2 := x2

x3 := x3

x4 := 0
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Figure 12. Hybrid model of the closed-loop secondary system.

• Q = {q1, q2, q3, q4} is the set of discrete states that models the two speed levels of the fan
and the two actuation delays when we switch from one speed to the other and viceversa.
In particular, q1 models the low speed state, q2 models the low to high switch delay, q3

models the high speed state and q4 models the high to low switch delay.
• X = R4 where x1, x2 and x3 represent, respectively, the concentration of oxygen, carbon

monoxide and carbon dioxide, while x4 is a clock state variable.
• Init = {(q1, x0)} is the set of initial conditions.
• E = {(q1, q2) , (q2, q3) , (q3, q4) , (q4, q1)} is the set of discrete transitions.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 0:0–0
Prepared using rncauth.cls



23

• The continuous dynamics for the discrete states q1, q2 is given by:



ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)


 =







aL
1 0 0
0 aL

2 0
0 0 aL

3







x1(t)
x2(t)
x3(t)


 +




bL
1

bL
2

bL
3




1


 ,

and the continuous dynamics for the discrete states q3, q4 is given by:



ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)


 =







aH
1 0 0
0 aH

2 0
0 0 aH

3







x1(t)
x2(t)
x3(t)


 +




bH
1

bH
2

bH
3




1


 .

• Invariant, guard and reset are defined as follows:

Inv (q1) = {x ∈ R4|x1 > gl,1 − ε ∧ x2 < gh,2 + ε ∧ x3 < gh,3 + ε ∧ x4 > 0} ,
Inv (q2) = {x ∈ R4|x4 < δ} ,
Inv (q3) = {x ∈ R4|x1 < gh,1 + ε ∨ x2 > gl,2 − ε ∨ x3 > gl,3 − ε ∨ x4 > 0} ,
Inv (q4) = {x ∈ R4|x4 < δ} ,
G (q1, q2) =

{
x ∈ R4|x1 6 gl,1 − ε ∨ x2 > gh,2 + ε ∨ x3 > gh,3 + ε

}
,

G (q2, q3) =
{
x ∈ R4|x4 > δ

}
,

G (q3, q4) =
{
x ∈ R4|x1 > gh,1 + ε ∧ x2 6 gl,2 − ε ∧ x3 6 gl,3 − ε

}
,

G (q4, q1) =
{
x ∈ R4|x4 > δ

}
,

∀e ∈ E,R
(
e, x(t)

)
= (x1(t), x2(t), x3(t), 0)′ .

The threshold control strategy is designed by defining the guards gl,1, gl,2, gl,3, gh,1, gh,2 and
gh,3. We now automatically verify, by using the theoretical results introduced in [36] and the
tool developed in [35], if for a given control strategy the hybrid automaton defined above (which
models the closed-loop secondary system according to our control strategy) satisfies Safety
and Comfort properties. More precisely, define the Safety specification introduced above as
a CTL formula ψs, and define the comfortable air quality specification as a TCTL formula
ψc(tmax), where tmax is the maximum time the system is allowed to dwell in uncomfortable
air quality.

Unfortunately, model checking is in general undecidable also for affine hybrid automata:
an important technique used to cope with complexity is abstraction. In recent papers [35, 36]
an algorithm that constructs an abstraction of a hybrid automaton with affine dynamics was
proposed and implemented. Such algorithm preserves temporal properties expressed by CTL
and TCTL temporal logics. The abstract model belongs to a subclass of timed automata, which
is called durational graph. Durational graphs are a special class of timed and hybrid automata
[40, 41], in which the continuous variables are clocks, increasing with a constant slope. Resets
are restricted to clock resets to 0.

The following result is directly implied by the results developed in [36]:

Proposition 1. Given a hybrid automaton H and a durational graph G such that H and G
are bisimilar with precision ϕ (H ≈ϕ G), then:

i. If the specification ψs is satisfied for the system G, then it is satisfied for the system H;

ii. If the specification ψc(tmax −ϕ) is satisfied for the system G, then ψc(tmax) is satisfied for
the system H.
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According to the above proposition, we can verify properties of the affine hybrid automaton
by checking properties on the durational graph abstraction, using model checking tools for
timed automata (e.g. KRONOS [42], UPPAAL [43]). If for an initial choice of the threshold
the system is not verified to be safe, we can iteratively run the verification procedure for tighter
thresholds until safety and comfort are both satisfied.

The abstraction algorithm’s graphical output is illustrated in Fig. 13(a). The algorithm
intuitively works as follows. The set of initial conditions of the gas concentrations (blue
polytope) is partitioned in a finite number of polytopes according to the continuous dynamics
and the guard sets. The property of each element of the partition is that, for each pair of initial
conditions x0

1, x
0
2 belonging to it, the arrival times t1, t2 to the guard satisfy |t1− t2| < ϕ. This

procedure is iterated to all guard sets (green and red polytopes) of the hybrid automaton. Each
partition element is translated into a discrete state of the abstracting durational graph. The
resulting durational graph G satisfies H ≈ϕ G, and thus Proposition 1 holds. Moreover, we can
get from the precision ϕ of our abstraction a measure of safety: this can be used to optimize
the thresholds by iterative search, in order to guarantee safety with a desired robustness and
energy consumption reduction.

By executing the automatic verification procedure on our hybrid model using the thresholds
gl,1 = 0.2955, gl,2 = 0.5 · 10−3, gl,3 = 0.0885, gh,1 = 0.2975, gh,2 = 2.5 · 10−3, gh,3 = 0.091 (in
[Kg/m3]) and an abstraction precision ϕ = 1 s, we verified on the abstraction G that ψs is
satisfied, and ψc(tmax) is satisfied for tmax = 61 s. Since our abstraction has been constructed
with precision ϕ = 1 s, then Proposition 1 implies that (1) the original is safe and (2) the
maximum time of uncomfortable air quality is bounded by 62 s.

For completeness, we also show in Fig. 13(b) some Matlab simulations of the closed loop
system. For the particular initial condition chosen for this simulation, safety and air quality
can be verified using the plots. The advantage of automatic verification is that the same two
properties can be verified in one shot for the whole set of initial conditions, which has infinite
cardinality.

6. COMPARISON BETWEEN THE TWO APPROACHES

6.1. Comparison framework

In this section we compare the continuous and the hybrid control strategies on the test case
proposed in Section 3.5. The safety thresholds CO = 0.000234 kg.m3 and NO = 0.0059 kg.m3

are considered as strong constraints, in the sense that the regulated pollutant concentrations
have to remain below these values at any time. The comparison is based on simulation results,
for which we compare regulation efficiency, energy consumption, robustness with respect to
model uncertainties, and computational complexity.

For comparison consistency, the MPC control law depicted in 4.1 is tested with a control
regulation objective set to 90 % of the thresholds, while for the discrete strategy a choice of
the guards gl,CO/NO and gh,CO/NO at 80 % and 90 % of the safety thresholds is made. For
both strategies, the high and low operating conditions of the fans result in flow speeds ufan of
10 m/s and 80 m/s, respectively. The parameters for the MPC strategy are set to λ = 10−5,
N = 100 and Nu = 1. Simulation results of the two strategies are depicted in Fig. 14.
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(a) Polytopes representing the set of initial
conditions and the projections of their
executions with the guard sets
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(b) Temporal simulation

Figure 13. MatlabTM simulations and screenshot of the abstraction algorithm output.

6.2. Regulation Efficiency

For both strategies, the safety conditions are satisfied. The MPC is tuned such that both
approaches have a comparable energy consumption. We can see that, in terms of regulation
efficiency, the MPC leads most of the time as the pollutant concentration is significantly lower
(40 % lower for the one truck case, equivalent when there are 2 trucks and 12 % higher for the
three trucks case).

6.3. Energy Consumption and control input

The energy consumption is compared using the fan model discussed in Section 3.4. Fig. 14
shows that the MPC strategy is more efficient (by approximately 8.2 %) with respect to energy
consumption. This is mainly due to the fact that a relatively high λ has been chosen for this
comparison, leading to a strong weight on power consumption optimization. Furthermore, the
MPC approach obviously leads to smoother control laws. Note that the observed differences
between the two approaches are also related to the nonlinear properties of the plant and to
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Figure 14. Comparison of the two approaches - MPC (solid) and Hybrid (dotted)

the tuning of the controller gains (or choice of the guards for the thresholds approach).

6.4. Robustness with respect to model uncertainties

In the receding horizon strategy, one has to consider a prediction model of the system. In our
case, the prediction model is the reference model, with the maximum time delay, and prediction
of pollutant sources at mid value. Feasibility of successive optimization problems appears to
be a crucial point in the receding horizon strategy. The constraints are taken into account by
adding some hard penalization terms in the optimization criterion. Thus, when the constraints
begin to be slightly violated, the control law increases its value to satisfy the constraints as
soon as possible. More advanced strategies are investigated in [44], but the previous approach
appears to be sufficient for the mine ventilation, as illustrated by the robustness tests presented
in Fig. 15.

Two different robustness tests were performed. In the first one (Fig. 15(a)), we consider
underestimated values for the prediction of the pollutant sources. Thus, for this test, the
prediction model assumes that there is only one truck in the mine. This is a worst case
situation, as can be seen from the real truck profile of Fig. 7. The second test (Fig. 15(b))
consists of testing a 20% underestimated gain of the system. In other words, the prediction
model assumes that the amount of pollutant is always lower and slower than in reality. Both
tests show that the MPC strategy is robust against pollutant prediction errors and model
uncertainties.

While the hybrid approach is structurally robust, in the sense that it converges in finite
time, the thresholds may not be satisfied due to the system inertia and neglected dynamics.
This can happen, for example, if we choose the guards at 85% and 95% of the threshold values,
as illustrated in Fig. 16. Even if the fans are set to their maximum value once the threshold
is triggered, the controller can not predict the safety margin that is necessary to compensate
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(a) MPC with underestimated pollutant source (1 truck)
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(b) MPC with parameter uncertainty

Figure 15. Robustness tests (N = 100 s, Nu = 1, λ = 10−5).

for the inertia of the pollutants concentration in the room.

6.5. Computational Complexity

The computational complexity of the threshold control strategy is O(1), namely the control
algorithm can be executed in a constant (and very short) time. In fact, the controller is
very simple and does not require any kind of computation, since it is based only on the
comparison between measurements and safety thresholds. On the contrary, the MPC approach
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Figure 16. Threshold control strategy with slightly modified guards

is computationally time consuming, since hard optimization problems have to be solved at each
sampling time. More precisely, the evaluation of the cost function implies the simulation of
the whole model, as well as the numerical integration of differential equations. The number of
such simulations grows exponentially with the number of degrees of freedom Nu in the control
law design. Further, in the real implementation of the MPC control algorithm it is necessary
to take into account, before the prediction stage, the reconstruction of those states which
parameterize the finite time optimal control problem to be solved at each sampling period.

Remark 3. The comparison between the continuous and the hybrid control strategies have
shown that the nonlinear model predictive control outperforms the safety control, in terms
of energy consumption minimization and robustness. This performance is achieved at the
price of a higher computational complexity, which renders the MPC difficult to envision for
embedded systems, while the threshold control strategy can be included in a modern wireless
sensor equipped with a microchip. From an implementation point of view we can then relate
the choice of the control strategy to the regulation architecture presented in Section 2.1. Indeed,
if a centralized approach can be implemented, then there is no difficulty to set the MPC in the
control room. If the computational resource is limited to the WSN, then the threshold control
strategy can be used to reduce the energy consumption in comparison with the actual on/off
strategy.

7. CONCLUSIONS

We provided a precise description of the mining ventilation problem, a novel industrial
case in the field of control that is of prime environmental importance and where advanced
control methodologies can bring a major improvement. This problem was formulated as the
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one of wireless ventilation control for large-scale systems, the core idea being to combine
WSN capabilities with model-based control strategies. We consequently derived a new
control-oriented model that includes the various dynamics of this multi-physics process. The
constraints induced by the WSN were mostly associated with time-delays and packet losses.
The modeling of the complete system have shown that the communication constraints have a
secondary importance compared to the regulated pollutants dynamics.

Two different control approaches were applied: a continuous approach based on a receding
horizon scheme (MPC) and a threshold control strategy that uses a mathematical abstraction
of the system. The first approach was shown to allow for a precise control of the pollution level,
explicitly taking into account the non linearities and operation constraints, and providing for an
easy tuning between closed-loop performance and energy consumption. The second approach
was focused on guaranteeing safety and providing for a reduced-complexity regulation that is
suitable for embedded control. Comparing the two approaches, it appeared that significantly
improved performances can be achieved thanks to MPC while the threshold control strategy
can be easily embedded in WSN. Such result can be used as an automation design argument,
to motivate a centralized control approach (offering larger computational capabilities) or to
evaluate the gains associated with a WSN-embedded control solution.

The on-line estimation of key model parameters and the design of a new control strategy
that can synthesize the advantages of the two approaches may provide interesting guidelines
for future research.
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